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Abstract—Sliding Window Operations (SWOs) are widely used in 

image processing applications. They often have to be performed 

repeatedly across the target image, which can demand significant 

computing resources when processing large images with large 

windows. In applications in which real-time performance is essential, 

running these filters on a CPU often fails to deliver results within an 

acceptable timeframe. The emergence of sophisticated graphic 

processing units (GPUs) presents an opportunity to address this 

challenge. However, GPU programming requires a steep learning 

curve and is error-prone for novices, so the availability of a tool that 

can produce a GPU implementation automatically from the original 

CPU source code can provide an attractive means by which the GPU 

power can be harnessed effectively. This paper presents a GPU-

enabled programming model, called GSWO, which can assist GPU 

novices by converting their SWO-based image processing applications 

from the original C/C++ source code to CUDA code in a highly 

automated manner. This model includes a new set of simple SWO 

pragmas to generate GPU kernels and to support effective GPU 

memory management. We have implemented this programming model 

based on a CPU-to-GPU translator (C2GPU). Evaluations have been 

performed on a number of typical SWO image filters and applications. 

The experimental results show that the GSWO model is capable of 

efficiently accelerating these applications, with improved applicability 

and a speed-up of performance compared to several leading CPU-to-

GPU source-to-source translators.   

 
Index Terms— Parallel Computing, Sliding Window Operation, 

OpenCL, CUDA, Automatic Translation 

I. Introduction  

liding Window Operations (SWOs) are performed very 

frequently in image processing and analysis [1-3]. A typical 

SWO repeatedly applies an image filter to a pre-defined sub-

window that slides progressively across the target image. Many 

filters involve logical and mathematical operations with high 

complexity. Examples include rank-order filters (adaptive two-

pass filter [4], fuzzy rank LUM filter [5], etc.), which involve 

sorting values of the pixels in the window in ascending order; 

and morphological filters (directional morphological filter [6], 

dilation and erosion filter [7], etc.), which perform 

morphological operations such as erosion, dilation, opening and 

closing by using a moving window. 

 

Figure 1. Illustration of a Sliding Window 

Since SWOs need to be performed repeatedly across the entire 

target image (see Figure 1), significant computing resources are 

required when processing large images with large windows. If 

real-time performance is essential, running these filters on a 

CPU may not deliver the results within an acceptable time.   

Faced by these computational demands, many researchers have 

adopted parallel computing [8-11]. As thousands of computing 

threads are available nowadays on individual graphics cards, 

graphics processing units (GPUs) have become increasingly 

popular for handling computationally intensive tasks that can 

be parallelized [12]. SWOs are particularly suitable for this as 

the calculations associated with different window locations are 

independent of each other and can thus be executed in parallel.  

Unfortunately, the parallelization of CPU code for execution on 

GPUs is not straightforward, and manual implementation 

typically involves significant effort. Indeed, designing and 

implementing GPU algorithms that utilize the GPU potential 

most effectively requires an in-depth knowledge of the 

underlying GPU architecture. In this process, non-experts are 

error prone, and novices experience a steep learning curve. 

Researchers/programmers already have access to a number of 

GPU-enabled image processing libraries or open-source code, 

such as OpenCV_GPU for CUDA [13], GPUCV [14],  

ethothepi-CUDA-Image-Processing [15], CUDA/NPP library 

(for morphological operations) [8], CUDA-based denoising 

filters [16], etc., but we have observed that the GPU-enabled 

filters from these existing resources do not meet a wide range 

of user demands. Although the filters have been carefully 

conceived by experts for optimal performance gain on GPUs, 
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in general each is designed for a specific purpose and has little 

extendibility – no customized development is allowed. Further, 

since overall they cover only a limited set of standard SWOs, 

often researchers/programmers still have to write their own 

SWO code either to modify the standard filters or to implement 

new SWOs. The difficulties inherent in GPGPU algorithm 

design and implementation make it highly desirable to have a 

means by which users can write the GPGPU code they require 

even if they lack an in-depth knowledge of GPUs.  

This paper provides a proof of concept demonstrating the 

possibility of employing an easy-to-use CPU-to-GPU code 

translator to accelerate SWO-based image filter applications to 

deliver markedly improved performance over CPU-based 

approaches. It presents a new programming model, GSWO, that 

allows GPU-enabled parallelization of SWOs for image 

processing in a highly automated manner – the users can 

annotate their source code for image filters using pragmas, and 

the annotated code is then automatically converted into GPU 

code with optimized parameter settings. GSWO is based on a 

web-based platform, C2GPU, which supports automated code 

conversion from CPU to GPU [17].  

Our implementation of the GSWO model produced a set of 

newly defined pragmas that support CPU-to-GPU conversion 

of a variety of SWO source codes. By using these pragmas, 

users can generate GPGPU code for their SWO image filters 

without having a good knowledge of GPUs, thus supporting 

customized development in many image applications and 

affording the possibility of remarkable performance gains.  

In summary, the main contributions of the paper are:  

 An annotation-based programming model, GSWO, is 

presented and implemented for automated CPU-to-GPU 

translation of SWOs for image processing. The model 

features new SWO pragmas that are easy to use and are 

applicable to many types of parallelizable operations in 

sliding windows. It also introduces a memory management 

hierarchy for effective memory creation and data transfer 

between CPU and GPU. 

 A thorough performance evaluation of the GSWO model 

using benchmarks and practical applications has been carried 

out, the results of which suggest notable performance gains 

and improved usability for SWO filter applications 

compared to other leading CPU-to-GPU translators [23-30].  

The rest of the paper is organized as follows. Section 2 provides 

a brief overview of related work, and we present the proposed 

GSWO programming model in Section 3 and the experimental 

validation results in Section 4. Section 5 draws conclusions 

from the work and suggests areas for future investigation. 

II. Related Work 

This section gives a brief introduction to SWOs and a survey of 

the existing CPU-to-GPU source-to-source translators.     

A. SWOs for image filtering 

In a typical image filter, a user-defined window moves in a 

raster-scan order until the entire image is covered as shown in 

Figure 1. We denote an N×M-sized image by Dn,m: n = 1,..,N; 

m = 1,..,M; an I×J-sized sliding window by Wi,j: i = 1,..,I; j = 

1,..,J; and the set of r-step operations within this sliding window 

by P(p1,..,T). Table 1 shows a typical implementation of an SWO 

on a CPU.   

Table 1. Work flow of an SWO in image processing 

1:      // Initialisation and set memory.                       

2:       float D[N][M] = ReadInputImage();                         

3:       int start_point_x = 0 ; 

4:       int start_point_y = 0 ; 

5: 

6:      // Outer Loop start for whole image Dn,m 

7:        for n = 1: N 

8:        for m = 1: M 

9:              start_point_x = n ; 

10:            start_point_y = m ; 

11:            float W[I][J] = CopyDataFromInputImage(n, m, I, J); 

12:   

13:     // Nested Loop start for Sliding Window Wi,j 

14:            for i = 1: I 

15:            for j = 1: J 

16:     // Execute operations P(p1,..,T) 

17:             p1; p2; p3;…….; pT 

18:            end; end; 

19:       CopyDataToInputImage (D[N][M], W[I][J]); 

20:       end; end; 

 

If the execution time of operations P(p1,..,T) is assumed to be t, 

the running time of the SWO in Table 1 is:  
 

                    T = N × M × I × J × t       (1) 
 

For operations with high complexity (i.e. large t) that use large 

images and windows (i.e. large N, M, I, J), Equation (1) shows 

that the SWO can become very time consuming.  

B. Computationally intensive image filters 

SWOs are typically used in image filters, many of which are 

computationally intensive; rank-order filters [4-5] and 

morphological filters [6-8] are two typical examples.  

Rank-order filters are generally used for noise removal [4] and 

often involve sorting the values of the pixels in the sliding 

window into ascending order, which is time-consuming. Well 

known rank-order filters include low-upper-middle filter [18], 

mode filter [19], alpha-trimmed mean filter [20] and median 

filter [9]. Much attention has been paid to accelerating these 

filters in image processing.   

Morphological filters are widely used to extract edges or 

skeletons of images in applications such as remote sensing 

image recognition [11] and document image analysis [21]. The 

computational cost of morphological filters mainly comes from 

recursive erosion, dilation, opening and closing transforms 

[22]. Increasing the size of the structuring elements can add a 

significant extra computational cost to the filters [8]. 

 



Table 2. Comparison of properties of typical directive-based tools 

Rank-order filters and morphological filters are only two 

examples of uses of SWOs in image processing. Many other 

image filters involve a wide variety of SWOs, most of which 

cannot be represented by standard filters. 

With this in mind, the GSWO model and its implementation 

(i.e. pragmas) have been designed to be capable of performing 

CPU-to-GPU source conversion from arbitrary SWO code in a 

highly automated manner. This will be particularly valuable to 

researchers who are committed to the implementation of non-

standard, compute-intensive image filters in an innovative 

application, but who lack basic GPU skills.  

C. Existing CPU-to-GPU source translators  

Existing CPU-to-GPU source translators can be classified into 

three categories [23], based on algorithmic skeletons [24], 

polyhedral models [25-27] and directives [28-32], respectively. 

Algorithmic skeleton based tools adopt the idea of generating 

efficient target code by specific algorithm classes, such as 

SkePU [24]. Advantageously, they have highly optimized 

library implementations for each algorithm class. However, 

algorithmic skeleton tools demand that users manually 

implement and add a new algorithm skeleton if one is not 

available for a specific class of CPU code. Also, their usability 

is often low due to the difficulties involved in rewriting the 

original CPU source code and in defining algorithm classes and 

their corresponding skeletons.  

Polyhedral model based tools translate source code with affine 

loop structures by performing dependency analysis and loop 

transformation (Par4All [27], Pluto [40]). While they require 

little input from the users, they are applicable only to source 

code with affine loop structures. This means that the polyhedral 

model can deal only with loop nests with affine bounds and 

conditional expressions.     

Thus, while these two approaches can efficiently cope with the  

automatic parallelization of some known algorithm templates 

and certain types of loops, they are both highly sensitive to the 

characteristics and data structures of the input CPU source code. 

In image filter applications using SWOs, this implies that any 

new image filter has to be manually implemented and added as 

an extra class. A further issue associated with these two 

approaches is the highly laborious task of identifying 

parallelizable regions and revising the relevant code. This 

drawback significantly limits their wide acceptance by 

programmers. Because of these limitations, the two approaches 

above are not considered in this paper.   

Directive-based CPU-to-GPU source translation tools [28-32] 

offer a semi-automatic way of generating GPU code. They can 

generate GPU source code by manually adding annotations to 

the input CPU source code. Since users can directly insert 

annotations into their own code, the range of applications such 

translators support is much wider than those supported by 

algorithmic skeleton or polyhedral model based tools.  

We collected a number of typical directive based translators and 

have compared their performance in Table 2. This indicates that 

most of the directive-based tools can process only C, and not 

C++, which is a significant disadvantage for use in application 

areas such as image processing.  

The commercial compiler PGI accelerator [32] accelerates 

applications written in C++ by adding OpenACC [31] 

directives, but its pragmas are far too complex, and the GPGPU 

code it outputs is almost unreadable (since PGI is designed as a 

compiler instead of a source-to-source translator).  

CUDA-lite [29] introduces directives to improve the memory 

hierarchy of CUDA by directly inserting the directives into the 

CUDA code. However, it is not a CPU-to-GPU source-to- 

source conversion tool. 

hiCUDA [30] provides programmers with a set of pragmas 

mapping to typical CUDA operations. The CUDA codes in 

hiCUDA are optimized by dealing with global memory and 

transformations to leverage the complex memory hierarchy. A 

weakness is that hiCUDA requires users to have sufficient GPU 

knowledge to be able to specify the threads and thread blocks. 

MINT [28] is a very easy-to-use C-to-CUDA source translator 

containing five types of pragma. It is designed for accelerating 

stencil computations on NVIDIA GPUs only. This translator 

accepts C source input with some intuitive MINT directives to 

generate highly optimized CUDA C which may produce a 

performance gain of up to 10×.  

D. Limitations of MINT 

Simplicity is a major goal of the directive design in MINT, and 

it incorporates several easy-to-use pragmas: parallel, for, copy 

and single. While these pragmas are sufficient to deal with 

simple C code, they cannot support SWOs in image processing 

due to following limitations. 

 The copy pragma in MINT combines memory allocation 

and data transfer. However, SWOs in image processing 

need to separate these two operations in order to allow the 

reuse of the allocated memory for data transfer (which may 

occur many times between the CPU and GPU), without 

having to involve memory re-allocation each time. 

 Only stencil computing is supported in the kernel 

generation; SWOs in image processing employ many 

operations S(p1,..,T) that are not supported by MINT.  

 hiCUDA [30] PGI (OpenACC) [32] MINT [28] CUDA-lite [29] 

Language support C-to-CUDA C++/Fortan-to-CUDA C-to-CUDA CUDA-to-CUDA 

Easy-use of directives Complex Complex  Easy Easy 

Applicability  Good  Outstanding Limited Good 

Speedup performance Good  Good Outstanding  Good 

Optimisation option Use of shared memory  No particular one Shared memory and loop aggregation Improved memory hierarchy 

Readability of GPU code Moderate No Good Good 

     



 The pragma parallel must be located immediately behind 

the pragma copy, which means that MINT cannot handle 

algorithms in which we need to insert source code between 

these two pragmas.  

The work presented in this paper is directive-based in order to 

meet the demands of flexibility and extendibility that image 

processing presents. Users are able to annotate their code using 

the proposed GSWO pragmas to achieve parallelization of a 

variety of SWOs in image processing. The GSWO pragmas 

represent significant improvements over the pragmas in MINT 

as they support a wide variety of SWOs for image processing. 

The SWO model also features effective memory management, 

allowing for superior performance over the majority of existing 

CPU-to-GPU translators. 

III. GSWO Programming Model 

GSWO performs CPU-to-GPU source conversion and was 

developed as part of the C2GPU toolkit [17], the system 

architecture of which is based on that of MINT [28], but with a 

number of extended components. More details of the C2GPU 

toolkit can be found in [17] and in Figure 9. GSWO follows the 

system design in MINT [28], which comprises a host processor 

and an accelerator, and is neutral about all of the data transfers 

between them. To accelerate SWO-based image filter 

applications, each thread deals only with the operations within 

a single sliding window. The GPU parallelization of SWOs also 

implies the following assumptions: no parallelization within the 

sliding window, and no input data reuse between the sliding 

windows. Table 3 shows a simple example presenting the code 

of a 3×3 median filter implementation using a GSWO model. A 

list of the GSWO pragmas is given in Table 5.   

Table 3. Example of a 3×3 SWO-based median filter 

CPU Code                                          
1:     #pragma parallel { 

2:     …………… 

3:    #pragma single initialization {                    

4:                     float v[9] = {0,0,0,0,0,0,0,0,0};                  } 

5:    #pragma for  nest(2) tile(16,16)  

6:                     for ( i = 1; i <= height ; i++)  

7:                    for ( j = 1; j <= width ; j++) { 

8:    #pragma single transfer {  

9:                     v[0] = Image [i-1][j-1] ; 

10:                   v[1] = Image [i-1][j] ; 

11:                   …………………….. 

12:                   v[8] = Image [i+1][j+1];                           } 

13:  #pragma single remain { 

14:                   for (m = 0 ; m < 9 ; m++)  

15:                   for (t = m+1; t < 9; t++) {                

16:                      if(v[m] > v[t]) { 

17:                                  tmp = v[m]; 

18:                                  v[m] = v[t]; 

19:                                   v[t] = tmp ;  }}                          } 

20 :                                                                                    } 

21:  #pragma single assign {  

22:   Image[i][j] = v[4] ;                                               } 

23:                                                               } 

24:                              } 

GPU parallelization of the SWOs median filter in Table 3 

begins with using “#pragma parallel” to point out the 

parallelizable region of CPU code. Within this region, the 

pragma of “single initialisation” defines a one dimensional 

float array for storing the pixel information in a 3×3 sliding 

window. Then we use “#pragma for nest(2) tile(16,16)” to 

mark the nested loops for GPU acceleration. The clauses “nest” 

and “tile” inherited from MINT [28] respectively indicate the 

depth of for-loop and specify how the iteration space of a loop 

nest is to be subdivided into “tiles”.  

Inside the nested loops, the pragma of “transfer” covers the 

CPU code of transferring the 2D image data of a 3×3 sliding 

window into a 1D float array, which had been marked by the 

pragma “initialization”. The pragma “remain” includes the 

CPU code to obtain the median from this 1D float array. Lastly, 

the pragma “assign” marks the CPU code to transfer the new 

data from the1D float array to the corresponding 2D image data 

associated with a 3×3 sliding window. In the GSWO model, the 

CPU code highlighted by such pragmas will be automatically 

translated into GPU code. The implementation of the GSWO 

model is discussed in detail below.  

A. Parallelization of SWOs 

As seen in Table 1, the algorithm structure of an SWO in image 

processing is very suitable for parallelization. Its GPU-enabled 

implementation typically follows the steps below (see Table 4 

for a detailed example of an implementation):  

1. A GPU device memory buffer DGPU is created and allocated 

to store the complete image data, which is transferred from 

the CPU host buffer Dn,m to the GPU device buffer DGPU .  

2. The GPU kernel parameters are registered; the number 

blocks and threads are determined.  

3. The operations P(p1,..,T) are rewritten in the kernel as 

individual functions; the GPU kernel function is called after 

registering the GPU kernel parameters.  

4. The processed image data in DGPU are transferred back to the 

host buffer Dn,m. 

Table 4. A GPU implementation of SWO in image processing 

1:   {             // Initialisation and create GPU memory.                       

2:                   CreateGPUMemory(DGPU) 

3:                 // Transfer whole image data from CPU to GPU 
4:                   TransferDataFromCPUtoGPU(Dn,m , DGPU  ) 

5:                 // Register GPU Kernel Parameters 

6:                   dim3 threads() ; 
7:                   dim3 blocks() ; 

8:                 // Calling GPU Kernel Function 

9:                  GSWO_Function<<<<blocks, threads>>>( DGPU, I, J, N, M); 
10:               // Transfer whole image data from GPU to CPU 

11:                 TransferDataFromGPUtoCPU(Dn,m , DGPU)               
12:    } 

13:                 

14:         // Rewrite operations S(p1,..,T) in Kernel Function  
15:     __global___ void GSWO_Function(DGPU, I, J, N, M ){ 

16:                // Thread Index Calculation  

17:                int _idy = blockIdx.y * blockDim.y + threadIdx.y ; 
18:                int _idx = blockIdx.x * blockDim.x + threadIdx.x ; 

19:                // Define variable to store SW data  

20:                float  WGPU = CopySWDataTo(DGPU, I, J) 
21:                // Execute operations S(p1,..,T) in Kernel     

22:                     p1; p2; p3;…….; pT 

23:                 // Transfer SW data from  WGPU to DGPU 
24:                 DGPU = CopySWDataFrom(WGPU, I, J) 

25:      } 

 



Table 5. Listing of GSWO model pragmas 

The main acceleration should come from the parallelization of 

S(p1,..,T) in each sliding window. In theory, the total running 

time of Equation (1) will be reduced from N×M×I×J×O(t) to 

I×J×O(t). However, in practice, overhead costs need to be 

considered, for example, the variables used to store the sliding 

window data have to be created and the data have to be 

transferred to the GPU.  

B. GSWO Model  

To allow for parallelization, three major types of directive are 

normally required. 

 Identification of parallel region and kernel region: These 

directives indicate parallel regions, which contain obviously 

parallel work, and regions generating GPU kernel code.  

 Memory Management: These directives manage the tasks of 

memory allocation, conversion, transfer and optimization on 

the GPU and GPU buffers.  

 Kernel Generation: These directives supervise the GPU 

kernel code generation.  

The primary advantage of GSWO over MINT is that its 

memory management directives have an enhanced hierarchy. 

GSWO introduces a set of memory management pragmas to 

control GPU memory allocation, GPU-to-CPU memory 

transfer and CPU memory conversion, respectively. It also 

provides pragmas to allow for the use of texture memory (in 

addition to the use of global memory). These new pragmas 

bring the flexibility and effectiveness to memory management 

that is needed in SWOs for image processing.  

In addition, GSWO introduces a set of newly defined kernel 

generation pragmas. These were designed by following the 

typical procedure of an SWO, which contains initiation, 

transfer, remain and assign. They are simple and can be applied 

to all types of parallelizable operations in sliding windows. Our 

experiments showed that using our pragmas provides a 

significant improvement in usability and productivity when 

compared with other CPU-to-GPU translators. 

The final improvement of the GSWO model is that it extends 

the pragma parallel of MINT into two pragmas parallel and 

parallel region to distinguish the kernel region from the parallel 

region. The pragma parallel region indicates the start of a 

parallel region containing the CPU source code for 

parallelization, whereas the pragma parallel marks a loop for 

generating a GPU kernel function. This extension is similar to 

the directives parallel and kernels in the OpenACC standard, 

but it is less complicated, and easier to use by non-expert GPU 

programmers. With these two pragmas, the GSWO model can 

support a more complicated algorithm structure than MINT can.  

C. GSWO Pragmas  

A list of the GSWO pragmas is given in Table 4.  

a) Basic pragmas 

The basic pragma is similar to the pragma in MINT. The only 

difference is that:  

 Parallel Region indicates the start of a region containing 

parallel work, and such regions within the block of this 

pragma will be accelerated;  

 Parallel indicates the start of a region for kernel function 

generation, which normally contains “For” loops.  

b) Memory management pragmas 

For the memory management pragmas, GSWO extends the 

“Copy” pragma by allowing for memory allocation, data 

conversion and data transfer.  

Two copy based pragmas are defined for memory allocation.  

  CopyMalloc1DArray creates a CUDA array on the device, 

associating it with a CUDA texture memory.  

 CopyByTexture creates CUDA texture memory on the 

device, binding (unbinding) it with 2D data (e.g. the image); 

this normally occurs in the initialization step.  

Data transfer between the CPU and GPU includes two copy-

based pragmas: 

 Directives Descriptions 

Basic pragma 

Parallel  To identify a region generating a kernel function 

Parallel region To identify a parallel region containing parallel work 

For To mark the succeeding “For” loop for GPU acceleration  

Single To indicate serial regions in the GPUSWO model 

Memory  

Management 

CopyByTexture To create a CUDA texture on a device, and bind or unbind with 2D data 

CopyMalloc1DArray To create a CUDA array on a device, associating it with a CUDA texture on the device 

CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy a matrix between CPU and GPU memory 

CopyMemcopy2DToArray To create a CUDA function cudaMemcpy2DToArray to copy data between CPU and GPU memory 

CopyBindTexture To bind the created texture memory to a CUDA global array 

Copy2DArrayTo1DArray To convert the array with different dimensions on the CPU memory buffer 

Kernel  

Generation 

Initialisation To define a one dimensional array for storing the data in a sliding window 

Transfer To transform the code of putting the data in a sliding window into a local variable within a “For” 

loop 

Remain To transform the operations on a sliding window from CPU algorithm to the GPU kernel. 

Assign To assign the new data to the relevant GPU buffer with the correct index. 

 Transfer To transform the code of putting the data in a sliding window into a local variable within a “For” 
loop 

Thread and Block 

Size (inherited from 

MINT [28]) 

Nest () 

Tile (tx , ty , tz) 

To indicate the depth of for-loop parallelization within a loop nest  

To specify how the iteration space of a loop nest is to be subdivided into tiles  

Chunksize (cx , cy, cz) To aggregate logical threads into a single CUDA thread. 

 

  



 CopyMemcopy2D is used to provide a CUDA function 

(cudamemcpy2D) to transfer a matrix in a normal data 

structure from the device memory to host memory.  

 CopyMemcopy2DToArray creates a CUDA function 

cudaMemcpy2DToArray to copy data in a non-normal 

structure (Z-curve) between CPU and GPU memory.  

A further pragma CopyBindTexture is defined to bind texture 

memory to a CUDA global array.     

Data conversion is used to convert an array on the CPU memory 

buffer to different dimensions, for example, converting data 

from a 2D array to a 1D array for GPU use. One such pragma 

is Copy2DArrayTo1DArray.  

Examples of the memory management pragmas and their 

translations into CUDA code are illustrated in Table 9.  

The data transfer and conversion pragmas used to transfer the 

data of the sliding windows are allocated within the parallel 

region pragma, but outside the parallel pragma. Also, the 

names of parameters in the memory creating pragmas 

correspond to the names of relevant 2D or 1D array variables.  

c) Kernel generation pragmas  

The kernel generation pragmas in GSWO are designed for GPU 

kernel code generation. They generate the kernel code to:  

 perform the SWOs.  

 allow for correct data transfer between CPU and GPU. 

In the GSWO model, we have designed new “single” pragmas 

for kernel code generation, four of which are defined below.    

 Single Initialisation: generates CUDA kernel code that 

defines a 1D array with size I×J for storing the data in the 

sliding window. If the data in the sliding window are defined 

as a 2D array in CPU code, as seen in Figure 2, we need to 

define a 1D array to replace the 2D array outside of the “For” 

pragma in the CPU code. In translating to the CUDA kernel, 

the Single Initialisation pragma directly moves this 

statement into the kernel. In the CPU code, all of the 

referenced data can normally be defined in the “For” loop. 

However, in GSWO, all of the referenced data have to be 

defined outside the “For” loop (for the purpose of building 

the AST tree by ROSE).  

 Single Transfer generates CUDA kernel code to transfer the 

data of the sliding window into the 1D array defined in the 

Single Initialisation pragma, so a 1D array with size 9 is 

used to store the data for a 3×3 sliding window. In our 

implementation, the CUDA kernel receives the data of the 

sliding window from the CUDA texture memory, as shown 

in Figure 2.  

 Single Remain generates CUDA kernel code that 

corresponds to the operations on the sliding window. In our 

implementation, we simply copy the CPU source code to the 

CUDA kernel. By doing this, any user-written CPU source 

code can be converted into CUDA kernel code, as long as 

the target CPU source code is parallelizable, e.g. the 

variables are data independent between different loop 

iterations.  

 Single Assign generates CUDA kernel code that copies the 

processed data in the sliding window to the relevant GPU 

buffer obtained via the thread and block IDs.   

Figure 2. Work flow of the Kernel Generation Pragmas 

Figure 2 shows an example workflow of the kernel generation 

pragma in the GSWO programming model. Also, the CUDA 

kernel code generated from each kernel generation pragma is 

illustrated in Table 6, which represents sample code of a I×J 

window size image filter implementation on the CPU (left), and 

its converted CUDA code (right).   

D. Block and Thread Size 

The selection of block and thread size in GSWO model is based 

on the pragmas in MINT: nest, tile and chunksize. As shown in 

Table 5, they are inherited and used by the GSWO model for 

indicating the depth of for-loop parallelization within a loop 

nest, specifying how the iteration space of a loop nest is to be 

subdivided into tiles, and aggregating logical threads into a 

single CUDA thread, respectively. The size of a CUDA thread 

block in the GSWO model is the same as in MINT: threads 

(tx/cx, ty/cy,tz/cz).   

But the impact of selected block and thread size on acceleration 

in GSWO model is not as significant as that in MINT. The 

kernel generator in MINT makes all of the parameters in the 

function argument become kernel call parameters and makes all 

memory references through device memory. This requires code 

to be added into the kernel body to compute global thread IDs 

and references to be rewritten in terms of block and thread size. 

The mechanism of kernel generation in the GSWO model has 

been redefined as a simple way in Section III.C(c). The 

computation of global thread IDs is generated by default in the 

kernel body. The code for rewriting references is handled by 

each individual pragma.  



Table 6. Benchmarks for evaluating the GSWO model 

IV. Performance Evaluation 

The GSWO model has been evaluated using a variety of use 

cases, including a set of SWO image filters and two image 

processing applications (camera fingerprint measurement and 

document segmentation [36, 37]). The cases selected are 

computationally expensive but parallelizable. The evaluation 

compares the computation time between the GPU and CPU. 

The baseline is the performance of the original CPU code on 

conventional hardware without the use of multi-threads; the 

evaluation tested the performance of the GSWO-generated 

CUDA, MINT-generated CUDA and OpenMP compared to 

this.  

Table 7. CUDA code of Kernel Generation Pragmas 

CPU Code                                          GPU Kernel 
1:   

2:   #pragma parallel { 
3:   …………… 

4:   …………… 

3:  #pragma single 

initialisation{                    
4:  float v[9] = 

{0,0,0,0,0,0,0,0,0}; } 
5:  #pragma for  nest(2)    

 tile(16,16)  

6: for ( i = 1; i <= height ; i++)  
7: for( j = 1; j <= width ; j++){ 

8:  #pragma single transfer{  

9:       v[0] = Image [i-1][j-1] ; 
10:     v[1] = Image [i-1][j] ; 

11:      …………………….. 

12:     v[8] = Image [i+1][j+1];  } 
13:  #pragma single remain{ 

14:     for (m = 0 ; m < 9 ; m++)  

15:        for (t = m+1; t < 9; t++) 
{                

16:    if(v[m] > v[t]) { 

17:                  tmp = v[m]; 
18:                 v[m] = v[t]; 

19:                 v[t] = tmp ;  }} } 

                      
20:  #pragma single assign {  

21:   Image[i][j] = v[4] ; } 

             } 

 __global__ void kernel(int Pitch, float 

*d_out,  int w, int h){  
// index caculation  

int x = blockIdx.x * blockDim.x + 

threadIdx.x; 
int y = blockIdx.y * blockDim.y + 

threadIdx.y; 

int i = 0;  
float v[9] = {0,0,0,0,0,0,0,0,0};    

// data transfer  

for (int xx = x - 1; xx <= x + 1; xx++)  
for (int yy = y - 1; yy <= y + 1; yy++) { 

if (0 <= xx && xx < w && 0 <= yy 

&& yy < h) // boundaries 
v[i++] = tex2D(tex_CFA_2, 

0.5f+(float) x, 0.5f+(float) y);} 

// directly copy from CPU code 
 for (m = 0 ; m < 9 ; m++)  

      for (t = m+1; t < 9; t++) {                 

            if(v[m] > v[t]) { 
                tmp = v[m]; 

        v[m] = v[t]; 

                 v[t] = tmp ;  }}                                   
// pick the middle one 

float* row = (float*)((char*)d_out + y * 

Pitch); 
row[x] = v[4]; 

} 

 

The evaluation platforms were: (a) Intel Core i7-2670QM CPU 

and NVIDIA GeForce GT 540M; (b) Intel Core i7-3770K CPU 

and NVIDIA GeForce GTX 690; (c) Intel Core i7-2700K CPU 

and NVIDIA GeForce GTX 680. All used NVIDIA GPU SDK 

version 4.1; OpenMP programs were compiled using Visual 

Studio 2008; and all computation used double precision. 

A. Performance Speed up 

Ten classic SWO image filters were used as benchmarks for the 

evaluation – see Table 5. They were applied to a 3325×4765 

image, with sliding windows of different sizes, including 3×3, 

5×5, 7×7, 9×9. Figure 3 shows the performance above the 

baseline; for simplicity, it includes only the performance with 

5×5 sliding windows.  

 
Figure 3. Speed-up performance evaluation of GSWO 

 

On both platforms (a) and (b) described above – apart from the 

dilation and standard deviation filters, the speed-up ratios of the 

benchmarks are over one. Mean Filter and Mid-Point Filter are 

accelerated by GSWO up to 2-5 times.  

The performance of the benchmarks with highly intensive 

computation (median filter, alpha-trimmed mean filter and 

mode filter) is particularly impressive, with speed-up ratios 

reaching up to 10-30. However, for image filters with low 

 Benchmarks Descriptions 

Rank-order  

filters 

MinFilter  Get maximum value among all elements  

MaxFilter  Get minimum value among all elements  

MedianFilter Get middle value after all elements are sorted numerically 

MidPointFilter (Mid-P) Get an average value of maximum and minimum among all elements 

Alpha-Trimmed Mean Filter (Alpha-T) Disregard the most atypical elements and calculate the mean value using those remaining 

Standard Deviation Filter (S-D) Used to emphasize the local variability in an image 

Mode Filter Replace pixels with the most frequently occurring pixel value selected from all elements 

Mean Filter Find an average value among all elements  

Multi-stage directional median (M-D-M) Used middle value obtained from the pixels set along four directions to edges  

Morphological 

filters  

Erosion To shrink foreground elements and enlarge background elements with structure element 

Dilation  To enlarge foreground elements and shrink background elements with structure element 

Opening To first do erosion and then do dilation with one structure element  

Closing To first do dilation and then do erosion with one structure element 

Thinning To do erosion and dilation with extended type of structure elements from hit and miss 

Thickening To do erosion and dilation with extended type of structure elements from hit and miss 

Hit-and-miss  To do erosion and dilation with structure element introducing “do not care” 

Recursive erosion To recursively do erosion operators with structure element 

Recursive dilation To recursively do dilation operators with structure element 

Practical 

Applications 

Camera Fingerprint Measurement IME company [36] 

Document Analysis  EU IMPACT project [37] 

 
  



computational demands, the speed-up ratios are also low. This 

is because the parallel regions in these filters represent only a 

small proportion of the entire running time.   

We have also evaluated the effect of sliding window size and 

computational complexity on the speed-up ratios. Figure 4 

shows that when the sliding window size increases, the speed-

up ratios of the GSWO-generated GPU code over the CPU 

baseline are significantly increased. Figure 4 also shows that the 

speed-up ratio for a filter increases according to its level of 

computational demand. GWSO accelerates those with the most 

intensive computation by up to 30×. 

 
Figure 4. The impact of sliding window size on speed-up ratio 

Figure 5 shows the correlation between the speed-up ratio and 

the kernel complexity for the 10 benchmarks using 5x5 sliding 

windows. The “For” and “If” statements were used to measure 

the complexity of the kernel – if there were two “If” statements 

within a “For” loop from 1 to 50, the kernel computation 

complexity was taken to be 50×2. The impact of different basic 

operations (arithmetic operations, assignments, tests, reads or 

writes) on numbers and types are ignored here. It can be seen 

that the benchmarks are clustered in the bottom-left and top-

right corners of the diagram. For a given size of sliding window, 

the acceleration ratio increases noticeably as the complexity of 

the kernel grows. 

 

Figure 5. The impact of kernel computation complexity on 

speed-up 

To conclude, the GSWO programming model is capable of 

accelerating the performance of most of the typical SWO image 

filters. It is particularly suitable for filters with highly intensive 

computations and large sliding windows. One possible 

bottleneck of the GSWO model is the limited size of on-chip 

memory on some GPUs, which thus may not fully support the 

application when a large sliding window and a complex filter is 

being used. However, GPU hardware is being given increased 

on-board memory on a regular basis and there is every prospect 

that this bottleneck is purely a temporary phenomenon. 

B. Acceleration Comparisons  

To compare the performance of GSWO to that of other CPU-

to-GPU translators, we attempted to apply MINT [28], Bones 

[23], Par4All [27], OpenCV_GPU for CUDA [13], Polyhedral 

Benchmark [33], OpenACC PGI compiler [32] and OpenMP 

[39] to these SWO image filters. We found that:  

 The original CPU code cannot be directly processed by most 

of the above tools. Bones and Par4All do not process C++, 

while Par4All has a limited capability in reduction 

operations and cannot produce GPU code for the maximum 

and minimum primitives.  

 Polyhedral Benchmark is not a translator, but is simply a set 

of algorithms which can be used for testing the performance 

of translators. It cannot process the above applications. Also, 

Polyhedral and Bones are both algorithm skeleton based 

tools – the image filters under test are out of their scope.  

 MINT was designed only for stencil operations and cannot 

handle SWO-based image filters. This was tested in our 

implementation. Also, the current version of MINT does not 

support C++.   

Hence, the acceleration comparisons were mainly carried out 

using the OpenACC PGI compiler, OpenCV_GPU_Filter and 

OpenMP. We report test results over all types of benchmark. 

The SWO based image filters were implemented in C++ using 

Visual Studio 2008, based on external library OpenCV 2.4.3. 

The optimization flags used in VS2008 include Maximize 

Speed Optimization and Enable Intrinsic Functions. The test 

image had resolution 3325×4765, and 5×5, 9×9 and 11×11 

sliding windows were used on hardware systems (b) and (c) 

described earlier. The quality of acceleration performance with 

other penalization tools was evaluated using speed-up ratio 

(CPU vs GPU), which measures the running time of the image 

filter part of the whole program. Figures 6(a),(b),(c) show the 

comparison results.    

 The speedup performance of the OpenACC PGI compiler on 

all rank-order filters, erosion and dilation was compared with 

the GSWO model and the results with window size 9×9 are 

shown in Figure 6(a). For image filters with lower 

computation complexity (min, max, etc.), neither improve 

the performance as speedup ratios are lower than 1. 

However, for image filters with heavy computational 

complexity (median, Alpha-T, mode), both speed up the 

application by up to 10-26×. This implies that the OpenACC 

PGI compiler also follows the finding we demonstrated in 

Figure 5 – the acceleration ratio increases noticeably as the 

complexity of the kernels grows.  



Another noticeable issue is that the GSWO model has better 

acceleration performance than the OpenACC PGI compiler  

 
Figure 6(a).  Speed-up ratio comparison between GSWO and 

OpenACC (9×9 sliding windows)  

 

Figure 6(b).  Speed-up ratio comparison between GSWO and 

OpenCV_GPU_Filter. 

Figure 6(c). Speed-up ratio comparison between GSWO and 

OpenMP (5×5 sliding windows). 

for the Median Filter, but is worse on Alpha-Trimmed Mean 

Filter and Mode Filter. This may because the GSWO model 

does not consider and use further optimization of the GPU 

kernel, but the OpenACC PGI compiler should optimize the 

GPU kernel in other ways, like using shared memory.      

 The GPU module in the OpenCV library implements a 

number of GPU based image filter and algorithms. But it 

supports only a few types of image processing filter among 

our benchmarks in Table 6, which are max filter, min filter, 

erosion and dilation. We used the GPU filters function 

provided by OpenCV.2.4.3 to replace the relevant code part 

of image filters in our CPU implementations. The results of 

window size 9×9 and 11×11 are shown in Figure 6(b). It can 

be seen that GSWO has a consistently better performance 

than OpenCV_GPU_filter, but most of these filters run faster 

on a CPU implementation than on a GPU, probably because 

of their low computational complexity.     

 We compared the performance of OpenMP when dealing 

with all rank-order filters, erosion and dilation with that of 

the GSWO model using 8 cores and 5×5 windows. We added 

OpenMP directives into the CPU filter part and enabled 

openmp2.0 language support from Visual Studio 2008. As 

with the OpenACC PGI compiler, the acceleration of 

OpenMP on filters with low computational complexity 

kernel is not noticeable, so the results in Figure 6(c) focus on 

the speedup performance of OpenMP and GSWO on filters 

with high computational complexity kernels. It shows that 

on modest hardware, GSWO can accelerate the benchmark 

filters up to 12-27×, which is higher than the performance of 

OpenMP on 8 cores with the speedup ratio up to 6-9×. It 

implies that the GSWO model has a competitive advantage 

over the existing OpenMP based tools.  

In summary, for accelerating SWO image filter applications, 

the GSWO programming model is highly competitive with the 

state-of-the-art of automatic CPU-to-GPU source translators, 

which makes it attractive in comparison to other research 

focused tools, such as hiCUDA, MINT, Par4All and Bones. 

Also, the GSWO model has improved acceleration ability than 

traditional OpenCV_GPU_filters or OpenMP supports. While 

compared to commercial products such as PGI, the GSWO 

model usually has a lower acceleration performance, but it still 

can exceed PGI compiler on median filters.  

Another advantage of GSWO over the PGI compiler is that the 

output of GSWO is CUDA code, which is readable, and more 

importantly, revisable. The source-to-source conversion 

provides users with the opportunity to carry out further 

modification of the converted source code according to their 

needs, as well as to use the machine-generated code as an 

example to support their learning of GPU programming 

techniques.  

C. Case Study 1: Camera Fingerprint Measurement 

Camera fingerprint measurement is a particularly popular topic 

in information forensics and security. In most approaches, 

denoising methods are applied to a set of images that are known 

to come from a given camera [34-35]. In this section, we 

evaluate GSWO using sample camera fingerprint measurement 

applications from an industrial source, IME [36].   

The C++ code applies a 3×3 median filter for image denoising, 

subsequently measuring the camera fingerprint by comparing 

the denoised image with the original image. The number of 

images was 39, each of resolution 3648×2736. When applying 



the median filter, the images were split into a number of 

Regions of Interest (ROIs). The loop in this function can be 

parallelized.  

A key feature of the application is that, in the workflow, its 

algorithm skeleton contains loops outside the sliding window 

operation, as shown in Figure 7. Most existing CPU-to-GPU 

translators cannot be successfully applied to these codes 

because of the complex algorithm skeletons. MINT [28] can 

indirectly process the sample code by revising the original 

function into three separate sub-functions and generating three 

kernels. However, the GPU performance is even slower than 

the CPU performance because repeated CUDA memory 

allocation functions are called within the main loops. In 

contrast, the GSWO model is fully capable of processing the 

code. The results are shown in Table 8. The CPU version is a 

sequential version without the use of OpenMP.   

 
Figure. 7. Camera finger measurement application from IME 

Table 8 shows that GSWO speeds up the whole application 

performance by up to 3-4×, on average, while maintaining the 

same accuracy as the original CPU source code. While we are 

able to achieve a 6× performance gain in the kernel region, the 

overheads associated with use of the GPUs (e.g. data transfer 

between CPU and GPUs) reduce the performance advantage 

somewhat. However, the overall performance gain is still 

satisfactory. Notably, most of the existing CPU-to-GPU tools 

(e.g. Bones [23], Par4All [27], Polyhedral Benchmark [33], PGI 

[32]) cannot process the source code of this application.  

A noticeable result in Table 8 is that the speedup ratio will 

reduce if you deploy a mid-performance graphic card alongside 

a high-speed CPU. The first reason is that we used the running 

time of the whole program to calculate the ratio, which 

adversely affects the speed ratio. The second reason is that we 

considered a real application that contains many C++ source 

and head files. In order to use the GSWO model in the 

application, users have to break up the data dependency of the 

functions in the C++ file and also need to add some extra CPU 

code to transfer the image data format so as to be acceptable by 

the GSWO model. This process adds some running time to CPU 

programs, and further reduces the speed-up ratio. However, it 

does not mean that the GSWO model is not useful since the 

running time of the whole program is eventually reduced. 

Table 8. Evaluation of Camera Fingerprint Measurement 

 CPU

(s) 

GPU 

(s) 
Speedup Details 

GTX 690 28 8.2 3.40 Whole Application (1 image) 

GT 540 84 19 4.29 Whole Application (1 image) 

GTX 690 16 3.9 4.23 Kernel Region (1 image) 

GT 540 51 8.3 6.17 Kernel Region (1 image) 

GTX 690 1118 280 3.78 Whole Application (39 image) 

GT 540 3047 707 4.31 Whole Application (39 image) 

GTX 690 663 153 4.35 Kernel Region (39 image) 

GT 540 2023 325 6.21 Kernel Region (39 image) 

D. Case Study 2: Document Segmentation  

Large-scale document digitization is another research issue 

with potential application in museums and libraries. The 

performance of an OCR system depends heavily on document 

layout analysis, region segmentation and text-line 

segmentation, which is a time-consuming procedure for large-

scale and high-resolution document digitization.  

We applied SWO-based dilations and erosions to process 

sample newspaper document images from IMPACT [37], 

which is one of the most widely recognized large-scale 

document digitization projects of recent years. The processed 

newspaper images, of resolution 3595×5194, were then 

evaluated by a region segmentation method [38]. The results are 

shown in Table 9 and in Figure 8 in Appendix B.   

Table 9. Document Analysis code evaluation by GSWO 

When the dilation or erosion operator uses 5×5 sub-windows, 

the GSWO translator speeds up the performance by a factor of 

1-3×. When the dilation or erosion operator uses sub-windows 

smaller than 5×5, the GPU performance becomes slower than 

the CPU performance due to the overheads mentioned earlier. 

This result confirms that the GSWO programming model is 

most suitable for applications with high kernel complexity.  

System (a) (seconds) System (b) (seconds)  

CPU GPU Times CPU GPU Times Details 

0.26 1.0 0.26 1.3 1.6 0.81 3 × 3 dilation 

1.19 1.2 0.92 4.3 1.9 2.22 5 × 5 dilation 

3.69 1.2 2.92 18.2 2.3 7.87 9 × 9 dilation 

0.24 1.03 0.24 1.5 2.3 0.68 3 × 3 erosion 

1.10 1.0 1.07 5.7 2.1 2.73 5 × 5 erosion 

3.35 1.1 2.87 16.8 2.5 6.62 9 × 9 erosion 



Figure 8 illustrates the evaluation results of the region 

segmentation method [38], which extracts text regions from 

newspaper images, based on a hybrid of erosion and dilation. In 

the original newspaper image, a large number of text regions 

are missed due to the low density of the characters. When 3×3 

dilation operators were used, most of text regions were 

segmented but two pieces of the text regions in the middle of 

the document were still missing. When 5×5 dilation operators 

were used, the output quality improved but one text region in 

the middle of the document was still missing. By use of 9×9 

dilation operators, all text regions in the newspaper were 

successfully segmented. Table 8 shows that GSWO is capable 

of speeding up the application performance by up to 6×. 

E. Usability Comparisons  

To compare the practical usability of the GSWO model to that 

of other CPU-to-GPU translators, we provided CPU-to-GPU 

translators listed in Section IV.B to non-expert GPU users for 

accelerating their real applications. The initial findings are as 

below.  

 The majority of research tools, like MINT [28], Bones [23], 

Par4All [27], etc. cannot process C++ and are hard to learn. 

A common phenomenon is that these tools can attain very 

high speed-up ratios using particular forms of optimization 

specifically tuned to the task, but such performance can 

rarely be achieved in real-world, practical applications.  

 OpenMP and OpenCV based GPU filters are the easiest 

approaches for non-expert GPU users. The GPU filter 

functions in OpenCV are nearly as same as its CPU 

functions. The use of OpenMP in CPU programs only needs 

to put one directive into the SWO filter kernel. However, 

their acceleration performance is not as good as GSWO.   

 OpenACC PGI compiler is the strongest CPU-to-GPU tool 

in the market. Both of the OpenACC PGI compiler and the 

GSWO model are directive based CPU-to-GPU translators. 

The usability comparison between them is reported.  

For usability, comparison was made between the GSWO model 

and the PGI compiler regarding ease of use and ease of learning. 

The evaluation involved four parts, including understanding of 

loop patterns and pragmas, use of pragmas, the effect of CPU 

code revision and debug diagnostics. Feedback was collected, 

via a questionnaire, from non-expert GPU users in four GPSME 

project partners (IME, AnSmart, B3C, RotaSoft) based on use 

of the GSWO model and the OpenACC PGI compiler. The 

results are shown in Table 10. 

Table 10. Learning and use by inexperienced GPU users 

  GSWO OpenACC 

Understand loop pattern fair fair 
Understand Basic pragma  good fair 
Understand Memory Management 

pragma   

fair moderate 

Understand Kernel Generation pragma   good moderate 
Number of total pragmas used 8-14 5-10 
Number of Memory Management 

pragmas used 
5-9 1 

Number of Kernel Generation pragmas 

used 
4 3-5 

CPU code revision   Moderate Moderate 

Extra lines of code  Moderate Moderate 

Running sufficiently fast  Good Good 

Debug diagonistics  Yes Yes 

Readabliltiy of output code  Yes No 

Overall rate of usability  Good Good 

Table 10 demonstrates that the overall usability of both tools is 

rated as good by new users, though each has advantages and 

disadvantages. The OpenACC compiler supports the learning 

and use of memory management pragmas rather better than 

GSWO, but GSWO performs better for kernel generation 

pragmas. This is because the kernel generation design of the 

GSWO model focuses particularly on SWO image filter 

applications, whereas the OpenACC compiler aims at more 

generic cases.  

The memory management pragmas of the GSWO model are 

extensions of MINT to support more flexible data transfer. The 

OpenACC is a well-known standard with mature design on 

memory management. These issues lead to fewer pragmas 

being used in OpenACC for memory management than in the 

GSWO model, but a variable number of pragmas being used in 

kernel generation. The CPU code revision and debug 

diagnostics are both required in OpenACC and GSWO in the 

parallelization of SWOs applications. However, GSWO has an 

considerable advantage concerning the readability of the 

CUDA code output, which can significantly help new users to 

track errors and potentially improve performance.      

V. Discussion and Limitations  

From the results above, we conclude that the GSWO 

programming model is capable of accelerating the performance 

of many SWO-based image applications. By applying the 

GSWO model, we are able to achieve significant performance 

gains in sliding window operations, particularly those that are 

computationally demanding. Compared to many existing 

automatic CPU-to-GPU programming models, the GSWO 

model has an enhanced usability and acceleration performance. 

While the GSWO model has no significant advantages on 

acceleration and usability over the OpenACC PGI compiler, it 

still demonstrates a possibility of using an easy-to-use CPU-to-

GPU code translator to accelerate the SWOs based Image Filter 

applications with good performance.   

Actually, when designing a directive based automatic CPU-to-

GPU source translator, there is a tradeoff between the flexibility 

and the easy-to-use of pragmas. It is true that increasing the 

number of clauses may give more flexible management of 

device memory or optimization and lead to better acceleration 

performance, but it also increases the difficulty of use. The 

pragma design in the GSWO model tries to strike a balance 

between flexibility and ease of use. Compared to the OpenACC 

PGI compiler, GSWO less simple in broader generic cases, but 

is very simple to use in SWO applications. It is important for 

users to know the performance difference to decide whether to 

use a specialized tool and sacrifice flexibility or use a more 

general tool with slower results. 

There are a few minor limitations on GSWO. Firstly, it is not 

suitable to operations that are not parallelizable or are relatively 

light in computational terms. But sufficient numbers of 



parallelizable, computationally demanding tasks exist in 

practice for GSWO to make a significant contribution. 

Secondly, a possible bottleneck of the GSWO model is the 

limited size of on-chip memory available on some GPU 

devices; this may not fully support the use of a large sliding 

window and an intensive-computation filter. However, the 

regular expansion in on-board GPU memory will certainly help 

to mitigate this limitation. Thirdly, the memory management 

pragmas of the GSWO model are not simple for a non-expert to 

understand and use correctly, though they can be successful 

with a little care. Finally, no optimizations of the CUDA kernels 

in the GSWO model are considered in this paper. The key idea 

of kernel generation in the GSWO model is based on the 

parallelization of a typical operational procedure of an SWO 

image filter. The procedure of kernel generation is an SWO 

procedure based translation, but is not a strictly sentence by 

sentence translation. The codes presenting operations within a 

sliding window are eventually transferred into CUDA kernel 

body. Hence, traditional optimization methods that use shared 

memory or improve memory bandwidth cannot be used 

directly. We will investigate using shared memory to improve 

kernel acceleration in future work.   

We believe that the benefits of the GWSO approach greatly 

outweigh these disadvantages, and that GWSO affords a new 

and effective way of accelerating SWO image processing 

applications.  

VI. Conclusion and Future Work 

This paper has presented an annotation-based programming 

model, GSWO, which supports sliding window operations in a 

wide range of image filters. It enables users to carry out source-

to-source conversion of self-implemented image filters from 

CPU to GPU in a highly automated manner. Compared to many 

existing automatic CPU-to-GPU programming models, the 

GSWO model has an enhanced usability and acceleration 

performance. The experimental results show its good speed-up 

and usability in a variety of image processing applications, at a 

similar level to the state-of-the-art tool OpenACC PGI 

compiler.  

Future work will introduce new pragmas to extend the GSWO 

model for more general time-consuming image processing 

applications, such as object detection. Meanwhile, it expects to 

be compatible with existing research tools [28] [31] [33] to 

optimize the GPU performance of this tool – shared memory 

optimization, loop aggregation and register optimization. The 

support of OpenCL output is also under consideration.    

Appendix A 

The system structure and translation flow of the C2GPU toolkit 

is illustrated in Figure 9. The input to the toolkit is C/C++ 

source code annotated with pragmas. Once the source file is 

read, the ROSE frontend constructs the AST tree and passes it 

to the core of the C2GPU toolkit. The core of the toolkit 

traverses the AST and queries the parallel regions. Directives in 

a parallel region go through the components of Identifier, 

Analyser and Optimizer in the toolkit core. The Translator 

component uses the rules from the above components to 

transform the AST. The output from the toolkit is CUDA or 

OpenCL source code generated by unparsing the transformed 

AST.  

This paper uses only the CUDA code generated by the toolkit.  

 
Figure 9 GSWO Core Library  

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B 

 
 

(a)  Original (b)  3×3 dilation 

  

(c)  5×5 dilation (d)  9×9 dilation 

Figure 8. Region segmentation results of GSWO-produced images. 

 

 

 



Appendix  C 

Table 9. CUDA code of memory creation pragmas 
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