
Yang, P, Clapworthy, G, Dong, F, Codreanu, VB, Williams, DP, Liu, BQ,
Roerdink, JBTM and Deng, ZK

 GSWO: A Programming Model for GPU-enabled Parallelization of Sliding
Window Operations in Image Processing

http://researchonline.ljmu.ac.uk/id/eprint/3573/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Yang, P, Clapworthy, G, Dong, F, Codreanu, VB, Williams, DP, Liu, BQ,
Roerdink, JBTM and Deng, ZK (2016) GSWO: A Programming Model for
GPU-enabled Parallelization of Sliding Window Operations in Image
Processing. Signal Processing: Image Communication. ISSN 1879-2677

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

GSWO: A Programming Model for

GPU-enabled Parallelization of Sliding

Window Operations in Image Processing

Abstract—Sliding Window Operations (SWOs) are widely used in

image processing applications. They often have to be performed

repeatedly across the target image, which can demand significant

computing resources when processing large images with large

windows. In applications in which real-time performance is essential,

running these filters on a CPU often fails to deliver results within an

acceptable timeframe. The emergence of sophisticated graphic

processing units (GPUs) presents an opportunity to address this

challenge. However, GPU programming requires a steep learning

curve and is error-prone for novices, so the availability of a tool that

can produce a GPU implementation automatically from the original

CPU source code can provide an attractive means by which the GPU

power can be harnessed effectively. This paper presents a GPU-

enabled programming model, called GSWO, which can assist GPU

novices by converting their SWO-based image processing applications

from the original C/C++ source code to CUDA code in a highly

automated manner. This model includes a new set of simple SWO

pragmas to generate GPU kernels and to support effective GPU

memory management. We have implemented this programming model

based on a CPU-to-GPU translator (C2GPU). Evaluations have been

performed on a number of typical SWO image filters and applications.

The experimental results show that the GSWO model is capable of

efficiently accelerating these applications, with improved applicability

and a speed-up of performance compared to several leading CPU-to-

GPU source-to-source translators.

Index Terms— Parallel Computing, Sliding Window Operation,

OpenCL, CUDA, Automatic Translation

I. Introduction

liding Window Operations (SWOs) are performed very

frequently in image processing and analysis [1-3]. A typical

SWO repeatedly applies an image filter to a pre-defined sub-

window that slides progressively across the target image. Many

filters involve logical and mathematical operations with high

complexity. Examples include rank-order filters (adaptive two-

pass filter [4], fuzzy rank LUM filter [5], etc.), which involve

sorting values of the pixels in the window in ascending order;

and morphological filters (directional morphological filter [6],

dilation and erosion filter [7], etc.), which perform

morphological operations such as erosion, dilation, opening and

closing by using a moving window.

Figure 1. Illustration of a Sliding Window

Since SWOs need to be performed repeatedly across the entire

target image (see Figure 1), significant computing resources are

required when processing large images with large windows. If

real-time performance is essential, running these filters on a

CPU may not deliver the results within an acceptable time.

Faced by these computational demands, many researchers have

adopted parallel computing [8-11]. As thousands of computing

threads are available nowadays on individual graphics cards,

graphics processing units (GPUs) have become increasingly

popular for handling computationally intensive tasks that can

be parallelized [12]. SWOs are particularly suitable for this as

the calculations associated with different window locations are

independent of each other and can thus be executed in parallel.

Unfortunately, the parallelization of CPU code for execution on

GPUs is not straightforward, and manual implementation

typically involves significant effort. Indeed, designing and

implementing GPU algorithms that utilize the GPU potential

most effectively requires an in-depth knowledge of the

underlying GPU architecture. In this process, non-experts are

error prone, and novices experience a steep learning curve.

Researchers/programmers already have access to a number of

GPU-enabled image processing libraries or open-source code,

such as OpenCV_GPU for CUDA [13], GPUCV [14],

ethothepi-CUDA-Image-Processing [15], CUDA/NPP library

(for morphological operations) [8], CUDA-based denoising

filters [16], etc., but we have observed that the GPU-enabled

filters from these existing resources do not meet a wide range

of user demands. Although the filters have been carefully

conceived by experts for optimal performance gain on GPUs,

S

in general each is designed for a specific purpose and has little

extendibility – no customized development is allowed. Further,

since overall they cover only a limited set of standard SWOs,

often researchers/programmers still have to write their own

SWO code either to modify the standard filters or to implement

new SWOs. The difficulties inherent in GPGPU algorithm

design and implementation make it highly desirable to have a

means by which users can write the GPGPU code they require

even if they lack an in-depth knowledge of GPUs.

This paper provides a proof of concept demonstrating the

possibility of employing an easy-to-use CPU-to-GPU code

translator to accelerate SWO-based image filter applications to

deliver markedly improved performance over CPU-based

approaches. It presents a new programming model, GSWO, that

allows GPU-enabled parallelization of SWOs for image

processing in a highly automated manner – the users can

annotate their source code for image filters using pragmas, and

the annotated code is then automatically converted into GPU

code with optimized parameter settings. GSWO is based on a

web-based platform, C2GPU, which supports automated code

conversion from CPU to GPU [17].

Our implementation of the GSWO model produced a set of

newly defined pragmas that support CPU-to-GPU conversion

of a variety of SWO source codes. By using these pragmas,

users can generate GPGPU code for their SWO image filters

without having a good knowledge of GPUs, thus supporting

customized development in many image applications and

affording the possibility of remarkable performance gains.

In summary, the main contributions of the paper are:

 An annotation-based programming model, GSWO, is

presented and implemented for automated CPU-to-GPU

translation of SWOs for image processing. The model

features new SWO pragmas that are easy to use and are

applicable to many types of parallelizable operations in

sliding windows. It also introduces a memory management

hierarchy for effective memory creation and data transfer

between CPU and GPU.

 A thorough performance evaluation of the GSWO model

using benchmarks and practical applications has been carried

out, the results of which suggest notable performance gains

and improved usability for SWO filter applications

compared to other leading CPU-to-GPU translators [23-30].

The rest of the paper is organized as follows. Section 2 provides

a brief overview of related work, and we present the proposed

GSWO programming model in Section 3 and the experimental

validation results in Section 4. Section 5 draws conclusions

from the work and suggests areas for future investigation.

II. Related Work

This section gives a brief introduction to SWOs and a survey of

the existing CPU-to-GPU source-to-source translators.

A. SWOs for image filtering

In a typical image filter, a user-defined window moves in a

raster-scan order until the entire image is covered as shown in

Figure 1. We denote an N×M-sized image by Dn,m: n = 1,..,N;

m = 1,..,M; an I×J-sized sliding window by Wi,j: i = 1,..,I; j =

1,..,J; and the set of r-step operations within this sliding window

by P(p1,..,T). Table 1 shows a typical implementation of an SWO

on a CPU.

Table 1. Work flow of an SWO in image processing

1: // Initialisation and set memory.

2: float D[N][M] = ReadInputImage();

3: int start_point_x = 0 ;

4: int start_point_y = 0 ;

5:

6: // Outer Loop start for whole image Dn,m

7: for n = 1: N

8: for m = 1: M

9: start_point_x = n ;

10: start_point_y = m ;

11: float W[I][J] = CopyDataFromInputImage(n, m, I, J);

12:

13: // Nested Loop start for Sliding Window Wi,j

14: for i = 1: I

15: for j = 1: J

16: // Execute operations P(p1,..,T)

17: p1; p2; p3;…….; pT

18: end; end;

19: CopyDataToInputImage (D[N][M], W[I][J]);

20: end; end;

If the execution time of operations P(p1,..,T) is assumed to be t,

the running time of the SWO in Table 1 is:

 T = N × M × I × J × t (1)

For operations with high complexity (i.e. large t) that use large

images and windows (i.e. large N, M, I, J), Equation (1) shows

that the SWO can become very time consuming.

B. Computationally intensive image filters

SWOs are typically used in image filters, many of which are

computationally intensive; rank-order filters [4-5] and

morphological filters [6-8] are two typical examples.

Rank-order filters are generally used for noise removal [4] and

often involve sorting the values of the pixels in the sliding

window into ascending order, which is time-consuming. Well

known rank-order filters include low-upper-middle filter [18],

mode filter [19], alpha-trimmed mean filter [20] and median

filter [9]. Much attention has been paid to accelerating these

filters in image processing.

Morphological filters are widely used to extract edges or

skeletons of images in applications such as remote sensing

image recognition [11] and document image analysis [21]. The

computational cost of morphological filters mainly comes from

recursive erosion, dilation, opening and closing transforms

[22]. Increasing the size of the structuring elements can add a

significant extra computational cost to the filters [8].

Table 2. Comparison of properties of typical directive-based tools

Rank-order filters and morphological filters are only two

examples of uses of SWOs in image processing. Many other

image filters involve a wide variety of SWOs, most of which

cannot be represented by standard filters.

With this in mind, the GSWO model and its implementation

(i.e. pragmas) have been designed to be capable of performing

CPU-to-GPU source conversion from arbitrary SWO code in a

highly automated manner. This will be particularly valuable to

researchers who are committed to the implementation of non-

standard, compute-intensive image filters in an innovative

application, but who lack basic GPU skills.

C. Existing CPU-to-GPU source translators

Existing CPU-to-GPU source translators can be classified into

three categories [23], based on algorithmic skeletons [24],

polyhedral models [25-27] and directives [28-32], respectively.

Algorithmic skeleton based tools adopt the idea of generating

efficient target code by specific algorithm classes, such as

SkePU [24]. Advantageously, they have highly optimized

library implementations for each algorithm class. However,

algorithmic skeleton tools demand that users manually

implement and add a new algorithm skeleton if one is not

available for a specific class of CPU code. Also, their usability

is often low due to the difficulties involved in rewriting the

original CPU source code and in defining algorithm classes and

their corresponding skeletons.

Polyhedral model based tools translate source code with affine

loop structures by performing dependency analysis and loop

transformation (Par4All [27], Pluto [40]). While they require

little input from the users, they are applicable only to source

code with affine loop structures. This means that the polyhedral

model can deal only with loop nests with affine bounds and

conditional expressions.

Thus, while these two approaches can efficiently cope with the

automatic parallelization of some known algorithm templates

and certain types of loops, they are both highly sensitive to the

characteristics and data structures of the input CPU source code.

In image filter applications using SWOs, this implies that any

new image filter has to be manually implemented and added as

an extra class. A further issue associated with these two

approaches is the highly laborious task of identifying

parallelizable regions and revising the relevant code. This

drawback significantly limits their wide acceptance by

programmers. Because of these limitations, the two approaches

above are not considered in this paper.

Directive-based CPU-to-GPU source translation tools [28-32]

offer a semi-automatic way of generating GPU code. They can

generate GPU source code by manually adding annotations to

the input CPU source code. Since users can directly insert

annotations into their own code, the range of applications such

translators support is much wider than those supported by

algorithmic skeleton or polyhedral model based tools.

We collected a number of typical directive based translators and

have compared their performance in Table 2. This indicates that

most of the directive-based tools can process only C, and not

C++, which is a significant disadvantage for use in application

areas such as image processing.

The commercial compiler PGI accelerator [32] accelerates

applications written in C++ by adding OpenACC [31]

directives, but its pragmas are far too complex, and the GPGPU

code it outputs is almost unreadable (since PGI is designed as a

compiler instead of a source-to-source translator).

CUDA-lite [29] introduces directives to improve the memory

hierarchy of CUDA by directly inserting the directives into the

CUDA code. However, it is not a CPU-to-GPU source-to-

source conversion tool.

hiCUDA [30] provides programmers with a set of pragmas

mapping to typical CUDA operations. The CUDA codes in

hiCUDA are optimized by dealing with global memory and

transformations to leverage the complex memory hierarchy. A

weakness is that hiCUDA requires users to have sufficient GPU

knowledge to be able to specify the threads and thread blocks.

MINT [28] is a very easy-to-use C-to-CUDA source translator

containing five types of pragma. It is designed for accelerating

stencil computations on NVIDIA GPUs only. This translator

accepts C source input with some intuitive MINT directives to

generate highly optimized CUDA C which may produce a

performance gain of up to 10×.

D. Limitations of MINT

Simplicity is a major goal of the directive design in MINT, and

it incorporates several easy-to-use pragmas: parallel, for, copy

and single. While these pragmas are sufficient to deal with

simple C code, they cannot support SWOs in image processing

due to following limitations.

 The copy pragma in MINT combines memory allocation

and data transfer. However, SWOs in image processing

need to separate these two operations in order to allow the

reuse of the allocated memory for data transfer (which may

occur many times between the CPU and GPU), without

having to involve memory re-allocation each time.

 Only stencil computing is supported in the kernel

generation; SWOs in image processing employ many

operations S(p1,..,T) that are not supported by MINT.

 hiCUDA [30] PGI (OpenACC) [32] MINT [28] CUDA-lite [29]

Language support C-to-CUDA C++/Fortan-to-CUDA C-to-CUDA CUDA-to-CUDA

Easy-use of directives Complex Complex Easy Easy

Applicability Good Outstanding Limited Good

Speedup performance Good Good Outstanding Good

Optimisation option Use of shared memory No particular one Shared memory and loop aggregation Improved memory hierarchy

Readability of GPU code Moderate No Good Good

 The pragma parallel must be located immediately behind

the pragma copy, which means that MINT cannot handle

algorithms in which we need to insert source code between

these two pragmas.

The work presented in this paper is directive-based in order to

meet the demands of flexibility and extendibility that image

processing presents. Users are able to annotate their code using

the proposed GSWO pragmas to achieve parallelization of a

variety of SWOs in image processing. The GSWO pragmas

represent significant improvements over the pragmas in MINT

as they support a wide variety of SWOs for image processing.

The SWO model also features effective memory management,

allowing for superior performance over the majority of existing

CPU-to-GPU translators.

III. GSWO Programming Model

GSWO performs CPU-to-GPU source conversion and was

developed as part of the C2GPU toolkit [17], the system

architecture of which is based on that of MINT [28], but with a

number of extended components. More details of the C2GPU

toolkit can be found in [17] and in Figure 9. GSWO follows the

system design in MINT [28], which comprises a host processor

and an accelerator, and is neutral about all of the data transfers

between them. To accelerate SWO-based image filter

applications, each thread deals only with the operations within

a single sliding window. The GPU parallelization of SWOs also

implies the following assumptions: no parallelization within the

sliding window, and no input data reuse between the sliding

windows. Table 3 shows a simple example presenting the code

of a 3×3 median filter implementation using a GSWO model. A

list of the GSWO pragmas is given in Table 5.

Table 3. Example of a 3×3 SWO-based median filter

CPU Code
1: #pragma parallel {

2: ……………

3: #pragma single initialization {

4: float v[9] = {0,0,0,0,0,0,0,0,0}; }

5: #pragma for nest(2) tile(16,16)

6: for (i = 1; i <= height ; i++)

7: for (j = 1; j <= width ; j++) {

8: #pragma single transfer {

9: v[0] = Image [i-1][j-1] ;

10: v[1] = Image [i-1][j] ;

11: ……………………..

12: v[8] = Image [i+1][j+1]; }

13: #pragma single remain {

14: for (m = 0 ; m < 9 ; m++)

15: for (t = m+1; t < 9; t++) {

16: if(v[m] > v[t]) {

17: tmp = v[m];

18: v[m] = v[t];

19: v[t] = tmp ; }} }

20 : }

21: #pragma single assign {

22: Image[i][j] = v[4] ; }

23: }

24: }

GPU parallelization of the SWOs median filter in Table 3

begins with using “#pragma parallel” to point out the

parallelizable region of CPU code. Within this region, the

pragma of “single initialisation” defines a one dimensional

float array for storing the pixel information in a 3×3 sliding

window. Then we use “#pragma for nest(2) tile(16,16)” to

mark the nested loops for GPU acceleration. The clauses “nest”

and “tile” inherited from MINT [28] respectively indicate the

depth of for-loop and specify how the iteration space of a loop

nest is to be subdivided into “tiles”.

Inside the nested loops, the pragma of “transfer” covers the

CPU code of transferring the 2D image data of a 3×3 sliding

window into a 1D float array, which had been marked by the

pragma “initialization”. The pragma “remain” includes the

CPU code to obtain the median from this 1D float array. Lastly,

the pragma “assign” marks the CPU code to transfer the new

data from the1D float array to the corresponding 2D image data

associated with a 3×3 sliding window. In the GSWO model, the

CPU code highlighted by such pragmas will be automatically

translated into GPU code. The implementation of the GSWO

model is discussed in detail below.

A. Parallelization of SWOs

As seen in Table 1, the algorithm structure of an SWO in image

processing is very suitable for parallelization. Its GPU-enabled

implementation typically follows the steps below (see Table 4

for a detailed example of an implementation):

1. A GPU device memory buffer DGPU is created and allocated

to store the complete image data, which is transferred from

the CPU host buffer Dn,m to the GPU device buffer DGPU .

2. The GPU kernel parameters are registered; the number

blocks and threads are determined.

3. The operations P(p1,..,T) are rewritten in the kernel as

individual functions; the GPU kernel function is called after

registering the GPU kernel parameters.

4. The processed image data in DGPU are transferred back to the

host buffer Dn,m.

Table 4. A GPU implementation of SWO in image processing

1: { // Initialisation and create GPU memory.

2: CreateGPUMemory(DGPU)

3: // Transfer whole image data from CPU to GPU
4: TransferDataFromCPUtoGPU(Dn,m , DGPU)

5: // Register GPU Kernel Parameters

6: dim3 threads() ;
7: dim3 blocks() ;

8: // Calling GPU Kernel Function

9: GSWO_Function<<<<blocks, threads>>>(DGPU, I, J, N, M);
10: // Transfer whole image data from GPU to CPU

11: TransferDataFromGPUtoCPU(Dn,m , DGPU)
12: }

13:

14: // Rewrite operations S(p1,..,T) in Kernel Function
15: __global___ void GSWO_Function(DGPU, I, J, N, M){

16: // Thread Index Calculation

17: int _idy = blockIdx.y * blockDim.y + threadIdx.y ;
18: int _idx = blockIdx.x * blockDim.x + threadIdx.x ;

19: // Define variable to store SW data

20: float WGPU = CopySWDataTo(DGPU, I, J)
21: // Execute operations S(p1,..,T) in Kernel

22: p1; p2; p3;…….; pT

23: // Transfer SW data from WGPU to DGPU
24: DGPU = CopySWDataFrom(WGPU, I, J)

25: }

Table 5. Listing of GSWO model pragmas

The main acceleration should come from the parallelization of

S(p1,..,T) in each sliding window. In theory, the total running

time of Equation (1) will be reduced from N×M×I×J×O(t) to

I×J×O(t). However, in practice, overhead costs need to be

considered, for example, the variables used to store the sliding

window data have to be created and the data have to be

transferred to the GPU.

B. GSWO Model

To allow for parallelization, three major types of directive are

normally required.

 Identification of parallel region and kernel region: These

directives indicate parallel regions, which contain obviously

parallel work, and regions generating GPU kernel code.

 Memory Management: These directives manage the tasks of

memory allocation, conversion, transfer and optimization on

the GPU and GPU buffers.

 Kernel Generation: These directives supervise the GPU

kernel code generation.

The primary advantage of GSWO over MINT is that its

memory management directives have an enhanced hierarchy.

GSWO introduces a set of memory management pragmas to

control GPU memory allocation, GPU-to-CPU memory

transfer and CPU memory conversion, respectively. It also

provides pragmas to allow for the use of texture memory (in

addition to the use of global memory). These new pragmas

bring the flexibility and effectiveness to memory management

that is needed in SWOs for image processing.

In addition, GSWO introduces a set of newly defined kernel

generation pragmas. These were designed by following the

typical procedure of an SWO, which contains initiation,

transfer, remain and assign. They are simple and can be applied

to all types of parallelizable operations in sliding windows. Our

experiments showed that using our pragmas provides a

significant improvement in usability and productivity when

compared with other CPU-to-GPU translators.

The final improvement of the GSWO model is that it extends

the pragma parallel of MINT into two pragmas parallel and

parallel region to distinguish the kernel region from the parallel

region. The pragma parallel region indicates the start of a

parallel region containing the CPU source code for

parallelization, whereas the pragma parallel marks a loop for

generating a GPU kernel function. This extension is similar to

the directives parallel and kernels in the OpenACC standard,

but it is less complicated, and easier to use by non-expert GPU

programmers. With these two pragmas, the GSWO model can

support a more complicated algorithm structure than MINT can.

C. GSWO Pragmas

A list of the GSWO pragmas is given in Table 4.

a) Basic pragmas

The basic pragma is similar to the pragma in MINT. The only

difference is that:

 Parallel Region indicates the start of a region containing

parallel work, and such regions within the block of this

pragma will be accelerated;

 Parallel indicates the start of a region for kernel function

generation, which normally contains “For” loops.

b) Memory management pragmas

For the memory management pragmas, GSWO extends the

“Copy” pragma by allowing for memory allocation, data

conversion and data transfer.

Two copy based pragmas are defined for memory allocation.

 CopyMalloc1DArray creates a CUDA array on the device,

associating it with a CUDA texture memory.

 CopyByTexture creates CUDA texture memory on the

device, binding (unbinding) it with 2D data (e.g. the image);

this normally occurs in the initialization step.

Data transfer between the CPU and GPU includes two copy-

based pragmas:

 Directives Descriptions

Basic pragma

Parallel To identify a region generating a kernel function

Parallel region To identify a parallel region containing parallel work

For To mark the succeeding “For” loop for GPU acceleration

Single To indicate serial regions in the GPUSWO model

Memory

Management

CopyByTexture To create a CUDA texture on a device, and bind or unbind with 2D data

CopyMalloc1DArray To create a CUDA array on a device, associating it with a CUDA texture on the device

CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy a matrix between CPU and GPU memory

CopyMemcopy2DToArray To create a CUDA function cudaMemcpy2DToArray to copy data between CPU and GPU memory

CopyBindTexture To bind the created texture memory to a CUDA global array

Copy2DArrayTo1DArray To convert the array with different dimensions on the CPU memory buffer

Kernel

Generation

Initialisation To define a one dimensional array for storing the data in a sliding window

Transfer To transform the code of putting the data in a sliding window into a local variable within a “For”

loop

Remain To transform the operations on a sliding window from CPU algorithm to the GPU kernel.

Assign To assign the new data to the relevant GPU buffer with the correct index.

 Transfer To transform the code of putting the data in a sliding window into a local variable within a “For”
loop

Thread and Block

Size (inherited from

MINT [28])

Nest ()

Tile (tx , ty , tz)

To indicate the depth of for-loop parallelization within a loop nest

To specify how the iteration space of a loop nest is to be subdivided into tiles

Chunksize (cx , cy, cz) To aggregate logical threads into a single CUDA thread.

 CopyMemcopy2D is used to provide a CUDA function

(cudamemcpy2D) to transfer a matrix in a normal data

structure from the device memory to host memory.

 CopyMemcopy2DToArray creates a CUDA function

cudaMemcpy2DToArray to copy data in a non-normal

structure (Z-curve) between CPU and GPU memory.

A further pragma CopyBindTexture is defined to bind texture

memory to a CUDA global array.

Data conversion is used to convert an array on the CPU memory

buffer to different dimensions, for example, converting data

from a 2D array to a 1D array for GPU use. One such pragma

is Copy2DArrayTo1DArray.

Examples of the memory management pragmas and their

translations into CUDA code are illustrated in Table 9.

The data transfer and conversion pragmas used to transfer the

data of the sliding windows are allocated within the parallel

region pragma, but outside the parallel pragma. Also, the

names of parameters in the memory creating pragmas

correspond to the names of relevant 2D or 1D array variables.

c) Kernel generation pragmas

The kernel generation pragmas in GSWO are designed for GPU

kernel code generation. They generate the kernel code to:

 perform the SWOs.

 allow for correct data transfer between CPU and GPU.

In the GSWO model, we have designed new “single” pragmas

for kernel code generation, four of which are defined below.

 Single Initialisation: generates CUDA kernel code that

defines a 1D array with size I×J for storing the data in the

sliding window. If the data in the sliding window are defined

as a 2D array in CPU code, as seen in Figure 2, we need to

define a 1D array to replace the 2D array outside of the “For”

pragma in the CPU code. In translating to the CUDA kernel,

the Single Initialisation pragma directly moves this

statement into the kernel. In the CPU code, all of the

referenced data can normally be defined in the “For” loop.

However, in GSWO, all of the referenced data have to be

defined outside the “For” loop (for the purpose of building

the AST tree by ROSE).

 Single Transfer generates CUDA kernel code to transfer the

data of the sliding window into the 1D array defined in the

Single Initialisation pragma, so a 1D array with size 9 is

used to store the data for a 3×3 sliding window. In our

implementation, the CUDA kernel receives the data of the

sliding window from the CUDA texture memory, as shown

in Figure 2.

 Single Remain generates CUDA kernel code that

corresponds to the operations on the sliding window. In our

implementation, we simply copy the CPU source code to the

CUDA kernel. By doing this, any user-written CPU source

code can be converted into CUDA kernel code, as long as

the target CPU source code is parallelizable, e.g. the

variables are data independent between different loop

iterations.

 Single Assign generates CUDA kernel code that copies the

processed data in the sliding window to the relevant GPU

buffer obtained via the thread and block IDs.

Figure 2. Work flow of the Kernel Generation Pragmas

Figure 2 shows an example workflow of the kernel generation

pragma in the GSWO programming model. Also, the CUDA

kernel code generated from each kernel generation pragma is

illustrated in Table 6, which represents sample code of a I×J

window size image filter implementation on the CPU (left), and

its converted CUDA code (right).

D. Block and Thread Size

The selection of block and thread size in GSWO model is based

on the pragmas in MINT: nest, tile and chunksize. As shown in

Table 5, they are inherited and used by the GSWO model for

indicating the depth of for-loop parallelization within a loop

nest, specifying how the iteration space of a loop nest is to be

subdivided into tiles, and aggregating logical threads into a

single CUDA thread, respectively. The size of a CUDA thread

block in the GSWO model is the same as in MINT: threads

(tx/cx, ty/cy,tz/cz).

But the impact of selected block and thread size on acceleration

in GSWO model is not as significant as that in MINT. The

kernel generator in MINT makes all of the parameters in the

function argument become kernel call parameters and makes all

memory references through device memory. This requires code

to be added into the kernel body to compute global thread IDs

and references to be rewritten in terms of block and thread size.

The mechanism of kernel generation in the GSWO model has

been redefined as a simple way in Section III.C(c). The

computation of global thread IDs is generated by default in the

kernel body. The code for rewriting references is handled by

each individual pragma.

Table 6. Benchmarks for evaluating the GSWO model

IV. Performance Evaluation

The GSWO model has been evaluated using a variety of use

cases, including a set of SWO image filters and two image

processing applications (camera fingerprint measurement and

document segmentation [36, 37]). The cases selected are

computationally expensive but parallelizable. The evaluation

compares the computation time between the GPU and CPU.

The baseline is the performance of the original CPU code on

conventional hardware without the use of multi-threads; the

evaluation tested the performance of the GSWO-generated

CUDA, MINT-generated CUDA and OpenMP compared to

this.

Table 7. CUDA code of Kernel Generation Pragmas

CPU Code GPU Kernel
1:

2: #pragma parallel {
3: ……………

4: ……………

3: #pragma single

initialisation{
4: float v[9] =

{0,0,0,0,0,0,0,0,0}; }
5: #pragma for nest(2)

 tile(16,16)

6: for (i = 1; i <= height ; i++)
7: for(j = 1; j <= width ; j++){

8: #pragma single transfer{

9: v[0] = Image [i-1][j-1] ;
10: v[1] = Image [i-1][j] ;

11: ……………………..

12: v[8] = Image [i+1][j+1]; }
13: #pragma single remain{

14: for (m = 0 ; m < 9 ; m++)

15: for (t = m+1; t < 9; t++)
{

16: if(v[m] > v[t]) {

17: tmp = v[m];
18: v[m] = v[t];

19: v[t] = tmp ; }} }

20: #pragma single assign {

21: Image[i][j] = v[4] ; }

 }

 __global__ void kernel(int Pitch, float

*d_out, int w, int h){
// index caculation

int x = blockIdx.x * blockDim.x +

threadIdx.x;
int y = blockIdx.y * blockDim.y +

threadIdx.y;

int i = 0;
float v[9] = {0,0,0,0,0,0,0,0,0};

// data transfer

for (int xx = x - 1; xx <= x + 1; xx++)
for (int yy = y - 1; yy <= y + 1; yy++) {

if (0 <= xx && xx < w && 0 <= yy

&& yy < h) // boundaries
v[i++] = tex2D(tex_CFA_2,

0.5f+(float) x, 0.5f+(float) y);}

// directly copy from CPU code
 for (m = 0 ; m < 9 ; m++)

 for (t = m+1; t < 9; t++) {

 if(v[m] > v[t]) {
 tmp = v[m];

 v[m] = v[t];

 v[t] = tmp ; }}
// pick the middle one

float* row = (float*)((char*)d_out + y *

Pitch);
row[x] = v[4];

}

The evaluation platforms were: (a) Intel Core i7-2670QM CPU

and NVIDIA GeForce GT 540M; (b) Intel Core i7-3770K CPU

and NVIDIA GeForce GTX 690; (c) Intel Core i7-2700K CPU

and NVIDIA GeForce GTX 680. All used NVIDIA GPU SDK

version 4.1; OpenMP programs were compiled using Visual

Studio 2008; and all computation used double precision.

A. Performance Speed up

Ten classic SWO image filters were used as benchmarks for the

evaluation – see Table 5. They were applied to a 3325×4765

image, with sliding windows of different sizes, including 3×3,

5×5, 7×7, 9×9. Figure 3 shows the performance above the

baseline; for simplicity, it includes only the performance with

5×5 sliding windows.

Figure 3. Speed-up performance evaluation of GSWO

On both platforms (a) and (b) described above – apart from the

dilation and standard deviation filters, the speed-up ratios of the

benchmarks are over one. Mean Filter and Mid-Point Filter are

accelerated by GSWO up to 2-5 times.

The performance of the benchmarks with highly intensive

computation (median filter, alpha-trimmed mean filter and

mode filter) is particularly impressive, with speed-up ratios

reaching up to 10-30. However, for image filters with low

 Benchmarks Descriptions

Rank-order

filters

MinFilter Get maximum value among all elements

MaxFilter Get minimum value among all elements

MedianFilter Get middle value after all elements are sorted numerically

MidPointFilter (Mid-P) Get an average value of maximum and minimum among all elements

Alpha-Trimmed Mean Filter (Alpha-T) Disregard the most atypical elements and calculate the mean value using those remaining

Standard Deviation Filter (S-D) Used to emphasize the local variability in an image

Mode Filter Replace pixels with the most frequently occurring pixel value selected from all elements

Mean Filter Find an average value among all elements

Multi-stage directional median (M-D-M) Used middle value obtained from the pixels set along four directions to edges

Morphological

filters

Erosion To shrink foreground elements and enlarge background elements with structure element

Dilation To enlarge foreground elements and shrink background elements with structure element

Opening To first do erosion and then do dilation with one structure element

Closing To first do dilation and then do erosion with one structure element

Thinning To do erosion and dilation with extended type of structure elements from hit and miss

Thickening To do erosion and dilation with extended type of structure elements from hit and miss

Hit-and-miss To do erosion and dilation with structure element introducing “do not care”

Recursive erosion To recursively do erosion operators with structure element

Recursive dilation To recursively do dilation operators with structure element

Practical

Applications

Camera Fingerprint Measurement IME company [36]

Document Analysis EU IMPACT project [37]

computational demands, the speed-up ratios are also low. This

is because the parallel regions in these filters represent only a

small proportion of the entire running time.

We have also evaluated the effect of sliding window size and

computational complexity on the speed-up ratios. Figure 4

shows that when the sliding window size increases, the speed-

up ratios of the GSWO-generated GPU code over the CPU

baseline are significantly increased. Figure 4 also shows that the

speed-up ratio for a filter increases according to its level of

computational demand. GWSO accelerates those with the most

intensive computation by up to 30×.

Figure 4. The impact of sliding window size on speed-up ratio

Figure 5 shows the correlation between the speed-up ratio and

the kernel complexity for the 10 benchmarks using 5x5 sliding

windows. The “For” and “If” statements were used to measure

the complexity of the kernel – if there were two “If” statements

within a “For” loop from 1 to 50, the kernel computation

complexity was taken to be 50×2. The impact of different basic

operations (arithmetic operations, assignments, tests, reads or

writes) on numbers and types are ignored here. It can be seen

that the benchmarks are clustered in the bottom-left and top-

right corners of the diagram. For a given size of sliding window,

the acceleration ratio increases noticeably as the complexity of

the kernel grows.

Figure 5. The impact of kernel computation complexity on

speed-up

To conclude, the GSWO programming model is capable of

accelerating the performance of most of the typical SWO image

filters. It is particularly suitable for filters with highly intensive

computations and large sliding windows. One possible

bottleneck of the GSWO model is the limited size of on-chip

memory on some GPUs, which thus may not fully support the

application when a large sliding window and a complex filter is

being used. However, GPU hardware is being given increased

on-board memory on a regular basis and there is every prospect

that this bottleneck is purely a temporary phenomenon.

B. Acceleration Comparisons

To compare the performance of GSWO to that of other CPU-

to-GPU translators, we attempted to apply MINT [28], Bones

[23], Par4All [27], OpenCV_GPU for CUDA [13], Polyhedral

Benchmark [33], OpenACC PGI compiler [32] and OpenMP

[39] to these SWO image filters. We found that:

 The original CPU code cannot be directly processed by most

of the above tools. Bones and Par4All do not process C++,

while Par4All has a limited capability in reduction

operations and cannot produce GPU code for the maximum

and minimum primitives.

 Polyhedral Benchmark is not a translator, but is simply a set

of algorithms which can be used for testing the performance

of translators. It cannot process the above applications. Also,

Polyhedral and Bones are both algorithm skeleton based

tools – the image filters under test are out of their scope.

 MINT was designed only for stencil operations and cannot

handle SWO-based image filters. This was tested in our

implementation. Also, the current version of MINT does not

support C++.

Hence, the acceleration comparisons were mainly carried out

using the OpenACC PGI compiler, OpenCV_GPU_Filter and

OpenMP. We report test results over all types of benchmark.

The SWO based image filters were implemented in C++ using

Visual Studio 2008, based on external library OpenCV 2.4.3.

The optimization flags used in VS2008 include Maximize

Speed Optimization and Enable Intrinsic Functions. The test

image had resolution 3325×4765, and 5×5, 9×9 and 11×11

sliding windows were used on hardware systems (b) and (c)

described earlier. The quality of acceleration performance with

other penalization tools was evaluated using speed-up ratio

(CPU vs GPU), which measures the running time of the image

filter part of the whole program. Figures 6(a),(b),(c) show the

comparison results.

 The speedup performance of the OpenACC PGI compiler on

all rank-order filters, erosion and dilation was compared with

the GSWO model and the results with window size 9×9 are

shown in Figure 6(a). For image filters with lower

computation complexity (min, max, etc.), neither improve

the performance as speedup ratios are lower than 1.

However, for image filters with heavy computational

complexity (median, Alpha-T, mode), both speed up the

application by up to 10-26×. This implies that the OpenACC

PGI compiler also follows the finding we demonstrated in

Figure 5 – the acceleration ratio increases noticeably as the

complexity of the kernels grows.

Another noticeable issue is that the GSWO model has better

acceleration performance than the OpenACC PGI compiler

Figure 6(a). Speed-up ratio comparison between GSWO and

OpenACC (9×9 sliding windows)

Figure 6(b). Speed-up ratio comparison between GSWO and

OpenCV_GPU_Filter.

Figure 6(c). Speed-up ratio comparison between GSWO and

OpenMP (5×5 sliding windows).

for the Median Filter, but is worse on Alpha-Trimmed Mean

Filter and Mode Filter. This may because the GSWO model

does not consider and use further optimization of the GPU

kernel, but the OpenACC PGI compiler should optimize the

GPU kernel in other ways, like using shared memory.

 The GPU module in the OpenCV library implements a

number of GPU based image filter and algorithms. But it

supports only a few types of image processing filter among

our benchmarks in Table 6, which are max filter, min filter,

erosion and dilation. We used the GPU filters function

provided by OpenCV.2.4.3 to replace the relevant code part

of image filters in our CPU implementations. The results of

window size 9×9 and 11×11 are shown in Figure 6(b). It can

be seen that GSWO has a consistently better performance

than OpenCV_GPU_filter, but most of these filters run faster

on a CPU implementation than on a GPU, probably because

of their low computational complexity.

 We compared the performance of OpenMP when dealing

with all rank-order filters, erosion and dilation with that of

the GSWO model using 8 cores and 5×5 windows. We added

OpenMP directives into the CPU filter part and enabled

openmp2.0 language support from Visual Studio 2008. As

with the OpenACC PGI compiler, the acceleration of

OpenMP on filters with low computational complexity

kernel is not noticeable, so the results in Figure 6(c) focus on

the speedup performance of OpenMP and GSWO on filters

with high computational complexity kernels. It shows that

on modest hardware, GSWO can accelerate the benchmark

filters up to 12-27×, which is higher than the performance of

OpenMP on 8 cores with the speedup ratio up to 6-9×. It

implies that the GSWO model has a competitive advantage

over the existing OpenMP based tools.

In summary, for accelerating SWO image filter applications,

the GSWO programming model is highly competitive with the

state-of-the-art of automatic CPU-to-GPU source translators,

which makes it attractive in comparison to other research

focused tools, such as hiCUDA, MINT, Par4All and Bones.

Also, the GSWO model has improved acceleration ability than

traditional OpenCV_GPU_filters or OpenMP supports. While

compared to commercial products such as PGI, the GSWO

model usually has a lower acceleration performance, but it still

can exceed PGI compiler on median filters.

Another advantage of GSWO over the PGI compiler is that the

output of GSWO is CUDA code, which is readable, and more

importantly, revisable. The source-to-source conversion

provides users with the opportunity to carry out further

modification of the converted source code according to their

needs, as well as to use the machine-generated code as an

example to support their learning of GPU programming

techniques.

C. Case Study 1: Camera Fingerprint Measurement

Camera fingerprint measurement is a particularly popular topic

in information forensics and security. In most approaches,

denoising methods are applied to a set of images that are known

to come from a given camera [34-35]. In this section, we

evaluate GSWO using sample camera fingerprint measurement

applications from an industrial source, IME [36].

The C++ code applies a 3×3 median filter for image denoising,

subsequently measuring the camera fingerprint by comparing

the denoised image with the original image. The number of

images was 39, each of resolution 3648×2736. When applying

the median filter, the images were split into a number of

Regions of Interest (ROIs). The loop in this function can be

parallelized.

A key feature of the application is that, in the workflow, its

algorithm skeleton contains loops outside the sliding window

operation, as shown in Figure 7. Most existing CPU-to-GPU

translators cannot be successfully applied to these codes

because of the complex algorithm skeletons. MINT [28] can

indirectly process the sample code by revising the original

function into three separate sub-functions and generating three

kernels. However, the GPU performance is even slower than

the CPU performance because repeated CUDA memory

allocation functions are called within the main loops. In

contrast, the GSWO model is fully capable of processing the

code. The results are shown in Table 8. The CPU version is a

sequential version without the use of OpenMP.

Figure. 7. Camera finger measurement application from IME

Table 8 shows that GSWO speeds up the whole application

performance by up to 3-4×, on average, while maintaining the

same accuracy as the original CPU source code. While we are

able to achieve a 6× performance gain in the kernel region, the

overheads associated with use of the GPUs (e.g. data transfer

between CPU and GPUs) reduce the performance advantage

somewhat. However, the overall performance gain is still

satisfactory. Notably, most of the existing CPU-to-GPU tools

(e.g. Bones [23], Par4All [27], Polyhedral Benchmark [33], PGI

[32]) cannot process the source code of this application.

A noticeable result in Table 8 is that the speedup ratio will

reduce if you deploy a mid-performance graphic card alongside

a high-speed CPU. The first reason is that we used the running

time of the whole program to calculate the ratio, which

adversely affects the speed ratio. The second reason is that we

considered a real application that contains many C++ source

and head files. In order to use the GSWO model in the

application, users have to break up the data dependency of the

functions in the C++ file and also need to add some extra CPU

code to transfer the image data format so as to be acceptable by

the GSWO model. This process adds some running time to CPU

programs, and further reduces the speed-up ratio. However, it

does not mean that the GSWO model is not useful since the

running time of the whole program is eventually reduced.

Table 8. Evaluation of Camera Fingerprint Measurement

 CPU

(s)

GPU

(s)
Speedup Details

GTX 690 28 8.2 3.40 Whole Application (1 image)

GT 540 84 19 4.29 Whole Application (1 image)

GTX 690 16 3.9 4.23 Kernel Region (1 image)

GT 540 51 8.3 6.17 Kernel Region (1 image)

GTX 690 1118 280 3.78 Whole Application (39 image)

GT 540 3047 707 4.31 Whole Application (39 image)

GTX 690 663 153 4.35 Kernel Region (39 image)

GT 540 2023 325 6.21 Kernel Region (39 image)

D. Case Study 2: Document Segmentation

Large-scale document digitization is another research issue

with potential application in museums and libraries. The

performance of an OCR system depends heavily on document

layout analysis, region segmentation and text-line

segmentation, which is a time-consuming procedure for large-

scale and high-resolution document digitization.

We applied SWO-based dilations and erosions to process

sample newspaper document images from IMPACT [37],

which is one of the most widely recognized large-scale

document digitization projects of recent years. The processed

newspaper images, of resolution 3595×5194, were then

evaluated by a region segmentation method [38]. The results are

shown in Table 9 and in Figure 8 in Appendix B.

Table 9. Document Analysis code evaluation by GSWO

When the dilation or erosion operator uses 5×5 sub-windows,

the GSWO translator speeds up the performance by a factor of

1-3×. When the dilation or erosion operator uses sub-windows

smaller than 5×5, the GPU performance becomes slower than

the CPU performance due to the overheads mentioned earlier.

This result confirms that the GSWO programming model is

most suitable for applications with high kernel complexity.

System (a) (seconds) System (b) (seconds)

CPU GPU Times CPU GPU Times Details

0.26 1.0 0.26 1.3 1.6 0.81 3 × 3 dilation

1.19 1.2 0.92 4.3 1.9 2.22 5 × 5 dilation

3.69 1.2 2.92 18.2 2.3 7.87 9 × 9 dilation

0.24 1.03 0.24 1.5 2.3 0.68 3 × 3 erosion

1.10 1.0 1.07 5.7 2.1 2.73 5 × 5 erosion

3.35 1.1 2.87 16.8 2.5 6.62 9 × 9 erosion

Figure 8 illustrates the evaluation results of the region

segmentation method [38], which extracts text regions from

newspaper images, based on a hybrid of erosion and dilation. In

the original newspaper image, a large number of text regions

are missed due to the low density of the characters. When 3×3

dilation operators were used, most of text regions were

segmented but two pieces of the text regions in the middle of

the document were still missing. When 5×5 dilation operators

were used, the output quality improved but one text region in

the middle of the document was still missing. By use of 9×9

dilation operators, all text regions in the newspaper were

successfully segmented. Table 8 shows that GSWO is capable

of speeding up the application performance by up to 6×.

E. Usability Comparisons

To compare the practical usability of the GSWO model to that

of other CPU-to-GPU translators, we provided CPU-to-GPU

translators listed in Section IV.B to non-expert GPU users for

accelerating their real applications. The initial findings are as

below.

 The majority of research tools, like MINT [28], Bones [23],

Par4All [27], etc. cannot process C++ and are hard to learn.

A common phenomenon is that these tools can attain very

high speed-up ratios using particular forms of optimization

specifically tuned to the task, but such performance can

rarely be achieved in real-world, practical applications.

 OpenMP and OpenCV based GPU filters are the easiest

approaches for non-expert GPU users. The GPU filter

functions in OpenCV are nearly as same as its CPU

functions. The use of OpenMP in CPU programs only needs

to put one directive into the SWO filter kernel. However,

their acceleration performance is not as good as GSWO.

 OpenACC PGI compiler is the strongest CPU-to-GPU tool

in the market. Both of the OpenACC PGI compiler and the

GSWO model are directive based CPU-to-GPU translators.

The usability comparison between them is reported.

For usability, comparison was made between the GSWO model

and the PGI compiler regarding ease of use and ease of learning.

The evaluation involved four parts, including understanding of

loop patterns and pragmas, use of pragmas, the effect of CPU

code revision and debug diagnostics. Feedback was collected,

via a questionnaire, from non-expert GPU users in four GPSME

project partners (IME, AnSmart, B3C, RotaSoft) based on use

of the GSWO model and the OpenACC PGI compiler. The

results are shown in Table 10.

Table 10. Learning and use by inexperienced GPU users

 GSWO OpenACC

Understand loop pattern fair fair
Understand Basic pragma good fair
Understand Memory Management

pragma

fair moderate

Understand Kernel Generation pragma good moderate
Number of total pragmas used 8-14 5-10
Number of Memory Management

pragmas used
5-9 1

Number of Kernel Generation pragmas

used
4 3-5

CPU code revision Moderate Moderate

Extra lines of code Moderate Moderate

Running sufficiently fast Good Good

Debug diagonistics Yes Yes

Readabliltiy of output code Yes No

Overall rate of usability Good Good

Table 10 demonstrates that the overall usability of both tools is

rated as good by new users, though each has advantages and

disadvantages. The OpenACC compiler supports the learning

and use of memory management pragmas rather better than

GSWO, but GSWO performs better for kernel generation

pragmas. This is because the kernel generation design of the

GSWO model focuses particularly on SWO image filter

applications, whereas the OpenACC compiler aims at more

generic cases.

The memory management pragmas of the GSWO model are

extensions of MINT to support more flexible data transfer. The

OpenACC is a well-known standard with mature design on

memory management. These issues lead to fewer pragmas

being used in OpenACC for memory management than in the

GSWO model, but a variable number of pragmas being used in

kernel generation. The CPU code revision and debug

diagnostics are both required in OpenACC and GSWO in the

parallelization of SWOs applications. However, GSWO has an

considerable advantage concerning the readability of the

CUDA code output, which can significantly help new users to

track errors and potentially improve performance.

V. Discussion and Limitations

From the results above, we conclude that the GSWO

programming model is capable of accelerating the performance

of many SWO-based image applications. By applying the

GSWO model, we are able to achieve significant performance

gains in sliding window operations, particularly those that are

computationally demanding. Compared to many existing

automatic CPU-to-GPU programming models, the GSWO

model has an enhanced usability and acceleration performance.

While the GSWO model has no significant advantages on

acceleration and usability over the OpenACC PGI compiler, it

still demonstrates a possibility of using an easy-to-use CPU-to-

GPU code translator to accelerate the SWOs based Image Filter

applications with good performance.

Actually, when designing a directive based automatic CPU-to-

GPU source translator, there is a tradeoff between the flexibility

and the easy-to-use of pragmas. It is true that increasing the

number of clauses may give more flexible management of

device memory or optimization and lead to better acceleration

performance, but it also increases the difficulty of use. The

pragma design in the GSWO model tries to strike a balance

between flexibility and ease of use. Compared to the OpenACC

PGI compiler, GSWO less simple in broader generic cases, but

is very simple to use in SWO applications. It is important for

users to know the performance difference to decide whether to

use a specialized tool and sacrifice flexibility or use a more

general tool with slower results.

There are a few minor limitations on GSWO. Firstly, it is not

suitable to operations that are not parallelizable or are relatively

light in computational terms. But sufficient numbers of

parallelizable, computationally demanding tasks exist in

practice for GSWO to make a significant contribution.

Secondly, a possible bottleneck of the GSWO model is the

limited size of on-chip memory available on some GPU

devices; this may not fully support the use of a large sliding

window and an intensive-computation filter. However, the

regular expansion in on-board GPU memory will certainly help

to mitigate this limitation. Thirdly, the memory management

pragmas of the GSWO model are not simple for a non-expert to

understand and use correctly, though they can be successful

with a little care. Finally, no optimizations of the CUDA kernels

in the GSWO model are considered in this paper. The key idea

of kernel generation in the GSWO model is based on the

parallelization of a typical operational procedure of an SWO

image filter. The procedure of kernel generation is an SWO

procedure based translation, but is not a strictly sentence by

sentence translation. The codes presenting operations within a

sliding window are eventually transferred into CUDA kernel

body. Hence, traditional optimization methods that use shared

memory or improve memory bandwidth cannot be used

directly. We will investigate using shared memory to improve

kernel acceleration in future work.

We believe that the benefits of the GWSO approach greatly

outweigh these disadvantages, and that GWSO affords a new

and effective way of accelerating SWO image processing

applications.

VI. Conclusion and Future Work

This paper has presented an annotation-based programming

model, GSWO, which supports sliding window operations in a

wide range of image filters. It enables users to carry out source-

to-source conversion of self-implemented image filters from

CPU to GPU in a highly automated manner. Compared to many

existing automatic CPU-to-GPU programming models, the

GSWO model has an enhanced usability and acceleration

performance. The experimental results show its good speed-up

and usability in a variety of image processing applications, at a

similar level to the state-of-the-art tool OpenACC PGI

compiler.

Future work will introduce new pragmas to extend the GSWO

model for more general time-consuming image processing

applications, such as object detection. Meanwhile, it expects to

be compatible with existing research tools [28] [31] [33] to

optimize the GPU performance of this tool – shared memory

optimization, loop aggregation and register optimization. The

support of OpenCL output is also under consideration.

Appendix A

The system structure and translation flow of the C2GPU toolkit

is illustrated in Figure 9. The input to the toolkit is C/C++

source code annotated with pragmas. Once the source file is

read, the ROSE frontend constructs the AST tree and passes it

to the core of the C2GPU toolkit. The core of the toolkit

traverses the AST and queries the parallel regions. Directives in

a parallel region go through the components of Identifier,

Analyser and Optimizer in the toolkit core. The Translator

component uses the rules from the above components to

transform the AST. The output from the toolkit is CUDA or

OpenCL source code generated by unparsing the transformed

AST.

This paper uses only the CUDA code generated by the toolkit.

Figure 9 GSWO Core Library

Appendix B

(a) Original (b) 3×3 dilation

(c) 5×5 dilation (d) 9×9 dilation

Figure 8. Region segmentation results of GSWO-produced images.

Appendix C

Table 9. CUDA code of memory creation pragmas

References

1. Y. H. Chen, S. J. Horng, R. S. Run, J. L. Lai, R. J. Chen, W.C. Chen, Y.

Pan and T. Takao, “A scan-based configurable,programmable, and

scalable architecture for sliding window-based operations,” IEEE Trans.

Computers, vol.48, no. 6, pp.615-627, June. 1999.

2. P. Shivakumara, G. H. Kumar, D. S. Guru, and P. Nagabhushan, “Sliding

window based approach for document image mosaicing,” Journal of

Image and Vision Computing , vol. 24, issue 1, pp. 94–100, 2006.

3. Y.R. Wang, W.H. Lin and S.J. Horng: “A sliding window technique for

efficient license plate localization based on discrete wavelet transform,”

Expert Syst. App, vol. 38, issue 4, pp. 3142-3146, April. 2011.

4. X. Xu, E.L. Miller, D.Chen and M. Sarhadi, “Adaptive two-pass rank

order filter to remove impulse noise in highly corrupted images,” IEEE

Trans. Image Processing, vol 13, no. 2, pp. 238-247, Feb. 2004.

5. Y. Nie and K.E. Barner, “Fuzzy Rank LUM Filters,” IEEE Trans. Image

Processing, vol 15, no. 12, pp. 3636-3654, Dec. 2006.

6. P. Soille and H. Talbot, “Directional morphological filtering,” IEEE

Trans. Pattern Analysis and Machine Learning, vol 23, issue 11, pp.

1213-1329, Nov. 2001.

7. J. Gil and R. Kimmel, “Efficient dilation, erosion, opening and closing

algorithms,” IEEE Trans. Pattern Analysis and Machine Learning, vol 24,

issue 12, pp. 1606-1617, Dec, 2002.

Directives Descriptions

copyByTexture

(D, toDevice, N, M, Bind, char)

cudaChannelFormatDesc desc_1;

desc_1 = cudaCreateChannelDesc<unsigned char>();
tex_dev_3_D.normalized = false;

tex_dev_3_D.addressMode[0] = cudaAddressModeClamp;

tex_dev_3_D.addressMode[1] = cudaAddressModeClamp;
tex_dev_3_D.filterMode = cudaFilterModePoint;

cudaMallocArray(&array_dev_3_D,&desc_1,N,M);

cudaMemcpyToArray(array_dev_3_D,0,0,((char *)D),sizeof(char) * N * M, cudaMemcpyHostToDevice);
cudaBindTextureToArray(tex_dev_3_D, array_dev_3_D);

copyMalloc1DArray

(W, toDevice, I, J,pitch1)

cudaMallocPitch(((void **)(&d_dev_5_W)),&::pitch123,I * sizeof(float), J);

copyMalloc1DArray

(im_GPU, toDevice, I, J, pitch1,

InKernel)

cudaMallocPitch(((void **)(&d_dev_6_im_GPU)),&::pitch123,I * sizeof(float), J);

copy2DArrayTo1DArray

(W, toHost, I, J, W_1D, 2DTo1D)

int i_1;

int j_1;
for (i_1 = 0; i_1 < J; ++i_1)

for (j_1 = 0; j_1 < I; ++j_1) {

 W_1D[i_1*I+j_1] = W[i_1][j_1]; }

copyMemcopy2D

(W, HosttoDevice, I, J, pitch1,W_1D)

cudaMemcpy2D(d_dev_5_W,sizeof(float) * I, W_1D, pitch123, sizeof(float) * I, J,
 cudaMemcpyHostToDevice);

copyMemcopy2DToArray

(W, DevicetoDevice, ROI_w, ROI_h,

pitch1)

cudaMemcpy2DToArray(array_dev_4_W,0,0, d_dev_5_W,pitch123,sizeof(float) * ROI_w, ROI_h,

 cudaMemcpyDeviceToDevice);

copyBindTexture

(W, DevicetoDevice, W, float, Bind)

cudaChannelFormatDesc desc_3;
desc_3 = cudaCreateChannelDesc<float>();

cudaBindTextureToArray(&tex_dev_4_W, array_dev_4_W,&desc_3);

copyMemcopy2D

(im_GPU, DevicetoHost, I, J, pitch1,

W_1D)

cudaMemcpy2D(W_1D,sizeof(float) * I, d_dev_6_im_GPU,pitch123,sizeof(float) * I, J,

 cudaMemcpyDeviceToHost);

copy2DArrayTo1DArray

(W_1D, toHost, I, J, W, 1DTo2D)

int i_2;
int j_2;

for (i_2 = 0; i_2 < J; ++i_2)

for (j_2 = 0; j_2 < I; ++j_2) {
 W[i_2][j_2] =W_1D[i_2*I+j_2]; }

http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lin:Wei=Hung.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Horng:Shi=Jinn.html
http://www.informatik.uni-trier.de/~ley/db/journals/eswa/eswa38.html#WangLH11

8. M. J. Thurley and V. Danell, “Fast morphological image processing open-

source extensions for GPU processing with CUDA,” IEEE Journal of

Selected Topics in Signal Processing, vol 6, no 7, pp. 849-856, Nov. 2012.

9. C. H. Wu and S. J. Horng, “Fast and scalable selection algorithms with

applications to median filtering,” IEEE Trans. Parallel and Distributed

Systems, vol 14, no. 10, pp. 983 – 992, Oct. 2003.

10. M. M. Bronstein, “Lazy sliding window implementation of the bilateral

filter on parallel architectures,” IEEE Trans. Image Processing, vol 20,

no. 6, pp.1751-1757, June. 2011.

11. P. N. Happ, R. Q. Feitosa, C. Bentes and R. Farias, “A region-growing

segmentation algorithm for GPUs,” IEEE Geoscience and Remote Sensing

Letters, vol.10, no.6, pp.1612-1617, Nov. 2013.

12. W.J. Dally, “The GPU Computing Era,” IEEE Micro. vol 30, issue 2,

pp.56-69, April. 2010.

13. OpenCV_gpu. (Dec, 2013), “Opencv_2.4.8.,” Available [Online]:

http://docs.opencv.org/modules/gpu/doc/introduction.html

14. GpuCV. (Oct, 2010), “Gpucv: GPU-accelerated Computer Vision,”

Available [Online]: http://picoforge.int-evry.fr/cgi-

bin/twiki/view/Gpucv/Web/

15. A. Reiner. (Sep, 2010), “Etothepi CUDA-Image-Processing”, Available

[Online]: https://github.com/etotheipi/CUDA-Image-Processing

16. M. G. Sanchez, V. Vidal, J. Bataller and J. Arnal, “A parallel method for

impulsive image noise removal on hybrid CPU/GPU systems”, Procedia

Computer Science, vol 18, pp.2504-2507, June, 2013.

17. GPSME. (Oct, 2013), “A General Toolkit for “GPUtilisation” in SME

Applications”, Available [Online]: www.gp-sme.co.uk

18. R. C. Hardie and C. Boncelet, “LUM filters: a class of rank-order-based

filters for smoothing and sharpening”, IEEE Trans. Signal Processing, vol

41, issue 3, pp.1061-1076, Mar. 1993.

19. D. B. Min, J. B. Lu and M. N. Do, “Depth video enhancement based on

weighted mode filtering”, IEEE Trans. Image Processing, vol 21, no. 3,

pp.1176-1190, Mar. 2012.

20. R. Oten, D. Figueiredo and J. P. Rui, “Adaptive alpha-trimmed mean

filters under deviations from assumed noise model”, IEEE Trans. Image

Processing, vol 13, no. 5, pp.627-639, Mar. 2004.

21. Y.M.Y. Hasan and L. J. Karam, “Morphological text extraction from

images”, IEEE Trans. Image Processing, vol 9, no. 11, pp. 1978-1983,

Nov. 2000.

22. S. Chen and R. M. Haralick, “Recursive erosion, dilation, opening and

closing transforms”, IEEE Trans. Image Processing, vol 4, no. 3, pp. 335-

345, March. 1995.

23. C. Nugteren and H. Corporaal. “Introducing ‘Bones’: A Parallelizing

Source-to-Source Compiler Based on Algorithmic Skeletons.” In

GPGPU-5: 5th Workshop on General Purpose Processing on Graphics

Processing Units. ACM, 2012.

24. J. Enmyren and C. K. Kessler. “SkePU: A multi-backend skeleton

programming library for multi-GPU systems”, In Proc. 4th Int. Workshop

on High-Level Parallel Programming and Applications (HLPP-2010),

Baltimore, Maryland, USA. ACM, pp. 5-14, 2010.

25. M.M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A.

Rountev and P. Sadayappan., “A Compiler Framework for Optimization

of Affine Loop Nests for GPGPUs”, Proc. Int’l Conf. Supercomputing,

NewYork, USA. ACM, pp. 225-234, 2008.

26. A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C.

Bastoul, and R. Lethin, “A mapping path for multi-gpgpu accelerated

computers from a portable high level programming abstraction”, in

Proceedings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units (GPGPU ’10), New York, NY, USA, ACM,

pp. 51–61, 2010.

27. HPC Project, (Oct, 2011), “Par4all automatic parallelization,” Available

[Online]: http://www.par4all.org.

28. D. Unat, X. Cai, and S. B. Baden. ” Mint: Realizing CUDA Performance

in 3D Stencil Methods with Annotated C”, In ICS ’11: International

Conference on Supercomputing, New York, NY, USA, ACM, pp. 214-

224, 2011.

29. S.Z., Ueng, M. Lathara, S.S. Baghsorkhi and W. W. Hwu, “CUDA-lite:

Reducing GPU Programming Complexity “, Proc. Int’l Workshop

Languages and Compilers for Parallel Computing, Berlin, Heidelberg.

Springer, pp. 1-15. 2008.

30. T. Han and T. Abdelrahman, “hiCUDA: High-Level GPGPU

Programming”, IEEE Trans. Parallel and Distributed Systems, vol 22, no.

1, pp. 78-90, Jan. 2011.

31. The OpenACC Standard, The OpenACC™ Application Programming

Interface http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf,

November 2011.

32. The Portland Group, (June. 2009), “PGI Fortran and C Accelerator

Programming Model “, Available [Online]:

http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.0.pdf

33. L.-N. Pouchet. (Nov. 2011), “PolyBench: The Polyhedral Benchmark

Suite.” Available [Online]: http://www.cse.ohio-

state.edu/~pouchet/software/polybench/

34. G. J. Bloy, “Blind camera fingerprinting and image clustering,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 30, no. 3, pp. 532–534, Mar, 2008.

35. V. Conotter and G. Boato, "Analysis of sensor fingerprint for source

camera identification," Electronic Letters, vol. 47, no. 25, pp. 1366-1367,

Dec. 2011.

36. IME. (Nov. 2012), Image Forgery Detection, Ltd. Available [Online]:

http://www.imagemetry.com/

37. IMPACT. (Dec. 2011),”Improving Access to Text, EU FP7 project”,

http://www.impact-project.eu

38. P. Yang, A. Antonacopoulos, C. Clausner, S. Pletschacher, “Grid-based

modelling and correction of arbitrarily warped historical document images

for large-scale digitization”, in: Proceedings of the 2011 Workshop on

Historical Document Imaging and Processing, HIP '11, ACM, Beijing,

China, pp. 106–111, Sep. 2011.

39. U. Bondhugula, M. Baskaran, S. Krishnamoorthy and J. Ramanujam, A.

Rountev, and P. Sadayappan. A Practical Automatic Polyhedral

Parallelizer and Locality Optimizer, ACM SIGPLAN Programming

Languages Design and Implementation (PLDI), Tucson, Arizona. Jun

2008.

40. Pluto, (Dec, 2013), “A polyhedral automatic parallelizer and locality

optimizer for multicores”, Available [Online]:

http://pluto-compiler.sourceforge.net

http://docs.opencv.org/modules/gpu/doc/introduction.html
http://picoforge.int-evry.fr/cgi-bin/twiki/view/Gpucv/Web/
http://picoforge.int-evry.fr/cgi-bin/twiki/view/Gpucv/Web/
https://github.com/etotheipi/CUDA-Image-Processing
http://www.gp-sme.co.uk/
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.imagemetry.com/
http://www.impact-project.eu/
http://pluto-compiler.sourceforge.net/

