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Abstract. Modern time-domain astronomy is capable of collecting a stagger-

ingly large amount of data on millions of objects in real time. This makes it al-

most impossible for objects to be identified manually. Therefore the production 

of methods and systems for the automated classification of time-domain astro-

nomical objects is of great importance. The Liverpool Telescope has a number 

of wide-field image gathering instruments mounted upon its structure. Utilizing 

a database established by a pre-processing operation upon these images, con-

taining millions of candidate variable stars with multiple time-varying magni-

tude observations, we applied a method designed to extract time-translation in-

variant features from the time-series light curves. These efforts were met with 

limited success due to noise and uneven sampling within the time-series data. 

Additionally, finely surveying these light curves is a processing intensive task. 

Fortunately, these algorithms are capable of multi-threaded implementations 

based on available resources. Therefore we propose a new system designed to 

utilize multiple intelligent agents that distribute the data analysis across multi-

ple machines whilst simultaneously a powerful intelligence service operates to 

constrain the light curves and eliminate false signals due to noise and local alias 

periods. 
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Harmonic Regression, Harmonic Feature Extraction, Multi-agent systems, Peri-
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1 Introduction 

Astronomy is entering a period of unprecedented data gathering capability. Advances 

in observational, storage and data processing technologies have allowed for extended 

sky surveys such as the Sloan Digital Sky Survey (SDSS) to be conducted and ex-
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ploited [1]. Within the next decade a number of even larger surveys are also planned. 

Technology is now at a point where it has become possible to gather data on wide 

regions of the sky repeatedly over variable time periods [2]. This data can be analyzed 

for periodic structure which can then be used to create physical models by fitting 

weighted regression learning algorithms. These methods can provide us with valuable 

knowledge about the presence and classification of astronomical objects that are peri-

odically changing in time as well as identifying transient phenomena [3]. 

 

Time domain astronomy is a research area characterized by the large datasets gen-

erated by sky surveys [4]. This time-series data contains information on the temporal 

component of measurements and the whole time-series contains observations across 

multiple epochs. In Time-Domain Astronomy, it is common for these observations to 

have a significantly uneven distribution in time with inconsistent intervals between 

observations [5]. As a result, astronomy maintains a demand for data processing tech-

niques capable of the automated processing of time-series data on individual objects 

that can contain observations over the space of days followed by no additional obser-

vations for a period of months. In this paper we propose a new theoretical platform 

for the analysis of this vast quantity of time-domain astronomy data by introducing 

intelligent-agents. A typical agent is a type of computer system that is embedded in a 

type of environment that is capable of conducting an autonomous action within that 

environment in order to meet its objectives. An Intelligent Agent on the other hand is 

an extension of this approach with the ability to make decisions and adapt to its 

changing environment. 

 

The rest of this paper is structured as follows. In Section 2, the background of 

time-domain astronomy is discussed with reference made to the numerous classifiable 

objects. Section 3 introduces the Small Telescopes Installed at the Liverpool Tele-

scope (STILT) instruments, wide field imaging devices and the pre-processing pipe-

line used to construct an Structured Query Language (SQL) time-series database from 

the raw images. In Section 4, the feature extraction is discussed through using light 

curve model fitting resulting in the extraction of important, magnitude and phase in-

dependent, features. In Section 5, a system utilizing intelligent-agents is proposed for 

the successful processing and classification of numerous light curves. The final con-

clusions and proposals of future work are provided within Section 6. 

2 Background 

Astronomical time-series data is generated through the production of wide-angle im-

ages of the sky. By identifying objects in multiple images with different observation 

times, information on the change of the brightness of these objects can be determined. 

The resulting brightness-over-time data for each individual object is called the objects 

light curve [2], [6]. 
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Many astronomical objects exhibit brightness variability due to a large number of 

differing physical processes that uniquely influence an object’s light curve. Therefore, 

the light curve can be used in the classification of variable objects based on the signa-

ture of these physical processes and the detection of unknown candidate objects or 

even unknown variability phenomena [7]. The first major type of variable astronomi-

cal phenomenon is Variable Stars [8]. Variable stars are unstable stars and undergo 

periods of pulsation where they grow and contract in size [9]. These size oscillations 

produce changes to the stars temperature and brightness resulting in a measurable 

change upon the light curves [2], [6]. The light curves of these pulsating stars can be 

used to produce descriptive features. Models produced from these features can then be 

used to identify the class of candidate variable objects and the period of their oscilla-

tions. 

 

A second important type of variable object is the eclipsing binary. In these systems, 

two or more stars are in close proximity to each other and execute orbits around a 

common gravitational center-point. The close proximity of the stars often means that 

they cannot be distinguished on an image and appear as a single source of light. Vari-

ations in these objects are caused by the plane of the orbit aligning with the view from 

Earth. As a result, one star periodically passes in front of another resulting in a change 

in the brightness of the source of light in the astronomical images. 

 

Finally, there are also transient events that result in harder-to-predict phenomena [3]. 

Flare Stars are stars that can undergo occasional outbursts due to magnetic and plasma 

processes within their atmospheres. These events can be repetitive but not usually 

with the degree of periodicity of variable stars. For purely transient events, two of the 

most studied examples are Novae and Supernovae caused by the cataclysmic eruption 

of stellar material, producing some of the brightness objects in the known universe as 

the victim star is destroyed or badly disrupted during the event. 

3 The STILT Dataset 

The Small Telescopes Installed at the Liverpool Telescope (STILT) dataset is a wide 

field object SQL database. It contains 1.24 billion separate object observations of 

27.74 million independent stellar objects. It was generated through the pre-processing 

of observational images gathered by the STILT instruments [2]. The STILT instru-

ments consist of three cameras with varying field of views mounted directly to the 

body of the main Liverpool Telescope aimed co-parallel with the main telescope’s 

field of view. The first instrument, SkycamA is capable of imaging the entire sky 

from La Palma. It is primarily used for monitoring the status of weather but it can be 

of use in the detection of bright transient objects. This camera does not contribute any 

observations to the STILT database. The next camera is named SkycamT and is re-

sponsible for most of the observations. It is a single CCD camera capable of detecting 

light across the visible spectrum with a wide-angle lens with a field of view of 21 by 

21 degrees and a magnitude limit of +12. Finally, the remainder of the database is 



constructed from observations by the SkycamZ instrument. This instrument contains a 

CCD camera which is also capable of detecting light from across the visible spectrum 

attached to a small telescope with a field of view of only one by one degree but with a 

greatly increased magnitude limit of +18. The database contains time-series data on 

the magnitude of detected objects over a period of time from March 2009 to March 

2012 [2]. As the Skycam images are centered on the view of the main Liverpool Tele-

scope, observations of specific objects are only recorded when they are within the 

field of view of the camera as the telescope is focused within the vicinity of the ob-

jects. This results in time-series with uneven length gaps between observations, in-

creasing the difficulty of identifying variations in the magnitude of the observations. 

4 Feature Extraction 

We begin our analysis using a methodology proposed by Debosscher et al. in 2007 

and improved upon by Richards et al. in 2011 [3], [10]. The goal is to describe the 

time-series data for each object as a set of harmonic features that are invariant to the 

objects mean magnitude and time-translation phase allowing direct comparison be-

tween objects. The whole SkycamT database used in this investigation is 180 GB in 

size with 20 GB of indexes for faster query response times. For each object, a set 

methodology is applied to generate an associated feature vector. The database is que-

ried for all observations of a specific object. The returned table has its magnitude, 

modified Julian date and magnitude error columns retrieved. The identification of the 

dominant periodic oscillation within the object’s time-series is then required. There 

are a number of possible algorithms that can be deployed on uneven time-series. 

 

Phase dispersion minimization [11] and the String Length Lafler-Kinman (SLLK) 

statistic can identify how well-aligned data points are placed in phase-space across a 

sample range of periods [12]. This is accomplished through computing the distance 

between each data point in phase space. An extension to this idea of aligning data 

within phase space is a recently proposed periodogram based on the Blum-Kiefer-

Rosenblatt (BKR) statistical independence test [13]. Instead of utilizing the alignment 

of the data such as in the string-length methods, a rank correlation test is performed. 

There also exist Information Theoretic approaches such as slotted correntropy and the 

improved Correntropy Kernelized Periodogram (CKP) [14] that have proven to be 

very effective and are a focus for future initiatives on the Skycam database [6]. How-

ever, for this initial investigation a Lomb-Scargle Periodogram (LSP) is utilized to 

identify the primary periodic signal within the data. 

 

The LSP uses a least-squares spectral analysis. It is a method of estimating the fre-

quency spectrum of time-series data by the fitting of multiple sinusoids to the data 

using least-squares regression [3], [5]. This method is performed over a frequency 

range resulting in the statistic normalized power that has a larger value if the fitted 

sinusoid has a lower chi-squared error with a candidate frequency. It operates over a 

frequency range with a finite set of candidate frequencies separated by intervals. As 
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the objects in the database can have low and high period variations, this interval is set 

as constant to produce a uniform sample across the full frequency range. The lowest 

frequency is the longest period that can be expected to be detected by the periodo-

gram. It is defined as the reciprocal of the difference between the maximum and min-

imum modified Julian Date of the object’s observations named the total observation 

time 𝑡𝑡𝑜𝑡. The maximum frequency is related to the minimum periods that can be 

found from an object’s data. Hypothetically scanning down to the minimum possible 

periods for variable stars is recommended. However, for some pulsating white dwarf 

stars, this can be as low as 1-2 minutes [10]. In previous methods, a Pseudo-Nyquist 

frequency was proposed for the determining of a maximum frequency for unevenly 

sampled data which approximates the Nyquist frequency by taking the mean of the 

individual time intervals between the observations of an object. This equation is 

shown in equation 1. 

𝑓𝑛𝑦𝑞 = 0.5 〈
1

Δ𝑇
〉 (1) 

Where 𝑓𝑛𝑦𝑞 is the Pseudo-Nyquist frequency and Δ𝑇 is the time intervals between 

observations of an object. This frequency is determined by the mean intervals be-

tween observations in an uneven time-series. Gaps in observations are not considered 

uneven observations and instead are just considered times with a lack of observations 

and do not contribute to the calculation of the Pseudo-Nyquist frequency. Despite this 

distinction, a globally accepted definition of a ‘gap’ and an ‘uneven sample’ was not 

identified. Therefore we attempt to approach this problem to provide a good solution. 

Theoretically, the time intervals between observations could all be considered gaps. 

This is not really possible as the start and stop times of Skycam observations are un-

likely to be an integer number of minutes (the interval between exposures). Ignoring 

this, theoretically the sampling rate could be the Nyquist frequency of the evenly 

sampled exposure intervals which is half of the reciprocal of a minute, 720 cycles per 

day, equivalent to a period of 2 minutes. Currently we have defined a gap as an inter-

val greater than two standard deviations for this method. This is unlikely to be an 

acceptable final answer as the standard deviation has limited meaning on non-normal 

distributions. Future experiments will investigate this question in order to provide a 

more concrete definition. 

 

Finally, the frequency step between candidate frequencies must be determined to 

produce a frequency spectrum with a finite number of frequencies. Both Debosscher 

et al. and Richards et al. make use of a frequency step of 0.1 divided by the total ob-

servation time as defined above [3], [10]. In this method the frequency step is defined 

as shown in equation 2. 

𝑓𝑠𝑡𝑒𝑝 =  
1

𝑜𝑣𝑠𝑚 × 𝑡𝑡𝑜𝑡 
 (2) 

Where 𝑓𝑠𝑡𝑒𝑝 is the frequency step and 𝑜𝑣𝑠𝑚 is the oversampling factor. When the 

oversampling factor is set to 10 the frequency step equates to that used in the previous 

methods [3], [10]. Our early experiments suggest this might be too fine a frequency 



grid for the STILT data as noisy peaks seem to be produced for some objects. Inter-

estingly, for the light source Algol, an eclipsing binary system, this oversampling 

factor was required. This remains a challenge in the development of this method. The 

frequency associated with the maximum power from the LSP is recorded as the pri-

mary frequency. Upon the determination of the candidate period, weighted linear 

regression is performed to fit a four-harmonic sinusoid model using the period detect-

ed by the periodogram. This model is then subtracted from the time-series in a process 

called pre-whitening. This is done as to eliminate any periodic activity within the 

time-series based on the dominant period detected by the periodogram. This pre-

whitened time-series is then used to identify a second period independent of the first 

dominant period. A third period is then identified using the same method. A harmonic 

best-fit is computed on the original data by weighted linear regression using a model 

with twenty six coefficients is utilized as shown in Equation 3. 

𝑦(𝑡) =  𝑐𝑡 + ∑ ∑ {𝑎𝑖𝑗  𝑠𝑖𝑛(2𝜋𝑗𝑓𝑖𝑡) +  𝑏𝑖𝑗  𝑐𝑜𝑠(2𝜋𝑗𝑓𝑖𝑡)}4
𝑗=1

3
𝑖=1 +  𝑏0 (3) 

Where the 𝑏0 parameter is the mean magnitude of the light curve and the 𝑐 parameter 

is the linear trend of the time-series. The frequencies 𝑓𝑖 and the coefficients 𝑎𝑖𝑗  and 

𝑏𝑖𝑗  are retained along with the linear trend 𝑐 and provide a good description of the 

light curve. These coefficients are not yet time-translation invariant and must be trans-

formed into better descriptors of the light curve. This is accomplished by transforming 

the Fourier coefficients into a set of amplitudes 𝐴𝑖𝑗 and phases 𝑃𝐻𝑖𝑗 . This computa-

tion is performed through the use of trigonometric identities [10]. This results in the 

production of twenty eight features that are time-translation invariant. These features 

include the slope of the linear trend, the three frequencies used in the final harmonic 

model, the twelve amplitude coefficients and eleven phase coefficients and the ratio 

of data variance (called variance ratio) between the variance before the pre-whitening 

of the harmonic model of the primary period and after. The LSP is known to strongly 

identify periodicities for variable stars that are highly sinusoidal such as Mira-class 

variables. But it can also struggle with less sinusoidal light curves such as eclipsing 

binaries occasionally missing the period of offering a multiple of the correct period 

instead of the true period. 

 

Figure 1 demonstrates the model produced by the described method for the Skyc-

amT data collected on the star Mira showing a clear sinusoidal oscillation. The period 

of Mira has been widely reported as 332 days, verified by surveys such as 

HIPPARCOS [15]. Despite the discussed weaknesses, if the periodogram returns a 

result similar to the stars correct period, the linear regression can produce an accurate 

model. The model is not a perfect fit but should be sufficient to generate features 

within the ranges expected of Mira class variables. 
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Fig. 1.  

The light curve of the star Mira with a harmonic fit with a period of 316 days compared to the 

accepted value of 332 days. Despite this, the harmonic model is a close match to the data. 

A good solution for improving the accuracy of the period search is to incorporate a 

more powerful period finding algorithm. The artificial data points have allowed the 

harmonic fits the degree of freedom required to fit the unevenly sampled magnitude 

data resulting in powerful fits such as that demonstrated by figure 2. Unfortunately 

this has also resulted in situations where the model deviates drastically in the non-

sampled regions due to ‘noisy fringes’ in the data. The linear regression is resilient to 

noise and can evaluate the signals within very poor data. However, coupled with the 

uneven sampling rate, the noise can result in the linear regression entering a region 

devoid of data whilst fitting for a steeper or shallower gradient due to the noise of 

these last data points. As a result the amplitude of the sinusoids can peak beyond a 

physically realistic state. 

 

Fig. 2.  

A harmonic fit on the star 1243-0264228. By allowing the model to vary within the non-

sampled spaces, a superior harmonic fit can be constructed. 



 

Finally, the performance of the analysis system is of great concern. Fortunately, the 

weighted linear regression is implemented using a very efficient normal equation 

method. Therefore the LSP which is 𝑂(𝑁2) in processing complexity is the primary 

processing component of this analysis method. This order is a result of needing to run 

every observation of an object over a high resolution frequency spectrum to extract 

the dominate periods otherwise important harmonic variations may be missed. The 

frequency spectrum can contain tens of thousands of candidate periods which are 

completely independent allowing for parallelized implementation. 

5 Proposed Solution 

In order to significantly improve performance, we propose a system that makes use of 

multiple intelligent agents to subdivide the processing tasks between multiple clusters 

whilst simultaneously a new ‘intelligence service’ will constantly monitor the models 

being generated by the individual agents. This intelligence system will learn stochas-

tically as models are continuously generated for the light curves of different objects. 

We use intelligent agents for this task as they are capable of continuously making 

decisions based on the quantity of data being processed and the system resources 

available [16]. The proposed framework will be dynamic and modular as well as scal-

able in nature. The modular aspect of the framework will allow a user the ability to 

develop tasks as well as the type of strategies used when replicating an agent. This 

dynamic aspect of the framework allows it to be scalable by using replication. 

 

Due to the modularity of the framework, a user has the ability to define their tasks. 

Depending on the tasks and the environment that will be operated; the agent will ei-

ther know in advance when it is first started or at which time in the future. There are 

two distinct scenarios in which these agents can operate. In the first scenario, an agent 

is processing some calculations in a static SQL Database. The agent will know in 

advance the size of the tables required for the tasks by conducting a count to retrieve 

the size and it can compute the amount of agents and the tasks that needs to be pro-

cessed on each agent depending on the user’s pre-defined discretion. In the second 

scenario, an agent is processing in-frequent amounts of data bursts, sometimes small 

amounts of data and sometimes large amounts of data in a timely manner. The agent 

will have to monitor its resources and depending on the threshold defined by the user 

the agent can determine if it can complete the tasks in the required time [16]. When an 

agent has decided it can either not complete the tasks or has reached a point that it no 

longer can complete its task due to the load then it will replicate itself. This is the 

dynamic and scalable aspect of the framework because the agent has to make a deci-

sion that it cannot complete its tasks and has to offload some tasks to another agent. 

This decision is made from what we call ‘the dynamic strategy’ by looking at the 

resources of the host machine and comparing them with the threshold defined by the 

user. This is only used for the replication phase. 
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Once an agent has requested a replication then that agent will only run the first task 

and the newly replicated agent will run the remaining tasks. When that agent has de-

cided that it can no longer complete the tasks in a suitable time period then it will 

replicate itself again. Every time an agent starts to struggle due to the load then it will 

replicate itself until each task is running on a single agent. Previously replication has 

mainly been used for fault tolerance [17, 18, 19]. However, we are using replication 

for performance and scalability increase. Some tasks could possibly be synchronous 

and some tasks may be asynchronous. This means that tasks could possibly rely on 

results computed from previous tasks and some tasks may be independent and can run 

in parallel. We define two types of task, synchronous tasks that rely on the result from 

a previous task or asynchronous tasks that rely on a type of data either from a previ-

ous tasks result or based on the source data. 

 

The system will contain two types of agents, ‘The Task Agent’ and ‘The Resource 

Management Agent / Resource Controller’. When an agent wants to replicate itself, it 

will contact all Resource Management agents on the network to see if any resources 

are available for it to replicate and responses will be send back informing the replicat-

ing agent of the amount of usable resources available on each of the machine. If an 

appropriate amount of resources are available then the agent will request the resource 

management agent to replicate the task agent. When replicating, the resource man-

agement agent will spawn a container for the replicated agent to run within with a 

specific amount of resources that the user has defined for the task [20]. We choose to 

containerize the agent for two reasons. Firstly, containerizing the agent allows us to 

isolate the agent from other agents on the machine while also having the capability to 

deploy the agent almost instantly due to their minimal runtime requirements. Second-

ly, we can configure the container to only use a specific amount of resources, for ex-

ample a predefined number of CPU Cores and percentage of usage for each CPU, 

allowing for more control over the resources allocated to the replicated agent [21]. 

Figure 3 demonstrates the structure of this replication sequence. 

 

 

Fig. 3.  

The sequence of operations involved in agent replication. 



The proposed system for the processing of astronomical light curves will be using the 

static Skycam database. This means that no new entries are ever added to the database 

and the data is left standalone. We will use a static based strategy as we know that the 

database is not going to be updated. This strategy will count the number of objects in 

the database and then based on the quantity of resources allocated to each agent, a 

decision that the programmer has made when building their strategy, will either allow 

a single agent to conduct all the tasks utilizing the total resources (as shown in figure 

4) or each machine running an instance of the Resource Management Agent will 

spawn task agents to run the tasks for multiple objects simultaneously. 

 

 

Fig. 4.  

A single agent is capable of running every task. 

Whilst the multi-agents distribute the processing tasks generating the harmonic best-

fit models, a second intelligence service operates independently. This service moni-

tors the outbound models and determines whether they are realistic. This service with 

have a confidence threshold which dictates how well the model has fit the time-series 

data based on its trained state. If it has a low confidence it attempts to modify the 

model based on previous patterns that have been discovered within the multiple ob-

jects light curves processed previously. The intelligence service is always operating 

using supervised learning trained using the known light curves of well sampled ob-

jects to continuously improve its prediction. This system is envisaged to use a form of 

neural network containing multiple models based on the different light curve profiles 

discovered. Both Recurrent and Convolutional neural networks have been shown to 

be potent at predicting time-series [22]. Additionally, these methods can be extended 

into deep learning through the addition of more layers if the light curves require the 

production of more powerful features. In the event of a harmonic fit model receiving a 

low confidence, the intelligence service will attempt to construct a new harmonic 

model using neural networks trained on the previous high confidence models through 

the stochastic learning process. We are hopeful that the combination of scalable pro-

cessing and accurate time-series predictions will lead to high performance processing 

of the STILT database through the generation of robust features by supervised and 

unsupervised learning for future multi-class classification analysis. 

6 Conclusion and Future work 

The weighted linear regression harmonic best-fit models can be used to produce time-

translation invariant features from uneven time-series. The STILT database contains 

many objects with sufficient noise and uneven sampling to result in poor or physically 

unrealistic harmonic models. The LSP can produce multiples of the correct period and 
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occasionally it misses the periodic signal completely. Replacing the LSP with a more 

powerful and less limiting algorithm might alleviate this problem. The proposed solu-

tion seeks to introduce scalability and multithreading for the high performance pro-

cessing of the STILT database. This is accomplished through the use of a multiple 

intelligent agent platform. This platform is capable of distributing the processing tasks 

across multiple available machines as required based on the processing workload and 

available resources. Finally, a new intelligence service using more powerful machine 

learning algorithms such as Recurrent and Convolutional neural networks can regu-

late the models generated by the harmonic best-fit producing consistent results despite 

the degree of freedom.  Our future work will involve the incorporation of the pro-

posed methods into a newly developed data analytics platform. Following this, the 

models produced can be evaluated through testing previously classified variable ob-

jects in the STILT dataset as well as sourcing external datasets for comparative re-

sults. These efforts allow the production of robust light curve features that are well 

placed for future incorporation into a powerful multi-class classification system. 
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