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Effects of Poisson’s ratio on the
deformation of thin membrane

structures under indentation
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Deformation/deflection of thin shells/membranes with
clamped boundaries is a common material behaviour rele-
vant to many engineering and medical conditions. A de-
tailed understanding of the deformation mechanisms of
different materials/structures with different Poisson’s ra-
tios under such a loading condition is of great significance
to materials testing and product development. In this work,
the deformation of circular elastic membranes with a
clamped edge under point loading and finite contact con-
ditions is systematically studied incorporating auxeticity
behaviours. The effect of Poisson’s ratio on the defor-
mation of the material is investigated and the influence of
parameters including sample thickness, indentation depth

1 Introduction Many engineering and medical condi-
tions involve deformation/deflection of thin shells/mem-
branes with a clamped boundary, such as pressure sensors,
valves and actuators as well as biological tissues [1-5]. The
material deformation in these cases covers a wide spectrum
of strain levels from small deformation to large displace-
ment with samples of different thicknesses. A typical way
to test the material behaviour is by using indentation bend-
ing tests in which an indenter/sphere is pressed onto a thin
sample fixed along its rim of either a regular (round, square)
or arbitrary shape [1,5]. The resulting force displacement
curve (P-h curves) is dependent on the properties of the ma-
terial, the structure and dimensions of the sample. A detailed
understanding of the deformation mechanism of different
materials/structures under such a loading condition is of
great significance to materials testing and product develop-
ment. Many studies have been conducted into the mechanics
of membranes under localised load with different loading or
boundary conditions [1-4, 6-9]. For example, in the work by
Ju et al [1], a linear elastic solution is used to quantitatively
interpret the measured central deflection of the membrane

and indenter size is analysed. The feasibility and limitation
of an analytical solution is evaluated. The work shows that
the P/82 relationship is applicable to describe the force dis-
placement data over the membrane domain for both point
loading and finite contact conditions. It is shown that neg-
ative Poisson’s ratios have direct influence on the mem-
brane deformation domain, including the force-displace-
ment curve, the deflection profile and the contact area.
Critical factors affecting the P-h curves and the defor-
mation mechanisms are discussed with reference to poten-
tial use of the Poisson’s ratio effects.
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under a circular concentrated load with an atomic force mi-
croscope. Experimental and theoretical investigations have
also been conducted on problems of puncturing a membrane
by a rigid cylinder [10]. Scott et al [3] compared the defor-
mation of thin silicon and unfilled PDMS-based films
loaded with different sized indenters over different strain re-
gimes. Most of these works have been focused on material
stiffness (represented by the Young’s modulus) with a fixed
Poisson’s ratio. With the rapid development in materials
with different Poisson’s ratios, including material with neg-
ative Poisson’s ratios at different length scales [11-18], it is
important to investigate the potential effects of Poisson’s ra-
tio and auxeticity on the force-displacement data, the mate-
rial deformation modes and its interaction with the indenter.

Due to the nature of loading and sample configuration,
the effect of Poisson’s ratio for sample with clamped edge
conditions is complicated, being affected by material prop-
erties as well as the experimental conditions (such as sample
thickness and indenter size, etc.). Within the loading domain,
the deformation mode may change with depth. In the bend-
ing/plate domain, the load is known to be not affected by the
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auxeticity of the materials [19]. But in the membrane or
transition between plate and membrane behaviour, positive
or negative Poisson’s ratio theoretically would potentially
have different effects under localised loading conditions
[19-20]. It is essential to study the effect of Poisson’s ratio
on the material behaviour in both point loading and finite
contact conditions (such in the case of a spherical indenter).
Under these conditions which are different from the loading
conditions of standard tests, the effect of material properties
on the material behaviour is directly influence by the dimen-
sions of the experimental samples as well as the loading con-
ditions. A detailed understanding of these factors will help
to establish the effects of the Poisson’s ratio with a focus on
the influence of auxeticity, which will help to further de-
velop material testing methods and extend the use of auxetic
materials in many relevant industrial fields.

In this work, numerical models of a thin membrane un-
der point loading and finite contact conditions with a spher-
ical indenter have been developed. The FE model for the
spherical indentation model is fully validated against exper-
iment data of latex rubber samples (as a model material) of
different thicknesses and sizes. The FE model simulating
point loading of thin membranes is compared to analytical
solutions for materials of different thicknesses and effects
of the Poisson’s ratio with different sample thickness and
deflection depth is analysed. FE models with finite contact
are developed to simulate thin membranes incorporating
auxetic behaviour and their deformation mechanisms under
an indentation bending test is studied. The effect of auxeti-
city on the P-h curves, deformation profile and contact is
presented and discussed with reference to deformation
mechanisms and potential use of auxeticity.

2 Experimental and FE models

2.1 Experimental Fig. 1a shows schematically the setup
of the indentation bending test. In the test, a spherical in-
denter is pressed onto a thin membrane supported by a cir-
cular frame which provides a fixed boundary condition. The
diameter (designated as chamber size) and height of the sup-
porting chamber is 30mm and 50mm, respectively. The ra-
dius of the indenter is 4mm. A rubber sheet with a thickness
of 0.8 mm was made out of a latex resin by casting. The
Young’s modulus of the rubber sheet is 1.25MPa. The sam-
ple was made by mixing the latex coagulant and emulsion
(ABL Resin & Glass, UK) at room temperature followed by
degassing in a vacuum casting machine to remove entrained
air, then pouring into an aluminum mold and cured at room
temperature to avoid any residual pre-strain. The samples
were characterised in uniaxial tensile tests and planar tests
on a tensile test machine (Tinius Olsen Ltd (H50KS)), the
data was used to validate the FE modeling results of the in-
dentation bending tests. The indenter used is made of a
stainless steel ball with a highly polished surface. The in-
dentation system was mounted on a rigid supporting frame.
The loading rate used in the test is 0.5mm/sec. A sensitive
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load cell (model: LCMS-D12TC-5N) was attached to the
moving head of the actuator to monitor the force during the
test. The displacement of the indenter is monitored by a lin-
ear variable displacement transducer (LVDT) and con-
trolled by a computer.

2.2 FE models

}

II:HIL'I:I“.’I

(@) Schematic to show the setup of a typical
indentation bending test;

(b) FE model for for point loading of circular
membrane.

(c) FE model for finite contact condition.
of circular membrane.

Figure 1 Setup of a typical indentation bending test (a)
and FE model for point loading (b) and finite contact (c) of
a thin membrane. The rim of the circular membrane is fixed
at all degree of freedom.

The FE of the test is developed using the finite element
program ABAQUS 6.11. Fig. 1 (b&c) shows the FE models
developed to study the deformation of membranes under
point loading (b) and finite contact condition (c). The mem-
brane was modelled with shell elements (type S3 and S4R).
There are in total ~15000 elements in the model with finer
meshes over the region underneath the indenter in order to
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accurately establish the contact area. Both element types are
general purpose conventional stress displacement shells
with 3 or 4 nodes. These elements allow transverse shear
deformation. The elements use thick shell theory as the shell
thickness increases and become discrete Kirchhoff thin shell
elements as the thickness decreases. The use of mixed types
of elements effectively improved the efficiency of the FE
model. The rim of the rubber sheet was fully fixed to repre-
sent the effect of the clamping rig. Preliminary work showed
that the numerical results from this simplified (but more ef-
ficient) boundary condition were comparable to a solid
model with full boundary conditions. A full 3D model also
allows the evaluation of potential effects of misalignment
etc. better than 2D models. The main work reported in this
paper is based on a linear elastic law in which the properties
were represented by Young’s modulus (E) and the Poisson’s
ratio (nu). Linear elastic models have been used previously
to describe rubber like membranes at relatively lower strain
levels [1, 3]. In this work, the suitability of linear elastic
modelling is also compared to several hyperelastic models
to further validate the FE model and establish a displace-
ment range, within which the linear elastic mode is valid.
The use of linear elastic modelling allows effective evalua-
tion of the effect of Poisson’s ratio and auxeticity on the ma-
terial behaviour in terms of force displacement data and de-
formation behaviours.

As shown in Fig.1 (b&c), two loading conditions have
been investigated. One (Fig. 1b) is to apply a point load at
the centre of the circular membrane; this is designed to com-
pare the FE modelling results with analytical solutions. The
other one (Fig. 1c) is a finite contact situation in which in-
denters of different sizes are simulated. In this case, contact
has been defined between the indenter and specimen. Sensi-
tivity tests have been performed to assess the influence of
mesh size, boundary conditions, and frictional condition in
order to ensure the FE model is accurate with an optimum
requirement with regard to computational resources. A py-
thon program has been developed in which the material
properties and sample thickness can be changed systemati-
cally.

3 Results and discussion

3.1 Comparison between experimental data and FE
modelling Fig. 2 shows the displacement fields (a) and
comparison between test data of the latex rubber sample and
FE modelling with elastic properties (solid line) and hyper-
elastic properties (dashed line). Details of the Ogden and
Mooney Rivlin strain energy functions could be found in the
ABAQUS 6.11 Theory Mannual. The linear elastic property
is based on tensile tests and hyperelastic property was based
on the combination of tensile and planar tests. The material
test data is not shown to preserve clarity. The data in Fig. 2
clearly shows that the FE data with linear elastic properties

is in a good agreement with the testing data up to a displace-
ment of 5mm. While the hyperelastic models can produce
data up to much larger displacement. Given the current work
is focused on investigating the effects of Poisson’s ratio, the
modelling is limited to the strain range where the linear elas-
tic model is valid. Similar agreements could be found be-
tween FE and experimental data over a wide range of sam-
ple thickness and indenter sizes which confirms that the FE
model is valid and accurate. This is essential to be able to
predict the effects of Poisson’s ratio and auxeticity.
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(@) Typical deflection (U3: vertical displacement in
mm) fields of membrane under indentation.
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(b) Experimental force deflection data and FE results
with linear elastic and hyperelastic material laws.
(E=1.25MPa).
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Figure 2 Comparison of experimental and numerical
data with linear elastic and hyperelastic models to validate
the FE model.

3.2 Deformation of a thin membrane under point
loading conditions. Fig.3 compares the FE modelling re-
sults and analytical solution. The analytical solution (equa-
tion 1) is based on a modified Schwerin point loading con-
dition with consideration of the influence of the Poisson’s
ratio [20].

1

5= fa () )

Where:
f(v)~ 1.049 — 0.146v — 0.158v% (2)
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In equation (1), ‘a’ is the dimension of the chamber; ‘5’
is the indentation depth/deflection; ‘P’ is the force (N) and
‘t” is the sample thickness. The data presented in Fig. 3 are
for membrane thickness of 0.1mm, E=1.25MPa and Pois-
son’s ratio of 0.495 and -0.495 (these value are used rather
than 0.5 to improve the modelling efficiency). In both cases,
the FE data and the analytical data show a good agreement.

<« t=0.1mm,E=1.25Mpa, nu=-0.495

L t=0.1mm, E=1.25MPa, nu=0.495

0.035 Analytical, nu=0.495

0.030
0.025
0.020 -
0.015 -
0.010
0.005 -
0.000

R —Analytncal,nu=-0.49’5 ,

Force (N)

0 1 2 3 4 5
Displacement (mm)

Figure 3 Comparison between FE and analytical
solution for point loading condition of circular membrane
with negative and positive poisson’s ratio.

According to the analytical solution, P is related to 8"3.
Fig.4 plots (P/5%) vs. displacement. At lower displacement,
P/&%decreases with displacement following a similar trend
between negative and positive Poisson’s ratio, and then
eventually reach to a stable value. With thin samples (a),
there is a clear effect of auxeticity, (P/86%) is much lower with
negative Poisson’s ratio. As the thickness of the sample in-
crease, the effect of negative Poisson’s ratio become less
significant, as shown in Fig 4b&c. In the case with a sample
thickness of 1mm, the difference between positive and neg-
ative Poisson’s ratio becomes much less significant.

Copyright line will be provided by the publisher
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Figure 4 Variation of curvature parameter (P/6%) with
positive and negative Poisson’s ratio for samples of
different thicknesses under point loading.
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3.3 Effect of Poisson’s ratio on the deformation of
membranes under finite contact conditions.

—+—E1.25, nu=0.495, t0.1

E1.25, nu=-0.495, 0.1

Analytical, nu=0.495

0.035 7 Analytical. nu=-0.495

0.03 .
50.025
~ 0.02
£20.015
= 0.01 -
0.005
2 4
Displacement (mm)

Figure 5 Force displacement curves for limit contact
model. The solid and dash lines are data based on analytical
solution for point loading (Eq.1).

In the case of finite contact, an indenter is pressed onto
the sample surface. Fig.5 shows typical force displacement
data with an indenter size of R4mm. The data shows that the
force displacement of a finite contact conditions is different
from the analytical solution derived for point loading in par-
ticular at high indentation depths. Preliminary work also
showed that only when the indenter size is smaller than
0.5mm, the result can be approximated by the analytical so-
lution (results not shown). As shown in the data, the mem-
brane with negative Poisson’s ratio is weaker than the cor-
responding one with a positive Poisson’s ratio. This is also
observed for other E values. In other words, a material with
a negative Poisson’s ratio has better sensitivity to the load
change. This could be a beneficial factor in situations such
as sensors or some biological tissue such as bladder tissues.
Fig. 6 plots P/3° data for different indenter sizes. Results
show that, in all cases, the deformation can be effectively
represented/approximated by a cubic relationship, i.e. P/&®
which could provide an effective way in material data com-
parisons. Comparing to the data metric for point loading
conditions (Fig. 4), the P/5® reached a stable constant zone
at certain displacement ranges (in this case, after 1mm
depth). This is probably due to the interaction between the
membrane and the indenter. This could a very useful feature
in representing the force displacement data. In the data for
each indenter size, the P/&% is lower for the membrane with
a negative Poisson’s ratio. Fig. 7 shows the P/&° data for
samples of different thicknesses. It clearly shows that the
effect of auxeticity becomes less significant for thicker sam-
ples.

2603 | O nu0.495-t0.1-R1
nu-0.495-t0.1-R1
_ LE-03 -
el
o
5.E-04 -
0.E+00 ,
g 2
Displacement (mm)
(@ R=1mm.
LEE T g [ nu0.495-t0.1-R2
0 nu-0.495-t0.1-R2
1.E-03 -
e % T
S
& P
5.E-04 - N
0.E+00 : r T |
0 1 2 3 1
Displacement (mm)
(b)R=2mm.
2.E-03 - 0 nu0.495-t0.1-R4
B nu-0.495-t0.1-R4
_LE03 -
e}
E r'd
5.E-04 - 8808000803800
0.E+00 ‘ |
. 2
Displacement (mm)
(c) R=4mm.

Figure 6 Curvature Parameter (P/3°) vs. depth for
different indenter sizes (R1, 2, and 4mm, sample
thickness=0.1mm).
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Figure 7 Effect of auxeticity on the P/&® for samples of
different thickness.

These results clearly show that auxeticity has direct in-
fluences on the force displacement relationship. The de-
tailed deformation is analysed to establish the effect of aux-
eticitiy on the displacement profile for both the vertical (U3)
and radial (U1) direction. Different from standard material
tests, the displacement profile is an important feature for
thin membrane tests. The profile may provide means to rep-
resent the deformation of the materials, which has been ex-
plored by several researchers [1, 4]. It is important to ana-
lyse the potential effects of auxeticity on the displacement
profile and contact conditions. Fig.8 plots a typical profile
of vertical deflection (U3) with positive and negative Pois-
son’s ratio. In the figure, the x-axis used is the distance from
the centre point normalised by the radius of the chamber
(15mm). (O represents the central point, 1 represents the po-
sition of the edge). For thin samples, the displacement pro-
file between the positive and negative poisons ratio is
slightly different (Fig. 8a). The general displacement profile

Copyright line will be provided by the publisher

is comparable in the central part and near the clamp edge,
probably due to restraint from the indenter and the edge ef-
fects. But with thicker specimen, there is less significant dif-
ference in the displacement profile between positive and
negative Poisson’s ratio. This is probably associated with
the transition to the plate deformation domain.

nu-0.49, t0.1mm
nu0.495, t0.1mm

displacement(mm)
[N
w

0 0.5 1
Normalised Distance

(a) Vertical displacement (U3), t=0.1mm, RA4.

w

nu-0.495-t1.5mm
== e=nu0.495-t1.5mm

™

o
Ok N wWn,

displacement ([mm)
[y

0.2

I

0.4 0.6 0.8 1
Normalised Distance

o

(b) Vertical displacement (U3), t=1.5mm, R4.

Figure 8 Effect of auxeticity on the displacement (Ver-
tical displacement, U3) profile with different sample thick-
ness.

Fig. 9 (a & b) compares the profiles of radial displace-
ment (U1) for samples with different thicknesses at an in-
dentation depth of 3mm. In all cases, the auxeticity showed
a clear influence on the profile. In general, the displacement
values are very low, but there is a clear difference between
these two sets of data. The data suggests that a negative
Poisson ratio results in a positive radial displacement (Fig.
9b) as comparison to a predominantly negative radial dis-
placement in the case of a positive Poisson’s ratio (Fig. 9a).
With finite contact problems, the contact area is another im-
portant character. This could be estimated by plotting the
contact pressure from the FE model. Fig. 10 shows the con-
tact pressure for samples of different thicknesses. In both
cases, the contact area for the negative Poisson’s ratio one
is smaller than the one with positive Poisson’s ratio, with
more significant difference for the thin samples. Thisisina
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reasonable agreement with the data on the deformation pro-
files and force displacement data.
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8 I
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T 202 b 0.5 1
Distance (mm)
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Figure 9 Radial displacement (U1) profile with differ-
ent sample thicknesses.
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Figure 10 Effect of Poisson’s ratio on the contact
pressure showing the effect of auxeticity on the contact area.

The effect of the auxeticity on the contact and the defor-
mation of thin plate is a complex process, as the deformation
of the region in contact with the indenter and the remaining
region of the membrane could be through different defor-
mation regimes [20]. The contact pressure is affected by
many factors such as the friction, thinning of the samples
and chamber size, which require a systematic further inves-
tigation. The change of the contact area observed is in rea-
sonable agreement with the effects of negative Poisson’s ra-
tios. In general, for an auxetic membrane, there is a tendency
for circumferential strain to be positive causing expanded
radius. An expanded radius, in the case of finite contact,
would naturally give a decreased contact area. This in turn
may affect the overall indentation resistance. Further work
is required to investigate if these changes of the contact area
have partially contributed to the relative lower force for ma-
terials with a negative Poisson’s ratio.

4 Conclusions

In this work, the deformation of circular elastic
membranes with a clamped edge under point loading and
finite contact conditions is systematically studied
incorporating auxeticity behaviour. The effect of Poisson’s
ratio on the deformation of the material is established. The
feasibility and limitation of an analytical solution is assessed.
The work shows that the P/§® relationship is applicable to
describe the force displacement data over the membrane
domain for both point loading and finite contact conditions.
It is shown that negative Poisson’s ratio has direct influence
on the membrane deformation domain; the force is
relatively lower, which could be beneficial as the material
will be more sensitive to load change. The deflection profile
is slightly different between positive and negative Poisson’s
ratio, while the contact area for negative poisson’s ratio is
relatively smaller. This work has highlighed some important
characteristics of membranes with negative poisson’s ratio,
further work is required to qunatify these effects with

Copyright line will be provided by the publisher
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consideration of relative dimensions between smaple
thickness and chamber size.
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