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REVIEW

Muscle structural assembly and functional consequences
Marco Narici1,*, Martino Franchi1 and Constantinos Maganaris2

ABSTRACT
The relationship between muscle structure and function has been a
matter of investigation since the Renaissance period. Extensive use
of anatomical dissections and the introduction of the scientific method
enabled early scholars to lay the foundations of muscle physiology
and biomechanics. Progression of knowledge in these disciplines led
to the current understanding that muscle architecture, together with
muscle fibre contractile properties, has a major influence on muscle
mechanical properties. Recently, advances in laser diffraction, optical
microendoscopy and ultrasonography have enabled in vivo
investigations into the behaviour of human muscle fascicles and
sarcomeres with varying joint angle and muscle contraction intensity.
With these technologies it has become possible to identify the length
region over which fascicles and sarcomeres develop maximum
isometric force in vivo as well as the operating ranges of fascicles and
sarcomeres during real-life activities such as walking. Also, greater
insights into the remodelling of muscle architecture in response to
overloading and unloading, and in ageing, have been obtained by the
use of ultrasonography; these have led to the identification of clinical
biomarkers of disuse atrophy and sarcopenia. Recent evidence also
shows that the pattern of muscle hypertrophy in response to chronic
loading is contraction-mode dependent (eccentric versus concentric),
as similar gains in muscle mass, but through differing addition of
sarcomeres in series and in parallel (as indirectly inferred from
changes in fascicle length and pennation angle), have been found.
These innovative observations prompted a new set of investigations
into the molecular mechanisms regulating this contraction-specific
muscle growth.

KEY WORDS: Skeletal muscle, Hypertrophy, Atrophy, Sarcopenia,
Muscle contraction

Introduction
The relationship between muscle structure and function has been a
matter of interest to anatomists and physiologists since the
Renaissance. This period represented a new era for medical
science as the fine details of the human body were revealed
through the use of anatomical dissections. This enabled great
advancement in medical knowledge as, before this period,
understanding of human anatomy was based on Galen’s
dissection work on animals (Barbary macaques), as human
dissections were forbidden in ancient Rome. Many of Galen’s
assumptions on the anatomy of the human body were proved wrong
by Andreas Vesalius, one of the greatest contemporary scholars of
the time, who shortly after obtaining his doctorate in 1537 was

appointed Professor of Surgery and Anatomy at the University
of Padua. Just 6 years after his appointment at Padua University,
Vesalius published his treatise De Humani Corporis Fabrica
(1543) in seven books (Libri Septem) (Fig. 1A). In his treatise,
Vesalius gives a highly detailed description of each muscle of
the human body, through a series of artistic illustrations of
‘muscle men’ (Fig. 1B), attributed to Titian’s pupil Jan Stephen
van Calcar. Vesalius’ drawings and descriptions provided
accurate anatomical details of muscle insertions, position and
actions but not of the arrangement of muscle fibres because the
technique he used of engraving on woodblocks followed by printing
probably did not enable him to achieve sufficient accuracy to
illustrate muscle fibres.

Such details were instead provided almost a century later (1627)
by Casserius (Giulio Cesare Casseri; Fig. 2A), pupil of Hieronymus
Fabricius (Girolamo Fabrici d’Acquapendente), through the use of a
different drawing technique: engraving on copper plates.Working at
the Universita d’Artista, at the time a branch of Padua University,
Casserius was able to produce drawings based on his copper
engravings that clearly showed the arrangement of muscle fibres
(Fig. 2B) in situ.

Even greater morphological details of individual muscles were
provided by the illustrations of the British architect Sir Christopher
Wren, who is best known for having designed St Paul’s Cathedral in
London. In 1670 in Willis’ treatise De Motu Musculari, Wren
produced highly detailed anatomical drawings clearly illustrating
the architectural features of different muscles of the body,
differentiating between parallel-fibred, uni-pennate, bi-pennate
and multi-pennate muscles (Fig. 3).

However, appreciation of the functional meaning of different
muscle fibre arrangements seems to start only with the work of the
Danish scientist Nicolaus Steno(nis) who, working under the court
of the Duke of Florence, Ferdinand II de’Medici, published in 1667
the treatise Elementorum Mythologiae Specimen (Fig. 4). Steno
used geometric models to represent muscles as parallelepiped
integrations of fibres and was the first to describe changes in muscle
architecture with muscle contraction as follows: ‘dum contrabitur
musculus, anguli eius acuti siunt ampliores’ (with muscle
contraction, angles that are acute become greater) (Fig. 5). A
contemporary of Steno, who was probably inspired by his work as
well as by that of Galileo, was the Neapolitan mathematician,
physicist and physiologist Giovanni Alfonso Borelli (1608–1679),
often described as the father of biomechanics. In his De Motu
Animalium (1680), he applied to biology the rigorous analytical
methods introduced by Galileo in the field of mechanics. Borelli
was the first to estimate the forces of fusiform and pennate muscles
required for equilibrium in various joints and demonstrated that the
levers of the musculoskeletal system magnify motion rather than
force, requiring muscles to produce forces much greater than those
opposing motion (Fig. 6).

However, the mathematical relationship between muscle
dimensions and mechanical output was actually formalized two
centuries later by the German physiologist Ernst H. Weber, in his
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book titled Handwörterbuch der Physiologie (Weber, 1846),
which reports one of the very first calculations (0.836 kg cm−2) of
human muscle maximum isometric force normalized to cross-
sectional area (estimated as volume/muscle length in cadavers). In
1944, Haxton refined the estimate of force (F) per cross-sectional
area (CSA) (F/CSA, specific force) of human skeletal muscle
by correcting for moment arms, accounting for pennation, and
by accurately measuring the physiological cross-sectional area
(PCSA, i.e. the area of the cross-section of a muscle perpendicular
to all its fibres) of the plantarflexor muscles obtained by inclusion
of all fibres along the muscle length (Fig. 7). Although Haxton’s
measurement of PCSA in the cadaveric specimens of his study is
correct, as it accounts for the cross-section of all muscle fibres, the
PCSA of his living subjects was estimated by multiplying the
anatomical cross-sectional area for the ratio of physiological to
anatomical CSA (ACSA, which is orthogonal to the muscle belly

but not to all muscle fibres of pennate muscles) measured in
cadavers (Haxton, 1944). Despite this limitation, the real novelty
of Haxton’s study was that of relating the maximum force of a
muscle to its PCSA; this ratio is now referred to as ‘specific force’,
a quantity that represents the intrinsic force-generating potential of
muscle independent of muscle size. As in the plantarflexors,
PCSA is about 1.3-fold greater than ACSA; the average value
of F/CSA obtained by Haxton (38.2 N cm−2) is similar to
that reported by Close (1972) for mammalian muscles
(15–30 N cm−2).

Although the pioneering work of these early scholars has been
fundamental for identifying differences in muscle structural design
and for relating this to the ability to generate force and movement,
information on muscle structure in living humans could only be
obtained through inference from anatomical dissections and from
observations on animal muscle.

A B Fig. 1. De Humani Corporis Fabrica. (A) Portrait of the
28 year old Andreas Vasalius, taken from De Humani
Corporis Fabrica (1543). (B) Illustration from this treatise
showing details of the muscular system of the human
body. Individual muscles are accurately represented
though details of muscle fibre arrangement are missing.
Reproduced as public domain images from: http://
catalogue.museogalileo.it/biography/NielsSteensen
NicolasSteno.html.

A B Fig. 2. Tabulae Anatomicae. (A) Portrait of Giulio
Cesare Casseri. (B) Illustration of a copper engraving
from Casseri’s Tabulae Anatomicae showing the fine
details of muscle anatomy. Contrary to Vesalius’
drawings, the technique used by Casseri enabled
illustration of muscle fibres and their orientation.
Reproduced as public domain images from: https://
commons.wikimedia.org/wiki/Category:Giulio_Cesare_
Casseri#/media/File:Giulio_Casserio._Line_engraving_
by_G._van_Veen._Wellcome_V0001024.jpg.
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Only with the introduction of modern imaging techniques such as
MRI and ultrasound it has become possible to measure in humans
key parameters of muscle architecture (muscle volume, fascicle

length and pennation angle), enabling us to obtain in vivo accurate
values of PCSA and muscle-specific force (13–25 N cm−2; Narici
et al., 1992; Morse et al., 2005), in line with those reported by Close
(1972) for non-human mammalian skeletal muscle. Also, recent
advances in MRI diffusor tensor imaging (Fig. 8) have made it
possible to obtain three-dimensional reconstructions of human and
rodent muscle fascicle length and pennation angle (Sinha et al.,
2006; Heemskerk et al., 2005), which are likely to yield more
realistic values of PCSA.

Functional significance of muscle architecture
Knowledge of muscle architectural characteristics is fundamental
for the understanding of muscle mechanical properties as PCSA and
fibre length, together with myosin heavy chain content and fibre-
type distribution, are the main determinants of the length–force and
force–velocity relationships. This is because the maximum force
developed by a muscle is proportional to the number of sarcomeres
in parallel, while the maximum shortening velocity is proportional
to the number of sarcomeres in series, and hence to fibre length
(Gans and Gaunt, 1991; Woittiez et al., 1983; Spector et al., 1980;
Lieber and Fridén, 2000). PCSA is normally calculated from the
ratio of muscle volume (v), which can be measured by MRI, to
fascicle length (Lf ), multiplied by the cosine of pennation angle (θ),
which can be measured by B-mode ultrasound; that is, PCSA=(v/
Lf )×cosθ. This PCSA equation actually represents the projection
of PCSA along the tendon, described by Haxton (1944) as the
‘reduced PCSA’, which is useful for calculating specific force –
that is, the force acting along the tendon divided by the (reduced)
PCSA. Conversely, PCSA may be obtained by normalizing muscle
volume to fibre length (Close, 1972; Woledge et al., 1985); this
represents the ‘non-reduced’ PCSA (Haxton, 1944). Thus, to obtain
specific force using the non-reduced PCSA, the force acting along
the fibres must be calculated by multiplying the tendon force
component by the cosine of pennation angle, and then this product
is divided by the non-reduced PCSA (v/Lf ). What is important to
note is that, as long as pennation angle is taken into account, the two
approaches (for calculation of ‘reduced PCSA’ or for calculation of

Fig. 3. Structure of muscle from an ox. This drawing is attributed to
Christopher Wren in Willis’ De Motu Musculari (1670; The Wellcome Institute
for the History of Medicine, London). It is one of the first to illustrate uni-
pennate, bi-pennate and multi-pennate muscle arrangements. Reprinted with
permission of the Wellcome Library.

A B Fig. 4. Elementorum Mythologiae
Specimen. (A) Portrait of Nicolai Stenonis
attributed to Ferdinando II de’ Medici’s court
painter Justus Sustermans (Uffizi Gallery,
Florence, Italy). (B) Title page of Steno’s
treatise Elementorum Mythologiae
Specimen. Reproduced as public domain
picture from: https://en.wikipedia.org/wiki/
Nicolas_Steno#/media/File:Portrait_of_
Nicolas_Stenonus.jpg.
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the fibre force component) yield the same mathematical result
(Narici, 1999).
Measurements of serial sarcomere number in human muscles

were originally obtained from cadaveric specimens (Walker and
Schrodt, 1974; Wickiewicz et al., 1983); more recently, however,
the use of laser diffraction and optical microendoscopy has enabled
measurement of sarcomeres in vivo in humans and mice (Llewellyn
et al., 2008; Lieber et al., 1994; Mai and Lieber, 1990) and has
provided values of sarcomere length at rest and during contraction at
different muscle lengths. Through these in vivo measurements of
sarcomeres it has been possible to show that various muscles operate
in different regions of their sarcomere length–force relationship
under physiological conditions. Contrary to observations on fish
muscles, which showed that sarcomeres operate in the plateau region
of their length–tension relationship in order to attain maximum
efficiency and power output (Rome et al., 1988), in situ optical

diffraction studies on frog semitendinosus have shown that
sarcomeres operate in the descending limb of the length–tension
relationship. It seems, from in vivo determinations of muscle length–
force properties, that muscles undergoing stretching–shortening
cycles during normal movements operate in the ascending limb
of the length–force relationship, while muscles that undergo
shortening–stretching cycles operate in the descending limb
(Rassier et al., 1999). Optical microendoscopy has also been used
to measure maximum contraction speed (Vmax) of the gastrocnemius
muscle in mice in response to electrical stimulation (Llewellyn et al.,
2008). Vmax values obtained in vivo (8.0 µm s−1) showed good
agreement with in vitro measurements performed on isolated,
chemically activated skinned fibres (range 7.12–13.17 µm s−1). It
would thus be of great interest to perform these microendoscopic
measurements during contractions of human muscle to obtain
in vivo values of Vmax. Furthermore, measurements of optimal
sarcomere length in vivo would prove useful for estimating
sarcomere number, which could easily be obtained by dividing
fascicle length measured by ultrasound by the optimal sarcomere
length measured by microendoscopy.

Therefore, from a physiological point of view, the most
interesting applications of these techniques are the study of
muscle contraction in vivo and structural remodelling with chronic
overloading, unloading and ageing.

Contraction-induced changes in muscle architecture
Papers on isolated non-humanmammalian muscle show that muscle
fibre shortening during a maximum isometric contraction can be
substantial, especially at shorter lengths at which the aponeurosis
and tendon are slack, and it is also a function of the muscle’s index
of architecture (ia; the ratio of fibre length at optimal muscle length
to optimal muscle length) (Huijing et al., 1989). In the rat,
specifically, fibre shortening during a maximum isometric
contraction is minimal at optimum muscle length (L0) but at 80%
L0 it can be as large as 40% for the gastrocnemius medialis (ia 0.37)
and ∼30% for the semimembranosus (ia 0.76) muscles (Huijing
et al., 1989).

Notably, these measurements performed on isolated muscles are
in line with those obtained in vivo on the gastrocnemius medialis
muscle of cats, showing muscle fibre shortening of 28% during

A B Fig. 6. De Motu Animalium. (A) Title page of Giovanni
Alfonso Borelli’s treatiseDe Motu Animalium. (B) Figure 1 of
the treatise, illustrating the use of mathematical models to
describe muscles and their mechanical action. In Borelli’s
drawings, a clear appreciation of different types of muscle
fibre arrangement can be recognized. Reproduced as public
domain picture from: http://www.design-is-fine.org/post/
101352180159/giovanni-alfonso-borelli-plates-from-de-
motu.

Fig. 5. Stenos’ schematic drawing of a pennate muscle. The drawing
illustrates a clear appreciation of the increase in pennation angle with muscle
contraction, which he describes as ‘dum contrabitur musculus, anguli eius
acuti siunt ampliores’. Reproduced as public domain picture from: https://
ia800907.us.archive.org/24/items/nicolaistenonise00sten/nicolaisteno
nise00sten.pdf.

279

REVIEW Journal of Experimental Biology (2016) 219, 276-284 doi:10.1242/jeb.128017

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://www.design-is-fine.org/post/101352180159/giovanni-alfonso-borelli-plates-from-de-motu
http://www.design-is-fine.org/post/101352180159/giovanni-alfonso-borelli-plates-from-de-motu
http://www.design-is-fine.org/post/101352180159/giovanni-alfonso-borelli-plates-from-de-motu
https://ia800907.us.archive.org/24/items/nicolaistenonise00sten/nicolaistenonise00sten.pdf
https://ia800907.us.archive.org/24/items/nicolaistenonise00sten/nicolaistenonise00sten.pdf
https://ia800907.us.archive.org/24/items/nicolaistenonise00sten/nicolaistenonise00sten.pdf


maximum contraction at optimal length (Griffiths, 1991). In
agreement with these observations on non-human mammalian
muscle, in vivo ultrasound measurements performed on the human
gastrocnemius have shown a shortening of muscle fascicles of∼35–
47% during maximum voluntary contractions at optimum ankle
joint angle (Kawakami et al., 1998; Maganaris et al., 1998; Narici
et al., 1996). This substantial shortening of muscle fascicles in vivo
brings about a large increase in pennation angle and a consequent
reduction in the force generated that is transmitted along the tendon
(Alexander, 1998). The shortening of muscle fascicles occurs at the
expense of the in-series tendon, which is stretched during the
contraction. In vivo measurements of gastrocnemius medialis
tendon elongation have indeed shown a significant strain of the
gastrocnemius medialis tendon during an isometric contraction of
the ankle plantarflexors (Maganaris and Paul, 2002). During
maximum isometric contractions in vivo, joint angle, moment
arm, muscle excursion (and thus fascicle length) and tendon
stiffness will dictate the degree of shortening of muscle fascicles and
influence the region over which the L–F relationship of the muscle
is expressed. By combining measurements of maximum isometric
joint moment at different joint angles, Herzog and ter Keurs (1988a)
developed a procedure for identification of L–F relationships in
selective multi-articular human muscles and showed that the L–F
relationship of the whole gastrocnemius medialis muscle–tendon
unit is expressed in vivo over the ascending limb only (Herzog et al.,
1991a). Consistent with this finding at the whole-muscle–tendon

unit level, muscle fascicle lengths measured at rest and during
maximum isometric contraction at different joint angles have shown
that the L–F relationship of the average gastrocnemius medialis
muscle fascicle and sarcomere is expressed below the plateau
region, in the ascending limb only (Maganaris, 2003). However, the
procedure of Herzog and ter Keurs (1988a) showed that the L–F
relationship for the rectus femoris muscle–tendon unit covers a part
of both the ascending and descending limbs (Herzog and ter Keurs,
1988b), whereas measurements of muscle architecture in vivo
during maximum isometric contraction showed that that the L–F
relationship of the soleus and tibialis anterior muscle fascicles and
sarcomeres are extended beyond the ascending limb, into the plateau
region (Maganaris, 2001). Interestingly, the L–F relationship in vivo
may vary not only between different muscles but also for the same
muscle between different subjects (Herzog et al., 1991b; Winter and
Challis, 2010a,b). The exact reasons why certain muscles operate in
the ascending or descending limb of the L–F relationship during
maximum isometric contraction are not known but they seem to be
related to its habitual functional demands (Rassier et al., 1999).

The interaction between muscle fascicle shortening and the
stretching of the tendon upon contraction not only affects the in vivo
L–F relationship during maximum isometric contractions but also
becomes particularly relevant for dynamic submaximal contractions
habitually performed during locomotion. In vivo measurements of
the gastrocnemius medialis tendon and fascicles performed during
the gait cycle in humans show that when the muscle is active during
the single support phase, the gastrocnemius medialis fascicles
operate quasi-isometrically, enabling the tendon to be stretched and
store elastic energy, which is then released during the push-off phase
(Fukunaga et al., 2001). A similar effect has recently been observed
in the soleus muscle (Lai et al., 2015). Quasi-isometricity in leg
muscle behaviour has also previously been reported during
terrestrial locomotion in non-human species (Biewener et al.,
1998; Roberts et al., 1997). The role of leg tendon elastic strain
energy released during the stance phase in reducing the metabolic
cost of locomotion has long been acknowledged (Alexander and
Bennett-Clark, 1977; Alexander et al., 1982; Cavagna et al., 1977).

Fig. 8. Three-dimensional reconstruction of the human
calf muscle. (A) Acquired axial, (B) reformatted coronal
and (C) reformatted sagittal images. (D) Magnified view of
the axial image in A with the manually delineated region
shown in blue. (E) Three-dimensional coronal view with
overlaid fibres. (F) Three-dimensional sagittal view with
overlaid fibres. The region of interest is placed across the
aponeurosis in the tibialis anterior muscle, and the
bipennate structure of the fibres is seen in the three-
dimensional coronal view in E. The colour of the fibres
corresponds to the fractional anisotropy (red shades
indicate higher fractional anisotropy). Numbered regions:
(1) tibialis anterior and (2) aponeurosis. Adapted from
Sinha et al. (2006) and reproduced with the authors'
permission.

Fig. 7. Haxton’s illustration of a pennate muscle. Haxton used this drawing
to explain that the physiological cross-sectional area of amuscle is the sumof a
number of cross-sectional areas sectioning all muscle fibres at right angles
(A–B+C–D+…). Reproduced with permission of the Journal of Physiology,
John Wiley and Son.

280

REVIEW Journal of Experimental Biology (2016) 219, 276-284 doi:10.1242/jeb.128017

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



In terrestrial animals, elastic energy savings of as much as 40–50%
of the total mechanical work can be achieved via the tendon stretch–
recoil behaviour during fast locomotion (Biewener, 1998). In
walking humans, the contribution of elastic strain energy by the
Achilles tendon has been estimated to be much lower, around 6% of
the total external work (Maganaris and Paul, 2002); however, larger
elastic energy contributions are expected in more vigorous
activities, such as running.

Remodellingof skeletalmusclewith chronic overloadingand
unloading
It is well established from studies performed on animals in the 1970s
and 1980s by Goldspink (1985), Williams and Goldspink (1971,
1973) and Tabary et al. (1972) that skeletal muscle displays great
plasticity in response to regimes of overloading and unloading.
These pioneering studies on animals showed that sarcomeres in
series and in parallel can be either added or removed according to
the conditions of chronic loading or unloading. In humans, a
commondisusemodel inwhich a rapid loss of sarcomeres occurs is the
immobilization induced by the use of a plaster cast. Using this model,
Narici and Cerretelli (1998) made the unprecedented observation that
disuse atrophy in humans is accompanied by a decrease in
gastrocnemius medialis muscle fascicle length and pennation angle,
respectively indicative of a loss of sarcomeres in series and in parallel.
A noteworthy finding of considerable clinical interest is that muscle
remodelling with inactivity is an extremely fast process as significant
changes in fascicle length may be detected within the first 2 weeks of
unloading. Indeed, after just 8 days of a 35 day bed-rest period (the
Valdoltra 2007 Bed Rest Study), vastus lateralis fascicle length
measured by ultrasound (repeated measures performed in the same
location and at full knee extension with a day-to-day intra-class
correlation coefficient of 0.91) was found to decrease by 8.6% and
pennation angle by 7.0% (Narici et al., 2008; Fig. 9). Assuming a
human vastus lateralis sarcomere length of 2.7 µm (Walker and
Schrodt, 1974), this equates to a loss of ∼2440 sarcomeres in series
after just 8 days of unloading!
Such a rapid remodelling of muscle architecture in response to

unloading has been shown to be related to the ability of muscle to
sense mechanical signals (change in tension) and convert these
stimuli into biochemical events (mechanotransduction) that
regulate myofibrillar protein synthesis, and possibly assembly of
sarcomeres, thus controlling muscle mass. The regions of skeletal
and cardiac muscle that are specialized in mechanotransduction are
found in the costameres, represented by regular contact points (focal
adhesions) where the extracellular matrix (ECM) comes into contact
with the muscle cytoskeleton. Within focal adhesions are cell-
surface receptors known as integrins. These are trans-sarcolemmar
proteins which connect the ECM to the sarcomere via a chain of
cytoskeletal proteins (Hornberger and Esser, 2004). One integrin-

associated factor that has been shown to be highly sensitive to
changes in mechanical loading (overloading and unloading) is focal
adhesion kinase (FAK). Overloading of avian anterior latissimus
dorsi muscle was found to cause a marked increase in the content
and activity of FAK within 1.5 days of stretch (Flück et al., 1999),
while unloading of the human knee extensors causes a decrease in
FAK content and activity (of 20% and 30%, respectively) after just
10 days of unilateral limb suspension (De Boer et al., 2007b).
Subsequently, Klossner et al. (2009) identified FAK as an upstream
modulator of the mechano-sensory pathway of p70S6K. This
pathway acts in parallel with the Akt–mTor pathway in regulating
protein synthesis. In line with evidence on the role of FAK in the
regulation of protein synthesis, a decrease in FAK content (−20%)
and activity (−30%), associated with a 50% fall in muscle protein
synthesis and a 5% decrease in quadriceps muscle CSA, was found
after just 14 days of unilateral lower limb suspension in healthy
humans (De Boer et al., 2007a,b). Similarly, a fall in FAK and
FRNK (FAK-related regulatory protein) content, correlated with
quadriceps muscle atrophy, has been reported after only 8 days of
bed rest (Li et al., 2013). In animals, this has been shown to relate to
changes in the expression of the costamere component meta-
vinculin, which has been found to affect the fibre phenotype
(Klossner et al., 2013) and which is a marker of disuse in men
(Chopard et al., 2005).

Remodelling of skeletal muscle with ageing
The structural changes of skeletal muscle that occur with ageing are
similar to those observed with inactivity, which undoubtedly plays a
major role in the loss of muscle mass in old age (sarcopenia).
However, the key difference between disuse atrophy and sarcopenia
is that while the former only involves a decrease in fibre size, the
latter entails both a decrease in size and a decrease in the number of
muscle fibres (Narici andMaffulli, 2010). In sarcopenia, as in disuse
atrophy, the decrease in muscle mass is accompanied by a decrease
in fascicle length and pennation angle (Narici et al., 2003), and these
changes in muscle architecture account for about half of the loss in
maximum force and shortening velocity (Narici et al., 2005).
Nonetheless, even in old age, resistance training has been shown to
significantly mitigate/reverse these changes (Morse et al., 2005;
Reeves et al., 2004). One particularly noteworthy observation on the
muscular adaptations to resistive training both in old and in young
individuals recently made by our group (Franchi et al., 2014) is that
the pattern, not the amount, of muscle growth depends on loading
mode. In two separate studies, one in young and one in older men,
we reported that resistive training using either concentric
(shortening) or eccentric (lengthening) contractions, matched for
neural drive, produced a similar increase in muscle volume but
through different architectural adaptations. Whereas concentric
training was found to lead to an increase in pennation angle with
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little change in fascicle length, eccentric training produced
diametrically different results: a large increase in fascicle length
and a smaller increase in pennation angle (Franchi et al., 2014,
2015; Reeves et al., 2009). These findings suggest that the addition
of sarcomeres in a muscle in response to chronic overloading
follows a direction dictated by the contraction mode. Hence,
eccentric training seems to promote muscle growth mainly through
the addition of sarcomeres in series (as inferred from the increase in
fascicle length), while concentric training results in muscle growth
predominantly through the addition of sarcomeres in parallel (as
inferred from the increase in pennation angle, a geometric
consequence of the addition of new contractile tissue along the
tendon aponeurosis) (Kawakami et al., 1993). Fundamentally, the
new concept to the current understanding of muscle hypertrophy is
as follows: the increase in muscle mass in response to chronic
overloading occurs through the addition of sarcomeres both in
parallel and in series; however, the direction of muscle growth – that
is, the differential addition of sarcomeres in parallel and in series –
depends on the mode of muscle contraction (concentric versus
eccentric) (Fig. 10; Franchi et al., 2014).
These observations on the structural remodelling of human

muscle in response to concentric and eccentric loading are supported
by previous animal studies which showed increased longitudinal
muscle growth (i.e. greater addition of sarcomeres in series) after
downhill (eccentric) compared with uphill running (concentric)
exercise in rats (Lynn and Morgan, 1994; Butterfield et al., 2005).
Furthermore, other investigations on animal muscle attempted to
clarify themolecular, metabolic andmyogenicmechanisms thatmay
govern such distinct patterns of muscle remodelling in response to
concentric and eccentric loading. In one of these studies, Wretman
and colleagues showedmarked differences in the phosphorylation of
mitogen-activated protein kinases (MAPKs; i.e. ERK1/2, p38)
betweenmuscle shortening and lengthening actions (Wretman et al.,
2001), highlighting greater MAPK activation in response to stretch
stimuli (Martineau and Gardiner, 2001). Moreover, it has been
shown that concentric and eccentric growth in mice cardiac
myocytes is regulated by different activation of ERK1/2 MAPKs
(Kehat et al., 2011). This contraction-specific MAPK activation has
also been investigated in human muscle, where it appears to be

markedly up-regulated in response to a single eccentric-only bout of
resistance training (Franchi et al., 2014).

Current investigations in our laboratory are focused at
establishing which specific molecular signalling pathways,
activated by these two modes of training, regulate the direction of
muscle growth as it is also known that, acutely, different genes are
expressed by concentric as opposed to eccentric exercise in humans
(Goldspink et al., 2002; Hyldahl et al., 2015; Kostek et al., 2007;
Vissing et al., 2013).

Conclusions
The structural assembly of skeletal muscle, together with muscle
fibre properties, has a major influence on muscle mechanical
behaviour. Early scholars of the 16th and 17th centuries recognized
differences in muscle fibre arrangements and were the first to
describe changes in muscle structure upon contraction. These early
notions of muscle anatomy and architecture led two centuries later
to investigations into the relationship between muscle architecture,
assessed in cadavers, and its functional properties. However, it was
only in the last century that muscle fibre arrangement and sarcomere
structure could be measured in vivo, both at rest and during muscle
contraction, by laser diffraction, optical microendoscopy, MRI
diffusor tensor imaging and ultrasonography. Assessment of tendon
mechanical properties in vivo also became possible through
ultrasound tracking of tendon displacement during muscle
contractions. Integration of this information with data on muscle
fibre morphological and contractile properties has enabled current
investigators to provide unprecedented knowledge on the modus
operandi of various muscles in vivo with respect to their sarcomere
length–tension relationship and the relevance thereof for locomotor
performance.

New insights into the structural assembly of muscle fibres with
growth, exercise, inactivity and ageing have been obtained through
the use of ultrasonography. These observations provide evidence of
the great plasticity of skeletal muscle in response to use, disuse and
ageing, and biochemical analyses on muscle biopsies obtained in
these conditions are revealing the molecular mechanisms regulating
skeletal muscle remodelling, and how these differ between
contraction mode. This information is of considerable clinical
interest as understanding of the mechanisms of skeletal muscle
remodelling, and of its functional consequences, is fundamental for
the development of innovative clinical approaches to common
neuromuscular, orthopaedic and age-related conditions.
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