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Abstract

Costameres are mechano-sensory sites of focal adhesion in the sarcolemma that provide a structural anchor for

myofibrils. Their turnover is regulated by integrin-associated focal adhesion kinase (FAK). We hypothesized that

changes in content of costamere components (beta 1 integrin, FAK, meta-vinculin, gamma-vinculin) with

increased and reduced loading of human anti-gravity muscle would: (i) relate to changes in muscle size and

molecular parameters of muscle size regulation [p70S6K, myosin heavy chain (MHC)1 and MHCIIA];

(ii) correspond to adjustments in activity and expression of FAK, and its negative regulator, FRNK; and

(iii) reflect the temporal response to reduced and increased loading. Unloading induced a progressive decline in

thickness of human vastus lateralis muscle after 8 and 34 days of bedrest (�4% and �14%, respectively; n = 9),

contrasting the increase in muscle thickness after 10 and 27 days of resistance training (+5% and +13%; n = 6).

Changes in muscle thickness were correlated with changes in cross-sectional area of type I muscle fibers

(r = 0.66) and beta 1 integrin content (r = 0.76) at the mid-point of altered loading. Changes in meta-vinculin

and FAK-pY397 content were correlated (r = 0.85) and differed, together with the changes of beta 1 integrin,

MHCI, MHCII and p70S6K, between the mid- and end-point of resistance training. By contrast, costamere

protein level changes did not differ between time points of bedrest. The findings emphasize the role of FAK-

regulated costamere turnover in the load-dependent addition and removal of myofibrils, and argue for two

phases of muscle remodeling with resistance training, which do not manifest at the macroscopic level.
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Introduction

Skeletal muscle size shows a pronounced mechano-depen-

dence, notably increasing in size with chronic overloading

and decreasing in size with chronic unloading, as for exam-

ple during experimental bedrest (Loughna et al. 1986).

Changes in mean muscle cross-sectional area (CSA) and fas-

cicle pennation angle can be observed within a few days of

altered loading in humans (Narici & Maganaris, 2007;

Hackney & Ploutz-Snyder, 2012). For instance, atrophy is

detectable as early as after 7 days of bedrest (Ferrando

et al. 1995) in anti-gravity muscle m. vastus lateralis, and

aggravates progressively with prolonged unloading until 6

months (Bloomfield, 1997; Hackney & Ploutz-Snyder, 2012).

Similarly hypertrophy of m. vastus lateralis can be detected

after as few as 10 sessions of eccentric-type resistance exer-

cise in 3 weeks, further increasing with the progression of

the training period (Seynnes et al. 2007).

Changes in muscle size are largely driven by modified

content of myofibrils, which involves adaptations of both

slow- and fast-type fibers (Fry, 2004; Borina et al. 2010).

With unloading, atrophy is observed for both slow type I,

and fast type IIA and IIX muscle fibers (Bloomfield, 1997;

Fitts et al. 2001; Hackney & Ploutz-Snyder, 2012). Based on

changes in myosin heavy chain (MHC) expression with pro-

longed unloading, there may also be a conversion of slow-
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into fast-type muscle fibers, leading to a relative increase in

fast- over slow-type MHC content (Bloomfield, 1997;

Hackney & Ploutz-Snyder, 2012). An increase in nitrogen

excretion suggests that altered myofibrillar makeup contrib-

utes to the observed muscle atrophy after 7 days of unload-

ing in humans (Bloomfield, 1997). More recently, the use of

stable isotopes has enabled to show a 50% reduction in

myofibrillar protein synthesis within 10 days of lower limb

unloading in humans (de Boer et al. 2007a,b). Conversely,

an increase in myofibrillar synthesis rate implicates the con-

tribution of increased MHC synthesis to the elevated CSA of

both slow- and fast-type muscle fibers after resistance-type

exercise (Williamson et al. 2001; Fry, 2004; Wilkinson et al.

2008). Despite its apparent importance (Adams et al. 2003;

Chopard et al. 2009), the question arises of how such myo-

fibrillar alterations are integrated between the molecular

and the architectural level in muscle fibers that undergo

adaptive changes.

Sites of focal adhesion in the sarcolemma (costameres)

are critical for the attachment of myofibrils to the fiber

periphery (Ervasti, 2003; Grounds et al. 2005). They assem-

ble through the binding of cytoskeletal and signaling mole-

cules to the intracellular inside of integrin-type and/or

dystrophin/sarcoglycan-type extracellular matrix receptors

(Miyamoto et al. 1995; Ervasti, 2003; Grounds et al. 2005;

Trimarchi et al. 2006). Thereby costameres provide an

anchor for the intermediate filaments that hold sarcomeres

in register and establish a physical link between neighbor-

ing muscle fibers via the interstitium (Pardo et al. 1983; Erv-

asti, 2003; Grounds et al. 2005; Ramaswamy et al. 2011).

Assembly of new costameres is essential for myofibrillogen-

esis in culture by providing a platform for the attachment

of myofibril/myosins (Quach & Rando, 2006). The associa-

tion between costameres and myofibrils is of great interest

given that mechanical factors exert important control over

the expression of costamere components and fiber size in

anti-gravity muscle (Fluck et al. 1999; Gordon et al. 2001;

Chopard et al. 2002, 2005; Anastasi et al. 2008). For exam-

ple, expression of the costamere components gamma- and

meta-vinculin, talin and b1-integrin is compromised with

prolonged muscle unloading and muscle inactivity when

muscle sarcomeres are lost (Chopard et al. 2002, 2005;

Anastasi et al. 2008). By contrast, concomitant resistance-

type exercise prevents alterations in costamere components

in unloaded muscle (Chopard et al. 2005). Interestingly,

costamere component expression also varies between fiber

types (Shear & Bloch, 1985; Bozyczko et al. 1989; Schr€oder

et al. 1997; Williams et al. 2000; Fluck et al. 2002; Thoss

et al. 2013). Owing to their role in myofibril attachment,

the mechano-regulation of costamere components is sug-

gested to reflect active phases of muscle remodeling and

fiber-type transformation with altered loading.

The integrin-associated focal adhesion kinase (FAK) is

instrumental for costamerogenesis in culture (Quach &

Rando, 2006). Overexpression of FRNK, which competes

with FAK for binding to focal adhesions, implies that this

involves the control over focal adhesion turnover via the

interaction between focal adhesion components (Ilic et al.

1995; Schlaepfer et al. 2004). Phosphorylation of FAK at

tyrosine residue 397 is an important control point of this

regulation. It alters the capacity of FAK to interact with

binding partners such as the tyrosine kinase c-src, enabling

FAK to develop its full catalytic activity, phosphorylate aux-

iliary sites and enter interactions with further binding part-

ners (Schlaepfer et al. 1999) that mediate the clustering of

cytoskeletal and signaling proteins to integrins (Miyamoto

et al. 1995). A number of observations highlight that both

phosphorylation of Y397 and auxiliary sites, as well as the

content of FAK, is load-regulated (Li et al. 1997; Aikawa

et al. 2002; Torsoni et al. 2003; Lal et al. 2007). For

instance, FAK-pY397 content is increased in relation to

enhanced FAK protein content after the first day of chronic

overload in rat soleus muscle (Fluck et al. 1999; Gordon

et al. 2001; Durieux et al. 2009). Conversely, muscle unload-

ing downregulates FAK tyrosine phosphorylation within 7

days in rat and human skeletal muscle, and this is con-

founded by an upregulation of FAK protein content in rat

muscle (Gordon et al. 2001; de Boer et al. 2007b). Likewise,

components of the dystrophyin/sarcoglycan-type recep-

tor demonstrate mechano-regulated expression and are

involved in mechanical signal transduction in skeletal

muscle (Barton, 2006; Chopard et al. 2005). Increased FAK

amount in rodent skeletal muscle appears also to promote

the load-regulated activation of the serine/threonine kinase

p70S6K (the positive regulator of protein synthesis), which

is robustly associated with increased protein synthesis and

hypertrophy with muscle overload (Baar & Esser, 1999; Ter-

zis et al. 2008; Wilkinson et al. 2008; Klossner et al. 2009;

Carter & Flueck, 2012).

We reasoned that loading-dependent plasticity of muscle

size is integrated through costamere turnover via a load-

regulated process that involves level alterations of FAK and

FAK-pY397 concentration. The functional implication of

FAK in the hypothesized mechano-regulation of costamere

remodeling was studied by quantifying the concentration

of the focal adhesion components, meta- and gamma-

vinculin, beta 1 integrin and p70S6K in relation to concen-

tration changes in FAK, FAK-pY397 and its inhibitor FRNK

during increased loading and unloading of human vastus

lateralis muscle. We thus hypothesized that the changes in

costamere components through the course of increased

muscle loading with eccentric-type resistance training and

unloading by bedrest would be inter-related with FAK-

pY397. As costameres are connected to the cytoskeletal ele-

ments that hold sarcomeres in register, we expected that

costamere protein levels exist in a constant proportion to

muscle size (muscle thickness or CSA), except during phases

of muscle remodeling characterized by the formation or

removal of myofibrils (i.e. fiber transformation and atro-

phy). This was tested by comparing the changes in muscle

© 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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size with those of costamere protein levels during the

course of altered loading of m. vastus lateralis in humans.

Time points for the sampling of bioptic material were

selected on the basis of documented anatomical changes

with the two loading interventions (Ferrando et al. 1995;

de Boer et al. 2007a; Seynnes et al. 2007).

Materials and methods

Experimental design

Anti-gravitational muscle (m. vastus lateralis) of untrained human

subjects was subjected either to unloading by bedrest (experimen-

tal Group 1) or to overloading by resistance training (experimental

Group 2). In both groups, anatomical measures were taken to esti-

mate muscle size and muscle fiber CSA, and a muscle sample was

collected to determine the content of costameric proteins (FAK,

FRNK, beta 1 integrin, meta-vinculin, gamma-vinculin) and the

phosphorylation status of FAK at pY397, and where appropriate

the content of p70S6K. All subjects gave their written informed

consent to participation in the study, which had been approved by

the Ethical Committee of the University of Primorska for subjects

of Group 1 and by the local Ethics Committee of Manchester

Metropolitan University for subjects of Group 2. Muscle tissue was

collected and stored under the United Kingdom’s Human Tissue

Act.

Bedrest (Group 1)

These experiments were carried out in the Orthopedska Bolnica

Hospital in Valdoltra, Ankaran (Slovenia) under medical supervision.

Nine healthy Caucasian young men (age: 24.3� 2.6 years; stature:

179.7� 8.0 cm; body mass: 76.4� 10.4 kg) from the Slovenia area

were recruited for this study via advertisement in a student job por-

tal and via word of mouth. Muscle thickness was determined after

the 8th and 34th day of bedrest (see ‘Muscle anatomy’ below). On

this occasion a muscle biopsy sample was collected with a concho-

tome under local anesthesia from the belly portion of the vastus lat-

eralis muscle (~80–150 mg). Samples were snap-frozen in liquid

nitrogen and stored until use at �80 °C.

Resistance training (Group 2)

Six healthy Caucasian men (age: 22.3� 1.5 years; stature: 175.2�
3.4 cm; body mass 71.0� 4.6 kg) from the student population of

Manchester Metropolitan University participated in this study. Uni-

lateral leg extension was performed three times per week for 9

weeks on a flywheel ergometer (YoYo Technology, Sweden;

Seynnes et al. 2007). In brief, resistance is produced from the inertia

of the flywheel during both concentric and eccentric contraction

phases, by virtue of the unwinding/rewinding of a strap connecting

the flywheel to the lever arm. Each session consisted of one set of

seven submaximal leg extensions as a warm-up, and was proceeded

by four sets of 10 maximal coupled concentric and eccentric con-

tractions, with 2-min rest periods between sets. Subjects were tested

for vastus lateralis muscle thickness and quadriceps femoris CSA on

three occasions (see ‘Muscle anatomy’ below): at baseline, 4 weeks

before the first training session (pre-training); after the 10th train-

ing session (mid-training); and after the 27th training session (post-

training). Bioptic samples were collected pre-training, mid- and

post-training from lignocaine-anesthetized vastus lateralis muscle.

For the training samples the interval between the preceding exer-

cise bout and muscle sampling was 4–6 h.

Muscle anatomy – Group 1

Muscle thickness was measured by using B-mode ultrasound scan-

ning (Mylab 25, 13–4 MHz, linear array transducer probe LA523;

Esaote Biomedica, Geneva, Italy). Scans were performed at mid-

muscle length along the mid-sagittal axis of the vastus lateralis, per-

pendicular to the lower aponeurosis plane. Thickness was defined

as the average of three equidistant measurements along the scan

width, between the superficial and deep aponeuroses of the mus-

cle. The consistency of ultrasound scanning between the testing ses-

sions was ensured by recording the location and orientation of the

transducer on transparent acetate paper.

Group 2

The methods for assessing maximum anatomical CSA of the vastus

lateralis muscle have been described in detail elsewhere (Erskine

et al. 2009). Briefly, the upper leg was scanned using a 0.2-T mag-

netic resonance imaging scanner (G-Scan, Esaote Biomedica, Genoa,

Italy), adhering to a Turbo 3D T1-weighted sequence with the fol-

lowing scanning parameters: time of repetition 40 ms; time to echo

16 ms; matrix 256 9 256; field of view 180 mm9 180 mm; slice

thickness 2.8 mm; interslice gap 0 mm. Contiguous axial slices were

taken from the tibiofemoral joint to the iliac crest perpendicular to

the femur, with the participant in the supine position. From the

contiguous slices, the maximal anatomical CSA of the vastus lateralis

muscle was identified and manually outlined (Osirix 2.7.5, Osirix

Foundation, Geneva, Switzerland). Muscle thickness was quantified

by ultrasound with the same approach used for Group 1.

CSA of muscle fibers

Twelve-micrometer cryosections were prepared from muscle biop-

sies and subjected to fiber typing using mouse anti-type II MHC

and Alexa Fluor 555-coupled secondary anti-mouse antibody

(DAKO) essentially as described (Fluck et al. 1999; Gordon et al.

2001; Durieux et al. 2009; Klossner et al. 2009). The fluorescent

signal was digitally recorded from different microscopic fields with

standardized settings using a TCS SP5 confocal microscope (109

objective and 49 zoom; Leica Microsystem CMS, Milton Keynes,

UK). Image files were exported and the CSA of stained (type II)

and non-stained (type I) fibers in a given microscopic field was

quantified using image J 1.6.0_33 J (http://imagej.nih.gov/ij).

Numerical values for the same fiber type from the different micro-

scopic fields of a muscle cross-section were pooled to calculate for

each muscle biopsy the mean CSA of type II and type I fibers, and

the percentage in muscle area covered by type I fibers (Flueck

et al. 2011). On average, 45 and 84 type I and type II muscle

fibers, respectively, were counted per muscle biopsy (subject). The

mean coefficient of variance for the estimation of CSA per subject

was 4%.

Immunodetection of FAK in sections

Staining of muscle sections for FAK was carried out with

fluorescence essentially as described in Klossner et al. (2009).

© 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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Twelve-micrometer cryosections were freshly prepared from pre-

and post-unloading samples of subjects and assembled onto the

same slides. Sections were left to dry and fixed with 4% paraformal-

dehyde/0.1% Triton X-100 for 30 min, quenched with 3% H2O2 and

blocked in 3% bovine serum albumin (BSA) in phosphate-buffered

saline (PBS). Subsequently, sections were incubated with a 1 : 100

dilution of FAK C-terminal antibody (Fluck et al. 1999; Gordon et al.

2001; Chopard et al. 2002, 2005; Anastasi et al. 2008) and mouse

anti-type I MHC (Durieux et al. 2009) in 3% BSA–PBS overnight at

4 °C, followed by washes in PBS and incubation with a 1 : 400 dilu-

tion of Alexa Fluor 488-coupled secondary anti-rabbit antibody

(DAKO) and Alexa Fluor 555-coupled secondary anti-mouse anti-

body (DAKO). Nuclei were stained using 5-min incubations with

TO-PRO3 (Invitrogen).

Fluorescence and digital phase contrasts were recorded at stan-

dardized settings (109 objective and 49 zoom) using a TCS SP5

confocal microscope (Leica Microsystem CMS, Milton Keynes, UK).

Subsequently, image files were taken from different micro-

scopic fields of a stained muscle section and exported as tiff files.

The signal intensity of FAK at the sarcolemma was inspected and

quantified using image J 1.6.0_33 J (http://imagej.nih.gov/ij).

Fibers were categorized for fiber type and sarcolemmal FAK con-

tent (positive or negative). Fibers were classified as positive when

staining was identified along at least two edges of the generally

squared human muscle fibers, as described elsewhere (Fluck et al.

2002; Evans et al. 2008). The number of fibers in each of the four

categories (i.e. type I-FAK+, type I-FAK�; type II-FAK+, type

II-FAK�) was determined for each muscle from counting of dif-

ferent, non-overlapping microscopic fields. Statistical significance

of changes in the frequency of FAK staining with unloading was

assessed essentially as previously described (Fluck et al. 2003).

First, the frequency of FAK staining at the sarcolemma of all

combined muscle fibers of a given biopsy was assessed for a dif-

ference pre- vs. post-unloading with a Chi2-test (P < 0.05). If statis-

tical significance was reached, the percentage of FAK staining at

the sarcolemma was calculated for type I and type II muscle

fibers, respectively, and each muscle section, and compared for

significance of differences post- vs. pre-unloading with a two-

tailed paired t-test. On average, 23 and 59 type I and type II

muscle fibers, respectively, were counted per muscle biopsy and

subject.

Protein detection

Muscle was cryosectioned at 12 µm, and total homogenate was

prepared in modified RIPA buffer (1% NP-40, 0.25% deoxycho-

late, 50 mM Tris–HCl, pH 7.4, 1 mM EDTA, 150 mM NaCl, 1 mM NaF,

1 mM PMSF, 1 mM sodium orthovanadate, 1 lg mL�1 leupeptin, 2

lg mL�1 pepstatin, 1 lg mL�1 aprotinin; all reagents were

received from Sigma). Protein concentration was quantified with

bicinchoninic acid assay reagents against BSA standard (Pierce).

Twenty micrograms of protein was separated by sodium dodecyl

sulfate (SDS)–polyacrylamide gel electrophoresis, Western blotted

onto nitrocellulose (Schleicher & Schuell). Gel loading was in a

paired design with pre-, mid- and post-intervention samples of

three subjects being applied in adjacent lanes per gel. The mem-

brane was stained with Ponceau S to verify equal loading from

the intensity of detected protein bands, including the major sig-

nal at 40 kDa that corresponds to skeletal alpha actin. Subse-

quently membranes were subjected to immunodetection with

specific antibodies against slow-type MHC, fast-type MHC, FAK,

FRNK, beta-1 integrin, gamma-vinculin, meta-vinculin, p70S6K,

essentially as described (Fluck et al. 1999; Gordon et al. 2001;

Durieux et al. 2009; Klossner et al. 2009). For the detection of

fast-type myosin, the immunoblot was stripped after signal devel-

opment for slow-type myosin by incubating for 30 min at 65 °C in

62.5 mM Tris, pH 6.8, 1% SDS, 0.7% beta-mercaptoethanol) with

occasional shaking followed by extensive rinses in 0.5% Tween-20

in Tris-buffered saline. Content of FAK-pY397 was assessed in

FAK-immunoprecipitates from the supernatant of 1 mg total pro-

tein as described (Klossner et al. 2009). Signal detection was car-

ried out with enhanced chemoluminescence using a Geldoc

system that was operated using Quantity One 1-D analysis soft-

ware 4.6.1 (Bio-Rad Laboratories, Hemel Hempstead, UK). Signal

intensity of the protein bands was determined using the rectangle

density mode and background from an empty sample lane of

equal size was subtracted. Background-corrected data were nor-

malized to the mean values of the pre-samples for the respective

gel; the values therefore reflect relative expression levels per total

muscle protein.

Statistics

Alterations in ‘muscle parameters’ (muscle thickness, CSA, FAK,

FRNK, FAK-pY397, meta-vinculin, gamma-vinculin, p70S6K, MHCI,

MHCIIA) through the ‘time course’ (pre-, mid-, post-) of the partic-

ular ‘loading condition’ (i.e. unloading and overloading) were

assessed with a repeated ANOVA for the repeated factor ‘time

course’ using Statistica 9 (Statsoft, Tulsa, USA). A Wilcoxon test

was used to localize the effect between time points of muscle

unloading/overloading. Effects were called significant at P < 0.05.

Pearson correlations were calculated to identify linear relation-

ships that were deemed biologically significant if r > 0.65 and

P < 0.10.

Results

Changes in muscle thickness and CSA

Table 1a and b, respectively, show the changes in muscle

thickness with unloading by bedrest (Group 1) and over-

loading with eccentric-type of resistance training (Group 2).

Muscle unloading produced a progressive reduction in

thickness of vastus lateralis muscle (Table 1a). This was

reflected by atrophy of type I muscle fibers (Table 2a). A

tendency (P = 0.08 and 0.06 for changes mid- and post-

bedrest, respectively) for a reduction in mean CSA of type II

fibers was also observed (Table 2a).

Muscle overload increased the thickness and maximal

anatomical CSA of vastus lateralis muscle (Table 1b). Neither

the daily nor sessional percentage change in muscle thick-

ness differed between the first and second intervention

phase, either for bedrest (P = 0.58) or resistance training

(P = 0.72). Mean CSA of type I (+34%), but not type II, mus-

cle fibers was increased with resistance training, and this

differed between the first and second phase of training

(Table 2b). The percentage of type I fibers was 40% and

41%, respectively, before bedrest and resistance training,

and this was not affected by the intervention (P > 0.19).

Changes in CSA of type I and type II muscle fibers over all
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interventions were correlated with those of muscle thick-

ness (Fig. 5A). Mid-way into the combined response to

unloading or overloading, only the changes in CSA of type I

fibers were correlated with those of muscle thickness

(Fig. 5B).

Molecular factors of muscle size regulation during

bedrest and resistance training

Molecular parameters of muscle size regulation (p70S6K,

MHCI, MHCIIA) demonstrated an interaction effect between

Table 2 Fiber CSA with altered muscle loading. (a, b) Median and SE of changes in mean CSA of type I and type II muscle fibers in vastus lateralis

and after 8 days (mid-) and 34 days (post-) of bedrest (a; n = 4); and mid- (10 sessions) and post- (27 sessions) resistance-type training (b; n = 5).

(a) Bedrest

Pre- Mid- Post-

CSA (lm2)

Type I 6113 � 734 4515 � 633* 4244 � 884*

Delta (%) �27.1 � 2.0 �29.5 � 8.7

Type II 7245 � 1256 5898 � 1049† 5663 � 1397†

Delta (%) �10.0 � 7.9 �14.8 � 7.5

(b) Resistance training

Pre- Mid- Post-

CSA (lm2)

Type I‡ 4530 � 1151 4690 � 1200† 6058 � 1095*

Delta (%) 8.5 � 2.5 16.1 � 13.1†

Type II 6135 � 1337 6353 � 798 6863 � 744

Delta (%) 3.6 � 8.7 11.9 � 11.1†

*,†P < 0.05 and 0.05 ≤ P < 0.10 vs. pre-intervention levels (Wilcoxon test).
‡Significant effect of ‘time course’ (repeated ANOVA).

CSA, cross-sectional area.

Table 1 Opposite changes in muscle size with increased and reduced muscle loading. (a) Median (minima, maxima) and SE of muscle thickness

(in mm) and percentage changes (mid- vs. pre-; post- vs. mid-) in vastus lateralis after 8 days (mid) and 34 days (post) of muscle unloading by bed-

rest (n = 9). (b) Median and SE of muscle thickness, maximal anatomical CSA and its percentage changes in vastus lateralis after 10 (mid) and 27

(post) sessions of overloading by resistance-type training (n = 6).

(a) Bedrest

Pre- Mid- Post-

Thickness (mm)‡ 22.1 (14.3, 28.6) � 1.8 21.6 (13.2, 27.7) � 1.9* 19.0 (11.0, 26.1) � 1.6*

Delta (%) �2.7 � 0.9 �16.8 � 2.4†

Delta (% per session) �0.34 � 0.11 �0.49 � 0.07

(b) Resistance training

Pre- Mid- Post-

Thickness (mm)‡ 23.1 (17.0, 26.2) � 1.6 24.7 (18.2, 26.3) � 1.5 24.9 (19.4, 29.4) � 1.6*

Delta (%) 3.7 � 2.2 13.6 � 2.7

Delta (% per session) 0.37 � 0.22 0.51 � 0.10

Maximal CSA 27.7 (18.5, 35.3) � 2.4 27.3 (20.9, 35.1) � 2.2 30.2 (21.9, 38.6) � 2.6*

Delta (%) 4.8 � 2.6 5.5 � 2.1

*,†P < 0.05 vs. pre-intervention levels and the ‘mid- vs. pre-’ comparison (Wilcoxon test).
‡Significant effect of ‘time course’ (repeated ANOVA).

CSA, cross-sectional area.
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the ‘time point’ 9 ‘loading condition’ (P = 0.04). Bedrest did

not modify the content of MHCI or MHCII, or p70S6K

(Fig. 1a,b,e). The content of the slow MHC, MHC I,

increased at the mid-point of resistance training, and

p70S6K protein was reduced in the end- vs. the mid-point

of training (Fig. 1c,d,f).

Costameric protein expression with altered muscle

loading

There was an interaction effect between the ‘time point’

9 ‘loading condition’ for the two parameters associated

with costameres, FAK-pY397 and meta-vinculin. Levels of

both parameters were not altered in response to bedrest

(Fig. 2). With muscle overload a biphasic response of both

FAK-pY397 and meta-vinculin, and gamma-vinculin content

was evident; all increasing between the mid- and end-point

of resistance training (Fig. 3b,c,e,f). Changes in meta-vincu-

lin and FAK-pY397 content were correlated over all sam-

pled data points (r = 0.80), and this was pronounced when

only changes at the end of the intervention were compared

(r = 0.85). Muscle overload also increased beta 1 integrin

mid- but not at the end of resistance training (Fig. 3d,f).

Levels of FAK and its inhibitor, FRNK, per total protein

were not altered by muscle overload, but the content of

both was reduced at the mid- and end-point of the unload-

ing protocol (Fig. 2a,e). Microscopic examination visualized

staining of FAK at the sarcolemma and locations in the

sarcoplasma (Fig. 4). Sarcolemmal FAK immunoreactivity

was significantly reduced after bedrest in type II muscle

fibers (Fig. 4d).

Associations between muscular changes with altered

loading

A number of linear relationships were identified between

alterations in costamere protein content and muscle

structure in the mid-point of atrophy and hypertrophy

(Fig. 5B). This concerned correlations between percentage

changes in beta 1 integrin content and muscle thickness (r

= 0.76). Similarly, changes in FAK-pY397, meta-vinculin and

b1 integrin content were correlated to changes in CSA of

type I fibers after resistance training (r > 0.65). The changes

in percentage of muscle area covered by type I fibers were

positively correlated to changes in the costamere compo-

nents gamma-vinculin, b1 integrin and type IIA MHC mid-

way into altered loading, i.e. r = 0.66, 0.65 and 0.96, respec-

tively. Conversely, changes in FAK-pY397 content mid-way

into altered loading were negatively correlated to those of

MHCI content (r = �0.67).

Discussion

Skeletal muscle mass is highly sensitive to alterations in

mechanical loading (Flueck & Goldspink, 2010). A number

of signaling factors/pathways, i.e. IGF-AKT-mTOR-p70S6K,

(a)

(b)

(c) (d)

(e)

(f)

Fig. 1 Level alteration of factors related to

muscle size with modified muscle loading.

(a–d) Representative detection of p70S6K

(a, c), and MHCI and MHCII (b, d) in Western

blots of 20 µg total protein in muscle

homogenate during the course of unloading

(a, b) or overload (c, d). (e, f) Median and SE

of changes in p70S6K, MHCI and MHCII

protein levels per total protein during the

time course of bedrest (b; n = 9) and

resistance training (d; n = 6). * and + denote

P < 0.05 and 0.05 ≤ P < 0.10 for the indicated

comparison (Wilcoxon test). MHC, myosin

heavy chain.
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(a)

(b)

(c)

(d)

(e)
(f)

Fig. 2 Alterations in FAK in human vastus

lateralis muscle with unloading. (a, d)

Representative detection of FAK and FRNK

(a), vinculin isoforms (c) and beta 1 integrin

(d) in Western blots of 20 µg total protein,

and pY397 phosphorylated FAK in

immunoprecipitates from 1 mg soluble

protein (b) of vastus lateralis muscle prior,

mid- and post-bedrest. At the bottom of each

panel, the respective loading control (i.e.

sarcomeric actin or IgG on the Ponceau S

stained membrane) is shown. (e, f) Median

and SE of percentage changes in the content

of FAK-related regulatory (e) and structural

costamere proteins (f) per muscle protein

during the time course of bedrest (n = 9). +

and * denote 0.05 ≤ P < 0.10 and P < 0.05 vs.

pre-intervention levels (Wilcoxon test). FAK,

focal adhesion kinase.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3 Alterations in FAK in vastus lateralis

muscle with increased loading. (a–d)

Representative detection of FAK and FRNK

(a), vinculin isoforms (c) and beta 1 integrin

(d), and FAK-pY397 (b) in vastus lateralis

muscle prior, mid- and post-resistance

training. Respective loading controls are

shown at the bottom of each panel. (e, f)

Median and SE of changes in the content of

FAK-related regulatory (e) and structural

costamere proteins (f) per muscle protein

during the time course of resistance training

(n = 6). + and * denote 0.05 ≤ P < 0.10 and

P < 0.05 vs. pre-intervention levels (Wilcoxon

test). † and †† denote 0.05 ≤ P < 0.10 and

P < 0.05, respectively, between fold changes

mid- vs. post-intervention (Wilcoxon test).

FAK, focal adhesion kinase.
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FOXO, NF-KB, are implicated in the control of muscle anab-

olism and catabolism (Wilkinson et al. 2008; McCarthy &

Esser, 2010; Schiaffino & Mammucari, 2011), whereby

p70S6K is a robust predictor for skeletal muscle growth

(Baar & Esser, 1999; Terzis et al. 2008). The anatomical basis

for load-dependent signal regulation of muscle hypertro-

phy and atrophy is currently poorly understood despite the

widespread view that this issue is considered of great

(a)

(b)

(c)

(d)

(e)

Fig. 4 Localization of FAK to the sarcolemma. (a, b) Example of a FAK-stained (red) section of vastus lateralis muscle in a subject before (a) and

after (b) bedrest. Scale bar: 100 µm. (c, d) Enlarged images visualizing FAK signal (red) and type I MHC-stained muscle fibers (blue) pre- (c) and

post-unloading in vastus lateralis muscle of the same subject (d). The frames in (a) and (b) indicate the region enlarged in (c) and (d), respectively.

I, and II indicate examples of type I and type II muscle fibers. + and � denote examples of FAK-positive and negative muscle fibers. Examples of

FAK-positive staining are indicated with white arrows. Nuclei appear in yellow. (e) Bar graph showing median + SE of unloading-induced changes

in the percentage of type I, and type II, muscle fibers showing FAK-immunoreactivity. One-thousand and thirty fibers from four subjects were

counted. * denotes P < 0.05 post- vs. pre-bedrest levels (paired t-test).

(a) (b) (c) (d)

Fig. 5 Inter-relationship between muscular

changes with altered loading. (a–c)

Correlation matrix of changes in assessed

parameters in a given phase, i.e. ‘mid- vs.

pre-’ (a), ‘post- vs. pre-’ and ‘mid- vs. post-’

combined (b) and ‘post- vs. pre-’ (c) for the

combined interventions. (d) r-values are given

by color-coding, with those below 0.65 being

blinded.
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importance (Adams et al. 2003; Chopard et al. 2009). Costa-

meres, which reinforce the muscle fiber–extracellular matrix

composite (Gullberg et al. 1998; Huijing, 1999), are prime

candidates for the organization of muscle signaling as they

represent sites where the mechanical stress of force trans-

mission is integrated into signaling (Ervasti, 2003; Grounds

et al. 2005). In order to address the role of costameres in

the regulation of muscle size by mechanical loading, we

assessed the association of level changes in the costamere’s

components and its upstream regulator, FAK, with changes

in muscle thickness and CSA following bedrest and resis-

tance training.

The present findings imply that the response to our resis-

tance training paradigm involves an early and preferential

hypertrophy of type I fibers. This is indicated by the ten-

dency for an increase in the CSA of type I muscle fibers after

just 10 training sessions (3 weeks) concomitantly with the

selective increase in content of MHCI at this mid-point

of resistance training (Fig. 1f; Table 2b). With completion

of the second phase of training, when training-induced

increases in CSA of type II fibers were larger than in the first

phase of training, changes in MHCI protein content fell to

pre-training levels (compare Fig. 1f with Table 2b). Myofi-

brils form the larger part of muscle material (Luthi et al.

1986). It follows that the absence of significant changes in

MHCI content per total protein in the second phase of

hypertrophy with resistance-type training reflects an

increased incorporation of slow-type myofibrils being offset

by elevations in CSA of type II myofibrils. This view is in line

with slightly higher values of correlation between changes

in muscle thickness and CSA of type I fibers compared with

those of type II fibers. It remains to be assessed to what

extent this difference in type I and type II fiber hypertrophy

reflects the earlier time point of our study compared with

other investigations (Williamson et al. 2001; West et al.

2010) and/or the contribution of slow concentric- and

eccentric-type contractions in the employed training para-

digm (Seynnes et al. 2007).

In line with our expectations, changes in the costamere

regulator, FAK (Quach & Rando, 2006), were found to differ

between bedrest and resistance-type training (Figs 2e and

3e). The downregulation of FAK protein levels with unload-

ing, which was reflected by reduced FAK C-terminal immu-

noreactivity at the sarcolemma (Fig. 4D), reproduces our

previous observations of load-regulated FAK expression and

recruitment-related FAK staining at the sarcolemma

(Gordon et al. 2001; Fluck et al. 2002; de Boer et al. 2007b;

Evans et al. 2008). It is in line with previous findings regard-

ing the non-significant reduction in total FAK content with

10 days of unilateral limb suspension (de Boer et al. 2007b).

Interestingly, changes in the proxy of focal adhesion turn-

over in culture, i.e. FAK-pY397 content (Dumbauld et al.

2010), over all data points and at the end of resistance

training correlated with changes in meta-vinculin (r = 0.80;

0.85), and both parameters demonstrated regulation with

resistance training (Fig. 3e,f). These findings highlight the

implication of modified fiber adhesion in muscle remodel-

ing with altered loading in men, and point to a previously

unrecognized implication of reduced content of the FAK

inhibitor, FRNK, to this process (Fig. 2e). Specifically, the

observations suggest a reduced capacity for FAK-mediated

costamere assembly during bedrest.

Because myofibrillar mass largely contributes to total pro-

tein that serves as a reference for the estimation of total

protein content, the increase in myofibrils with hypertrophy

may camouflage (or dilute) any effect of resistance training

on the amount of FAK. In this regard it is helpful to con-

sider the geometric effects of atrophy and hypertrophy on

the concentration of costameric proteins. As costameres

reside at the fiber surface they scale to the fiber radius (i.e.

2pr). By contrast, fiber volume that is the reference for total

protein content is related to the square of the radius (i.e.

pr2). As a consequence, changes in fiber radius are expected

to result in concentration changes of costameric protein per

total protein that are inversely related to the change in

fiber radius. Assuming that the expression of costamere

components is not affected, the latter relationship is

expected to result in negative correlations between individ-

ual changes in costamere proteins and in muscle (fiber) vol-

ume. This is in agreement with our finding of a close

correlation (r =�0.86) between the changes in vastus later-

alis thickness and meta-vinculin content mid-way into bed-

rest. As a consequence, the absence of a significant increase

in the concentration of structural components of costa-

meres with bedrest may indicate that their expression is

affected, yet this does not manifest at the level of content

vs. total protein. Conversely, hypertrophy induced by resis-

tance training could have been expected to result in a

reduction of the concentration of costameric proteins. How-

ever, we detected an increase, which further emphasizes

that expressional adjustments of costameres are load-

dependent.

The observed regulation of costamere components is of

interest when put in the context of time course of changes

in muscle (fiber) CSA with reduced and increased muscle

loading. This comparison demonstrates that adjustments in

the level of costamere components differ between the mid-

and end-point of resistance training, and are matched to

changes in muscle anatomy. These bi-phasic alterations in

the costameric proteins, beta 1 integrin, gamma-vinculin

and meta-vinculin, and the myofibrillar protein MHCI

(Figs 1f 3f), are of significance given the concomitant (and

larger) increase in muscle thickness and CSA of type I muscle

fibers in the second phase of resistance training (Table 2).

Thus, the observed changes in costamere component con-

tent and micro- and macroscopic estimates of hypertrophy

were specifically inter-related during the first phase of resis-

tance training. For instance, the changes in meta-vinculin,

b1 integrin and FAK-pY397 content were correlated with

changes in mean CSA of type I fibers with resistance
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training (r > 0.65). We also noticed correlations between

the changes in the costamere component meta-vinculin and

changes in muscle thickness mid-way into resistance train-

ing (r = 0.79) and FAK with CSA post-resistance training

(data not shown). In addition, beta 1 integrin and muscle

thickness were correlated up to the mid-phase, but not the

end, of the combined response to overload and unloading

(r-value of 0.76 vs. 0.09). These differences emphasize that

the upregulation of vinculin isoforms and of beta 1 integrin

is associated with a marked hypertrophic response after the

10th vs. 27th session of resistance exercise. The latter find-

ing relates to the reported dependence of fiber growth in

culture on costamere-mediated attachment of nascent myo-

fibrils (Quach & Rando, 2006; Konieczny et al. 2008). Taken

together, these observations indicate that a possible struc-

tural reinforcement of costameres in the late phase of mus-

cle hypertrophy contributes to the attachment of newly

synthesized myofibrils after the integrin anchor is laid

down.

The observation of an altered modality of muscle size reg-

ulation at the two time points of resistance training is sup-

ported by the reduced level of the serine/threonine kinase

p70S6K in the second phase of training (Fig. 1c,d). It has

been shown that post-translational activation of p70S6K is

enhanced after different types of training in both the

trained and untrained state (Wilkinson et al. 2008), and is

positively correlated with the degree of hypertrophy with

resistance training (Terzis et al. 2008). Interestingly, changes

in p70S6K content correlated negatively with changes in

CSA of type II fibers after altered loading (r =�0.68; Fig. 5),

and changes in muscle thickness after resistance training

(r =�0.78) and after bedrest (r = �0.68). To our understand-

ing it is currently unknown whether signaling is maintained

through the prolonged response to altered muscle loading.

Our data now suggest that expressional regulation of

p70S6K and costameres may contribute to muscle protein

accretion during resistance training in men (Coffey et al.

2006).

It has been previously suggested that maintenance of

nitric oxide signaling mechanisms and changes in protein

turnover can be regarded as biomarkers for human skeletal

muscle atrophy with long-term bedrest (Salanova et al.

2008). We show here that changes in costamere-associated

muscle parameters, meta-vinculin, FAK-pY397 and MHCI,

serve as indicators of muscle remodeling with altered load-

ing in vastus lateralis muscle. This finding relates to the fiber

type-specific localization of FAK and meta-vinculin to the

sarcolemma (Fluck et al. 2002; Thoss et al. 2013). The obser-

vation is of interest, as one isoform of NO synthase as well is

associated with costameres (Baum et al. 2000). Thus, our

findings reinforce the notion that costamere components

can serve as markers of load-dependent muscle remodeling.

A limitation of our study was that we did not quantify

the localization of FAK at the sarcolemma as a function of

muscle overload. This was due to an insufficient amount of

high-quality bioptic sample to perform this characterization

post-hoc. Also, we acknowledge that we did not assess an

extensive list of costamere proteins for level alterations with

increased and reduced muscle loading. Despite these con-

straints, we believe our findings provide novel information

on the load-regulated content of structural (i.e. beta 1 inte-

grin, vinculin and meta-vinculin) and regulatory factors of

costameres in human subjects in relation to changes of mus-

cle micro- and macro-structure.

Conclusion

Our observations point to a novel role for the organization

of fiber adhesion in the mechano-regulation of muscle size

in men. Notably, two phases of costamere remodeling with

resistance training can be distinguished by the expression

of the integrin anchor and vinculin isoforms, and CSA of

muscle fibers, but not at the macroscopic level by muscle

thickness.
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