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Abstract 8 

Alternative approaches have been promoted to reduce the number of vertebrate and invertebrate animals 9 

required for assessment of the potential of compounds to cause harm to the aquatic environment. A key 10 

philosophy in the development of alternatives is greater understanding of the relevant adverse outcome 11 

pathway (AOP). One alternative method is the fish embryo toxicity (FET) assay. Although the trends 12 

in potency have been shown to be equivalent in embryo and adult assays, a detailed mechanistic analysis 13 

of the toxicity data has yet to be performed; such analysis is vital for a full understanding of the AOP. 14 

The research presented herein used an updated implementation of the Verhaar scheme to categorise 15 

compounds into AOP informed categories. These were then used in mechanistic (Quantitative) 16 

Structure-Activity Relationship ((Q)SAR) analysis  to show that the descriptors governing the distinct 17 

mechanisms of acute fish toxicity) are capable of modelling data from the FET assay. The results show 18 

that compounds do appear to exhibit the same mechanisms of toxicity across life stages. Thus this 19 

mechanistic analysis supports the argument that the FET assay is a suitable alternative testing strategy 20 

for the specified mechanisms, and that understanding the AOPs is useful for toxicity prediction across 21 

test systems.   22 

1. Introduction 23 

The acute aquatic toxicity assessment of chemicals has traditionally been performed on species 24 

representing various trophic levels e.g. algae, invertebrates, and juvenile and adult fish from species 25 

such as the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss) and Japanese 26 

medaka (Oryzias latipes) amongst others. However, legislative mandates such as the Registration, 27 

Evaluation, Authorisation, and restriction of Chemicals (REACH) regulation in the European Union 28 

have required alternative, non-animal, models to be sought as a replacement for the expensive, time-29 

consuming and ethically questionable in vivo assessment methods. One such alternative assay is the fish 30 

embryo toxicity (FET) test1. The FET has a standardised OECD test guideline (number 2362) for the 31 

96hr assay performed with zebrafish (Danio rerio) embryos and, although not explicitly stated in the 32 

guideline, can be considered as a suitable assessment method, on its own or as part of a strategy, for 33 
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assessing acute aquatic toxicity. For instance, reasonable correlations (r>0.85) have been observed 34 

between the 50% effect concentrations (EC50) measured in the FET and the 50% lethality concentrations 35 

(LC50) measured in fish 3-6; although a small number of notable mechanisms are poorly predicted in 36 

FET (e.g. neurotoxic compounds which require behavioural analysis of the embryos for toxicity to be 37 

observed 6, 7). 38 

One of the key philosophies behind the research into alternative methods to animal testing is that of 39 

understanding mode of action. Recently, the assessment of modes of action has been incorporated into 40 

adverse outcome pathways (AOPs)8. AOPs define a series of key events (KE), and their relationships 41 

(key event relationships (KERs)) from an initial exposure, resulting in a molecular initiating event 42 

(MIE), through to inducing the adverse outcome (AO)9. The MIE may be described in terms of the 43 

chemically defining features of a molecule that control the interaction with the biological 44 

macromolecule10, whereas the MIE combined with the required KEs for an AO encompass the 45 

biological mode of action8. Understanding the AOP can thus aid in the elucidation of the similarities 46 

and differences in the mode of action between species by identifying key uncertainties, and 47 

corresponding research gaps, in the biological mechanisms of toxicity11. The rationale for the chemical 48 

induction of an MIE is a key aspect of understanding the AOP.  49 

The modes of action for acute aquatic toxicity have been established through studies on fish behaviour 50 

and physiology 12, 13, as well as mechanistic structure-activity relationship (SAR) analysis on the 51 

resultant data14, and more recently on detailed systems biology studies on species from lower taxa such 52 

as Daphnia magna15. Fish Acute Toxicity Syndromes (FATS) were derived from measurements of 53 

physiological, biochemical and analytical effects separated into discrete mechanisms, or modes, of 54 

action12. Building on such knowledge, Verhaar et al16 used fish acute toxicity data to identify clear 55 

structural rules associated with a variety of modes or mechanisms of action. The Verhaar scheme utilises 56 

2D chemical structure to classify potential environmental pollutants into one of four categories 57 

representing one, or more, mechanisms of action: class 1 (narcosis or baseline toxicity), class 2 (less 58 

inert compounds), class 3 (unspecific reactivity) and class 4 (compounds and groups of compounds 59 

acting by a specific mechanism). In addition, Russom et al13 used structural classes to assign 60 

mechanisms of action to a range of compounds tested on the fathead minnow (Pimephales promelas). 61 

This grouping of compounds allows for the development of mechanistically based, local Quantitative 62 

Structure Activity Relationship (QSAR) models and also application of the chemical activity principle17. 63 

Understanding which Verhaar class, or mode/mechanism of action, a compound belongs to is useful for 64 

hazard characterisation, not only identifying compounds predicted to act by narcosis, but also 65 

identifying those which may elicit excess toxicity (e.g. compounds in Verhaar classes 3 and 4). Within 66 

a mechanistic class it is possible to build high quality (Q)SAR models, based on knowledge of the 67 

relevant mechanism/mode of action of toxicity, which are able to estimate relative toxic potency18. 68 
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These mechanistic models have been shown to provide more transparency and greater statistical 69 

performance than equivalent global models18-21. Understanding the mechanism of action also fits well 70 

within the AOP framework of toxicity assessment22 and allows inter-species toxicity correlations to be 71 

applied within a single mechanism23, 24. 72 

The transparency of the Verhaar classification scheme has assisted in its popularity as a hazard 73 

characterisation tool and this popularity has in turn led to automated implementations of the scheme 74 

becoming widely available. One such implementation is available in the Toxtree software. Toxtree was 75 

developed by Ideaconsult Ltd (Sofia, Bulgaria) under the terms of a contract from the European 76 

Commission’s Joint Research Centre (JRC). The software encodes several decision trees and 77 

classification schemes useful for analysing the potential toxicity hazards of compounds25. The software 78 

is freely available (http://Toxtree.sourceforge.net) and version (2.6) includes two forms of the Verhaar 79 

decision tree: “Verhaar scheme” and “Verhaar scheme (modified)”. The “Verhaar scheme” is the 80 

original implementation of the decision tree based directly on the scheme as it is described by Verhaar 81 

et al16. Enoch et al26 assessed the performance of this implementation and suggested possible 82 

improvements. These improvements form the basis of “Verhaar scheme (modified)” decision tree.  83 

Recent work by Ellison et al27 has shown that the implementation of the “Verhaar scheme (modified)” 84 

tree, and hence the suitability of resultant categories for modelling, can be improved further. 85 

Specifically, with the use of post-processing filters for polar phenols, reactive aromatic compounds, 86 

cyclic non-aromatic hydrocarbons and respiratory uncouplers of oxidative phosphorylation, the positive 87 

predictivity of each of the categories was increased by an average of 5%. These filters are available 88 

from the authors as a KNIME workflow (www.KNIME.org) for use on the output of Toxtree v2.6. 89 

Whilst the Verhaar scheme is accepted for adult fish, it is not known how applicable it may be to other 90 

assays such as FET, nor what mechanistic information may be derived from assessing data from such 91 

assays. Therefore, the aim of this study was to examine if the mechanistic categories, formed by using 92 

the Verhaar scheme classes implemented through the use of Toxtree v2.6 and the Ellison et al KNIME 93 

post-processing workflow, are relevant to the AOPs of both juvenile/adult fish and fish embryos. To 94 

this end AOP relevant mechanistic (Q)SAR analysis was performed on compounds with measured 95 

toxicity in the FET assay and outliers were highlighted. These outliers were of interest as they represent 96 

compounds where observed toxicity is in contradiction to that expected according to the mechanism of 97 

action for that class, and they may provide useful species specific information. These compounds may 98 

either be acting via different mechanisms in the FET assay, have been misclassified by the scheme, or 99 

be a misrepresentation of the chemical toxicity due to erroneous data or other effects such as volatility 100 

and degradation. 101 

2. Methods 102 

2.1. Dataset 103 

http://toxtree.sourceforge.net/
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Published experimental results from the FET assay performed using zebrafish (Danio rerio) were 104 

manually curated from two literature sources3, 4 into a single dataset. The names, CAS numbers and 105 

EC50 values were extracted. The full range of exposure times (24hr – 120hr) were used, which included 106 

specimens in both the embryonic and eleutheroembryonic stages of development. Data from all time 107 

points were considered equal as it has been previously established that eleutheroembryo and embryo 108 

studies generally provided highly similar results4, although some compounds only show significant 109 

toxicity at the eleutheroembryo stage and hence it was important to include all data points. The 24hr 110 

testing period could provide a lower indication of toxicity because the test duration was insufficient for 111 

the compound the reach equilibrium due to the compound’s toxicokinetic properties. However, the 112 

small number of compounds (n<10) which had data for the 24hr exposure time period had additional 113 

comparable data points at longer durations and thus the 24hr data points were included. Inorganic metals 114 

and their salts (e.g. cadmium or cadmium chloride) were excluded as they were outside the domain of 115 

the Verhaar scheme and substances with ambiguous names (e.g. high solubility alkyl sulphate) were 116 

excluded as it was not possible to generate SMILES strings for such compounds. If multiple EC50 values 117 

were available for the same compound the mean was calculated and recorded so that each compound 118 

was associated with a single EC50 value.  After  these calculations, a total of 193 compounds remained 119 

for analysis (Table S1; supplementary information). In addition the 50% lethality concentration (LC50), 120 

covering a variety of durations from 24hr to 96hr, for a range of adult fish species (Danio rerio 121 

[zebrafish]; Lepomis macrochirus [bluegill]; Oryzias latipes [Japanese medaka]; Oncorhycnhus mykiss 122 

[rainbow trout]; Pimephales promelas [fathead minnow]) were collated  from Belanger et al3 and/or 123 

Lammer et al4 for compounds with FET data (Table S2; supplementary information). These data were 124 

collated to enable a comparison of the potency in the two test systems to be undertaken. All toxicity 125 

values were converted to molar units and the inverse logarithm (log EC50
-1 or LC50

-1) used to allow for 126 

comparison of data and model development. The quality of the data were assessed by Belanger et al3 127 

and Lammer et al4 as part of their data curation process and thus no further data quality assessments 128 

were performed.  129 

2.2. Software 130 

All 193 compounds described above were classified using the “Verhaar scheme (modified)” decision 131 

tree through the batch processing functionality of Toxtree v2.6. Structures were entered as SDfiles 132 

which were generated from the SMILES strings using MarvinBeans v14 (www.chemaxon.com). The 133 

possible outcomes from the scheme are equivalent to those originally published by Verhaar et al16: class 134 

1 (narcosis or baseline toxicity); class 2 (less inert compounds); class 3 (unspecific reactivity); class 4 135 

(compounds and groups of compounds acting by a specific mechanism); class 5 (not possible to classify 136 

according to rules).  137 

http://www.chemaxon.com/
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After the compounds had been run through Toxtree v2.6 the output file (SDF) was then processed 138 

through the KNIME post-processing filter which has been shown to improve the predictive capabilities 139 

of the Verhaar (modified) scheme in Toxtree v2.6 as described by Ellison et al27. The filter expands the 140 

domain of the Verhaar scheme so that fewer compounds are placed into class 5. The output of the 141 

scheme is a table (.csv file) of all compounds with an updated Verhaar classification based on the 142 

structural filters within the workflow. The Verhaar (modified) and KNIME post processing 143 

classifications (along with FET and acute fish toxicity data and calculated descriptors, see below) for 144 

all 193 compounds extracted from the literature are available as supplementary material (Table S1). 145 

Chemical descriptors were calculated for all compounds to enable QSAR analysis to be performed. The 146 

KOWWIN module of the EPISuite (ver 4.11) software package28 was used to calculate the logarithm 147 

of the octanol:water partition co-efficient (log P) for all compounds. The calculated value was used in 148 

data analysis even when an experimental value was available in KOWWIN for consistency. Compounds 149 

were processed through KOWWIN using the batch process function with an SDfile as input.  150 

For the compounds classified into class 3 and 4 hydrophobicity alone was not sufficient to model 151 

toxicity. The Energy of the Lowest Unoccupied Molecular Orbital (ELUMO) and Energy of the Highest 152 

Occupied Molecular Orbital (EHOMO) were calculated using the Gaussian09 package of programs 153 

utilizing the B3LYP/6-31G(d) level of theory29. The global electrophilicity index (ω), which has 154 

previously been shown to be a good descriptor for predicting toxicity for reactive compounds30, was 155 

then calculated for each optimised chemical as shown below:  156 

ω = µ2/2η  157 

Where 158 

µ = (EHOMO + ELUMO)/2 159 

η = ELUMO – EHOMO 160 

The statistical analysis required to build the QSAR models linking toxicity to the descriptors described 161 

above was performed in Minitab v17.1. 162 

2.3. Data analysis 163 

All 193 compounds were run through the KNIME post-processing filter described above to classify 164 

them into one of the four Verhaar classes or out of the domain (class 5). The class 1 and class 2 165 

compounds were used to build baseline and polar narcosis QSAR models respectively. Linear 166 

regression analysis of FET (log EC50
-1) against hydrophobicity (log P) was performed. It should be 167 

possible to model toxicity for these mechanisms using log P alone as it is the toxicokinetics (i.e. ability 168 

to distribute and accumulate) of the molecules rather than the toxicodynamics of the system which 169 

govern potency. Any outliers of the regression model were investigated to see if they were acting via a 170 
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different mechanism or if there were any other reasons why their behaviour did not fit the expected 171 

trend. This was performed through expert analysis of the published data (i.e. examining the reliability 172 

of the data point and whether the same trends were observed in adult fish (by comparison with a plot of 173 

log LC50
-1 value(s) against hydrophobicity)) and also examining if the compounds contained structural 174 

alerts known to be associated with reactive mechanisms of action (using the alerts published by Enoch 175 

et al31). If justification based on one or more of the criteria described above could be found, the outliers 176 

were removed as they were either misclassified or subject to competing mechanisms. The models were 177 

redeveloped and their removal resulted in improved QSAR models. 178 

The baseline and polar narcosis models were used to predict the FET of the compounds classified in 179 

classes 3 and 4. This was to highlight any compounds whose toxicity was well predicted by the models. 180 

The comparative analysis of mechanisms across species requires compounds within a category to act 181 

via one distinct mechanism. Therefore compounds in classes 3 and 4, which could be modelled as either 182 

baseline or polar narcotics, were removed from the analysis because of the ambiguity concerning their 183 

actual mechanism of action. Also, compounds whose toxicity was significantly less than that predicted 184 

by the baseline model (residual greater than 1.5) were investigated to examine why this was the case. 185 

The compounds which remained in classes 3 and 4 after the above stated investigations cannot be 186 

modelled as whole classes as they represent a broad range of discrete mechanisms. Therefore the class 187 

3 and 4 compounds were subcategorised. For the class 3 compounds this was achieved by using the 188 

mechanistic alerts published by Enoch et al31. These provided mechanistic domains (e.g. Michael 189 

addition) which were then suitable for trend analysis. For the class 4 compounds expert judgement was 190 

required to identify which specific mechanism each compound was likely to act by (e.g.  191 

acetylcholinesterase (AChE) inhibition); this process builds, in part, on the approach published by 192 

Martin et al [18]. After sub-categorisation trend analysis between the toxicity values (log EC50
-1) and 193 

chemical descriptors (log P and/or electrophilicity) was performed to examine if the mechanistic 194 

rationale was sufficient to describe the observed outcome. If this was not the case it may suggest the 195 

compounds are acting via undefined toxicity mechanisms in the FET assay and that the AOPs differ 196 

between species. 197 

3. Results and Discussion 198 

It has been documented that the EC50 values obtained from the fish embryo acute toxicity (FET) assay 199 

using zebrafish embryos correlate well with the LC50 values from traditional fish toxicity studies, 200 

irrespective of fish species3-5. Thus it has been suggested that the FET assay could act as a replacement 201 

for the fish lethality studies. This correlation of toxicity between the species and life stages would 202 

suggest that compounds are toxic via the same or similar AOPs irrespective of the test system, with a 203 

small number of notable exceptions (neurotoxic compounds and those requiring metabolism)6. The aim 204 

of this study was to investigate whether compounds tested in the FET can be modelled within their 205 
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Verhaar classifications, and thus whether they are acting by the same mechanisms as would be seen in 206 

adult fish. To this end 193 compounds were extracted from the literature3, 4 and run through the Verhaar 207 

(modified) decision tree available in Toxtree v2.6 to obtain their classification. Additionally, a further 208 

post filter was used to assign a new classification to compounds which may have been misclassified by 209 

Toxtree, as this has shown to improve results elsewhere27.  210 

The majority of Toxtree classifications persisted after the application of the post filter suggesting the 211 

decision tree had adequate coverage of this dataset (Table 1), with the majority of classified compounds 212 

(classes 1-4) showing a narcotic mechanism. However, the categories from the post-processing filter 213 

were used as the filter was able to re-classify compounds which may have been classified incorrectly 214 

by the Verhaar (modified) decision tree. For example 2,4-dinitrophenol [CAS number 51-28-5] was put 215 

into class 3 (unspecific reactivity) by the Verhaar scheme but this was moved to class 4 (specific 216 

mechanism) by the post-processing filter because of the likelihood that this compound can act as a weak 217 

acid respiratory uncoupler32. Similar issues with misclassifications were also noted by Thomas et al17. 218 

The application of the post-processing filter reduced the number of unclassified compounds (class 5) 219 

from 79 to 68; however, this relatively high proportion of class 5 allocation remains an area of 220 

investigation for future research with regards to improvements of the scheme. 221 

Table 1. The number of compounds classified into each category when using either the Verhaar 222 

(modified) scheme as implemented in Toxtree 2.6 or the Verhaar (modified) scheme in combination 223 

with the post processing filter published by Ellison et al27. 224 

 Number of compounds 

Classification 

Method 

Class 1 

Baseline 

narcotics 

Class 2 

Polar 

narcotics 

Class 3 

Unspecified 

reactivity 

Class 4 

Specified 

mechanism 

Class 5 

Unclassified 

Verhaar (modified) 44 40 14 16 79 

Verhaar (modified) 

plus post-processing 

filter 

43 47 16 19 68 

 225 

Regression analysis was performed on data from the 43 class 1, baseline narcotic, compounds. This 226 

produced a poor model (Eq.1) with six significant outliers (residual exceeded 1.5 log units). The outliers 227 

are identified in Figure 1. Since one of the aims of this work was to examine whether the mechanisms 228 

of fish toxicity were also relevant in the FET assay the outliers could not be removed purely because of 229 

statistical reasons. The compounds may be poorly predicted because they do not act as narcotics in 230 

zebrafish embryos. Thus the original data for the six outliers were examined to see if their removal from 231 

the category could be rationalised. 232 
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log EC50
-1 = 0.49 log P – 3.95 Eq. 1.  233 

N=43; r2=0.36; SE log P Coefficient=0.1 (p<0.005); SE Intercept=0.24 (p<0.005) 234 

 235 

Figure 1. Relationship between FET (log EC50
-1) and hydrophobicity (octonal:water partition coefficient; 236 

log P) for the 43 compounds classified as baseline narcotics. The six significant outliers (residual 237 

exceeds 1.5 log units) are labelled. 238 

Two of the outliers, Rotenone and Merquat 100, also are outliers when the toxicity to adult fish is plotted 239 

against hydrophobicity (Figure S1; supplementary information) suggesting the mechanism is the same 240 

across assays. Rotenone [83-79-4] is a known toxicant to fish and indeed one of its industrial uses is as 241 

a piscicide. The compound’s mechanism of action involves disruption of the electron transport chain in 242 

mitochondria33 and thus there is sound mechanistic reasoning for removal of Rotenone from the baseline 243 

narcosis category. 244 

Merquat 100 [26062-79-3] is widely used in personal care products as a cationic polymer. It has low 245 

toxicity with no specific mechanisms of action. Therefore in an aquatic test system it should act as a 246 

baseline narcotic. However, the compound is difficult to model as its charged nature means that any 247 

predicted log P value may be unreliable as an ionised species would be expected to have a log P several 248 

orders of magnitude lower. This is suitable justification for removal of Merquat 100 from the model, 249 

but in addition it is also worth noting that the rule in the Verhaar (modified) decision tree placing the 250 

compound into class 1 is misfiring in this instance. The rule that matches against this compound is rule 251 

1.6.1 “Be aliphatic secondary or tertiary amines”, and it is clear that Merquat 100 is not a secondary or 252 
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tertiary amine. Therefore this compound is in fact outside of the domain of the Verhaar scheme and the 253 

outlier was also removed. 254 

A third outlier, methoxyacetic acid [625-45-6], is ionised at neutral pH. In the original Verhaar 255 

publication one of the first rules for inclusion into class 1 is that it does “Not contain ionic groups” and 256 

thus this compound should not be within this class. However, if the neutral version of the structure is 257 

entered into Toxtree and the KNIME post-processing filter, neither program is able to identify this as 258 

an ionised compound. Hence the compound is not identified by rule 1.2 “Not an ionic compound” and 259 

is incorrectly placed into this class. When the ionised structure is entered, rule 1.2 correctly fires and 260 

the compound is placed into class 5. Thus there is suitable justification for removal of this outlier from 261 

the class.   262 

Similar justifications could not be found for the remaining three outliers (tributylamine [102-82-9], 263 

methoxyacetic acid isopropylester [17640-21-0] and cyclohexane [110-82-7]); however the data 264 

published by Lammer et al4 and/or Belanger et al3 only refer to a single datum point for each of these 265 

compounds. Therefore it is not possible to assess the accuracy of these toxicity values, resulting in lower 266 

confidence and their removal from the model training set can be justified34. This can be exemplified by 267 

cyclohexane with a reported EC50 of 2.93x104µM, whereas compounds with log P values in a similar 268 

range as cyclohexane (3.18 ± 0.1) have reported EC50 values three orders of magnitude lower. In 269 

addition, the adult fish acute toxicity data for cyclohexane are in line with the general hydrophobicity 270 

trend (Figure S1; supplementary information). It is likely that the volatility of this compound may have 271 

caused problems in establishing an adequate concentration in the FET. The reliability of the FET value 272 

for this compound is therefore questionable. 273 

The outliers were removed and regression analysis was repeated which yielded the much improved 274 

model described by Equation 2 and Figure 2, with no significant outliers. The regression coefficient 275 

(0.67) is lower than other baseline equations (e.g. the Neutral Organics equation in ECOSAR has a 276 

regression coefficient of 0.9) indicating that hydrophobicity is having a weaker effect in the FET 277 

compared to adult fish assays. This may be caused by the experimental protocol of the FET assay which 278 

means the exposure concentrations are rarely maintained6 and thus inject variability into the FET data. 279 

However, the high coefficient of determination (r2=0.75) would suggest that the relationship between 280 

toxicity and hydrophobicity within the FET for baseline narcotics is still strong. Therefore it is possible 281 

to conclude that these compounds, which have been categorised using a scheme based on fish data, are 282 

all acting as baseline narcotics and thus acting via the same mechanism in both test systems (adult fish 283 

and embryos). A trend that is also clearly seen when plotting adult fish toxicity against activity in the 284 

FET (Figure S2; supplementary information). The ability to model non-polar narcosis well using log P 285 

alone would suggest the MIE is the same membrane disruption effect15, 35, 36 in both assays, leading to 286 

the same adverse outcome. 287 
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log EC50
-1 = 0.67 log P – 4.41 Eq. 2. 288 

N=37; r2=0.75; SE log P Coefficient=0.07 (p<0.005); SE Intercept=0.15 (p<0.005) 289 

 290 

Figure 2. Linear regression between FET (log EC50
-1) and hydrophobicity (octanol:water partition 291 

coefficient; log P) of 37 compounds remaining within the baseline narcotic category 292 

The regression analysis described above was repeated for the class 2 (polar narcotic) compounds, which 293 

have less well defined MIE but distinct commonalities in the KEs of the AOP. There has been much 294 

discussion into whether polar and baseline narcosis are distinct mechanisms37, 38, but the evidence of 295 

potential different MIEs39 would suggest modelling them separately may be beneficial27, 40-42. After an 296 

initial regression analysis of the 47 Class 2 compounds, a poor model (Eq. 3) with two significant 297 

outliers (2-chloro-5-nitropyridine [4548-45-2], residual = 2.42, and juglone [481-39-0], residual = 2.80) 298 

was produced. 299 

log EC50
-1 = 0.55 log P – 3.35 Eq. 3. 300 

N=47; r2=0.60; SE log P Coefficient=0.07 (p<0.005); SE Intercept=0.19 (p<0.005) 301 

Justification for removal of these outliers from the model was sought. Juglone (Figure 3) was found to 302 

be an outlier when plotting adult fish data against hydrophobicity (Figure S3; supplementary 303 

information) suggesting it is a true mechanistic outlier. The compound was found to have the potential 304 

to be reactive as it contained one of the electrophilic-chemistry based structural alerts (quinone) 305 

published by Enoch et al31 and thus has the potential to react with nucleophilic biological 306 

macromolecules through Michael addition. In addition, quinones can also cause toxicity through free 307 
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radical production43 and disruption of the electron transport chain in mitochondria44. There are currently 308 

no rules for quinones in the Verhaar scheme (modified) which could place this compound into its correct 309 

category, class 3 (unspecified reactivity). Therefore the removal of juglone from this category can be 310 

justified. 311 

 312 

Figure 3. Structure of Juglone [481-39-0] with the alerting substructure highlighted in grey. 313 

The remaining outlier, 2-chloro-5-nitropyridine [4548-45-2] can undergo a nucleophilic substitution 314 

reaction via the SNAr mechanism because of the activating in-ring nitrogen group and chloro leaving 315 

group45, 46. Thus, this compound should be in Verhaar class 3 and was removed from class 2. 316 

The outliers were removed and regression analysis was repeated which yielded the much improved 317 

model described by Equation 4 and Figure 4. There were still three significant outliers (residual > 0.9) 318 

to this model (Figure 4) but no attempts were made to remove these because of the adequate r2 value 319 

and there being no strong mechanistic rationale for their removal. Therefore it is possible to conclude 320 

that these compounds, which have been categorised using a scheme based on fish data, are all acting as 321 

polar narcotics and thus are acting via the same mechanism in both test systems (adult fish and embryos). 322 

A trend that is also seen when plotting adult fish toxicity against activity in the FET (Figure S4; 323 

supplementary information). 324 

log EC50
-1 = 0.59 log P – 3.57 Eq. 4. 325 

N=45; r2=0.84; SE log P Coefficient=0.04 (p<0.005); SE Intercept=0.12 (p<0.005)   326 
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 327 

Figure 4. Relationship between FET (log EC50
-1) and hydrophobicity (octanol:water partition coefficient; 328 

log P) for the 45 compounds classified as polar narcotics, after juglone and 2-chloro-5-nitropyridine 329 

had been removed from the category. 330 

Unlike the baseline and polar narcotics the remaining two categories (class 3 (unspecified reactivity) 331 

and class 4 (specific mechanism)) cannot each be modelled as whole categories because of the numerous 332 

different mechanisms they represent. In addition, the direct correlations between adult fish toxicity and 333 

FET activity levels are less clear for these compounds (Figures S5 and S6; supplementary information). 334 

Modelling these compounds depends on understanding the specific AOPs involved for each sub-group. 335 

The difficulties of modelling across reactive mechanisms has been discussed previously18, 47-49, and 336 

ideally models should be built using compounds all acting via the same chemical mechanism or MIE. 337 

Thus it is important to create subcategories for these compounds. However, the first step in modelling 338 

the mechanisms of these compounds is ensuring that they all exhibit excess toxicity and thus remove 339 

compounds which are associated with baseline mechanisms (e.g. narcosis). Some compounds which 340 

contain moieties associated with excess toxicity may not produce an observed toxicity in excess of 341 

narcosis because the level of specific toxicity is masked by the inherent narcotic effect of the compound. 342 

This is especially true for compounds with high log P values which will remain within the lipid bilayer 343 

and hence not undertake the interactions with biological macromolecules required to elicit excess 344 

toxicity50, 51. Although the majority of compounds in this class clearly exhibit toxicity above the baseline 345 

(Figure 5), to specifically analyse which exhibit toxicity at the narcosis level the baseline and polar 346 

narcosis models presented above (Eq. 2 and Eq. 4) were used to predict the toxicity of all 35 compounds 347 

classified into class 3 and 4. The difference between this calculated value and the experimental outcome 348 
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were compared to examine if the residual was significant. The residuals values are presented in Figure 349 

6. 350 

 351 

Figure 5. Relationship between FET (log EC50
-1) and hydrophobicity (octanol:water partition coefficient; 352 

log P) for the 35 compounds classified into class 3 and 4. The regression lines for Equation 2 (―) and 353 

Equation 4 (- - -) are also shown. 354 

 355 
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Figure 6. Residual values when embryo toxicity of Class 3 and 4 compounds is predicted using baseline 356 

(Eq 2) and polar (Eq 4) narcotic models 357 

There are five compounds, classified as class 3 or 4, with a residual value in the range of -0.5 to 0.5 358 

when using the baseline narcosis model to predict toxicity: isobutyl-ethyl-valproic acid [121-32-4]; 359 

N,N-dimethylformamide [68-12-2]; N-Methylformamide [123-39-7]; Chlorothalonil [1897-45-6]; and 360 

Disulfoton [298-04-4]. The toxicity values of these compounds are therefore well predicted by the 361 

baseline model and although they possess moieties which are attributed to electrophilic or specific 362 

mechanisms of action, the level of toxicity is no greater than baseline. This could be caused by the 363 

properties of the chemicals affecting the toxicokinetics and thus limiting the amount of compound 364 

reaching the site of action. Thus these compounds are not suitable for the mechanistic analysis as the 365 

observed toxicity is not representative of compounds containing moieties linked with excess toxicity. 366 

Additionally the toxicity of seven compounds is well predicted by the polar narcosis model: allyl alcohol 367 

[107-02-8]; dibutyl maleate [105-76-0]; 2,4,6-trichlorophenol [88-06-2]; parathion-ethyl [56-38-2]; 368 

prochloraz [67747-09-5]; propoxur [114-26-1]; and thiram [137-26-8]. One compound which stands 369 

out from this list is ally alcohol which is known to cause excess toxicity in fish52. However, its toxicity 370 

is dependent on metabolic activation53 which does not occur in the 48hr FET assay from which this 371 

datum point originates3. Thus, the analysis presented here agrees with previous research suggesting the 372 

FET may not be suitable for compounds where metabolic activation is required6. Therefore, as above, 373 

although these compounds possess moieties which are attributed to electrophilic or specific mechanisms 374 

of action in adult fish, the level of toxicity is no greater than polar narcosis in the FET assay. 375 

The four compounds where the observed toxicity is significantly less than that predicted from the 376 

baseline narcosis model (residual less than -0.5; Table 2) need to be examined before subcategories can 377 

be formed. The baseline model should represent the lowest level possible for toxicity and therefore the 378 

validity of these experimental outcomes must be questioned. The baseline and polar narcosis lines 379 

merge at a log P value of approximately 6 (figure 5), suggesting that this is the toxicokinetic cut-off for 380 

the assay and thus all compounds with a log P greater than 6 will model as narcotics. Three of the four 381 

compounds with high log P values, exhibiting toxicity below the baseline (trans-retinol [68-26-8], 382 

dialkyl sulphosuccinate [577-11-7] and resmethrin [10453-86-8]) were removed from their analysis by 383 

Belanger et al3 because of questionable experimental validity, and the remaining compound (retinoic 384 

acid [302-79-4]) also has special considerations reported in relation to its observed toxicity (Table 2). 385 

The data from these compounds suggest that at extreme values of log P it is not possible to achieve a 386 

50% lethal response because of poor solubility. Thus these compounds cannot be modelled because 387 

their properties exceed the experimental limits of the assay. 388 

Table 2. Reactive and specifically reactive compounds which exhibit observed toxicity less than that 389 

predicted from the baseline narcosis model. 390 
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Name Structure log P Observed 

log EC50
-1 

mmol/L 

Predicted 

(Eq 2) log 

EC50
-1 

mmol/L 

Experimental 

consideration(s)3 

trans-Retinol 

 

8.80 -0.33 1.84 - low solubility 

- single datum 

point 

Dialkyl 

sulphosuccinate  

6.10 -1.40 -0.05 - tests highly 

exceed solubility 

limit 

Retinoic acid 

 
 

9.03 -0.56 2.00 - low solubility  

- single datum 

point 

Resmethrin 

 

7.11 -2.15 0.66 - single datum 

point 

- low solubility 

  391 

The remaining 19 compounds identified as class 3 or 4 all exhibit toxicity at levels above that expected 392 

from narcosis (residual greater than 0.5; Figure 6); whether that be via an electrophilic or receptor based 393 

mechanism. For most compounds their experimental toxicity is far greater than that predicted by either 394 

the baseline or polar narcosis models, which is the pattern of excess toxicity which has been well 395 

documented in fish54. Therefore for these compounds it may be possible to sub-categorise according to 396 

mechanistic trends in toxicity.  397 

The Verhaar classification rules themselves cannot be used as a means of sub-classifying compounds 398 

into specific mechanisms; i.e. compounds which fire the same rule do not necessarily act via the same 399 

mechanism (Table 3). For example, Rule 3.8 “Contain a specific substructure” covers a wide range of 400 

compounds containing electrophilic substructures, and for the class 4 compounds, only a single rule is 401 

used for the whole category and no information is provided on the potential mechanism of action of the 402 

compound. Thus further mechanistic analysis was required to subcategorise these compounds. 403 

The eight remaining class 3 compounds were subcategorised into four mechanistic domains based on 404 

whether the compounds contained one of the electrophilic structural alerts published by Enoch et al31. 405 

Further expert analysis was required in the case of the two surfactants (dodecyl sulphate [151-21-3] and 406 

tetradecyl sulphate [1191-50-0]). These two compounds did not contain any alerts associated with 407 

electrophilic mechanisms, and it has been suggested that surfactants act via narcosis55-57. The poor 408 
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predictive ability of equations 2 and 4 for these compounds could be related to the difficulty in 409 

calculating, and indeed measuring, log P for surfactant compounds58. However, even after correcting 410 

the KOWWIN log P calculations following the method described by Roberts56 (manually calculated 411 

values were 0.65 for dodecyl sulphate and 1.64 for tetradecyl sulphate), the potency of these compounds 412 

is still under predicted by equations 2 and 4. An alternative mechanism may be for the compounds to 413 

act as alkylating agents via a bimolecular nucleophilic substitution (SN2)59. The four resultant 414 

mechanistic categories for the eight remaining class 3 compounds were thus Michael addition, pre-415 

Michael addition, Schiff base and SN2 (Table 3). 416 

The eleven remaining class 4 compounds were subcategorised into three mechanistic domains based on 417 

expert analysis of the chemical structures and consideration of possible MIEs. Respiratory uncouplers 418 

were defined as those compounds which contain a weak acid assemblage (i.e. an amino or hydroxyl 419 

group), a hydrophobic aromatic moiety, and multiple electronegative groups (i.e. nitro and/or halogen 420 

substituents); a total of five compounds. Acetylcholinesterase (AChE) inhibitors comprised all of the 421 

organophosphothionate esters and (thio)carbamates; a total of five compounds. Both of these 422 

mechanisms have well described AOPs and predicting the MIE gives a suitable indication of toxicity 423 

which can be explained through biological reasoning60. Lindane [58-89-9] was a unique compound as 424 

it does not act by any of the above mechanisms but instead interacts with the GABA receptor chlorine 425 

channel complex61. 426 

Table 3. Compounds classified into Class 3 and 4 with their corresponding Verhaar rule as detailed in 427 

Toxtree ver. 2.6 and mechanistic subcategory 428 

Name CAS Verhaar Rule (as stated in 

Toxtree) 

Mechanistic domain 

Class 3 

4-aminophenol 123-30-8 

 

None: classified as potential 

reactive phenol by post-

processor 

Pre-Michael addition 

Acetaldehyde 75-07-0 

 

Rule 3.8 “Contain a specific 

substructure; aldehyde” 

Schiff base 

Acrolein 107-02-8 

 

Rule 3.5 “Possess activated 

C-C double/triple bond” 

Michael addition 

Chloroacetaldehyde 

107-20-0 

Rule 3.8 “Contain a specific 

substructure; aldehyde” 

Schiff base 

Dodecyl sulphate 

151-21-3 

Rule 3.8 “Contain a specific 

substructure; sulphuric ester” 

SN2 
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Hydroquinone 123-31-9 

 

None: classified as potential 

reactive phenol by post-

processor 

Pre-Michael addition 

 

Quinone 

106-51-4 

Rule 3.5 “Possess activated 

C-C double/triple bond” 

Michael addition 

Tetradecyl sulphate 

1191-50-0 

Rule 3.8 Rule 3.8 “Contain a 

specific substructure; 

sulphuric ester” 

SN2 

Class 4  

2,4,6-Trichloroaniline 634-93-5 Rule 4 Respiratory uncoupler 

2,4-Dinitrophenol 

51-28-5 

None: classified as potential 

uncoupler by post-processor 

Respiratory uncoupler 

2-Nitro-4'-

hydroxydiphenylamine 54381-08-7 

None: classified as potential 

uncoupler by post-processor 

Respiratory uncoupler 

4,6-Dinitro-o-cresol 

534-52-1 

None: classified as potential 

uncoupler by post-processor 

Respiratory uncoupler 

Azinophosmethyl 86-50-0 Rule 4 AChE Inhibitor 

Carbaryl 63-25-2 Rule 4 AChE Inhibitor 

Lindane 

58-89-9 

Rule 4 GABA receptor chloride 

channel interaction 

Malathion 121-75-5 Rule 4 AChE Inhibitor 

Methylcarbamoyl  

cysteine 7324-17-6 

Rule 4 AChE Inhibitor 

Methylcarbamoyl 

glutathione 38126-73-7 

Rule 4 AChE Inhibitor 

Pentachlorophenol 87-86-5 Rule 4 Respiratory uncoupler 

 429 

All of the subcategories contain too few data to build models. However, it is possible to observe the 430 

trends between toxicity and physicochemical descriptors. The toxicity of the direct acting electrophiles 431 

should be proportional to their electrophilicity if their ability to react with nucleophiles is the rate 432 

limiting step in the toxic pathway. Enoch et al30 have shown that the electrophilicity index, ω, can be 433 

used to model toxicity of direct acting electrophiles. The electrophilicity index was thus calculated for 434 

the Michael acceptors, Schiff base formers and SN2 compounds (Table 4). The Michael acceptors and 435 

Schiff base formers show the expected trend with the more toxic compounds having a higher 436 

electrophilicity index. However, the same relationship was not present for the SN2 compounds; the 437 

electrophilic descriptors for the SN2 surfactants are very similar due to their identical sulphate leaving 438 
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groups and do not fully explain the large difference in observed toxicity. Thus it would appear the 439 

hydrophobicity of the compounds is having a large effect on toxicity which is to be expected considering 440 

the only difference between the compounds is the length of their carbon chain. The effect of increasing 441 

chain length of anionic surfactants on toxicity has been well documented for ecotoxicity62. Therefore it 442 

is possible that the MIE is a membrane disruption effect such as narcosis as previously discussed. An 443 

expansion in the number of anionic surfactants tested in the FET is required before the AOP can be 444 

successfully modelled.  445 

Table 4. Electrophilicity index (ω) values for the six compounds which are direct acting electrophiles 446 

Compound name CAS Mechanistic subcategory log EC50
-1 

mmol/L 

Electrophilicity 

(ω) 

Acrolein 107-02-8 Michael addition -0.82 4.77 

Quinone 106-51-4 Michael addition -0.64 8.70 

Acetaldehyde 75-07-0 Schiff base -2.99 2.93 

Chloroacetaldehyde 107-20-0 Schiff base -1.63 3.67 

Dodecyl sulphate 151-21-3 SN2 -1.28 2.55 

Tetradecyl sulphate 1191-50-0 SN2 -0.04 2.53 

 447 

Unlike the direct acting electrophiles, the rate limiting step for the pre-Michael acceptors is their 448 

conversion into a reactive product, which is not reflected in their toxicity values43. Also, there are two 449 

competing toxicity mechanisms for these compounds: conversion to the reactive quinone but also 450 

formation of free-radicals. Nitrogen is better than oxygen at stabilising a radical centre and therefore 4-451 

aminophenol [123-30-8] may be more likely to exhibit toxicity through a radical mechanism than 452 

hydroquinone [123-31-9] where the resultant quinone would likely act as a Michael acceptor63. This 453 

this may explain why the toxicity of 4-aminophenol is far in excess of that shown by hydroquinone (log 454 

EC50
-1, 4-aminophenol = -0.63, hydroquinone = -1.86). Modelling this complex mechanism, or finding 455 

any trends in toxicity through chemical read across, is impossible with only two compounds and hence 456 

the relationships discussed above cannot be replicated for this subcategory.  457 

The respiratory uncouplers show clear trends with hydrophobicity, especially when split according to 458 

their electronegative groups (halogens or nitro; Figure 7). This is the same trend as modelled by Schultz 459 

and Cronin32 in several species, and shows that although this mechanism is clearly distinct from the 460 

AOP for narcosis, the AOP can be modelled using toxicokinetic parameters. Thus it is clear this 461 

mechanism of action is valid across species and can be tested in the FET assay. 462 
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 463 
Figure 7. Relationship between FET (log EC50

-1) and hydrophobicity (octanol:water partition coefficient; 464 

log P) for the five respiratory uncouplers, categorised according to the electronegative groups which 465 

they contain.  466 

The final sub-category of compounds is the AChE inhibitors, comprising two structural groups 467 

(carbamates and organophosphates). The mechanism of action in this instance is governed by the ability 468 

of a compound to react with the acetylcholine esterase enzyme and form a covalent bond with the active 469 

site, specifically forming a covalent bond with the hydroxy group on the serine residue54. The difference 470 

between the inhibition initiated by the carbamates and the organophosphates is caused by the stability 471 

of the AChE-organophosphate/carbamate complex. The carbamylated serine residue is less stable and 472 

the carbamyl structure can be split from the enzyme by spontaneous hydrolysis, whereas the 473 

phosphorylation of the serine residues is considered non-reversible as dephosphorlytion is very slow 474 

(in the order of days)64. This mechanism, like the direct acting electrophiles, depends on the electronic 475 

properties of the compounds. However, the compounds within this class are too diverse to observe 476 

trends using simple ground state calculations such as the electrophilicity index. Bermudez-Saldana and 477 

Cronin65 found that modelling heterogeneous groups of AChE inhibitors was difficult with 2D and 3D 478 

descriptors; calculations performed on the transition states of congeneric series were required to model 479 

activity effectively. Unfortunately that was not possible for the AChE inhibitors which have been tested 480 

in the FET assay.  481 

The subcategories of class 3 and 4 compounds have demonstrated that the relationships between toxicity 482 

and physicochemical descriptors for compounds tested in the FET assay are similar to those seen in 483 

adult fish; i.e. toxicity is related to the properties which best describe the specific interactions of the 484 
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mechanism. However, it is important to note that all of these subclasses are small (n < 5) and creating 485 

true predictive models has been impossible because of this and also the structural diversity within the 486 

data. An extensive dataset of class 3 and 4 compounds tested in the FET would be required for a 487 

comprehensive mechanistic analysis of compounds exhibiting excess toxicity. These data would 488 

preferably be for compounds within the mechanistic classes for which some data are available, e.g. 489 

Michael addition, to enable full mechanistic modelling to be completed, before expanding into the other 490 

unknown mechanistic domains. To this end it would be important to formulate an intelligent testing 491 

strategy with regard to which other compounds should be tested, concentrating on specific series of 492 

excess toxicants. This focussed approach to modelling has previously been shown to be effective for 493 

modelling compounds which exhibit excess toxicity to Tetrahymena pyriformis using a specific 494 

reactivity assay43, 66-69. The outcomes of the FET when applied to specially selected compounds would 495 

allow for mechanistic modelling and chemical read across to elucidate the physicochemical descriptors 496 

which best describe the AOP. These descriptors could then be used to assess toxicity of compounds 497 

tested in other assays such as the traditional in vivo fish assays to assess the interspecies compatibility 498 

of the AOP70, 71.    499 

In conclusion, the four mechanistic categories built on toxicity data from fish proposed by Verhaar et 500 

al have been shown to be applicable to the FET assay using zebrafish. The majority of industrial 501 

compounds within this dataset can be modelled as narcotics. The baseline narcosis effect is well 502 

modelled by log P alone which suggests the AOP in FET is governed by membrane disruption as part 503 

of, if not the complete, MIE. The polar narcosis effect has a less well defined MIE, but the AOP shares 504 

common key events and hence the effect can also be well modelled by log P. Both mechanisms produce 505 

high quality hydrophobicity dependent QSAR models which are based on relatively well understood, if 506 

not yet documented, AOPs and those compounds acting via reactive or specific mechanisms exhibit 507 

toxicity in excess of that predicted from these models. For these AOPs representing relatively unspecific 508 

mechanisms of action, it is noted that a single parameter is able to model the response even when the 509 

precise MIE has yet to be established. The outliers of the narcosis models provide useful information 510 

relating to interspecies differences and/or highlight the limitations of the assay. For example, allyl 511 

alcohol does not exhibit excess toxicity in the 48hr FET assay. Modelling within the reactive and 512 

specific mechanistic categories is theoretically possible, but more data are required to fully investigate 513 

the mechanisms; an understanding of which descriptors are driving the observed toxicity is required. 514 

For these classes the AOP should be more easily defined as the mechanisms of action are more specific; 515 

due to the increased complexity and greater specificity of the AOP it is probable that more terms are 516 

required to capture the effects. It is an understanding of the AOPs involved that will suitably inform 517 

future sub-categorisation, and suggest where interspecies differences will become important. However, 518 

currently, there are not enough examples of excess toxicants which have been tested in the FET assay 519 

and focussed toxicity testing is required to clearly define the domains of the reactive and specifically 520 
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acting compounds. Such testing would assist in understanding the descriptors required to model the 521 

mechanisms and AOPs of these reactive or specifically acting compounds. Overall the FET data shows 522 

that with increasing log P, compounds are less inclined to enter the aqueous media of cells and therefore 523 

they tend to exhibit toxicity through the narcosis mechanism. The log P cut-off for this effect appears 524 

to approximately 6 for this assay. This cut-off will vary according to species because of their varying 525 

membrane properties and the design of the test system; longer tests are more likely to allow for 526 

quantification than shorter tests. These issues will be important as development of quantitative acute 527 

aquatic AOPs progresses. 528 
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