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ABSTRACT 

Several studies suggest sex-differences in ventricular dimensions in athletes. Few studies have, however, 

made comparisons of data indexed for lean body mass (LBM) using allometry. Ninety Caucasian college 

athletes (mixed-sports) who were matched for age, ethnicity and sport total cardiovascular demands, 

underwent Dual Energy X-Ray Absorptiometry (DEXA) scan for quantification of LBM. Athletes 

underwent comprehensive assessment of left and right ventricular and atrial structure and function using 

2D echocardiography as well as deformation imaging using the TOMTEC analysis system. The mean age 

of the study population was 18.9±1.9 years.  Female athletes (n=45) had a higher fat free percentage 

(19.4±3.7%) compared to male athletes (11.5±3.7%). When scaled to body surface area (BSA), male had 

on average 19±3% (P< 0.001) higher LV mass; in contrast when scaled to LBM there was no significant 

difference in indexed LV mass -1.4 ± 3.0% (P=0.63). Similarly, when allometrically scaled to LBM, there 

was no significant sex-based difference in LV or left atrial volumes. Although female athletes had mildly 

higher LV ejection fraction (EF) and LV global longitudinal strain in absolute value, systolic strain rate 

and allometrically indexed stroke volume (SV) were not different between sexes (1.5±3.6% (P=0.63) and 

0.0±3.7% (P=0.93) respectively).  There were no differences in any of the functional atrial indices 

including strain or strain rate parameters. In conclusion, sex related differences in ventricular dimensions 

or function (stroke volume) appear less marked, if not absent, when indexing using LBM allometrically.  

 

Key words: Athletics, Ventricular Remodeling and Function, Atrial remodeling, Lean body mass, 

Deformation imaging, echocardiography 
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Despite several years of investigation, the extent of sex differences in ventricular dimension and function 

in athletes remains a subject of debate.1-11 Part of the controversy may be related to the fact that only few 

studies took into account body composition when scaling cardiac dimensions. In this study, we sought to 

determine, in college athletes, whether sex-related differences in ventricular dimensions persisted after 

adjustment for lean body mass (LBM). In second intention, we sought to compare sex associated 

differences in functional parameters including ventricular and atrial strain analysis.   

Methods 

 In 2008, 315 Caucasian college athletes were included in the pre-season cardiac screening process 

at Stanford University using the AHA-12 point questionnaire, ECG and a screening echocardiogram. Of 

these participants, 124 volunteered to undergo Dual Energy X-Ray Absorptiometry (DEXA) for 

assessment of body composition. Of these subjects, we selected 90 (45 male, 45females) were matched 

according to age, ethnicity/race and total cardiovascular demand.12 We excluded subjects who 

participated in sports in high dynamic and static component such as rowing, cycling and triathlon as these 

were asymmetrically distributed among sexes.12 The sports disciplines included the following baseball, 

softball, La Crosse, short distance track running, wrestling, synchronous swimming, sailing and fencing. 

Height and weight were measured using standard techniques. Body surface area (BSA) was calculated 

with Dubois’ formula.  We present also data from 50 age, sex and race matched sedentary individuals for 

reference of the values in our laboratory. Body mass index (BMI) was calculated using standard formula 

weight divided height squared (kg/m2). Lean body mass (LBM) was estimated using DEXA scan 

(Norland XR 26 Mark II/HS, Norland Corporation, WIS).   

All subjects underwent standard transthoracic two-dimensional (2D) and color Doppler 

echocardiography using the Philips IE33 system (Philips Medical Imaging, Eindhoven, the Netherlands) 

and a 3.5-MHz transducer. The echocardiograms were blindly interpreted by an experienced reader (GG) 

according to the American Society of Echocardiography guidelines.13 Left ventricular (LV) wall thickness 
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and diameters were measured from the long-axis views using 2D measurements at the upper papillary 

level to avoid any chordal attachments; septal bands were also excluded from the septal wall 

measurements. LV mass was calculated in diastole using estimating LV mass based on the area-length 

(AL) formula.13 LV end-diastolic and end-systolic volumes (LVEDV and LVESV) were calculated using 

the 5/6 area length method as the 4 chamber end-diastolic volume often underestimate ventricular 

volumes; we used the 5/6 constant for the volume calculation to have the same constant as for the LV 

mass calculations.  LV ejection fraction (LVEF) was obtained using the Simpson method in 4-chamber 

view. Stroke volume was derived using the difference between end-diastolic and end-systolic volumes 

using the area length method. Right ventricular (RV) end-diastolic area was measured in the apical 4 

chamber view. Tricuspid annular plane systolic excursion (TAPSE) was measured using a 2D manual 

methodology. Atrial volumes were calculated using the apical 4 chamber views using the area-length 

method.14   

Analysis of LV, RV and atrial (left and right) global longitudinal strain (GLS), were performed from 

apical 4-chamber (4C) views, using vendor independent software (TOMTEC Imaging System, 

Unterschleissheim, Germany) as shown in Figure 1. For LV GLS, the 6 segments in the apical 4 chamber 

view were averaged while the 3 lateral segments were averaged for RV GLS measures.  For ventricular 

strain measurements, the beginning of the QRS was used as the point of reference. For the atrial GLS 

measurements, we used the beginning of the p-wave as the reference point to allow good discrimination 

of the atrial systole component, conduit function and reservoir function (Figure 1).15 

Scaling of cardiac dimensions, volumetric and mass data to LBM was performed using allometric 

coefficients. The choices of coefficients were based on the literature especially the studies of George et al. 

and Bella et al.16-18  We also verified that in our study population, the allometric coefficients used were 

body size independent (BSI); to be considered BSI, no relationship should be observed between the scaled 

parameter and the scaling parameter. For BSA or height, we used the allometric coefficients recommend 

by the ASE guidelines.14  
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Results are expressed as mean ± SD for normally distributed continuous variables or as number of 

cases and percentage for categorical variables. To determine the best allometric coefficient, we model the 

variable according to the following equation: Y=aXb where b is the allometric coefficient. Comparison of 

groups was performed using Student’s t-test for continuous variables assuming equal or unequal variance 

as appropriate and Chi-square test or Fisher Exact Test, as appropriate for categorical variables. We also 

used multiple regression analysis to ensure that sex is not an independent determinant of indexed cardiac 

dimensions after accounting for other factors such as BMI, dynamic and resistive component of sports 

according to Mitchell classification according to total cardiovascular demand as high moderate or 

moderate.12 Statistical analysis was performed using the PASW software (PASW 18.0 Inc, Chicago, IL).  

Inter-observer variability for LV mass measurements were measured using 15 athletes randomly selected 

(GG and YK). The absolute bias for the second reader was -6.4 g [-17.1, 4.4] and the relative bias was -

4.5 % [-11.6, 2.6 %] with only one patient having a greater than 10% difference. The intra-class 

coefficient was 0.95 with a coefficient of variation of 3.7%.  

Results 

Forty-five male and forty five females were included in the study; 22% of female participated in high 

moderate sport activity compared to 20% of males with the remainder participating in low-moderate to 

moderate activity.12  Compared to male athletes, female athletes had a smaller stature, lower body mass 

and had a higher percentage body fat (Table 1).  Figure 2a shows the relationship between body fat 

percentage and BMI in males and females; the parallel lines suggest that the 2 groups are comparable 

across a wide range of BMI. Compared to females, males had on average 21% higher LBM/BSA ratio 

(Figure 2b and 2c).  

Since female and male athletes differ with regards to their body size and composition, determining 

the appropriate scaling parameters is paramount. Table 2 summarizes allometric exponents for LBM and 

whether scaling outcomes are body size independent. Indexing to BSA did not yield body size 
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independent scaling metrics for LV mass, LVEDV or ventricular dimensions (Table 1, Figure 3).  

Indexing EDV to LBM was best accomplished to the 0.7 power (Figure 3c and d). When scaling to LBM 

using allometric coefficients, no significant sex associated difference was observed for LV mass, LV 

volume or left atrial size. In contrast, indexing to BSA was associated with significant differences for all 

dimensions except LAV. These results are summarized in Tables 3 and 4 and Figure 4. Using multiple 

regression analysis and adjusting for co-factors such as cardiovascular demand category of Mitchell et 

al.12 according to percentage maximal oxygen consumption of exercise active and maximal voluntary 

contraction, sex did not emerge as an independent correlate of LV mass or dimensions. For the purpose of 

presenting comparative values in sedentary subjects (less than 1 hour of active exercise a week), we 

recruited age, sex and race matched 50 individuals. Compared to the sedentary individuals, athletes in our 

cohort had greater LV mass index (71±11 vs. 62±11 g/m2, P<0.001), average wall thickness (7.3± 0.9 vs. 

6.7 ± 0.9, P=0.001), LA volume index (28± 7 vs. 25± 6, P=0.02); there was, however, no significant 

difference in average relative wall thickness (0.28±0.03 vs. 0.27±0.03, P=0.19).  

Female athletes had on average a higher LVEF, LV GLS and early diastolic strain rate (Table 5).  

The strain in the lateral medial segment reached the most statistical difference (-21.6 ± 4.4 % vs. -19.4 ± 

4.8%, P=0.03) while there was a trend for all the other segments. There was no sex-based difference in 

SV indexed for LBM, systolic strain rate, speckle derived early diastolic ventricular velocity (e’) or any of 

the functional atrial parameters (Table 5). With the exception of diastolic early strain rate, there were no 

significant differences for the other RV functional metrics. No difference was observed for any of the 

atrial strain components (Table 5). There were no significant relationships between indexed LV mass or 

volumes and any of the myocardial strain or strain rate metrics in our study population (P > 0.5 for all 

relationships). 
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Discussion  

The main finding of our study is that when scaled for LBM, sex-related differences in ventricular or 

atrial dimensions decrease significantly or disappear. Moreover although small sex based differences in 

LVEF or LVGLS were observed in our study, these do not translate in differences in indexed stroke 

volume or ventricular strain rate, a potentially less load dependent metric of function.  

Since female and male athletes differ in size and body composition, comparison between sexes 

requires the use of body size independent scaling metrics. Although in clinical practice, cardiac 

dimensions are usually scaled to BSA, this rarely leads to BSI as BSA is not linearly related to three 

dimensional  or unidimensional cardiac parameters e.g. LV mass or wall thickness.18,19  In contrast, as 

shown by our study as well as others, allometric scaling using LBM provides BSI metrics for all cardiac 

dimensions. The allometric coefficients that were found in our study were also very similar to the 

coefficients found in the MRI based study of George et al. on male army recruits, i.e. approximately 1 for 

LV mass, 0.70 for LV volumes, 0.33 for wall thickness and 0.66 for areas. Physiologically, LBM could 

yield stronger correlations than BSA in with cardiac dimensions in athletes as it represents the most 

metabolically active mass of the body.17,20   

As our study highlights sex related differences in LV mass appears to be in great proportion related 

to differences in body composition. In fact, when indexing to BSA the relative difference in LV mass 

correspond to the difference in LBM to BSA ratio of approximately 20%. This is consistent with the sex 

associated difference in LV mass reported in the ASE guidelines (21% on average for linear dimensions) 

as well as by large population based studies such as The Multi-Ethnic Study of Atherosclerosis (21%), the 

Asklepios Study (21%) or the general population study of Devereux et al. (22%).13,21,22 This consistent 

percentage suggests that if a population based study finds a significantly greater than 20% difference in 

LV mass indexed to BSA between sexes, one has to question whether a body size composition bias may 

have been introduced. Consistent with our finding, a recent study by Pressler et al. also observed no sex 
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related differences in LV mass indexed to LBM in athletes participating in low to moderate intensity 

sports.23 In their study however, female athletes participating in higher intensity sports had lower LV 

mass index compared to males.23 Whether this difference is related to the method of estimating LBM in 

the study though skin folds or is due to differences in exercise intensity between groups will require 

further investigation. 

Our study also addresses the question whether females have more eccentric ventricular remodeling 

than male athletes. Consistent with previous studies, we have also found that female have a lower mass to 

volume ratio suggesting more eccentric remodeling.21 This however assumes that mass and volume 

should be scaled using the same allometric indexing. If we use the different allometric coefficient for 

volume found in our study and the study of George et al., the sex differences in remodeling pattern 

disappears or reverse between sexes. This somewhat more provocative concept will require further 

validation in larger studies.  This would, however, be consistent with animal models demonstrating that 

females have higher LV hypertrophic response to exercise compare to males when compared for quantity 

of exercise.24   

With regards to our secondary objectives, the small differences in LVEF or LVGLS did not translate 

in meaningful differences in stroke volume index or the more load independent metrics of ventricular 

function such as LV strain rate.25 With regards to atrial function metrics, our study also suggests absence 

of meaningful sex related differences.  

The main clinical implication of our study is that it highlights that in contrast to BSA, allometric 

LBM leads to body size independent scaling. This may be especially important to consider when 

screening a population with variable body size composition; for example in athletes with very small 

percentage of body fat and therefore higher LBM to BSA ratio; in these subjects scaling to BSA could 

overestimate the degree of chamber enlargement. Efforts to better define normative values of cardiac 

dimensions using LBM in athletes could therefore lead to narrower coefficient of variation and help better 
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define “gray” zone athletes but this will require significantly large sample size and standardization of 

analysis protocols.  

The main limitation of our study is its small sample size. Despite its small size, our study represents 

one of the largest studies in college pre-participation athletes. The groups were also well matched 

according to body composition (parallel BMI to fat percentage slopes) and total cardiovascular demands 

of sport discipline. In addition, we have considered the dynamic and resistive component of sport activity 

in our regression models for LV mass and volumes. Another limitation of our study, is that we recruited 

college athletes in a pre-participation clearance and our findings may not be generalizable to endurance or 

high resistance sports and longstanding athletes. More specifically, we do not have data examining 

whether these allometric coefficients after an intense period of training. Finally, it is important to note that 

our laboratory is more conservative when measuring ventricular mass, wall thickness and mass to volume 

ratio’s with values closer to the recently published magnetic resonance based values.26 This is important 

to consider if using our data in a different cohort.   
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Figure legends 

Figure 1. Left ventricular and left atrial strain and strain rate measurements. After LV and LA 

myocardium is traced (the green contours), the software automatically tracks the ventricular or atrial wall 

on subsequent frames. Adequate tracking can be verified and corrected by adjusting the region of interest 

or the contour. Each curve shown in the middle and the right is the average curve of six segments.  The 

curve starts from the beginning of the QRS in left ventricle (upper) and from the beginning of the p-wave 

in left atrium (lower). ε; strain, SR; strain rate, fx; function, LV; left ventricular, LA; left atrial 

Figure 2 Anthropomorphic relationships between body mass index, body surface area, body fat, 

and lean body mass. The panel A shows the relationship between BMI and fat percentage and panel B 

shows the relationship between BSA and LBM. Red lines represent the approximate formula of the 

female and blue lines represent that of male subjects. The panel C shows the difference of LBM/BSA 

ratio between sexes. MBI; body mass index, BSA; body surface area, LBM; lean body mass 

Figure 3. Relationship between indexed left ventricular mass and end-diastolic volume. LV mass 

indexed to body surface area has a significant linear relationship with BSA suggesting not body size 

independent metric (A), whereas LV mass indexed to lean body masshas no significant correlation with 

LBM (B). Indexed left ventricular end-diastolic volume has a significant linear correlation with LBM (C), 

whereas it has no significant correlation with allometric LBM (D). LV; left ventricular, BSA; body 

surface area, LBM; lean body mass, LVEDVI; left ventricular end-diastolic volume index. 

Figure 4. Sex associated relative difference in structural indices using different scaling parameters. 

Allometric indexing to LBM significantly reduced differences between male and females. Data is 

presented for LV mass (panel A), LV end-diastolic volume (panel B), left atrial volume (panel C) and RV 

end-diastolic area (panel D).  



Table 1. Anthropometric measures of the study population 

Characteristic Female (n=45) Male (n=45) P-value 

Age (years) 18.6±0.8 19.2±1.3 0.01 

Height (cm) 168±6 182±7 <0.001 

Mass (kg) 63±9 83±11 <0.001 

Body mass index (kg/m2) 22.2±2.6 24.9±2.7 <0.001 

Body surface area (m2) 1.71±0.12 2.06±0.17 <0.001 

Percentage fat (%) 19.5±3.6 11.6±3.8 <0.001 

Lean body mass (kg) 50±5.6 72.5±8.4 <0.001 

Lean body mass to body 
surface area ratio (kg/m2) 
 

29.2±1.6 35.2±2.0 <0.001 

Sport Classification*  

     High moderate (%) 

     Low moderate to      
     moderate (%) 

 

10 (22) 

35 (78) 

 

9 (20) 

36 (80) 

1.0  

    

* Sports classification is based on Task Force classification based on total cardiovascular demands. 
Because of the diversity of sports we combined low moderate and moderate sport classification. 
combined low  

 

 



Table 2. Allometric and Ratiometric Scaling of Cardiovascular Parameters 

 Y=aXb 

 
LV mass LVEDV LVID Wall 

Thickness 
RVEDA LAV SV 

LBM   
   b 
   r2 

   b selected 
   BSI  

 
0.92± 0.07  

0.61 
1 

Yes  

 
0.76 ± 0.07 

0.55 
0.70 
Yes 

 
0.26 ±0.03 

0.47 
0.33  
Yes 

 
0.39 ±0.04 

0.50 
0.33 
Yes 

 
0.63  ± 0.07 

0.50 
0.66 
Yes 

 
0.65 ±0.12 

0.23 
0.70 
Yes 

 
0.62  ± 0.09 

0.37 
0.70 
Yes 

        
BSA  
   b selected 
   BSI  

 
1 

No 

 
1 

No 

 
1 

No 

 
1 

No 

 
1 

Yes 

 
1 

Yes 

 
1 

Yes 
        

Height 
   b selected 
   BSI  

 
2.7 
Yes 

 
2.7 
Yes 

 
1 

Yes 

 
1 

Yes 

 
2.7 

   No 

 
2.7 
Yes 

 
2.7 
No 

Ratiometric scaling represents a coefficient of 1. The selected b for LBM is based on literature values and 
consistency in our cohort. Body size independent metric (BSI) refers to body size independent scaling considered for 
both sexes. For BSA and height, we used scaling indices based on ASE guidelines. LV indicates left ventricular, 
LVEDV; left ventricular end-diastolic volume, LVID; left ventricular internal dimension, RVEDA; right ventricular 
end-diastolic area, LAV; left atrial volume, SV; stroke volume. Wall thickness represents the average wall thickness.   

 

 

 

 

 

 

 



Table 3. Comparison of left ventricular and atrial structural parameters 

Characteristics Female  
(n=45) 

Male  
(n=45) 

P-value 

     Left ventricular dimensions    
           IVS (mm)     6.1 ± 1.0 7.1 ±0.1 < 0.001 
           PW (mm) 7.0 ± 1.1 8.2 ± 1.5 < 0.001 
           LVID (mm) 47.1 ± 4.2 52.2 ± 4.1 < 0.001 
           r-average SAX (mm) 6.8 ± 0.7 7.9 ± 1.5 < 0.001 
           r-average/LBM0.33 1.9 ± 0.2 1.9 ± 0.2 0.24 
           LVID average/ LBM0.33 1.33± 0.08 1.33 ±0.08 0.99 
           RWT   0.28 ± 0.06 0.30 ± 0.05 0.31 
    
     Left ventricular mass    
           Absolute (g) 111 ± 20 159± 26 < 0.001 

Indexed to BSA (g/m2) 65 ± 9 77±10 < 0.001 
           Indexed to LBM  2.2 ± 0.3 2.2 ± 0.3 0.63 
    
     LV end-diastolic volume    
           Absolute (ml) 142 ± 23 193 ± 33 < 0.001 
           Indexed to BSA (ml/m2) 83 ± 12 94 ± 1 < 0.001 
           Indexed to LBM0.7 9.2 ± 1.3 9.7± 1.5 0.17 
    
     LV Mass-to-Volume ratio 0.79 ± 0.09 0.83 ± 0.11 0.015 
      
     LV Mass- to-Volume ratio   
     (Allometric correction) 

0.24± 0.03 0.23±0.03 0.035 

    
     Left atrial volume    
           Absolute (ml) 47.5 ± 11.7 59.1 ± 16.8 < 0.001 
           Indexed to BSA 27.7 ± 6.0 28.6 ± 7.5 0.54 
           Indexed to LBM0.7 3.1 ± 0.7 2.9 ± 0.8 0.42 
    
 

 

 

 

 

 

 



Table 4. Comparison of right ventricular and atrial structural parameters between sexes 

Characteristics Female 
(n=45)  

Male 
(n=45) 

P-value 

Right ventricular dimensions  
(4 chamber view) 

   

    Basal (cm) 3.7 ± 0.5 4.3 ± 0.5  < 0.001 
    Mid (cm) 2.9 ± 0.5 3.6 ± 0.5 < 0.001 
    Longitudinal (cm) 8.2 ± 0.7 9.1 ±  0.9  < 0.001 
    
    Basal/LBM0.33   1.0 ± 0.1 10.5 ± 1.3 0.43 
    Mid/LBM0.33  0.8 ± 0.1 0.9 ± 0.1 0.054 
    Longitudinal/LBM0.33  2.3 ± 0.2 2.2 ± 0.2 0.39 
    
Right ventricular area    
     Absolute (cm2) 22.8 ± 3.5 29.7 ± 3.9 < 0.0001 
     Indexed to BSA   13.4 ± 1.8 14.5 ± 1.8 < 0.01 
     Indexed to LBM0.66  1.7 ± 0.2 1.8 ± 0.2 0.55 
    
Right atrial volume    
     Absolute (ml) 41.2 ± 10.9 56.1 ± 15.3 < 0.0001 
     Indexed to BSA  24.1 ± 5.7 27.2 ± 6.7 0.02 
     Indexed to LBM0.7 2.7 ± 0.7 2.8 ± 0.7 0.37 
  

 

 

 

 

 

 

 

 



Table 5.  Comparison of functional parameters between sexes 

Characteristic Female 
(n=45) 

Male 
(n=45) 

P-value 

 
Stroke volume  
    Absolute (ml) 
    SV/ BSA (ml/m2) 
    SV/ LBM0.7  (ml/kg 

 
 

75 ± 12 
44 ± 7 

4.9 ± 0.8 

 
 

98 ± 20 
48 ± 9 

4.9 ±1.0 

 
 

0.001 
0.048 
0.93 

    
Left ventricular     
     LVEF (%) 66 ± 4 63± 6 0.004 
     2D GLS manual strain (%) -21.6 ± 1.9 -20.6 ± 2.0 0.02 
     GLS (%) -22.0 ± 1.9 -20.6 ± 2.0 0.02 
     Systolic SR (%/s) -1.08 ± 0.18 -1.06 ± 0.18 0.67 
     Diastolic early SR (%/s) 1.81 ± 0.40 1.56 ± 0.43 <0.01 
     Speckle derived e ’velocity (cm/s) -11.0 ± 2.6 -10.5 ± 3.3 0.42 
    
Right ventricular     
     RVFAC (%) 41.8 ± 4.3 40.7 ± 4.3 0.26 
     Free-wall manual GLS (%) -27.4 ± 2.5 -27.4 ± 2.9 0.94 
     Free-wall GLS (%) -27.0 ± 3.0 -27.3 ± 3.3 0.65 
     GLS (%) -24.9 ± 2.6 -24.7 ± 2.6 0.76 
     Systolic SR (%/s) -1.5 ± 0.3 -1.5 ±0.3 0.58 
     Diastolic early SR (%/s) 2.02 ± 0.42 1.78 ± 0.60 0.043 
     Speckle derived e’ velocity (cm/s) -12.3 ± 3.0 -12.7 ± 3.4 0.62 
    
Left atrial     
     Longitudinal strain     
       Atrial contraction (%) -11.2 ± 4.4 -10.8 ± 3.8 0.65 
       Conduit phase (%) 35.8 ± 9.3 35.8 ± 9.1 0.97 
       Reservoir phase (%) 47.0 ± 9.3 46.6 ± 9.3 0.82 
    
Right atrial     
     Longitudinal strain    
        Atrial contraction (%) -13.2 ± 5.3 -15.2 ± 4.2 0.056 
        Conduit phase (%) 43.0 ± 12.4 42.6 ± 14.1 0.88 
         Reservoir phase (%) 56.2 ± 13.6 57.8 ± 15.1 0.61 
    
LVEF; left ventricular ejection fraction, 2D; two-dimensional, GLS; global longitudinal strain, SR; strain 
rate, RVFAC; right ventricular fractional area change, SV; stroke volume, BSA; body surface area, LBM; 
lean body mass.  
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