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Abstract

It is well known that 0-1 knapsack problem (KP01) plays an important role in both computing theory and many real life appli-
cations. Due to its NP-hardness, lots of impressive research work has been performed on many variants of the problem. Inspired
by region partition of items, an effective hybrid algorithm based on greedy degree and expectation efficiency (GDEE) is presented
in this paper. In the proposed algorithm, initially determinate items region, candidate items region and unknown items region are
generated to direct the selection of items. A greedy degree model inspired by greedy strategy is devised to select some items as
initially determinate region. Dynamic expectation efficiency strategy is designed and used to select some other items as candidate
region, and the remaining items are regarded as unknown region. To obtain the final items to which the best profit corresponds,
static expectation efficiency strategy is proposed whilst the parallel computing method is adopted to update the objective function
value. Extensive numerical investigations based on a large number of instances are conducted. The proposed GDEE algorithm is
evaluated against chemical reaction optimization algorithm and modified discrete shuffled frog leaping algorithm. The comparative
results show that GDEE is much more effective in solving KP01 than other algorithms and that it is a promising tool for solving
combinatorial optimization problems such as resource allocation and production scheduling.

Keywords: Economics; Region partition; Greedy degree; Expectation efficiency; Parallel computing

1. Introduction

Knapsack problem (KP) is known as a well-studied combina-
torial optimization problem and it has been thoroughly studied
in the past decades. Generally speaking, KP is classified into
separable KP (SKP) in which the items can be split arbitrarily
and 0-1 KP (KP01) in which the items cannot be split. Among
them, KP01 is an important type of KP due to its NP-hardness
[1] and it offers many practical applications such as capital bud-
geting, project selection, resource allocation, cutting stock, in-
vestment decision-making, etc [2]. Therefore, more and more
researchers have paid attention to the problem of KP01 opti-
mization. Especially, Martello gave a comprehensive review
with further discussions on techniques commonly used in solv-
ing KP01 [3]. Since KP01 has been proven to be NP-hard, the
methods employed to solve KP01 have been divided into three
categories, i.e., exact methods with the exact solutions, meta-
heuristic methods and heuristic methods with the approximate
solutions.

About exact methods, some related research has been car-
ried out. In [4], dynamic programming algorithm was pro-
posed to solve KP01. And then, Rong [5] developed dynam-
ic programming algorithm according to state reduction and
Figueira [6] used many complementary dominance relation-
s to improve dynamic programming algorithm. Kolesar [7]
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proposed branch and bound algorithm to solve KP01 in 1967.
Later, Horowitz [8], Martello [9], and Pisinger [10] respective-
ly expanded branch and bound algorithm in 1974, 1981, and
1993. In [11], the procedure based on linear mathematical pro-
gramming formulation was proposed. In [12], a Lagrangian
decomposition-based algorithm was proposed. In [13], an al-
gorithm based on surrogate, Lagrangian, and continuous relax-
ations was proposed. In [14], an algorithm with a single con-
tinuous variable for KP01 was proposed. Although they can
produce the optimal solutions in solving small-scale problems,
these exact algorithms perform poorly when the scales come to
be large.

In recent decades, many computational intelligence methods
[15] have been developed and regarded as meta-heuristic algo-
rithms to solve KP01. In [16], a global harmony search algo-
rithm was proposed. In [17], Zhang proposed a harmony search
algorithm while it adopted the parallel updating strategy rather
than serial updating strategy. In [18], Kong proposed a sim-
plified binary harmony search algorithm for large scale KP01.
In [19], an algorithm based on amoeboid organism was pro-
posed by transforming the longest path into the shortest path.
In [20], a quantum-inspired artificial immune system for KP01
was proposed. In [21], an improved hybrid encoding cuckoo
search algorithm was proposed. In [22], a shuffled frog leap-
ing algorithm was proposed. In [23], a particle swarm-based
algorithm was proposed. In [24], a human learning optimiza-
tion algorithm was proposed. In [25], a DNA-based computing
method was proposed with fast parallel molecular. Although
meta-heuristics can effectively solve KP01, they have to un-
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dergo the complex iteration process and set different number
of populations with different instances. With that said, it will
increase the difficulty of solving KP01, for example, the num-
ber of populations for a certain KP01 instance is difficult to set.
Furthermore, the complex iteration process is not adapted to the
optimization of engineering problem.

It becomes increasingly popular for the computer science re-
searchers worldwide to apply heuristic techniques in the op-
timization problems [26]. Given this, there are a number of
effective heuristics for solving KP01. In [27], a hybrid differ-
ential evolution approach was studied. In [28], a polyhedral
study with disjoint cardinality constraints was proposed. In
[29], a population-based incremental learning algorithm based
on greedy strategy was presented. In [30], a chemical reaction
optimization algorithm with greedy strategy was proposed. In
[31], an efficient fully polynomial time approximate scheme for
KP01 was proposed. In [32], an iterative rounding search-based
algorithm was proposed to solve KP01. In [33], a soccer league
competition algorithm was proposed. In [34], a thermondynam-
ical selection-based discrete differential evolution method was
presented. However, they still cost the high time complexity
especially in [27], [28], [29], and [31]. Thus, an expectation
efficiency based on economical model was studied [35] and the
time complexity was O(n), which suggested the expectation ef-
ficiency model for solving KP01 is more effective compared to
other existing heuristics. In this paper, the expectation efficien-
cy will be studied by combining with greedy degree.

Although a large number of KP01s have been resolved suc-
cessfully by these existing algorithms, some new and more d-
ifficult KP01s are always hidden in the real world. Thus, the
research on KP01 should be further improved and developed.
Furthermore, especially in the industry, it usually focuses on
finding the good approximate solution rather than spending a
lot of time for the exact solution. Under this context, heuris-
tic methods for KP01 will play more important role than exact
methods and meta-heuristic methods. Given this, the heuris-
tic methods should be encouraged so that the optimization and
application of KP01 can be enhanced.

Given the above consideration, a hybrid algorithm based on
greedy degree and expectation efficiency, called GDEE, is pro-
posed which is inspired by region partition of items to solve
KP01. The main contributions of this paper are summarized as
follows. (a) A greedy degree model inspired by greedy strategy
is designed to select the first some items to put into knapsack
early and these items are never removed from knapsack in the
following operations. (b) A dynamic expectation efficiency s-
trategy is proposed to select some remaining items to put into
knapsack, meanwhile, one candidate objective function value
is obtained. (c) A static expectation efficiency strategy is also
presented as the benchmark to update the candidate objective
function value, as a result, a number of new objective func-
tion values are generated. (d) To accelerate the update speed
of objective function value, the parallel computing method is
adopted. (e) Experimental results based on a large number of
instances reveal that GDEE is correct, feasible, effective, and
stable.

The rest of this paper is organized as follows. Section 2

presents the design of GDEE in detail. In Section 3, experimen-
tal results based on a large number of instances are reported.
Finally, Section 4 concludes this paper and suggests potential
future work.

2. Design GDEE for KP01

2.1. KP01 description
Given n items, where item i owns weight wi and profit pi, and

a knapsack that holds a fixed capacity cap, the goal of KP01
is to load some possible items into knapsack so that the total
profit of the selected items has the maximal value while the total
weight of the items is not greater than cap. Mathematically,
KP01 can be described as follows.{

Maximize optp =
∑n

i=1 pixi

s.t.
∑n

i=1 wixi ≤ cap (1)

where optp means the objective function value and xi ∈ {0, 1}.
If xi is 1, item i is in knapsack; otherwise, it is not in knapsack.
Let X = (x1, x2, · · · , xn) means the solution of KP01. Thus, the
goal of KP01 is to find a possible X which maximizes optp.

2.2. Greedy degree
Let ri denote the ratio of pi and wi. In this paper, n items are

rearranged by ri in descending order in the first place, which
is also done under greedy strategy, backtracking algorithm, and
dynamic programming algorithm. Thus, the arrangement will
be executed before performing the following GDEE operations.
It is well known that greedy algorithm is applied to solve KP01
at the beginning and the obtained solution is local optimal rather
than the optimal. As a matter of fact, some items can be still
loaded into knapsack from the perspective of greedy algorithm,
in other words, the items are determinate while the remaining
items are uncertain. Based on this consideration, the determi-
nate items should be loaded into knapsack in advance and nev-
er be removed from knapsack. However, how many and which
items are determinate? To answer this question, the concept of
greedy degree is proposed as follows.
Definition 1. n items are rearranged, if the first m items can be
always loaded into knapsack by greedy strategy, and then m is
regarded as the size of greedy degree.

The objective function value, the total weight of items, and
the number of items can be obtained by greedy algorithm. Let
Goptp, GW, and Q represent them respectively, and the con-
straint conditions are shown as follows.

∑ j
i=1 wi

GW ∧

∑ j
i=1 pi

Goptp ≤ λ∑ j+1
i=1 wi

GW ∧

∑ j+1
i=1 pi

Goptp > λ∑n/2
i=1 wi+

∑ j
i=n/2+1 wi

GW ∧

∑n/2
i=1 pi+

∑ j
i=n/2+1 pi

Goptp < ξ∑n/2
i=1 wi+

∑ j+1
i=n/2+1 wi

GW ∧

∑n/2
i=1 pi+

∑ j+1
i=n/2+1 pi

Goptp ≥ ξ

(2)

where λ and ξ are parameters, λ > ξ, λ, ξ ∈ (0, 1) with setting in
real KP01s; j is the serial number of item; X∧Y ≤ Z means that
X ≤ Z and Y ≤ Z. Right after this, the greedy degree algorithm
is designed and described in Algorithm 1.
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Algorithm 1: Greedy degree algorithm
Input: W, P, n and cap
// W = (w1,w2, · · · ,wn), P = (p1, p2, · · · , pn)
Output: m
Run greedy algorithm;
Obtain Goptp, GW and Q;
while Q < n/2, do

n = n/2;
end while
while inequality (2) is met, do

m = j;
end while

In Algorithm 1, the first m items should be loaded into knap-
sack, and they constitute initially determinate region.

2.3. Dynamic expectation efficiency

The following work is to select some items from the remain-
ing n − m items as candidate region (e.g., for ten items, among
them, the first four items are loaded into knapsack in advance,
and m is four. If the optimal solution consists of eight items, the
following is to select four items from the remaining six items
as candidate region). In economics, there is a classical expec-
tation efficiency theory which was proposed in 1979 [36] and
developed in 1992 by Kahneman and Tversky [37]. It can be
applied to wide fields such as stock prediction, psychoanalysis,
live-hood economy, etc. Western economics suggests that ex-
pectation efficiency can be used to solve the uncertain problem
and the expectation results are acceptable [35]. In this paper, it
will be treated as a heuristic method to solve KP01, in which
the most basic idea is to expect the property of the next item
by that of the current item. Let f (i) represent the expectation
efficiency of item i, and it is shown as follows.

f (i) =
pi

(
cap −

∑i−1
k=1 wk

)
/wi(

cap −
∑i−1

k=1 wk

)
pi−1/wi−1

=
ri

ri−1
(3)

Here, f (i) means the potential of item i that can be loaded into
knapsack. And, the greater the item expectation efficiency value
is, the higher the possibility of the item is loaded into knapsack
is. To illustrate Eq. (3), an instance KP1 is given in Table 1.

In KP1, the first two items are loaded into knapsack early by
Algorithm 1, and m is two. Then, f (3), f (4) and f (5) can be ob-
tained by Eq. (3), and they are 0.88, 0.9680 and 0.9783 respec-
tively. Since f (5) is the greatest of all, the fifth item should be
loaded into knapsack. At last, X = (1, 1, 0, 0, 1) and optp = 92
can be obtained. With that said, Eq. (3) may be a nice model.

If p5 is 47 not 50 in KP1, then f (5) is changed to 0.9196. In
this case, f (4) is the greatest of all, and the fourth item should
be loaded into knapsack. In similar way, X = (1, 1, 0, 1, 0) and
optp = 88 can be obtained. However, the optimal solution is
still (1, 1, 0, 0, 1) and optp is 89 rather than 88. With this said,
Eq. (3) may be not a nice model.

The optimal solution of KP01 is related to n, w, p, cap, and
i, which can be seen from Eq. (1); and it is also related to r,
which can be seen from Eq. (3). Thus, a model involves the six
factors should be designed to replace Eq. (3), as follows.

f (i,w, p, r, n, cap) ∝ i,w, p, r, n, cap (4)

The following work is to make a concrete model for Eq. (4)
due to its abstraction. The remaining capacity of knapsack tend-
s to zero more and more with the item loaded into knapsack one
by one. If the item (i − 1) is in knapsack and the remaining ca-
pacity of knapsack is greater than zero, then the expectation
profit which the remaining capacity of knapsack references to
ri−1 can be obtained. Let optp

′

represent it, as follows.

pi−1

wi−1
=

optp
′

cap −
∑m

k=1 wk −
∑i−1

k=m+1 wk xk
(5)

optp
′

= ri−1

cap −
m∑

k=1

wk −

i−1∑
k=m+1

wk xk

 (6)

It is certain that optp
′

is far greater than pi. In order to bal-
ance the difference between them, let the average of optp

′

sub-
tract pi. The result is ∆p, as follows.

∆p =
ri−1

(
cap −

∑m
k=1 wk −

∑i−1
k=m+1 wk xk

)
n − i + 1

− pi (7)

Given Eqs. (5)-(7), Eq. (4) is defined as follows.

D f (i,w, p, r, n, cap) =

ri

ri−1
∗

ri−1

(
cap −

∑m
k=1 wk −

∑i−1
k=m+1 wk xk

)
− (n − i + 1)pi(

cap −
∑m

k=1 wk −
∑i−1

k=m+1 wk xk

)
− (n − i + 1)wi

,

m + 1 ≤ i ≤ n
(8)

Eq. (8) can be converted to Eq. (9) by symbolic substitution.


D f (i,w, p, r, n, cap) = f (i) ∗ Ari−1−B

A−C ,m + 1 ≤ i ≤ n
A = cap −

∑m
k=1 wk −

∑i−1
k=m+1 wk xk

B = (n − i + 1)pi

C = (n − i + 1)wi

(9)

Among them, D f (i,w, p, r, n, cap) represents dynamic expec-
tation efficiency function, A represents the remaining capaci-
ty of knapsack, Ari−1 represents expectation profit that refer-
ences to ri−1, (Ari−1 − B) represents the difference between the
average of the expectation profit and the profit of the current
item, and (A − C) represents the difference between the aver-
age of the remaining capacity of knapsack and the weight of
the current item. And, (Ari−1 − B) and (A−C) have the balance
function on Eq. (8). For Eq. (8), (n − m) dynamic expecta-
tion efficiency values can be obtained, and they are denoted by
D f (m + 1),D f (m + 2), · · · ,D f (n).

It must be noted that A should be still greater than or equal
to zero. Otherwise, some items that are from items (m + 1) to
n should be removed from knapsack in turn until A ≥ 0. Since
Ari−1 is always changing, the expectation process is dynamic.
Based on Eq. (8), the candidate region of items can be obtained,
as a result, the corresponding candidate objective function value
can be also obtained, denoted by Doptp which can be obtained
by Algorithm 2 as follows.
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Table 1: KP1 instance

cap n optp wi pi ri X
50 5 92 (5,15,25,27,30) (12,30,44,46,50) (2.4,2.1,1.76,1.803,1.6667) (1,1,0,0,1)

Algorithm 2: Dynamic expectation efficiency algorithm
Input: W, P, n, m and cap
Output: Doptp
Initially: xk = 1, 1 ≤ k ≤ n
for k = m + 1 to n, do

Obtain dynamic expectation efficiency values by Eq. (8);
while A < 0, do

D f (l) = min{D f (m + 1),D f (m + 2), · · · ,D f (k)};
xl = 0,m + 1 ≤ l ≤ k;
D f (l) = min{{D f (m + 1),D f (m + 2), · · · ,D f (k)}/D f (l)};
//{X,Y,Z}/X means that X is removed from {X,Y,Z}

end while
Obtain dynamic expectation efficiency values by Eq. (8);
if A == 0, then

End Algorithm 2; Break;
end if

end for
for s = m + 1 to n, do

if xs == 1, then
Select D f (s) and item s;
Arrange D f (m + 1),D f (m + 2), · · · ,D f (s) in descending order;

else
D f (s) = 0;

end if
end for
for j = 1 to τ, do
//τ is the number of items loaded into knapsack from item m + 1 to item n

Put item that owes the greater D f into knapsack;
Doptp = Moptp + the profit of the current item;

end for

In Algorithm 2, some items from (m + 1) to n are selected
as the candidate region, at the same time, the unknown region
is also accomplished. If the candidate region contains u items,
then the unknown region contains (n − m − u) items.

2.4. Static expectation efficiency

Doptp by Algorithm 2 cannot be regarded as the best profit,
and thus a static expectation efficiency model will be proposed
to update it. At first, the range of the best profit is presented and
shown in Theorem 1.
Theorem 1. Let Uoptp = Goptp + pQ+1, and the best profit is
in [Goptp,Uoptp).
Proof: Reduction to absurdity for the proof is adopted.

(a) Goptp is one objective function value by greedy algorith-
m. It’s obvious that it is less than or equal to the best profit.

(b)Suppose the best profit is equal to Uoptp. The item (Q +

1) should be loaded into knapsack when greedy algorithm is
run, and Goptp should be equal to Uoptp, which conflicts with
Uoptp = Goptp + pQ+1.

(c) Suppose the best profit is greater than Uoptp. In similar
way, the item (Q + 1) should be loaded into knapsack when
greedy algorithm is run. It’s obvious that Goptp ≥ Uoptp,
which also conflicts with Uoptp = Goptp + pQ+1.

To sum up (a)-(c), Theorem 1 is proved.
In Section 2.3, the dynamic expectation efficiency model has

been introduced, in which Ari−1 is always changing in Eq. (8)
when expectation efficiency value is computed. Doptp is one
candidate objective function value and that Doptp is equal to
the best profit is uncertain, hence it needs to be updated. Given

this, one static expectation efficiency model is proposed which
is inspired by keeping Ari−1 unchanged in Eq. (8), and it is
defined as follows.

S f (i,w, p, r, n, cap, t) =

ri

ri−1
∗

(
optp(t) −

∑m
k=1 wk −

∑i−1
k=m+1 wk xk

)
− (n − i + 1)pi(

cap −
∑m

k=1 wk −
∑i−1

k=m+1 wk xk

)
− (n − i + 1)wi

,

m + 1 ≤ i ≤ n
(10)

where S f (i,w, p, r, n, cap, t) represents static expectation effi-
ciency function, and optp(t) is defined as follows.

optp(t) = Doptp + t (11)

The best profit is in [Goptp,Uoptp) according to Theorem
1. And because the updating process of objective function val-
ue should provide the good efficiency, the objective function
value that will be obtained by static expectation efficiency mod-
el shouldn’t be less than Doptp. Based on this, the constraint
conditions are shown as follows.

{
Doptp ≤ optp(t) < Uoptp, Doptp < Goptp
Goptp ≤ optp(t) < Uoptp, Doptp ≥ Goptp (12)

Let Eq. (11) be into inequality (12), as follows.

{
0 ≤ t < Uoptp − Doptp, Doptp < Goptp
Goptp − Doptp ≤ t < Uoptp − Doptp, Doptp ≥ Goptp

(13)
where t is a positive integer variable. Let it be into Eq. (10) and
Eq. (11) with one step length, and many new objective function
values will be obtained (please see section 2.5 for more details).
If t keeps unchanged, then optp(t) is certain.

For one new objective function value, denoted by NS optp, it
can be obtained by static expectation efficiency model, mean-
while, (n − m) static expectation efficiency values can be ob-
tained, denoted by S f (m + 1), S f (m + 2), · · · , S f (n). Based on
the above, NS optp can be obtained by Algorithm 3 as follows.

Algorithm 3: Static expectation efficiency algorithm
/*
The principle of Algorithm 3 is similar to Algorithm 2.
The differences are summarized as (a) the running equation and (b) the checking
constraint condition.
(a) Eq. (8) is run in Algorithm 2, and Eq. (10) is run in Algorithm 3.
(b) A is checked in Algorithm 2, and T is checked in Algorithm 3.
*/

T is shown as follows.

T = optp(t) −
m∑

k=1

wk −

i−1∑
k=m+1

wk xk (14)
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1

Algorithm 3

2

Algorithm 3

N

Algorithm 3
NSoptp(0) NSoptp(1) NSoptp(N-1)

Serial Method

Parallel Method

1

Algorithm 3

NSoptp(0)

2

Algorithm 3

NSoptp(1)

N

Algorithm 3

NSoptp(N-1)

Figure 1: Process of updating objective function value with the serial method
and the parallel method, where one output for the former and N outputs for the
latter per running Algorithm 3.

In Algorithm 3, one new objective function value can be ob-
tained to replace candidate objective function value by Algo-
rithm 2.

2.5. Parallel computing
A number of new objective function values can be obtained

when t changes. The number of new objective function values
is denoted by N, and it is shown as follows.

N =

{
Uoptp − Doptp, Doptp < Goptp
Uoptp −Goptp, Doptp ≥ Goptp (15)

If these new objective function values are computed with the
serial method, then a lot of time will be cost. Thus, the parallel
computing method is adopted in this paper. In other words, the
candidate objective function value is updated by Algorithm 3
with different t synchronously. The process of updating objec-
tive function value with the serial method and parallel method
are depicted in Figure 1, where the update of objective function
value is accomplished with the serial way by N rounds while
that is accomplished with the parallel way by one round.

If Doptp < Goptp, then N new objective function values
are NS optp(0),NS optp(1), · · · ,NS optp(Uoptp−Doptp−1).
The best profit is denoted by Boptp, and it can be obtained by
Eq.(16). If Doptp ≥ Goptp, then N new objective function val-
ues are NS optp(0),NS optp(1), · · · ,NS optp(Uoptp−Goptp−
1), and Boptp can be obtained by Eq. (17).

Boptp = max
{
Doptp, u|u ∈ {NS optp(t), 0 ≤ t < Uoptp−Doptp}

}
(16)

Boptp = max
{
Doptp, u|u ∈ {NS optp(t), 0 ≤ t < Uoptp−Goptp}

}
(17)

If lu items can be loaded into knapsack by updating the can-
didate objective function value, then the finally determinate re-
gion can be accomplished, which contains (m + lu) items.

According to the above statements, the process of GDEE for
solving KP01 is depicted in Figure 2. Specifically, at first, n
items are rearranged by the ratio of profit and weight in de-
scending order. Secondly, the greedy degree model is used
to load the first m items into knapsack and they are not nev-
er removed from knapsack. Thirdly, the dynamic expectation

Rearrangement

n items

Greedy degree model

Dynamic expectation 

efficiency model

m items

Initially determinate items region

n-m items

m items u items n-u-m items

Candidate items region Unknown items region

Static expectation 

efficiency model

m items

Finally determinate items region

Parallel computing

lu items n-lu-m items

lu+m items

Figure 2: Process of GDEE for solving KP01 in this paper

efficiency strategy is used to load u items from the remaining
(n − m) items into knapsack and the last remaining (n − u − m)
items are regarded as unknown items region. Fourthly, the
static expectation efficiency model with the parallel comput-
ing method is used to update the candidate objective function
value and lu items are loaded into knapsack. At last, the first m
items and the determined lu items constitute finally determinate
region. The process can be described in Algorithm 4 as follows.

Algorithm 4: GDEE algorithm
Input: W, P, n and cap
Output: Boptp
Run Algorithm 1;
Obtain m;
Run Algorithm 2;
Obtain Doptp;
Run Algorithm 3 by parallel method;
if Doptp < Goptp, then

Obtain Boptp by Eq. (16);
else

Obtain Boptp by Eq. (17);
end if

2.6. Computational complexity analysis of GDEE

2.6.1. Time complexity analysis
Theorem 2. Algorithm 1 runs in O(n).
Proof: Algorithm 1 consists of three parts, i.e., running greedy
algorithm, checking whether Q < n/2 is met or not, and check-
ing whether inequality (2) is met or not. As far as we know,
greedy algorithm and the third part both run in O(n). About the
second part, n/2 items need to be searched when it begins to
be run, and then n/4 items need to be searched. By that analo-
gy, n/2k items need to be searched in the end. Right now, it is
k − th round search. Here, n/2k is a positive integer, according
to the definition of lower limit function, inequalities are shown
as follows.
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1 ≤ n/2k < 2 (18)

(log2n) − 1 < k ≤ log2n (19)

As can be seen from inequality (19), the second part runs in
O(logn). Since the three parts work in serial way, Algorithm 1
runs in O(n) . To sum up, Theorem 2 is proved.
Theorem 3. Algorithm 2 runs in O(n).
Proof: The number of Eq. (8) is run in the dynamic expectation
efficiency model is (n − m), and thus this part runs in O(n). In
similar way, the other parts run in O(n). There is no doubt that
Algorithm 2 runs in O(n).
Theorem 4. Algorithm 3 runs in O(n).
Proof: The proof is similar to Theorem 3 since the principle of
Algorithm 3 is similar to Algorithm 2.
Theorem 5. GDEE runs in O(n).
Proof: GDEE consists of four parts, i.e., running Algorithm 1,
running Algorithm 2, running Algorithm 3, and selecting Boptp
as the best profit by Eq. (16) or (17). Algorithms 1, 2 and 3
all run in O(n) which can be found by Theorems 2, 3 and 4
respectively. In terms of part four, it needs to search (Uoptp −
Doptp) or (Uoptp − Goptp) elements when Boptp is selected
as the best profit, and thus this part runs in O(n). Since they
work in serial way, GDEE also runs in O(n).

2.6.2. Space complexity analysis
Theorem 6. Space complexity of GDEE is in O(n2).
Proof: At first, let the candidate objective function value Doptp
be into static expectation efficiency model, (n−m) static expec-
tation efficiency values are obtained by Eq. (10). And then, to
use the method of parallel computing, N new objective func-
tion values will be generated by Eq. (15). In total, N ∗ (n − m)
static expectation efficiency values are emerged, which needs
N ∗ (n − m) space to store. Besides, N = Uoptp − Doptp or
N = Uoptp −Goptp by Eq. (15), it keeps the same level with
n (i.e., N = n + ν, ν is a constant). In conclusion, the space
complexity of GDEE is O(n2).

3. Experimental results and analysis

In this section, the performance of GDEE is extensively in-
vestigated by a large number of experimental studies with con-
sidering running time, best profit, worst profit, and the size
of storage space as the indexes of performance evaluation. S-
ince correctness, feasibility, effectiveness, and stability are very
important for evaluating the performance of GDEE [38], four
groups of simulation experiments according to sixty-five KP01
instances are presented. Firstly, a numerical instance is given
to illustrate the computation process and correctness of GDEE.
Secondly, fifteen instances are tested to demonstrate the fea-
sibility of GDEE. Thirdly, GDEE is compared with chem-
ical reaction optimization algorithm with greedy strategy in
[30] called CROG in this paper and modified discrete shuf-
fled frog leaping algorithm in [22] called MDSFL according
to five instances to show the effectiveness of GDEE. Finally,
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Figure 3: Detailed changing process of objective function value for KP2

GDEE is run on different test case libraries with forty-four in-
stances to reveal the stability of GDEE. The simulation exper-
iments are conducted with VC++ 6.0 in Intel (R) Core(TM)
i7, 2.93GHZ CPU, 4G RAM. Simulation parameters are set as
follows: λ = 0.7 and ξ = 0.5.

3.1. Significant test

3.1.1. Numerical instance for correctness test
Given one instance KP2: cap = 620, n = 20, W =(22,36,32,

18,35,26,44,50,45,44,48,50,12,52,24,52,60,28,55,38), P =(56,
60,48,25,72,40,55,55,50,37,30,48,18,78,30,60,45,35,70,48).
The process of obtaining the best profit is presented as follows.
Step1: Rearrange 20 items. W =(22,35,36,26,12,32,52,18,55,
38,28,24,44,52,45,50,50,44,60,48), P =(56,72,60,40,18,48,78,
25,70,48,35,30,55,60,50,55,48,37,45,30).
Step2: Run Algorithm 1. Goptp = 848, GW = 619, Q = 17,
and m = 10.
Step3: Run Algorithm 2. Doptp = 848.
Step4: Compute the range of the best profit according to The-
orem 1. Uoptp = 885 and Doptp = Goptp = 848, and then
optp(t) ∈ [848, 885).
Step5: Obtain some new objective function values by parallel
computing method. Let optp(t) be into Eq. (10), and 37 new
objective function values are 848, 849, · · · , 884 respectively.
Step6: Obtain the best profit by Eq. (17) since Doptp = Goptp
=848 in Step4. Boptp=max{848,NS optp(0),NS optp(1), · · · ,
NS optp(36)} =848.

For KP2, the best profit is 848, and the detailed changing
process of objective function value is depicted in Figure 3.

In Figure 3, the best profit can be obtained after 17 iterations.
At the beginning, the objective function value is 515, which is
the total profit of the first ten items. It keeps unchanged from
the first iteration to 10th iteration since the size of greedy degree
is ten. And then, dynamic expectation efficiency model, static
efficiency model, and parallel computing method are run, and
thus the objective function value begins to increase from the
11th iteration. In this process, the determinate items are loaded
into knapsack one by one.
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Figure 4: Detailed changing process of objective function value for f2

3.1.2. Feasibility test
To demonstrate the feasibility of GDEE, fifteen instances

from the Standard Test Case Libraries (STCL) of KP01 are giv-
en, and the sizes of items are 5, 8, 10, 10, 20, 23, 50, 50, 80,
80, 100, 100, 100, 200, and 200 respectively. The experimental
results are composed of five indexes, i.e., the number of paral-
lel update, best profit, worst profit, the size of storage space and
running time, and they are shown in Table 2.

As can be seen in Table 2, a number of useful conclusions
are presented as follows. (a) GDEE can solve KP01 and obtain
the best profit. (b) Although it requires a lot of storage space
to place the expectation efficiency values, the memory is cheap
nowadays, which can be usually accepted by individuals and
enterprises. (c) The running time increases with the increasing
of number of items because it requires processing more items
with spending much time in general. (d) The number of items
is not proportional to the size of storage space since it is deter-
mined by the upper bound of the total profit (Uoptp) and the
number of items. (e) For some KP01s (e.g., KP4 and KP5), al-
though their number of items are same, they have the different
best profits since the best profit is determined by six factors (see
Eq. (4) for more details). In short, the given fifteen instances
can demonstrate the feasibility of GDEE.

3.2. Comparison among three algorithms

3.2.1. Effectiveness test
To further demonstrate the effectiveness of GDEE, it is com-

pared with CROG and MDSFL including best profit, worst
profit, difference between best profit and worst profit, popula-
tion size/the number of parallel update (PS/NPU, i.e., PS and
NPU are equivalent), and running time according to five in-
stances which are from Table 1 in [22]. Comparison results
among three algorithms are shown in Table 3, and the detailed
changing process of the objective function value for f2, f4, f6,
f8 and f10 are shown in Figures 4-8 respectively.

In Table 3, CROG obtains the best profit by setting PS for
20; MDSFL obtains the best profit by setting PS for 200; and
GDEE obtains the best profit by setting NPU for 11, 8, 15, 486,
and 11 respectively.

In Figure 4, the objective function value of CROG increases
in stages and it begins to change on the 12th , 19th, and 40th

iteration, and the best profit can be obtained on the 40th iter-
ation; one of MDSFL increases continually in early stage and
keeps unchanged from the 7th to 58th iteration, and the best
profit can be obtained on the 59th iteration; one of GDEE keeps
unchanged in early stage from the first iteration to 10th itera-
tion and begins to increase continually until the best profit can
be obtained on the 17th iteration.

In Figure 5, the objective function value of CROG increases
in stages and it begins to change on the 6th and 9th iteration; one
of MDSFL obtains the best profit only by one iteration; one of
GDEE keeps unchanged on the first four iterations and begins
to increase continually until the best profit can be obtained on
the 6th iteration.

In Figure 6, the objective function value of CROG increas-
es in stages and it begins to change on the 4th, 9th, 11th, and
15th iteration, and the best profit can be obtained on the 15th
iteration; one of MDSFL obtains the best profit only by one
iteration; one of GDEE keeps unchanged on the first five itera-
tions and begins to increase continually until the best profit can
be obtained on the 7th iteration.

In Figure 7, the objective function value of CROG increas-
es in stages and it begins to change on the 6th, 14th, 17th, and
27th iteration, and the best profit can be obtained on the 27th
iteration; one of MDSFL also increases in stages and it begins
to change on the 9th and 22th iteration; one of GDEE keeps
unchanged on the first seven iterations and begins to increase
continually until the best profit can be obtained on the 13th it-
eration.

In Figure 8, the objective function value of CROG increases
in stages and it begins to change on the 12th, 20th, and 41th it-
eration, and the best profit can be obtained on the 41th iteration;
one of MDSFL increases continually in early stage from first it-
eration to 16th iteration and increases in stages from the 17th to
53th iteration, and the best profit can be obtained on the 53th it-
eration; one of GDEE keeps unchanged in early stage from the
first iteration to 10th iteration and begins to increase continually
until the best profit can be obtained on the 17th iteration.

As can be seen in Table 3 and Figures 4-8, some conclusion-
s can be further presented as follows. (a) The best profit and
the optimal solution can be obtained by CROG, MDSFL and
GDEE. (b) Only for f4 and f6, MDSFL has the fastest conver-
gence speed, but GDEE is still superior to CROG. (c) For f2, f8
and f10, GDEE has faster convergence speed than CROG and
MDSFL. (d) From the perspective of difference between best
profit and worst profit, GDEE and MDSFL have better perfor-
mance compared to CROG. (e) In terms of PS/NPU, for f2, f4,
f6 and f10, GDEE requires less NPU than CROG and MDSFL.
(f) From the perspective of running time, for f4 and f6, MDS-
FL spends less time in solving KP01 while GDEE spends less
time in solving KP01 except f4 and f6. In summary, in compar-
ison with a heuristic algorithm and a computational intelligence
algorithm, GDEE is more effective.

3.2.2. Stability test
To demonstrate the stability of GDEE, three STCLs are con-

sidered for comparing CROG, MDSFL and GDEE. STCL1 is
from [22] with 10 instances and the sizes of items are 10,
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Table 2: Test instances for demonstrating feasibility

Instances Items cap NPU Best profit Worst profit The size of storage space Running time(ms)
KP2 5 100 87 133 114 174 26.3015
KP3 8 200 6 334 334 12 26.3234
KP4 10 269 15 295 294 30 27.5272
KP5 10 300 59 388 388 177 28.2806
KP6 20 878 35 1024 1018 245 29.4753
KP7 23 10000 486 9767 9767 972 29.4961
KP8 50 300 11 1063 1060 88 31.0254
KP9 50 500 34 1153 1145 204 31.0108
KP10 80 800 16 2085 2085 112 32.7726
KP11 80 1000 13 2337 2334 65 32.4819
KP12 100 1000 24 2614 2613 240 33.9043
KP13 100 1000 15 2558 2558 225 35.6462
KP14 100 1000 43 2617 2610 860 37.3527
KP15 200 2000 20 5097 5089 760 40.2658
KP16 200 2000 26 5185 5185 494 39.7635

Table 3: Comparison results among GDEE, CROG, and MDSFL under five instances

Instances Algorithms Best profit Worst profit Difference PS/NPU Running time(ms)
CROG 1024 1018 6 20 36.1007

f2 MDSFL 1024 1018 6 200 38.6534
GDEE 1024 1018 6 11 29.4753
CROG 23 16 7 20 29.7146

f4 MDSFL 23 23 0 200 19.3600
GDEE 23 22 1 8 26.2014
CROG 52 50 2 20 30.9173

f6 MDSFL 52 52 0 200 20.4812
GDEE 52 52 0 15 27.3208
CROG 9767 9765 2 20 34.6059

f8 MDSFL 9767 9767 0 200 31.5554
GDEE 9767 9767 0 486 29.4961
CROG 1025 1019 6 20 36.2556

f10 MDSFL 1025 1019 6 200 37.8395
GDEE 1025 1019 6 11 29.4768
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Figure 5: Detailed changing process of objective function value for f4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18

22

26

30

34

38

42

46

50

54

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

 

 

MDSFL
CROG
GDEE

Figure 6: Detailed changing process of objective function value for f6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 2930
4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

 

 

MDSFL
CROG
GDEE

Figure 7: Detailed changing process of objective function value for f8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55
500

550

600

650

700

750

800

850

900

950

1000

1050

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

 

 

MDSFL
CROG
GDEE

Figure 8: Detailed changing process of objective function value for f10

8



Table 4: Comparison results among GDEE, CROG, and MDSFL under three
STCLs

STCLs Numbers Algorithms Average running time(ms) Correct rate
CROG 34.5615 100%

STCL1 10 MDSFL 25.4783 100%
GDEE 27.2467 100%
CROG 38.9465 100%

STCL2 20 MDSFL 41.7808 100%
GDEE 29.3354 100%
CROG 60.5491 100%

STCL3 14 MDSFL 37.4324 100%
GDEE 35.6918 100%

20, 4, 4, 15, 10, 7, 23, 5, and 20 respectively; STCL2 is
from http://lvjianhui.lingw.net/article-6224551-1.html with 20
instances and the sizes of items are all 20; and STCL3 is
from http://lvjianhui.lingw.net/article-6224553-1.html with 14
instances and the sizes of items are 50, 50, 80, 80, 100, 100,
100, 100, 100, 100, 100, 200, 200, and 200 respectively. Com-
paring CROG, MDSFL and GDEE, and the experimental result-
s including average running time and correct rate (i.e., whether
the KP01 can be solved or not) are shown in Table 4.

As can be seen in Table 4, about STCL1, the average run-
ning time of CROG is the largest while that of MDSFL is the
smallest. About STCL2, the average running time of MDSFL is
the largest while that of GDEE is the smallest. About STCL3,
the average running time of CROG is the largest while that of
GDEE is the smallest. In terms of the 44 instances from differ-
ent STCLs, CROG, MDSFL and GDEE can all solve KP01 and
obtain the best profit (the correct rate is 100%), which suggests
that GDEE has a relative stability.

4. Conclusions and future work

KP01 has been widely applied in the real world applications
such as capital budgeting, project selection, resource allocation,
investment decision-making, etc. In this paper, a new hybrid
heuristic algorithm based on greedy degree and expectation,
called GDEE, is proposed for solving KP01. In the proposed
GDEE, greedy degree model is presented to put the first some
items into knapsack early. Furthermore, two expectation effi-
ciency models are designed to generate the objective function
value from the remaining items. Moreover, the parallel comput-
ing method is adopted to accelerate the update speed of objec-
tive function value. In addition, the time complexity of GDEE
is analyzed and it runs in O(n), which is appreciable. The s-
pace complexity of GDEE is also analyzed and it runs in O(n2),
which is acceptable due to the cheap memory nowadays. The
performance of GDEE is extensively investigated through a lot
of instances in four groups of experiments, where one instance,
fifteen instances, five instances and three STCLs demonstrate it-
s correctness, feasibility, effectiveness, and stability respective-
ly, which demonstrates the proposal of GDEE is a promising
tool for solving combinatorial optimizations such as resource
allocation and production scheduling.

Based on the whole in-depth study, the proposed GEDD has
some distinguished advantages summarized as (a) the lower

time complexity compared to other existing algorithms; (b) the
fast convergence speed with parallel computing way instead of
serial computing way; and (c) simple and comprehensible com-
putation process without the complex iterations. Furthermore,
GDEE has a potential for solving any KP01, and it may also
be used to solve multiple-objective KP01 and other combinato-
rial optimization problems like resource allocation in different
fields, production scheduling in industry, etc.

However, GDEE also has two limitations as follows. On one
hand, it has the higher space complexity due to the parallel com-
puting. On the other hand, it relies on greedy degree model too
much, in which once the size of greedy degree is inaccurate, the
optimal solution is hard to capture. Thus, as a new algorithm,
GDEE needs to be further studied and improved. The future
work can be carried out in the following directions. Firstly, a
better model than greedy degree model in this paper should be
designed to put some items into knapsack in advance. And then,
both dynamic and static expectation efficiency models need to
be modified to increase the convergence speed of the optimal
solution. Last but not least, GDEE is expected to solve the real
engineering problems such as resource allocation in cloud com-
puting and job scheduling in industry to expand and enhance
the application of GDEE. In total, GDEE is a hybrid and novel
approach for solving KP01, and it can provide some valuable
rationale for the optimization research of KP01.
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