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Joint Bayesian Modeling of Binomial and

Rank Data for Primate Cognition

Abstract

In recent years, substantial effort has been devoted to methods for

analyzing data containing mixed response types, but such techniques

typically do not include rank data among the response types. Some

unique challenges exist in analyzing rank data, particularly when ties

are prevalent. We present techniques for jointly modeling binomial

and rank data using Bayesian latent variable models. We apply these

techniques to compare the cognitive abilities of non-human primates

based on their performance on 17 cognitive tasks scored on either a

rank or binomial scale. In order to jointly model the rank and bino-

mial responses, we assume that responses are implicitly determined

by latent cognitive abilities. We then model the latent variables using

random effects models, with identifying restrictions chosen to promote

parsimonious prior specification and model inferences. Results from

the primate cognitive data are presented to illustrate the methodol-

ogy. Our results suggest that the ordering of the cognitive abilities
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of species varies significantly across tasks, suggesting a partially inde-

pendent evolution of cognitive abilities in primates.

Key phrases: mixed response; latent performance; interanimal

variability.

1 Introduction

The motivation for the methodology presented in this paper arises from a

study of the cognitive abilities of non-human primates in a variety of cog-

nitive tasks, or assessments. Test data were collected from a number of re-

search groups on 99 primates from seven distinct species: chimpanzees (Pan

troglodytes), bonobos (Pan paniscus), gorillas (Gorilla gorilla), orangutans

(Pongo abelii), spider monkeys (Ateles geoffroyi), brown capuchin monkeys

(Sapajus apella), and long-tailed macaques (Macaca fascicularis). Seventeen

types of assessment were studied, and according to existing literature each

assessment was categorized as measuring one of four intelligence domains:

inhibition (I), memory (M), transposition (T), and support (S). Most assess-

ments were summarized as the percentage of correct trials and were therefore

considered to represent a binomial response. However, two assessments were

summarized as the ratio of the proportion of correct responses under experi-

mental to control conditions, while a third assessment measured how long an

individual was able to delay a particular response. Because the distribution

of responses for these three assessments were highly irregular, a rank trans-
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Table 1: The 17 assessments used for studying primate intelligence. Detailed
information on all assessments is available in Amici et al. (2012)

No. Assessment Description Modeled Domain
1 A not B (1 trials exp., 1 control) Rank Inhibition
2 Middle Cup (2 trials exp., control) Rank Inhibition
3 Plexiglas (2 trials) Binomial Inhibition
4 Delay Gratification Rank Inhibition
5 Swing Door (10 trials) Binomial Inhibition
6 Memory Task 30 Seconds (3 trials) Binomial Memory
7 Memory Task 30 Minutes (3 trials) Binomial Memory
8 Transposition Single Condition (2 trials) Binomial Transposition
9 Transposition Double Condition (2 trials) Binomial Transposition
10 Transposition Reversed Condition (1 trial) Binomial Transposition
11 Transposition Unbaited Condition (1 trial) Binomial Transposition
12 Support Cloth Side (6 trials) Binomial Support
13 Support Cloth Ripped (6 trials) Binomial Support
14 Support Cloth Bridge (6 trials) Binomial Support
15 Support Wool Broken (6 trials) Binomial Support
16 Support Wool Onto (6 trials) Binomial Support
17 Support Wool Touch (6 trials) Binomial Support

formation of the original responses were applied to data from these tests.

Thus, each of the 17 assessments was considered to have either a binomial

or a rank response. Table 1 contains the classifications used for each assess-

ment’s response type and domain. We note that none of the animals were

tested in all 17 assessments.

We had two primary goals in analyzing these data. First, we were inter-

ested in determining whether and to what extent species-level and individual-

level effects might explain performance across assessments. Answering this
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question is important for understanding whether differences in cognitive per-

formance are better explained in terms of inter-individual differences, or

whether different primate species have different cognitive abilities. Second,

we wanted to know if these effects were broadly applicable across all assess-

ments or whether the effects were domain-specific. Answering this question

provides insight into whether the primate mind consists of specialized and

independently evolving cognitive modules, or whether a a general factor ac-

counts for the variance in performance across the different cognitive domains.

Evidence of domain-specific factors would provide support for the idea that

specific cognitive skills evolve independently, possibly in response to specific

socio-ecological demands (see Amici et al. 2012; Banerjee et al. 2009).

Full details of the data collection process, historical context, and a sum-

mary of results are contained in Amici et al. (2012). We restrict attention

herein to those issues most pertinent towards the statistical methodology

used to analyze these data. That is, we focus here on techniques for the joint

analysis of rank and binomial response data. This framework may be broadly

applied by recognizing that any outcome may be transformed to rank data.

In particular, it may be advantageous for continuous outcomes with severe

skewness or outliers to be converted to rank data, while binomial outcomes

may be left unchanged so as to not lose information.

Our methodology relies on data augmentation (Tanner and Wong, 1987)

and the introduction of latent variables to represent each individual’s (pos-

sibly domain-specific) cognitive abililty. Our latent variable formulation is
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similar to that proposed for binomial and ordinal data by Albert and Chib

(1993), and for multi-rater rank data by Johnson et al. (2002). In the con-

text of a binary response, for example, an observed value yi may be viewed

as an indicator of whether or not a corresponding latent variable zi exceeds

a threshold parameter. Albert and Chib (1993) demonstrated that the zi’s

themselves can be readily modeled in a Bayesian framework to allow depen-

dence on covariates.

While much attention has been given to Bayesian latent variable models

for Bernoulli responses, less attention has been devoted to corresponding

models for rank data. Hoff (2007) used ranks to estimate copula, thereby

allowing the marginal distributions in multivariate data to be unspecified

while still modeling dependence. Murray et al. (2013) built on Hoff (2007)

by forming a Gaussian copula factor model to jointly handle rank response

and other response types. While these approaches permit ties by considering

the data to be only partially ordered, they do not provide a model for the

probability that two outcomes will be tied. Johnson et al. (2002) introduced

a model for primate cognition based only on rank data, and they explicitly

modeled the probability that any two given observations were tied. The key

features of this strategy are (1) that the ordering of the latent variables must

be consistent with the ordering of the observed outcomes, and (2) that the

probability two individuals k and k′ have a tied response is determined by
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the proximity of the latent variables:

Pr(yk = yk′ |zk, zk′ , κ) = exp(−|zk − zk′ |/κ).

Dunson (2000), Gueorguieva and Agresti (2001), and Gruhl et al. (2013),

among others, have used latent variable models to model multivariate ob-

servations with mixed response types. Many authors have jointly modeled

ordinal and continuous data in a Bayesian framework with data augmen-

tation (e.g., Quinn 2004; Fahrmeir and Raach 2007). Existing techniques,

however, do not deal explicitly with modeling rank data in conjunction with

other types of responses while modeling the probability of ties in the rank

data. In the next section, we show that there is a natural data augmentation

approach that allows us to jointly model rank and binomial data with ran-

dom effects models. This approach facilitates prior specification and model

interpretation because of our choice for the identifying constraint. Further-

more, our approach presents no excessive computational burden when tied

ranks are prevalent—a recognized hurdle (Johnson et al. 2002) faced by some

other approaches to rank data.

2 Methodology

We build upon the previous latent variable models to specify our joint distri-

bution on rank and binomial data. Sections 2.1–2.3 describe the likelihood
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function and prior distributions proposed in our model framework. Sec-

tion 2.4 briefly outlines a Metropolis-within-Gibbs MCMC algorithm that

may be used for inference on the posterior distribution; further details on

the algorithm appear in the supplementary materials.

2.1 Model Specification

Suppose that data are collected from I subjects. Suppose also that data are

available from J distinct assessments, with each assessment having either a

binomial outcome or a rank outcome. If assessment j has a binomial outcome,

let Tj denote the number of trials for the outcome; if assessment j has a rank

outcome define Tj ≡ 1. Then the response data can be characterized as a

collection of yijt values with i = 1, . . . , I for the subject number, j = 1, . . . , J

for the assessment number, and t = 1, . . . , Tj for the trial number. When

referring to rank assessments, the t subscript may be omitted (i.e., yij instead

of yijt). Rank data are assumed to be ordered so that higher values of yij

reflect better performance. Similarly, a binary outcome of 1 represents higher

functioning.

In order to distinguish assessments involving ranks from those involving

binomial outcomes, let B(j) = 1 if assessment j has a binomial response and

B(j) = 0 if it has a rank response. Furthermore, for each assessment j such

that B(j) = 0, let C(j) be the number of animals that participated in that

assessment. We assume that the selection of animals for participation in each

experiment was based on logistical considerations (e.g., which animals were
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available for and cooperative in testing) and was unrelated to the difficulty

and nature of the assessment mechanism.

2.2 Likelihood

For each observed outcome yijt we associate a latent variable zijt. Given

these latent variables and all other model parameters, we assume that all

observations are conditionally independent. For each Bernoulli outcome, we

assume that yijt = 1 if and only if zijt > τj, where τj represents a discrimi-

nation parameter for assessment j. For rank data, we assume that yij > ykj

only if zij > zkj.

To handle ties in rank data, let y(i),j denote the ordered rank statistics

for experiment j. Then we define p(ij)(κj) to be the probability of observing

the tie status of the i and (i+ 1)’st order statistics. That is,

p(ij)(κj) =


exp(−(z(i+1),j − z(i),j)/κj) if y(i+1),j = y(i),j

1− exp(−(z(i+1),j − z(i),j)/κj) if y(i+1),j > y(i),j.

(1)

Note that Equation (1) differs from the formulation in Johnson et al. (2002)

in that it uses an assessment-specific value of κ and therefore is appropriate

when the proportion of ties is different across assessments. The incorpora-

tion of assessment-specific values of κ also has important implications for

modeling rank data when there are large differences in the number of items
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ranked under different assessments, and in particular when large numbers of

items are ranked simultaneously. In such cases, small values of κ account

for situations in which few ties are recorded, whereas more moderate val-

ues of κ reflect the case in which the central portion of the distribution of

ranked items are difficult to distinguish, and many more mid-range items

are assigned tied values than are the extreme items. This pattern of ties

is consistent with a latent distribution of ties that is unimodal, whereas a

disproportionate number of ties in the extremes of the ranked values suggests

a multimodal distribution of latent traits or some other model deficiency.

Finally, let wijt = 1 if Yijt is observed and 0 otherwise, with the convention

that 00 = 1.

With this notation and modeling assumptions, the likelihood function for

the combined rank and binomial data can be written as

f(y|z, τ ,κ) =

 ∏
j:B(j)=1

I∏
i=1

Tj∏
t=1

(1({yijt = 0 ∩ zijt ≤ τj} ∪ {yijt = 1 ∩ zijt > τj}))wijt


×

 ∏
j:B(j)=0

C(j)−1∏
i=1

p(ij)(κj)

 I∏
i=1

∏
i′:zi′j<zij

(1(yi′j ≤ yij))
wijwi′j


(2)

The first part of the likelihood is for binomial data (Albert and Chib 1993)

and the second is for rank data (see Johnson et al. 2002). This novel com-

bination of likelihoods for these two response types is significant because
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it means both rank response and binomial response data depend on latent

variables that can be modeled in a common framework.

2.3 Hierarchical Model Priors

In Section 2.2 we specified the likelihood distribution and modeled its de-

pendence on several parameters and latent variables. In order to complete

the model framework, we now describe the prior distribution of the latent

variables and parameters, focusing first on the latent variables.

As others have noted for rank data and binomial data separately, the

latent variables z must have their location and scale established through

informative priors or constraints because the model likelihood is invariant to

location and scale transformations of these unobserved quantities. Various

possibilities exist to ensure identifiability. Among these options, we feel that

it is preferable to specify the model so that all latent variables have the same

marginal mean and variance under the prior distribution. This facilitates the

interpretation and comparison of model parameters.

To illustrate our proposed scaling, suppose there are P random effects,

and the pth random effect has Lp levels. Let up,l(p,i,j) represent the pth random

effect at level l, where the level l can depend on the random effect, subject,

assessment, or some combination thereof. With this notation, we assume

that

zijt =
P∑
p=1

up,l(p,i,j) + εijt (3)
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We further assume that ε|σ2
ε ∼ N(0, σ2

ε I), that up|σ2
u,p ∼ N(0, σ2

u,pI) for

p = 1, 2, . . . , P , and that all random effects and error terms are conditionally

independent. It follows that

zijt|{σ2
ε , σ

2
u,1, . . . , σ

2
u,P} ∼ N(0, σ2

ε +
∑
p

σ2
u,p),

which means that a constraint of the form σ2
ε +

∑
p σ

2
u,p = 1 ensures that all

latent variables have the same marginal expectation and variance, regardless

of P. With this constraint, each random effect’s variance parameter can be

interpreted as the proportion of total variability in z that is attributed to

that random effect. This constraint also simplifies the prior specification of

hyperparameters for variance parameters across models, as we demonstrate

shortly.

Using the generalized form for the random effects model, the joint prior

density is denoted by

π(z,u1, . . . ,uP , σ
2
u,1, . . . , σ

2
u,P , σ

2
ε , τ ,κ). (4)

We assume that this prior density can be factored according to

π(z|u1, . . . ,uP , σ
2
ε )π(u1|σ2

u,1) · · · π(uP |σ2
u,P )π(σ2

u,1, . . . , σ
2
u,P , σ

2
ε )π(τ )π(κ),
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where

π(z|u1,u2, . . . ,uP , σ
2
ε ) =

I∏
i=1

J∏
j=1

Tj∏
t=1

(2πσ2
ε )
−1/2 exp(−(zijt −

∑
p

up,l(p,i,j))
2/2σ2

ε )

(5)

and

π(up|σ2
u,p) =

Lp∏
l=1

(2πσ2
u,p)
−1/2 exp (−u21,p/2σ2

u,p), for p = 1, . . . , P. (6)

Next, we model the prior distribution of the variance parameters using

a Dirichlet density. This enforces the constraint that the variances sum to

1. Let σ ≡ (σ2
ε , σ

2
u,1, . . . , σ

2
u,P ) and let ασ ≡ (αε, αu,1, . . . , αu,P ). The prior

density of σ is 0 unless each of the variances is nonnegative and the variances

sum to 1; subject to these conditions, the density is

π(σ) =
Γ(αε + αu,1 + · · ·+ αu,P )

Γ(αε)Γ(αu,1) · · ·Γ(αu,P )
(σ2

ε )
αε−1(σ2

u,1)
αu,1−1 · · · (σ2

u,P )αu,P−1. (7)

We complete the prior specification on model parameters by assuming

that the components of κ ≡ (κ1, . . . , κJ)′ are, a priori, conditionally inde-

pendently drawn fromGamma(aj, bj) distributions, and that the components

of τ ≡ (τ1, . . . , τJ) are similarly drawn from Cauchy(mj, s
2
j) distributions.

Criteria for fixing the values of the constants aj, bj, mj and sj depend on

substantive considerations. In practice, it might be preferable to select values

that are common across assessments because it is not known a priori which

assessments are most likely to produce ties nor which assessments are the
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most difficult. Indeed, this is the approach that we took with the primate

cognition application presented in Section 3.

2.4 Posterior Inference Using Markov Chain Monte

Carlo

It follows that the posterior distribution (up to a normalizing constant) for

the combined rank and binomial data can be expressed as

f(y|z,κ, τ )π(z|u1, . . . ,uP , σ
2
ε )π(σ2

ε , σ
2
u,1, . . . , σ

2
u,P )π(κ)π(τ )

P∏
p=1

π(up|σ2
u,p)

(8)

This model is too complex to study analytically, and so we propose a Metropolis-

within-Gibbs sampling technique to simulate posterior samples from it. With

one exception, the algorithm updates parameters and latent variables by sam-

pling from full conditional distributions exactly or with a Metropolis-Hastings

update using standard methods as described in Johnson et al. (2002) and

Albert and Chib (1993). The single innovation of our algorithm lies in the

way we update the latent variables for rank data; we introduce an optional

location shift of all latent variables in a rank assessment that share the same

observed response value. An overview of the MCMC algorithm appears in

Table 2; technical details appear in the supplementary materials.
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Table 2: Overview of the Metropolis-within-Gibbs sampling algorithm

Step Action
0 Initialize all unknown values (latent variables, parameters) in support
1 Update τ , z using modified Cowles’ (1996) algorithm and

Metropolis-Hastings
2 Update κ using Metropolis-Hastings
3 Update σ using Metropolis-Hastings
4 Update random effects using complete conditionals
5 Return to Step 1 until sufficiently large number of iterations drawn

3 Application to Primate Cognition

This section applies the previously described framework to data on primate

cognition. As described in Section 3.1, we began by fitting a model with four

random effects. Based on these results, we also considered several simpler

models. The models were compared using metrics given in Section 3.2 that

quantify the agreement between the posterior predictive distributions and

the observed data. Some results for two models are presented in Section 4.

Detailed results for the preferred model are presented in Section 4.2.

3.1 Models for the Primate Data

The primate cognition data served as a motivating application for developing

the joint model that allows for random effects. Recall that 99 individuals of

7 primate species were assessed. Each individual was assessed in at least 1 of

17 assessments representing four domains. The combined primate cognitive
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data set is remarkable because of its large number of observations on the

individual level and its inclusion of great apes, New World and Old World

monkeys. The data set thus permits investigation of several questions.

• Is there substantial interindividual variability in intelligence after ac-

counting for species effects? If so, how does interindividual variability

compare to interspecies variability (on a latent scale)?

• Do assessments from different domains yield different conclusions in

comparing cognitive performance between or within species?

To answer these questions, we fit a model with four different random

effects: species, species*domain, individual, and individual*domain effects.

Rather than the generic notation of Section 2 for random effects (i.e., up,l(p,i,j), p =

1, . . . , P ), the random effects considered are denoted in a more easily distin-

guished fashion. Because the species is an individual characteristic, s(i) =

1, . . . , 7 can be used to represent the species of individual i and us(i) can

be used to represent the species effect. The individual effect for individual

i is represented by ui. Each assessment belongs to one of four domains,

so d(j) = 1, . . . , 4 is used to represent the domain for assessment j. The

species*domain interaction effect is represented by us(i),d(j). The individ-

ual*domain interaction effect is represented by ui,d(j).

Based on the full model results, we considered omitting random effects.

Omission of random effects has no impact on the form of the likelihood

presented in Section 2.1.
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The general prior structure was discussed in detail in Section 2. For the

most complex model, MSDID, this becomes

π(z,us,ui,us,d,ui,d,σ,κ, τ )

= π(τ )π(κ)π(z|us,ui,us,d,ui,d,σ)π(σ)

× π(us|σ)π(ui|σ)π(us,d|σ)π(ui,d|σ)

(9)

This prior specification can be applied to simpler versions of the model if the

component prior densities are appropriately restricted.

The vector σ contains the variance parameter σ2
ε followed by the vari-

ances of the random effects in the model. For MSDID, σ is defined as

(σ2
ε , σ

2
s , σ

2
s∗d, σ

2
i , σ

2
i∗d). For each model it is assumed that σ ∼ Dirichlet(α1).

The common hyperparameter α means that a priori each variance param-

eter in σ has the same marginal distribution. The Dirichlet prior requires

that these variance parameters must sum to 1 so that the scale of the latent

variables will be established parsimoniously.

The exact value of α is selected so that there is a small chance any given

element of σ is well below the average value of the variance parameters, the

idea being that if one of the variance parameters is atypically small then the

corresponding random effect is not important for the model and could be

excluded. The specific rule we used for the primate cognitive application was

to choose α so that Pr(σ2
θ < E(σ2

θ)/25) = 0.01. Note that this rule implies

that the value of α depends only on the number of parameters in σ because
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the expected value of each element is the inverse of the number of elements.

For the model with 5 variance parameters in σ, α = 1.425.

We assume all of the random effects are conditionally independent and

have the following prior distributions: us|σ ∼ N(0, σ2
sI); ui|σ ∼ N(0, σ2

i I);

us,d|σ ∼ N(0, σ2
s∗dI); ui,d|σ ∼ N(0, σ2

i∗dI). Based on the model fit, we

chose an alternative model by removing effects with small variance compo-

nents. The prior distribution for effects that are excluded from the model

are assumed to be degenerate at 0.

The final step in setting up the models was to choose the priors for κ and

τ . The priors selected were the same across models. The κj’s for rank assess-

ments were assumed to be mutually independent and to have a Gamma(1, 1)

distribution, which is vague enough that it is compatible with assessments

having very many or very few ties. The τj’s for binomial assessments were

assumed to be mutually independent and to have a Cauchy(0, 0.52) distri-

bution. This Cauchy distribution is sufficiently vague to comply with assess-

ments being very easy or very difficult, but it also gives considerable prior

support to values throughout (0,1). Another viable option would be to as-

sume each τj has a standard normal distribution. Such a choice induces a

uniform (0,1) prior on the marginal probability of success because of how

we selected the prior distribution for the latent variables z. While our ap-

plication of the model uses the Cauchy prior distribution for the τj’s, we

also considered the standard normal option in our sensitivity and robustness

analyses.
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The MCMC algorithm was run using 450K burn-in iterations (during the

first 200K of which the tuning parameters for the MCMC algorithm were

allowed to be adjusted). After this burn-in period, 5 million more iterations

were performed. For a more efficient MCMC implementation, we did not

sample the missing yijt values; only the observed yijt affect the likelihood.

Likewise, we ignored any random effects that were only related to missing

responses.

3.2 Model Comparison Metrics

We fitted the joint binomial/rank-response data model to the primate cog-

nition data while allowing for species, individual, species*domain, and indi-

vidual*domain random effects. After doing so, the random effects with small

variance components were omitted, forming a simpler alternative. In order to

assess the relative performance of each model, the iterations from the MCMC

algorithm were used to first obtain draws of the latent variables zijt and then

obtain simulated response variables. Specifically, thinned posterior draws for

the random effects and for the error variance were used to simulate z. Then

using the corresponding posterior draws for τ and κ, a set of simulated y

values was obtained. This was done K times, with K = 5000 for each model.

The posterior predictive draws under each model were compared to the

observed data. For each assessment with a binomial response, the average

absolute deviation between the actual and simulated counts was computed

across animals. From the kth posterior predictive simulation, the average
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absolute deviation for assessment j, or AADk(j), was computed as

AADk(j) =
1

nj

∑
i

|yij − y(k)ij |

where nj represents the number of animals with an observed response for

assessment j, yij represents the total number of successes for individual i in

assessment j, and y
(k)
ij represents the posterior-predictive simulated value for

yij in the kth simulation, k = 1, . . . , K.

For each assessment with a rank response, the proportion of pairs for

which the simulated y’s and actual y’s were completely concordant was com-

puted; completely concordant implies that the higher actual rank in a given

pair also had the higher simulated rank, or if the actual ranks were tied

the simulated ranks were also tied. From the kth posterior predictive sim-

ulation, this proportion of completely concordant pairs for assessment j, or

PropCCk(j), was computed as

PropCCk(j) =
1

nj(nj − 1)/2

∑
i

∑
i′<i

×1(sign(yij − yi′j) = sign(y
(k)
ij − y

(k)
i′j )).

From the 5000 posterior predictive simulated data sets, the median of the

AADk(j) and PropCCk(j) values were computed to provide a central mea-

sure of the criteria; the 5th and 95th percentiles were also computed to

reflect the spread of the criteria. Smaller values are desirable for AAD(j)
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while larger values are desirable for PropCC(j).

4 Results

Section 4.1 compares results from two models considered—one with four

random effects and a reduced model with only two random effects. The

models are compared in terms of their variance parameter estimates and how

well their posterior predictive distributions match the observed data. One

model is chosen as the preferred model. Section 4.2 contains more detailed

results from the preferred model.

4.1 Model Comparison

The initial model for primate cognition, containing random effects for species,

species*domain, individual, and individual*domain, was fitted and examined

to identify alternative models. Posterior estimates of each variance param-

eter are contained in Table 3. The large estimate of σ2
ε reveals that most

variability in the latent variables is unexplained by any of the aforemen-

tioned effects. Neither individual nor individual*domain effects appear to

be very important, while species and species*domain effects do appear to

be important. We therefore also posited an alternative model that included

only the species and species*domain effects; this model is denoted by MSD

in Table 3. This model produces estimates of the variance components that

are similar to estimates obtained from the full model, for components that
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Table 3: Posterior estimates of variance parameters. Modified from Amici
et al. (2012)

Model Posterior Mean (sd)
Species, Species*Domain, Individual, Individual*Domain, Error,

σ2s σ2s∗d σ2i σ2i∗d σ2ε
MSDID 0.15 (0.08) 0.16 (0.05) 0.01 (< 0.01) 0.02 (0.01) 0.67 (0.07)
MSD 0.17 (0.09) 0.17 (0.05) 0.66 (0.08)

are common to both models.

Table 4 gives percentiles of the average absolute deviation for each assess-

ment with a binomial assessment. Table 5 gives percentiles of the proportion

of completely concordant pairs for each assessment with a rank response.

Not surprisingly, AAD(j) tended to increase with the number of trials

in the assessment.The notable exception was assessment 5, for which success

was very rare in the observed and simulated data.

Both MSDID and MSD perform similarly in terms of prediction. The 5th

and 95th percentiles of the average absolute deviations and the concordant-

pair proportions convey some sense of the criteria’s variability and generally

exhibit substantial overlap between the two models. The agreement between

the data and the posterior predictive distributions is only poor for the second

(rank) assessment. This assessment is characterized by a very large propor-

tion of ties in the rank data. As a secondary measure, the proportion of

completely discordant pairs in assessment 2 (i.e., yi2 > yi′2 in the observed

data but yi2 < yi′2 in the posterior predictive data, or vice-versa) ranged

from 0.08 to 0.12 across the models.

Because both models provided approximately the same fit to the data, we
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Table 4: Median (and 5th, 95th percentiles) of average absolute deviation
between observed and 5000 posterior-predictive simulated responses for the
binomial assessments

Median (and 5th, 95th Percentiles)
of Average Absolute Deviation

Assessment
(# of Trials) MSDID MSD

3 (2) 0.48 (0.36, 0.66) 0.60 (0.47, 0.74)
5 (10) 0.61 (0.46, 0.76) 0.75 (0.58, 0.93)
6 (3) 0.64 (0.51, 0.78) 0.67 (0.54, 0.79)
7 (3) 0.90 (0.73, 1.10) 0.84 (0.71, 0.98)
8 (2) 0.51 (0.41, 0.62) 0.56 (0.44, 0.67)
9 (2) 0.61 (0.49, 0.70) 0.64 (0.51, 0.75)
10 (1) 0.34 (0.28, 0.44) 0.39 (0.30, 0.49)
11 (1) 0.11 (0.11, 0.23) 0.20 (0.13, 0.30)
12 (6) 1.35 (1.04, 1.84) 1.16 (0.99, 1.35)
13 (6) 1.49 (1.14, 2.36) 1.25 (1.07, 1.43))
14 (6) 1.42 (1.13, 1.91) 1.26 (1.09, 1.45)
15 (6) 1.41 (1.13, 1.94) 1.31 (1.13, 1.50)
16 (6) 1.54 (1.21, 2.28) 1.32 (1.13, 1.51)
17 (6) 1.43 (1.15, 2.06) 1.29 (1.12, 1.49))

Table 5: Proportion of pairwise individual comparisons that were completely
concordant between observed and posterior predictive simulated responses
for the rank assessments. The median (5th, 95th percentiles) of the 5000
iteration-specific concordance proportions provide a point estimate (infor-
mation about the spread)

Median (and 5th, 95th Percentiles)
of Completely Concordant Pairs Proportion

Assessment MSDID MSD

1 0.61 (0.35, 0.75) 0.51 (0.30, 0.75)
2 0.36 (0.33, 0.45) 0.35 (0.32, 0.42)
4 0.68 (0.58, 0.72) 0.60 (0.54, 0.66)
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chose as our preferred modelMSD, the model with species and species*domain

effects but without individual and individual*domain effects. However, it is

important to note that both the reduced model and full model lead to the

same qualitative conclusions regarding the substantive questions posed in

this analysis. In particular, domain*species effects are important in predict-

ing outcomes in both models, and individual*domain effects were necessary

in the model that included individual effects. Thus, assessment domain seems

to be an important factor in explaining the relative performance of subjects

on the test.

4.2 Results from Preferred Model

The selected model, MSD, has random effects for both species and species*domain

effects, so it is natural to examine the relative importance of these two effects.

Figure 1 displays the posterior distribution of these variance parameters.Note

that σ2
ε is not depicted since its value is implicit from the prior constraint.

Posterior inference on σ suggests that the species and species*domain

effects might have similar variability. The posterior mean (standard devia-

tion) of σ2
θ is 0.170 (0.089) and of σ2

ω is 0.166 (0.055). However, the error

variability tends to be the primary source of variability in z, accounting for

roughly two-thirds of the total variance in the latent variables.

Besides the variance parameters, other model quantities of note are the

random effects. Figure 2 depicts the estimated marginal posterior distribu-

tions of the species main effects and of the species*domain interaction effects.
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Variance of Species Effects
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Figure 1: Posterior distribution of the variance parameters σ2
θ (for species

effects), σ2
ω (for species*domain effects), and σ2

ε ≡ 1 − σ2
θ − σ2

ω (for error
terms). The posterior density is zero outside of the demarcated triangular
region.
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Main Species and Species*Domain Interaction Effects 
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Figure 2: Estimated marginal posterior distributions of the species main
effects (top plot) and of the species*domain interaction effects (bottom four
plots). Modified from Amici et al. (2012).
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The importance of the species*domain interaction effect is illustrated in

Figure 2. In this plot, orangutan performance in the inhibition domain is

much better relative to the other species than might have been expected

based on the other domains. Similarly, spider monkeys excelled relative to

the other species in the support domain, but were generally average in other

domains.

Figure 3 depicts the posterior probability that one species performs better

in a given domain than another species does. This figure is necessary to

properly compare species performance because of the correlations between

species and species*domain effects in the posterior distribution.

Several interesting findings are apparent in Figure 3. As a group the great

apes performed better than the monkeys in all domains except the support

domain. The spider monkeys tended to outperform the other monkey species.

Other than exceptionally good (poor) performances by spider monkeys (long-

tailed macaques), there were not great differences in performance in the

support domain. Another notable finding is the similarity of chimpanzees

and bonobos in each of the four domains.

4.3 Robustness and Sensitivity Analyses

To increase confidence in our findings, we investigated the model fit and

conducted a number of sensitivity and robustness analyses. To assess model

fit, we performed a number of diagnostics based on examining the distribution

of the latent traits. In general, these diagnostics suggested no model lack-of-
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  (a) Inhibition
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  (c) Transposition
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  (d) Support
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Figure 3: Estimated posterior probability that the row species had higher
cognitive ability than the column species, within each of the four domains.
Modified from Amici et al. (2012).
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Figure 4: Normal probability plot of standardized residuals from MSD (last
iteration of MCMC algorithm).

fit. For example, a normal probability plot of the standardized residuals from

the last MCMC iteration of this model is depicted in Figure 4. Because MSD

assumes that each zijt|us(i), us(i),d(j), σ2
ε
ind∼ N(us(i) + us(i),d(j), σ

2
ε ), it follows

that each standardized residual

rijt =
zijt − us(i) − us(i),d(j)

σε

should be independently distributed according to a standard normal distri-

bution (Johnson, 2007). Figure 4 appears consistent with this assumption.

Along with assessing the model fit for our selected model, we conducted

a number of sensitivity analyses by altering the prior distribution. One al-
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teration was to replace the Cauchy(0, scale = 0.5) distribution with the

standard normal distribution for the prior of each threshold parameter (τj),

which implies that the marginal prior probability of success is uniformly

distributed. It is also natural to wonder how the variance components are

affected by changes to the prior distribution. We assumed the prior distri-

bution of σ was Dirichlet(α1), where α was selected to ensure a small prior

probability that any element of σ was much smaller than the others. This

had been motivated by a desire to have a non-local prior density, as defined

in (Johnson and Rossell, 2010). We selected a smaller value of α to ascertain

its effect on the variance components.

Because the data were collected by various research teams, it is natural

to wonder if there is a researcher effect on performance. This proves difficult

to assess because there is an inherent confounding between species*domain

effects and researcher effects: only one research team collected data from

the three monkey species, and this same research team was the only one

that collected data from assessments in multiple domains. By excluding the

data from great apes, all remaining data are from the same research team

(Amici’s), and so we applied the model to only the data from monkeys to

determine if the results were materially different in a situation where the

research team was unchanged.

Finally, we investigated how the joint analysis of binomial and rank re-

sponses differed from the analysis of only binomial outcomes. We note that

because there were so few rank-response outcomes, it was not feasible to es-
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timate the rank–species*domain interactions based only on the rank data.

By comparing inferences from the combined data and the binomial data, we

were able to implicitly assess the impact of the rank data on our conclusions.

The results of our sensitivity analyses are summarized in Table 6. There

is much support for the qualitative finding that the individual and individ-

ual*domain effects explain very little of the latent performance. The species

effects have relatively less importance when the prior distribution on the

variance parameters is vague; as expected, its variance component is most

affected because there are only seven distinct species, and thus relatively lit-

tle information from the data to update this parameter. The importance of

the species*domain interaction effects is very consistent, except it is notably

higher when the rank data are excluded. The ability to jointly model mixed

data types is not only preferable because it makes use of all available data,

but it also leads to differences in the estimated magnitude of various model

effects. If the threshold parameters τ are modeled with a standard normal

distribution, there is only a slight impact on the variance components: the

species effect becomes less pronounced.

5 Discussion

We have presented a framework for analysis of data from multiple assess-

ments, some with binomial responses and others with rank responses. To do

so, we used data augmentation, employing a random effects model for the
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Table 6: Posterior estimates of variance parameters under various changes
to data used, prior distribution

Model Change Posterior Mean
Sp., Sp.*Dom., Ind., Ind.*Dom., Error,
σ2
s σ2

s∗d σ2
i σ2

i∗d σ2
ε

MSDID Original 0.15 0.16 0.01 0.02 0.67
MSDID Vague Prior 0.06 0.19 0.00 0.01 0.73
MSDID τj ∼ N(0, 1) 0.12 0.16 0.01 0.02 0.69
MSDID Monkey Only 0.12 0.12 0.01 0.01 0.75
MSDID Binomial Only 0.14 0.24 0.01 0.01 0.60
MSD Original 0.17 0.17 0.66
MSD Vague Prior 0.09 0.18 0.74
MSD τj ∼ N(0, 1) 0.14 0.17 0.69
MSD Monkey Only 0.14 0.13 0.73
MSD Binomial Only 0.16 0.24 0.60

latent variables. We also used Dirichlet priors to establish the scale for the

latent variables. We outlined a Metropolis-within-Gibbs MCMC algorithm

that can be used for posterior sampling, with an innovation that enables

the Markov chain to mix better by allowing for simultaneous shifts in latent

variables associated with tied rankings.

The application of this model to primate cognition data allowed us to

address a number of important scientific issues. In particular, we were able

to study the relative importance of various cognitive effects in analyzing

cognitive performance of non-human primates in assessments from four do-

mains. The key findings are that there are substantial species main effects

and important species*domain interaction effects. That is, the relative cog-

nitive performance of species varies systematically across primate species,

but this variability cannot be explained solely by a general intelligence latent
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trait. Our conclusion that different domains tend to yield different order-

ing of species performance is consistent with findings of other studies (see

Tomasello and Call 1997, and Shettleworth 2010 for a review.)

An in-depth discussion of our findings in light of other research on non-

human primates was previously provided by Amici et al. (2012). However, we

note that Johnson et al. (2002) did not find strong evidence of genus*domain

interactions in their meta-analysis of primate cognition (though genus effects

were included), although Banerjee et al. (2009), using rank data analyses

similar to those proposed in Johnson et al. (2002), did report evidence of

genus*domain interactions. While it is difficult to identify the exact nature

of these seemingly contradictory finding, there are several possible expla-

nations. Among these are differences in assessments, domains, and species

across the studies. Another possible explanation is that the current data set

is much more extensive and contains many assessments using binomial re-

sponses. Furthermore, many of the binomial assessments were based on six or

more trials, which provide higher quality data for detecting species*domain

interactions. Most importantly, however, is the manner in which data were

collected. Data reported in Johnson et al. (2002) were based on an histor-

ical meta-analysis of data collected over 70 years from multiple researchers,

whereas data analyzed here and in Banerjee et al. (2009) were collected under

more controlled conditions.

In this study, we found substantially more systematic interspecific vari-

ation than systematic intraspecific variation. This finding may not hold in
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studies with greater variation in individual age, different assessments and

domains, or different species. Care must be taken in interpreting the results.

The unbalanced nature of the data (not every individual was measured for

each assessment) raises concerns over a possible confounding of interaction

terms with the experimental design. Similarly, the number of animals ranked

in a particular assessment might have an impact on the model conclusions

in two regards: (1) as more animals are ranked, the ordering becomes more

informative; and (2) there are subtle changes to the implied probability of

tied rankings at the extremes relative to the interior, based on the behavior

of the order statistics as sample size increases. Finally, there is the possibility

of experimenter effects because different researchers collected the data; how-

ever, the conclusions were similar when only data from the monkey species

were used (all of which was collected by the same researcher).

The techniques we described and their application to primate cognitive

testing represent an important step forward. Not only does the modeling

approach allow inference using both binomial and rank data, but it also

emphasizes parsimony by constraining the prior distribution of the latent

variables in z to have a common marginal mean (0) and marginal variance

(1), regardless of the number of random factor effects that are included. This

consistency is desirable to simplify prior elicitation, interpretation of random

effects, and comparisons across models.

There are other applications in which the joint model may be particularly

helpful. For example, a marketing firm may administer a survey wherein con-
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sumers rank items based on preference or propensity to purchase, providing

responses that are intrinsically on a rank scale. They could supplement these

preferences with actual purchasing behavior, such as whether or not the item

had been purchased in the previous six weeks, and thus obtain binomial data

as well. We are currently examining the extension of this model framework to

consumer choice modeling and purchasing patterns, and feel that the model

proposed here for comparing cognitive abilities of non-human primates will

find much broader application in marketing research.

The scope of potential model application is greatly enlarged by recogniz-

ing that not only are data frequently recorded as ranked values, but data are

often converted to ranks to provide more robust analyses. This conversion

from the original measurements to rank data is especially helpful in situations

where the likelihood of the data is unknown or when outliers are particularly

influential.

While not the focus of our work, the model may be expanded to include

even more response types, such as ordinal, count, or continuous data. Inas-

much as the various response types may have their likelihood expressed in

terms of underlying latent variables with a standard normal distribution, the

proposed model framework may be used. For example, Fahrmeir and Raach

(2007) note that if one wants to model normally distributed data, then the

latent variables may be assumed to coincide with the observed data; for the

identification restrictions we espouse, the observed data would instead be

viewed as a location-scale transformation of the latent standard normal vari-
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ables. Another increasingly common technique for jointly modeling different

response types is to model dependence with a Gaussian copula and let the

marginal distributions of each response type be modeled appropriately. Fu-

ture research will investigate how such models may be adapted to explicitly

model the probability of ties in ranked data.
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