
SDN-based Virtual Machine Management
for Cloud Data Centers

Richard Cziva∗, David Stapleton∗, Fung Po Tso†, and Dimitrios P. Pezaros∗
∗School of Computing Science, University of Glasgow, G12 8QQ, UK

†School of Computing & Mathematical Sciences, Liverpool John Moores University, L3 3AF, UK
r.cziva.1@research.gla.ac.uk, 1004250S@student.gla.ac.uk, f.p.tso@ljmu.ac.uk, dimitrios.pezaros@glasgow.ac.uk

Abstract—Software-Defined Networking (SDN) is an emerging
paradigm to logically centralize the network control plane and
automate the configuration of individual network elements. At the
same time, in Cloud Data Centers (DCs), even though network
and server resources converge over the same infrastructure and
typically under a single administrative entity, disjoint control
mechanisms are used for their respective management.

In this paper, we propose a unified server-network control
mechanism for converged ICT environments. We present a SDN-
based orchestration framework for live Virtual Machine (VM)
management where server hypervisors exploit temporal network
information to migrate VMs and minimize the network-wide
communication cost of the resulting traffic dynamics. A prototype
implementation is presented and Mininet is used to evaluate the
impact of diverse orchestration algorithms.

Keywords—Virtual Machine Live Migration, Consolidation,
Communication Cost, Data Center Network, Software Defined
Networking, Mininet

I. INTRODUCTION

The advent of Cloud Computing has given rise to new and
exciting prospects in the ICT world. Individuals, SMEs and
large organisations can now flexibly lease processing, storage,
and network resources on-demand according to their temporal
needs. This has largely been made possible due to advances
in virtualization technologies and in particular the Virtual
Machine (VM) as a fundamental entity that encapsulates a
running system and abstracts it from the underlying hardware
physically hosting it. VMs can be statically or dynamically
allocated over a DC infrastructure in order to improve ap-
plication performance for the paying customer, and at the
same time efficiently utilize the provider’s physical resources
and alleviate bottlenecks. Live VM migration in particular [1]
[2] is mainly employed to improve server-side resource usage
(e.g., CPU, RAM, I/O) and reduce power consumption at run-
time. Consolidation has also been suggested for reducing the
number of network switches that need be powered on at any
time [3]. However, the traffic dynamics resulting from the
dynamic allocation of VMs are shown to create congestion
and constitute network bandwidth as the most scarce resource
in the DC [4] [5]. Network-aware VM placement research to
date has only considered the original placement and typically
disregards subsequent changes in traffic loads [6] [7].

At the same time, Software Defined Networking (SDN) is
well-suited to operate in such highly dynamic environments
as Cloud Data Centers, due to its network-wide abstraction
of the control plane that can be exploited for fast service
deployment and network virtualization [8] [9]. SDN aggregates

the network-wide control logic into a logically centralized soft-
ware component, thereby allowing for policies, configuration
and network resource management to be programmed in short
timescales. Most SDN controllers (POX, NOX, FloodLight
and Beacon) expose APIs to configure network components,
manage firewalls, get traffic counters, etc. They have also been
widely utilized for different network-related projects such as,
e.g., for complete network migration [10], new management
interfaces [11], QoS management [12], and participatory net-
working [13]. However, SDN is network-centric and does not
inter-operate with VMs or hypervisors to convey information
of the temporal network state that could be then exploited
for admitting sever resources without causing network-wide
congestion and bandwidth bottlenecks [14] [4] [15].

In this paper, we propose a converged server-network
control framework that exploits SDN to orchestrate live VM
migration in order to reduce the network-wide communication
cost of the resulting traffic dynamics, and alleviate congestion
of the high-cost, highly-oversubscribed links of a Cloud DC
topology. We build on our previous work on S-CORE [16], a
distributed, measurement-based live VM migration algorithm,
and present a novel implementation that uses SDN to measure
the temporal network load, to compute the end-to-end paths
of pairwise VM flows, and to convey network-wide policies to
individual VMs based on which migration decisions are made
in short timescales. Instead of using proprietary interfaces,
we extend the SDN framework to allow inter-operation and
communication of network-wide parameters between the net-
work infrastructure and instrumented hypervisors. We evaluate
our implementation over a representative emulated Cloud DC
topology in Mininet [17], and demonstrate that the algorithm
can significantly reduce the topology-wide communication cost
in short timescales.

The remainder of this paper is structured as follows: section
II briefly describes the S-CORE VM migration algorithm and
highlights the components that interface with SDN. Section III
presents the system architecture and the implementation of the
algorithm in Mininet. Section IV describes the experimental
parameters and results, and discusses S-CORE’s improvement
in network-wide communication cost reduction and link utili-
sation. Finally, section V concludes the paper.

II. DISTRIBUTED VM MIGRATION

S-CORE [18] [16] is a scalable communication cost re-
duction scheme that exploits live VM migration to minimize
the overall communication footprint of active traffic flows
over a DC topology. In a DC network hierarchy, the links



situated closer to the core are typically heavily over-subscribed
and subject to congestion even when spare capacity exists
in other segments of the topology [14]. A typical means for
distinguishing links based on this notion of cost is to associate
a weight metric for each link and subsequently use aggregate
weightings multiplied with the temporal bandwidth utilization
to determine the overall communication cost for a given flow.
S-CORE then uses this derived value to migrate VMs to
other hypervisors that result in utilizing links with smaller
weightings.

A. S-CORE Algorithm

Link utilization is dictated by the intensity of pairwise
traffic between VMs. Let λ(u, v) denote the average traffic
load per time unit exchanged between VMs u and v (incoming
and outgoing), over a certain time window. We compute the
cost of non-collocated VMs, i.e., VMs whose pairwise traffic
flows are routed through at least one level of switches in
the topology. For VMs u and v, level `A(u, v) = 1, if data
is excahged over two links, i.e., over a Top-of-Rack (ToR)
switch. The corresponding link weight for using each link is
c1. For each of the links, the product λ(u, v)c1 corresponds
to a weighted communication cost for utilizing the particular
1-level link. Similarly, if the flow is routed through level 2
of the network hierarchy (i.e., `A(u, v) = 2), data exchanges
take place over four links, two being 2-level (weight c2)
and two 1-level (weight c1) links. In general, when the
communication among two VMs u and v is of level `A(u, v),
the communication cost corresponds to 2λ(u, v)

∑`A(u,v)
i=1 ci.

Given that any VM u communicates with all VMs in a set Vu,
there is a communication cost, denoted by CA(u), attributed
to VM u, for a given overall VM allocation A,

CA(u) = 2
∑

∀v∈Vu

λ(u, v)

`A(u,v)∑
i=1

ci. (1)

We can derive an expression with respect to the overall
communication cost, CA, for all VM-to-VM communication
over the DC:

CA =
∑
∀u∈V

∑
∀v∈Vu

λ(u, v)

`A(u,v)∑
i=1

ci. (2)

Eq. (2) does not take into account traffic in or out of the
DC. For this case, any shortest path is along ToR, aggregation
and core switches for any allocation A. In order to derive a
particular allocation Aopt for which the overall communication
cost is minimized (i.e., optimal), it is required that CAopt ≤
CA, for any possible A. Computing such optimal allocation
can be shown to be infeasible due to (i) its high complexity
(given the number of permutations that must be considered in
an exhaustive search approach), and (ii) the global knowledge
required in a highly dynamic environment like a DC. Every
time the traffic dynamics change, optimal values need to be
recomputed. Obviously, such a centralized approach does not
scale with the number of VMs and the size of current DC
topologies.

We have therefore derived the S-CORE distributed migra-
tion policy which is an approximation of the optimal allocation

and is based on local measurement of the pairwise traffic load
between each VM u and the VMs it communicates with in
Vu. A VM u migrates from a server x to another server x̂,
provided that Eq. (3) is satisfied, i.e., given the locally observed
traffic, a VM u individually tests the candidate servers (for new
placement) and migrates only when the benefit outweighs the
migration cost cm. We refer interested readers to [16] in which
we have formulated and proved the S-CORE scheme.

2
∑

∀z∈Vu

λ(z, u)

`A(z,u)∑
i=1

ci −
`Au→x̂ (z,u)∑

i=1

ci

 > cm, (3)

B. SDN Dependencies

S-CORE’s migration decision process is shown in algo-
rithm 1. Although a fully distributed, server-only prototype
implementation of the algorithm based solely on information
available locally at each VM is possible, it would result in a
static and non-extensible deployment that would not benefit
operators nor would it take advantage of network resource
virtualization. First, it would duplicate effort in measuring
per-flow traffic load at each VM. Second, cost values against
which each migration decision should be evaluated would
have to be manually inputted and would be very hard to
change throughout the DC, should a service provider wish
to alter them to reflect a different cost policy or function.
Most importantly, the entire network topology would have
to be fed into each VM u, in order to be able to compute
the communication level values based on which layer of the
network hierarchy flows to each other VM in Vu are routed
through. This would couple the entire system too tightly with a
given topology and, although the algorithm itself is topology-
neutral, it would be too costly to deploy in diverse DCs given
the (hundreds of) thousands of VMs that would need to be
updated.

In a SDN-enabled environment, all the above information
is either readily available in-the-network or can be configured
centrally and then efficiently propagated throughout the entire
topology, while the core of the algorithm still retains its
scalable and distributed nature. In particular, looking more
closely at algorithm 1, the getFlows(VM IP) method (line #2)
can exploit the SDN API to obtain flow information for a
given IP address from switches that retain active flow tables,
thereby giving the hypervisor knowledge of all active flows
for any collocated VM. Weights must be assigned to all links
in the network to determine communication costs and hence
determine whether migration is worthwhile. Instead of obtain-
ing link weights (line #6) in a static manner relying on a table
instantiated at startup, SDN can be used to programmatically
adjust link weights when necessary. If a link was to fail, the
ability to compensate for this by adjusting other relevant link
weights accordingly to avoid other problems such as, e.g.,
logical over-subscription on other links is essential. Another
drawback of a static lookup is the inability to account for new
VMs. VMs are created on-demand in a DC and therefore new
additions would not be included in the migration decision.



Algorithm 1 Algorithm for migration decision
Require: location . location of the current VM

1: totalCost← 0
2: flows← GETFLOWS(VM IP )
3: for all flows do
4: bytes← GETFLOWBYTES(flow)
5: dest← GETDESTLOC(flow)
6: weight← GETLINKWEIGHT(location, dest)
7: commCost← bytes× weight
8: totalCost← totalCost+ commCost
9: end for

10: flow, cost← GETHIGHESTCOMMFLOW(flows)
11: while cost! = 0 do
12: newLocation← GETDESTLOC(flow)
13: newTotalCost← 0
14: for all flows do
15: bytes← GETFLOWBYTES(flow)
16: dest← GETDEST(flow)
17: weight← GETWEIGHT(newLocation, dest)
18: commCost← bytes× weight
19: newTotalCost← newTotalCost+ commCost
20: end for
21: if newTotalCost < totalCost then
22: return newLocation . migrate!
23: end if
24: flow, cost← GETHIGHESTCOMMFLOW(flows)
25: end while

Orchestration based on which individual VMs make a
unilateral decision on whether to migrate at a particular run
of the algorithm is a major part of the implementation. In
a static environment, a token mechanism that orders VMs
based on some metric can be used, however this would impose
additional requirement for network configuration to enable all
hypervisors to send and receive tokens [16]. Instead, SDN
handles dynamic environments too, as it monitors and reacts to
real-time changes and automatically updates the relevant net-
work parameters. As part of the migration decision calculation,
the link weight for potential paths (if a VM was to be migrated)
is also required to work out if the migration will result in the
highest cost saving (line #17). In SDN, the logically centralized
control plane can possess topology information allowing the
link weight for any given path to be retrieved with minimal
additional computation.

III. SYSTEM DESIGN

SDN has been widely deployed in DC environments, yet
it is mainly used for network control and virtualization, espe-
cially in multi-tenant (e.g., to dynamically create segregated
virtual networks across the DC) and location-agnostic (e.g., to
create a WAN across DCs) networks [19]. In this paper, we
have extended the SDN framework to support live VM man-
agement through server-network programmability. Enabling
hosts to access a decoupled control plane through a logically
centralized software controller gives a new rise to network-
aware VM placement algorithms:

• The programmable nature of the network means it
can dynamically adapt to changing traffic flows and
therefore adjust the network in short timescales, such

as by reassigning the network routes and link weights
after the topology has changed.

• The logical centralization of the network control plane
makes it much more simple to query the global state.
For instance, the controller can query and aggregate
port or flow statistics from any connected switch by
sending a request to them.

• The complexity of networking devices is reduced
since they only need to be optimized for data plane
performance, thus for matching packets in the flow
table and forwarding them on the right port.

A. System Architecture

POX [20] is the controller development platform of choice
due to its popularity, high amount of online support available
and active development community. It has a modular, event-
based architecture making it relatively easy to write custom
modules to it in Python. Our system utilizes POX’s publish
/ subscribe paradigm and relies on the standard OpenFlow
protocol [21] [22] between switches and the controller. Table
I summarizes the events our controller modules rely on.

TABLE I. POX EVENTS USED BY THE S-CORE PROTOTYPE SYSTEM

Event Origin Description

LinkEvent Discovery module Informs listeners that a link has
been added or removed.

HostEvent VM Tracker
module

Informs listeners that a new VM
has been found or a VM already
known about has moved.

PacketIn OpenFlow Switch OpenFlow asynchronous message.

ConnectionUp OpenFlow Switch Occurs when new switch connects
to controller.

FlowStatsReceived OpenFlow Switch Collects and maintains OpenFlow
flow statistics.

B. Controller Modules

In this section, we describe the modules used by the
prototype system to create an API for servers to access network
information.

1) Topology Discovery: This module is bundled with POX
and is used to construct the network topology. It works by uti-
lizing the OpenFlow Discovery Protocol (OFDP), which uses
the well-established Link Layer Discovery Protocol (LLDP)
[23] with minor enhancements in order to forward the LLDP
information on all other ports by OpenFlow switches.

2) Link Learner: Link learner’s purpose is to assign
weights to each link in the network. It depends on the discovery
module’s LinkEvents. When the network becomes stable, a
graph traversal algorithm is used to assign incremental weights
to layers 2 (ToR layer), 3 (aggregation layer) and 4 (core layer),
respectively, as shown in figure 2. This weight assignment
algorithm can be adjusted for assigning more complicated
weightings to any other DC-network topology.



3) L2 Switching: A modified stock POX module is used to
serve as the main control plane component in the network. The
modification consists of a new method that takes the source
and destination MAC addresses and the first and final port
numbers and returns the path between them using the stored
switching information in the module and the discovery module.
This new functionality helps us to calculate link weightings for
any given flow, which is done by the Path monitor module,
described below.

4) Hypervisor Tracker: When a hypervisor comes online,
this module stores its location within the network. Information
obtained from this module is used by the network to orchestrate
the decision process explained below.

5) VM Tracker: VM Tracker is used to pinpoint the phys-
ical location of any VM at any given time. Location refers to
the hypervisor currently hosting the VM. In our simple model,
this also gives us the ability to keep track of current hypervisor
capacity in terms of the number of VMs currently being hosted.

6) Flow Statistics: This module provides flow statistics
for two purposes: for the decision orchestration POX module
(internal use from the network plane) and for the hypervisors
to locally calculate the overall communication cost for their
collocated VMs (external use from the server plane).

In order to collect flow statistics, OpenFlow’s Statistic
Request messages are periodically sent to edge switches which
in turn reply with FlowStatsReceived events. Edge switches
contain all the necessary flows (as all the VM-related flows
must be installed on them), so it is needless to further propa-
gate the query to subsequent switches in the network. A flow
stats object contains the number of packets and bytes processed
by the flow entry since the flow was installed. Building on
these counters, the number of bytes transmitted every second
is calculated for a given flow. Since the flow’s byte count is
crucial, OpenFlow hard timeouts have been disabled for all
flows to avoid periodic counter resets. The hard timeout is the
number of seconds after which the flow is removed from the
flow table regardless of the number of matching packets. To
avoid explosion of flow entries at the switches, flow tables
are kept tidy by periodically removing unused flows by the
controller.

7) Path Monitor: Path monitor is used to dynamically
sum all link weights for any given path. It depends on
PathInstalled events generated by the L2 switching module.
When a PathInstalled event is triggered, the module receives
the new path, traverses each link on it and obtains link weights
from the Link learner module. All these values are summed,
and then stored in a map. Note that only ‘real’ link weight
costs are stored, that is, the link weight cost of flows that have
been, or are currently active in the network. This is why the
L2 switching module has been modified: so that a hypervisor
can also retrieve the potential cost if its VM was to migrate.
As previously described, the OpenFlow hard timeout has been
disabled for all flows for the correct operation of the Flow
Statistics module. Therefore PathInstalled events are received
only when a new path is installed, for example when traffic
generation has started on a new path or when migrations have
changed the paths.

8) Migration Algorithm Orchestration: This module ini-
tializes the orchestration algorithms at the servers. Two or-

Fig. 1. Network-Server Communication: a typical communication can include
decision orchestration from the network plane or gathering traffic counters
from the servers.

chestration algorithms have been implemented: Round-Robin
and Load-Aware. The module heavily depends on the VM and
Hypervisor Tracker modules for obtaining their locations.

a) Round-Robin (RR) Orchestration Scheme: RR is the
simplest orchestration algorithm. It creates a list of all VMs
by accessing the VM Tracker module. This list contains the
MAC address of each learned VM which is then sorted in
ascending order. For each MAC address, the corresponding IP
address and the currently hosting hypervisor are retrieved by
the VM Tracker and Hypervisor Tracker modules. The MAC
addresses have been generated my Mininet from the name of
the VMs, hence the order of the VMs is the ascending order of
their names. Since the VMs are assigned to the hypervisors in
order, RR goes from hypervisor to hypervisor ordered by their
name. During the execution of the algorithm, the controller
remotely invokes a method on the selected hypervisor, passing
the VM’s IP address as a parameter that triggers the hypervisor
to execute the cost calculation for the passed IP and hence, to
make the migration decision about a particular VM.

b) Load-Aware (LA) Orchestration Scheme: LA works in
almost the same way as RR, except for the ordering of the
VMs that are prompted to migrate. In the same way as RR, LA
creates a new list of all VM MAC addresses with help from the
VM Tracker module. However, this time, VM migration order
is determined by which VM has the highest communication
cost. This variable was formulated in section II. Since this must
be calculated on a per VM basis, the controller must sequen-
tially ask each hypervisor to calculate the communication cost
for each of the VMs it hosts and return each of these values.
Therefore, this module iteratively steps through each MAC
address in the new list, obtains the associated IP address and
hypervisor location (via the Hypervisor Tracker module) and
prompts each hypervisor to calculate the total communication
cost for the IP address passed as a parameter. This is achieved
via Remote Method Invocation (RMI) in our prototype. After
all total communication costs have been obtained, the VM
with the maximum communication cost is found. Finally, the
migration algorithm is remotely invoked on the hypervisor that
decides about the migration of the particular VM the has the
highest communication cost.

C. Communication

1) Server to Network Communication: Servers can ac-
cess network information through the SDN controller using
a platform-independent API. Examples of server to network
communication include:



• A server (hypervisor) queries traffic usage information
(both ingress and egress) for a particular VM. This is
used in our current prototype where VMs query their
traffic load from the SDN controller.

• A server (hypervisor) requests link costs. The most
convenient way to store link cost information is at
the SDN controller. This example is used to get costs
for the migration decision algorithm running on the
servers.

• A VM requests information about the other VMs
it talks with. Since this knowledge is available in
the network as flow entries at the switches, a SDN
controller can collect it and serve these information
for the VMs.

2) Network to Server Communication: In the current pro-
totype, the network is responsible for initiating the migration
algorithm on the hypervisors for a particular VM. The network
retains all necessary information that is stored at the SDN
controller to determine which VM to start the migration with,
as it maintains topology, link and flow details and can retrieve
traffic statistics from the switches. Using our proposed system,
servers can also subscribe to any network event, such as, e.g.,
link change, link weight modification, etc. When the specified
event occurs in the network, the SDN controller calls back
the servers on a generic interface to notify that the event has
happened.

IV. EVALUATION

We have experimentally evaluated the SDN-based network-
aware VM migration algorithm using our converged server-
network management interface. As described in section III,
two different orchestration algorithms have been implemented,
the Round-Robin and the Load-Aware.

A. Network Modeling

Mininet [17] has been used to emulate a small-scale
representative DC network infrastructure with three layers of
switches and eight hypervisors. Our topology is based on the
Cisco reference DC topology, as seen in figure 2. We run
three virtual machines at each hypervisor and generate traffic
between a subset of them. Table II contains the VMs that are
used in traffic generation. We have initially allocated VMs in
such a way so that pairwise traffic flows are routed through
the higher layers of the topology, hence incurring high overall
communication cost.

TABLE II. INITIAL TRAFFIC GENERATION IN OUR TEST SETUP.

Source VM Source HV Destination VM Destination HV Link cost

10.0.0.1 hv16 10.0.0.6 hv17 2

10.0.0.2 hv16 10.0.0.10 hv19 6

10.0.0.3 hv16 10.0.0.23 hv23 12

10.0.0.6 hv17 10.0.0.11 hv19 6

10.0.0.9 hv18 10.0.0.22 hv23 12

10.0.0.21 hv23 10.0.0.5 hv17 12

Fig. 2. Experimental network topology with four communication levels:
core, aggregation, ToR, and hypervisors. Link weights are assigned by the
link assigner module automatically.

B. Traffic Generation

We examined different tools and techniques for traffic
generation. In our prior work, we have built a DC traffic
generator [18] to create realistic DC workloads for large-scale
simulation. For this emulated environment, we searched for a
packet generator to create actual workloads and evaluate the
SDN inter-operation, rather than the VM migration algorithm
itself. We have considered iPerf and Nping and favored the
latter since it does not require a running remote-side daemon
and can be easily bound to a specific source port. The process
generates 50-byte TCP packets at a 10 pps rate between pairs
of VMs using a simple Python script, and running in the ap-
propriate network namespace that is created by Mininet. As the
emulated environment runs on a single Intel i7-3770 2.4GHz
CPU, 16GB RAM server, the traffic generation rate has been
kept relatively conservative without, however, influencing the
validity of the experiments. In large infrastructures (such as
in real DC environments), the communication between the
hypervisors and a single SDN controller can stress out the
network and the controller, so for these scenarios, we advocate
the use of a distributed control plane for OpenFlow, such as
HyperFlow [24] that can also be exploited for our system.

C. Experimental Results

Two main experiments were performed to evaluate our im-
plementation. The first measures link utilization at all levels of
the topology under the execution of the SDN-orchestrated live
VM migration algorithm. The second experiment computes
the overall communication cost of each resulting allocation
according to Eq. 2, and captures how this evolves following
individual VM migrations.

1) Link Utilization: To calculate link utilization, we ex-
ploit the OpenFlow controller-to-switch port statistics request
message. This allows us to query specific switches about their
ports and to gain knowledge of the received and transferred
byte count. The experiments will only request this information
from the switches the generated traffic is routed through. This
is because at the end of each experiment, to make a comparison
of both algorithms, the link utilizations are averaged out at
each layer. Therefore, if the utilizations for all links were
included, it would be averaging with zero values that are
coming from the unused links. Furthermore, since there are
more links at the lower layers of the network hierarchy (as seen



Fig. 3. Link utilization improvement during migration, using two different orchestration algorithms. Load-Aware orchestration reduces the utilization of the
higher layers (layers 4 and 3) much faster than the Round-Robin does.

in figure 2), there will be more zero values to average with and
hence these results would be further skewed. Link utilization
also depends on the bandwidth of each link. We have used
Mininet’s traffic congestion links to specify a scaled 10Mb/s
maximum bandwidth throughout the topology with adequate
over-subscription ratios between the different layers of the
network hierarchy. Figure 3 shows the results for the Round-
Robin (RR) and the Load-Aware (LA) orchestration schemes.
It can be seen that the RR policy reduces the utilization of the
higher layers more slowly as it starts the migration with VMs
in a load-agnostic order. Table III and IV show the step-by-
step execution of the RR and LA policies, respectively. While
RR takes the VMs ordered by their MAC / name (starting with
VM1), LA picks them ordered by their communication load
(starting with VM9 which involves flows routed via the core
DC layers from hv18 to hv23, as seen in table II).

TABLE III. STEP-BY-STEP EXECUTION OF THE ROUND ROBIN POLICY

VM1 VM2 VM3 VM5 VM6 VM9 VM10 VM11 VM21 VM22

hv16 hv16 hv16 hv17 hv17 hv18 hv19 hv23 hv23 hv23

1 hv17

2 hv19

3 hv23

4 hv23

5 hv18

6 hv19

TABLE IV. STEP-BY-STEP EXECUTION OF THE LOAD AWARE POLICY

VM1 VM2 VM3 VM5 VM6 VM9 VM10 VM11 VM21 VM22

hv16 hv16 hv16 hv17 hv17 hv18 hv19 hv23 hv23 hv23

1 hv23

2 hv23

3 hv22

4 hv19

5 hv16

6 hv19

2) Overall Communication Cost: The overall communi-
cation cost is the sum of all the individual communication
costs, as shown in Eq. 2. An individual communication cost
refers to all incoming and outgoing traffic from each VM.
This is calculated by taking the number of bytes transferred
per second per traffic flow, multiplied with the communication
cost of the traffic flow. The communication cost depends
on the level of the links each traffic flow is routed through
(the links are assigned by our Link Learner POX module).
Therefore, to calculate the overall communication cost, the
controller must iteratively prompt each hypervisor via the API
we installed on them to calculate the communication cost
for each VM it is hosting. During the cost calculation, the
hypervisors query the SDN controller to get their network
traffic usage maintained by our Flow Statistics module. After
the hypervisors complete the calculation, they return the cost to
the controller that performs the simple task of summing each
of these values at the decision orchestration module. Finally,
the decision orchestration module triggers the migration on
the selected hypervisor. In figure 4, it can be clearly seen
that the LA algorithm reduces the overall communication cost
faster than the RR. In our setup, the optimal (minimal) overall
communication cost is zero, since the VMs that communicate
with each other can be collocated on the same hypervisors.
A correlation can be also seen between figures 4 and 3 that
shows the reduction in link utilization. A successful migration
reduces the overall communication cost by reducing utilization
of the higher level links.

V. CONCLUSION

In this paper, we presented a converged control-plane
framework that integrates VM and network resource man-
agement for Cloud Data Centers. We have provided a SDN-
based implementation for S-CORE, a scalable and network-
aware live migration algorithm that reduces the communication
cost of pairwise VM traffic flows by exploiting collocation
and network locality. SDN is an appropriate framework to
capture network-wide state and compute utilization levels, and
to disseminate them to the relevant VMs upon request.

We have extended the functionality of the POX SDN
controller to provide flow utilization measurement and aggre-
gation, to expose network-wide state, and to assign weights



Fig. 4. Overall communication cost reduction. Two popular orchestration
schemes have been compared: Round Robin and Load Aware. Load Aware
reduces the overall cost faster, as it goes through the VMs ordered by the cost
of their communications.

to the links of the DC topology. For the purposes of this
study, link weights reflect the bandwidth cost and the over-
subscription ratio that increase when moving higher towards
the core of a DC network hierarchy. However, link weights
can be programmatically adjusted by a DC operator to reflect
diverse traffic shaping policies.

We have built a prototype system to allow flexible and
platform-independent communication between the network
infrastructure and the servers hosting hypervisors and VMs
in a DC topology. The proposed converged server-network
interface has been evaluated over Mininet on a scaled-down
Cloud DC network, using two different SDN-based orchestra-
tion algorithms. Live VM migration has been shown to reduce
the network-wide communication cost as well as the overall
link utilization, especially for the high-cost aggregation and
core layers of the DC.

REFERENCES

[1] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
gray-box strategies for virtual machine migration,” in USENIX NSDI’07,
2007.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in USENIX
NSDI’05, 2005, pp. 273–286.

[3] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFlow:
Leveraging VM mobility to reduce network power costs in data centers,”
in Proc. IFIP TC 6 Networking Conf., ser. LNCS, vol. 6640, pp. 198–
211.

[4] G. Wang and T. Ng, “The impact of virtualization on network perfor-
mance of Amazon EC2 data center,” in Proc. IEEE INFOCOM’10, Mar.
2010, pp. 1–9.

[5] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: comparing
public cloud providers,” in Proc. ACM SIGCOMM Internet Measure-
ment Conf. (IMC’10), 2010, pp. 1–14.

[6] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1–9.

[7] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving performance and availability of services hosted on iaas
clouds with structural constraint-aware virtual machine placement,” in
Services Computing (SCC), 2011 IEEE International Conference on,
July 2011, pp. 72–79.

[8] O. N. Foundation, “Software-defined networking: The new norm for
networks,” Open Networking Foundation, Tech. Rep., 2012.

[9] B. N. Astuto, M. Mendonça, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” 2014, accepted in IEEE Com-
munications Surveys & Tutorials To appear in IEEE Communications
Surveys & Tutorials.

[10] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live migration of
an entire network (and its hosts),” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks. ACM, 2012, pp. 109–114.

[11] D. Mattos, N. Fernandes, V. da Costa, L. Cardoso, M. Campista,
L. H. M. K. Costa, and O. Duarte, “Omni: Openflow management
infrastructure,” in Network of the Future (NOF), 2011 International
Conference on the, Nov 2011, pp. 52–56.

[12] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “Openqos:
An openflow controller design for multimedia delivery with end-to-
end quality of service over software-defined networks,” in Signal &
Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2012 Asia-Pacific, 2012, pp. 1–8.

[13] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An api for application control of sdns,” in
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM.
ACM, 2013, pp. 327–338.

[14] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proc. ACM SIGCOMM Internet
Measurement Conf. (IMC’10), 2010, pp. 267–280.

[15] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. ACM
SIGCOMM Internet Measurement Conference (IMC’09), 2009, pp. 202–
208.

[16] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros, “Scalable
traffic-aware virtual machine management for cloud data centers,” in
Distributed Computing Systems (ICDCS), 2014 IEEE Sixth Interna-
tional Conference on, June 2014.

[17] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[18] F. P. Tso, G. Hamilton, K. Oikonomou, and D. P. Pezaros, “Implement-
ing scalable, network-aware virtual machine migration for cloud data
centers,” in Cloud Computing (CLOUD), 2013 IEEE Sixth International
Conference on, June 2013, pp. 557–564.

[19] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
Communications Surveys Tutorials, IEEE, vol. 15, no. 2, pp. 909–928,
Second 2013.

[20] “POX, A Python-based OpenFlow Controller,” http://www.noxrepo.org/
pox/about-pox/.

[21] O. N. Foundation, “Openflow switch specification, version 1.4.0 (wire
protocol 0x05),” Open Networking Foundation, Tech. Rep., October
2013.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[23] J. Hollander, A Link Layer Discovery Protocol Fuzzer. Computer
Science Department, University of Texas at Austin, 2007.

[24] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking. USENIX Associa-
tion, 2010, pp. 3–3.


