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Past and future climate change in the context of memorable seasonal extremes 

Matthews T*, Mullan D, Wilby RL, Broderick C, Murphy C 

Abstract 

It is thought that direct personal experience of extreme weather events could result in greater 

public engagement and policy response to climate change. Based on this premise, we present 

a set of future climate scenarios for Ireland communicated in the context of recent, observed 

extremes. Specifically, we examine the changing likelihood of extreme seasonal conditions in 

the long-term observational record, and explore how frequently such extremes might occur in 

a changed Irish climate according to the latest model projections. Over the period (1900-2014) 

records suggest a greater than 50-fold increase in the likelihood of the warmest recorded 

summer (1995), whilst the likelihood of the wettest winter (1994/95) and driest summer (1995) 

has respectively doubled since 1850. The most severe end-of-century climate model 

projections suggest that summers as cool as 1995 may only occur once every ~7 years, whilst 

winters as wet as 1994/95 and summers as dry as 1995 may increase by factors of ~8 and ~10 

respectively. Contrary to previous research, we find no evidence for increased wintertime 

storminess as the Irish climate warms, but caution that this conclusion may be an artefact of 

the metric employed. It is hoped that framing future climate scenarios in the context of extremes 

from living memory will help communicate the scale of the challenge climate change presents, 

and in so doing bridge the gap between climate scientists and wider society. 
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1. Introduction 

Despite the considerable body of climate change research produced in recent decades and 

evidence that decision-makers are actively seeking to improve the uptake of climate risk 

information, a gap persists between knowledge production and use (NRC, 2009; 2010; Lemos 

et al., 2012). Among the many challenges is the perception of remote impacts (Moser, 2010), 

where climate change is regarded as temporally, geographically or socially distant from 

people’s everyday lives (Pidgeon, 2012). This has contributed to a ‘psychological distancing’ 

of people from climate change and a consequent lack of public engagement (Spence et al., 

2012). It is argued, therefore, that direct personal experience of climate-related weather events 

may act as a strong ‘signal’ or ‘focusing event’ (November et al., 2009; Renn, 2011) around 

which the otherwise futuristic and abstract nature of climate change may become more tangible, 

and crucially trigger more substantive public engagement and policy response (Capstick et al., 

2015). For example, interview respondents in five flood affected areas of the UK who were 

directly affected by the series of exceptional deluges during winter 2013/14 exhibited 

heightened concerns about the impacts of climate change when compared with a national 

sample of un-impacted respondents (Capstick et al., 2015). With such cases in mind, we assert 

that Irish climate change projections would be more tangible if grounded in analogues of the 

recent past.  

The Irish climate is projected to warm across all seasons, and it is expected this will be 

accompanied by an amplified precipitation regime, characterised by wetter winters and drier 

summers respectively (Sweeney et al., 2008; Gleeson et al., 2013). In addition, the British-

Irish Isles (BI) region is expected to experience enhanced wintertime cyclone activity 

(“storminess”; Gleeson et al., 2013; Zappa et al., 2013a). Recent research suggests that such 

signals in air temperature and precipitation are already emerging in long-term observational 

records (McElwain and Sweeney, 2003; Noone et al., 2015), whilst Matthews et al. (2014) 

reported that the winter of 2013/14 was stormiest in at least 143 years – a season that also 

experienced above average rainfall at more than half of Irish synoptic stations. The annual air 

temperature during 2014 was well above the long-term average, being only 0.2°C below the 

record set in 2007 (Met Eireann, 2014). While dry summers have been more infrequent of late 

(Sutton and Dong, 2012; McCarthy et al. 2015), notable deficits in summer rainfall have 

occurred in living memory, including, for example, the warm and dry summers of 1975/76, 

1995 and 2006 (Jones and Conway, 1997; Met Eireann, 2006; Wilby et al., 2015).  
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Extreme seasonal weather has significant societal implications. Wet and stormy conditions 

during winter 2013/14 resulted in widespread flooding and coastal inundation. Similarly, hot 

summers have been associated with increased mortality in Ireland (Pascal et al., 2013), whilst 

rainfall deficits have impacted the agricultural sector (Stead, 2014). The effects of the latter 

have the potential to propagate internationally through Ireland’s agricultural exports (Hunt et 

al., 2014). Despite the economic and human costs associated with seasonal extremes being 

embedded in the public consciousness, communicating to stakeholders the exact scale of the 

challenge posed by climate change still presents significant difficulties.  

Clearly, then, it is of interest to situate observed seasonal extremes within the context of 

Ireland’s possible future climate. Despite extensive research into climate change undertaken 

for the Island of Ireland (IoI) (e.g. Fealy and Sweeney, 2007; Sweeney et al., 2008; Mullan et 

al., 2012; Gleeson et al., 2013; Foley et al., 2013), to date, no study has mapped observed 

extreme conditions onto projected climates to explore changes in their occurrence. Yet, this 

kind of information can be particularly useful when communicating the potential impacts of 

climate change and determining adaptation needs (Sexton and Harris, 2015).  

Our aim is therefore to update and complement existing IoI climate projections by exploring 

the changing likelihood of seasonal extremes - both in the period of observations and future 

climate scenarios. We first identify the wettest, stormiest winters, and the driest, hottest 

summers in observational datasets, before assessing how unusual these events are in the long-

term context. These extremes are of particular interest given the magnitude of social, 

environmental and economic impacts they have had previously; additionally they provide a 

reference for stress testing existing management plans under likely future conditions. We then 

assess how the likelihoods of these extreme seasons may have already changed during the 

period of observation, before employing output from a suite of climate model experiments to 

explore projected future change. We pursue this aim on the premise that such analysis may 

enable communication of the magnitude of projected changes to a wide range of audiences.  

2. Materials and Methods  

To characterise observed precipitation and temperature extremes we use the average of five 

long-running Irish temperature series 1900-2014 (Met Eireann, n.d.; A. Murphy, personal 

communication), and the Island of Ireland Precipitation (IIP) series 1850-2010 (Noone et al., 

2015). The latter ends in 2010, but winter 2013/14 has already been acknowledged as very wet, 

and thus potentially of interest in our study of seasonal extremes. We therefore extended the 
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winter (DJF) precipitation series by bridging to 2014 using the 0.25 × 0.25° gridded E-OBS 

dataset (Haylock et al., 2008). The winter E-OBS time-series was produced by averaging over 

the domain -10.5 to -5.5 °E and 51.5 to 55.5 °N. For the overlapping period (1950-2014) 

correlation between E-OBS and IIP is strong (Pearson’s r = 0.95), so we infer winter IIP 

precipitation for 2011-2014 by regression-adjusting the E-OBS series (Figure 1).  

To construct a time series of storminess we employ the 20CR reanalysis data (Compo et al., 

2011) and use the same spatial domain as Matthews et al. (2014, 2015), who reconstructed 

wintertime BI storminess (1872-2014) using a cyclone identification routine applied to 

atmospheric reanalysis products. Whilst desirable because of their explicit classification of 

cyclones, such techniques are logistically challenging to apply to large climate model 

ensembles such as the Fifth Coupled Model Intercomparison Project (CMIP5). We therefore 

sought a simpler metric to define storminess, and, consistent with Benestad and Chen (2006) 

found that mean seasonal sea-level pressure (MSLP) over the BI was strongly correlated with 

the storminess metric of Matthews et al. (2014: Figure 1). Hence, we adopt this simpler metric 

to quantify DJF storminess. Given concern expressed about the integrity of the early 20CR, we 

restrict our usage here to the period 1900-2014. As in Matthews et al. (2014) the 20CR data 

were extended from 2011 to 2014 by regression-adjusting NCEP 1 reanalysis (Kalnay et al., 

1996) for the last 4 years. The regression was formulated with 20CR and NCEP MSLP as the 

independent and dependent variables, respectively. Over the common period (1948-2012) the 

regression equation had a slope and intercept of 1.41 and 146 hPa, respectively, with a 

correlation coefficient of 0.97. These regression coefficients were used to adjust 20CR MSLP 

to NCEP MSLP over the common period, and the record was bridged to 2014 by appending 

NCEP values for 2013 and 2014.  

Projections of Irish climate are taken from the CMIP5 ensemble (Taylor et al. 2012). We use 

monthly series of surface air temperature, precipitation and MSLP from the “historical” 

experiment and from Representative Concentration Pathways (RCPs: van Vuuren et al. (2011)) 

4.5 and 8.5. Each RCP model run was spliced to its corresponding historical component, as 

informed by the metadata (Taylor et al., 2010). Time series for the IoI (temperature and 

precipitation) were generated by averaging across all model grid points between -10.5 to -5.5 

°E and 51.5 to 55.5 °N, whereas MSLP was averaged over the BI domain to generate storminess 

time series. Only model runs with data for the period 1901-2099 were used, resulting in 

between 67 and 99 series depending on variable and RCP (Table 1). Note that some models 

include more than one run per RCP, with constituent members differing in terms of either initial 
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conditions or physical parameterization. Including output from a large ensemble provides a 

more complete sample of uncertainties arising from model structures, parameters, and 

internally generated climate variability. 

 

Figure 1. Top: The relationship between DJF IoI precipitation according to the E-OBS and IIP datasets. Based 
on the regression function (provided inset, along with associated Pearson’s correlation, r), E-OBS data 2011-2014 
were adjusted to infer IIP precipitation for these years. Bottom: Comparison between the DJF storminess metric 
used by Matthews et al. (2014) and mean sea-level pressure over the BI domain. Note that mean sea-level pressure 
axis is inverted.  

Table 1. Details of the number of model runs employed. Abbreviations “Hist”, “4.5” and “8.5” refer to historical, 
RCP 4.5 and RCP 8.5 experiments, respectively.  

  Temp. Precip. MSLP 
Modelling Group Model Hist 4.5 8.5 Hist 4.5 8.5 Hist 4.5 8.5 
Commonwealth Scientific 
and Industrial Research 
Organization (CSIRO) and 
Bureau of Meteorology 
(BOM), Australia 

ACCESS1.3 1 1 1 1 1 1 1 1 1 

ACCESS1.0 1 1 1 1 1 1 1 1 1 

Beijing Climate Center, 
China Meteorological 
Administration 

BCC-CSM1-1 1 1 1 1 1 1 1 1 1 
BCC-CSM1-

1-m 1 1 1 1 1 1 1 1 1 

College of Global Change 
and Earth System Science, 
Beijing Normal University 

BNU-ESM 1 1 1 1 1 1 1 1 1 

Canadian Centre for CanESM2 5 5 5 5 5 5 5 5 5 
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Climate Modelling and 
Analysis 
University of Miami - 
RSMAS CCSM4 6 6 5 6 6 6 6 6 5 

Community Earth System 
Model Contributors CESM1-

CAM5 4 4 3 3 3 3 3 3 3 

Centro Euro-Mediterraneo 
per I Cambiamenti 
Climatici 

CMCC-CM 1 1 1 1 1 1 1 1 1 

CMCC-CMS 1 1 1 1 1 1 1 1 1 

Commonwealth Scientific 
and Industrial Research 
Organization in 
collaboration with 
Queensland Climate 
Change Centre of 
Excellence 

CSIRO-Mk3-
6-0 10 10 10 10 10 10 10 10 10 

EC-EARTH consortium EC-EARTH 1 1 1 1 1 1 1 1 1 
LASG, Institute of 
Atmospheric Physics, 
Chinese Academy of 
Sciences and CESS, 
Tsinghua University 

FGOALSg2 1 1 1 1 1 1 1 1 1 

The First Institute of 
Oceanography, SOA, 
China 

FIO-ESM 3 3 3 3 3 3 3 3 3 

NOAA Geophysical Fluid 
Dynamics Laboratory 

GFDL-CM3 1 1 1 1 1 1 1 1 1 
GFDL-
ESM2G 1 1 1 1 1 1 1 1 1 

GFDL-
ESM2M 1 1 1 1 1 1 1 1 1 

NASA Goddard Institute 
for Space Studies 

GISS-E2-H 15 15 3 15 15 3 15 15 3 
GISS-E2-H-

CC 1 1 0 1 1 0 1 1 0 

GISS-E2-R 16 16 2 16 16 2 16 16 2 
GISS-E2-R-

CC 1 1 0 1 1 0 1 1 0 

Met Office Hadley Centre 
(additional HadGEM2-ES 
realizations contributed by 
Instituto Nacional de 
Pesquisas Espaciais) 

HadGEM2-
CC 1 1 1 1 1 1 1 1 1 

HadGEM2-ES 4 4 4 4 4 4 4 4 4 

Institute for Numerical 
Mathematics INM-CM4 1 1 1 1 1 1 1 1 1 

Institut Pierre-Simon 
Laplace 

IPSL-CM5A-
LR 4 4 4 4 4 4 4 4 4 

IPSL-CM5A-
MR 1 1 1 1 1 1 1 1 1 

IPSL-CM5B-
LR 1 1 1 1 1 1 1 1 1 

Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), 
National Institute for 
Environmental Studies, 
and Japan Agency for 
Marine-Earth Science and 
Technology 

MIROC5 3 3 3 3 3 3 3 3 3 

Japan Agency for Marine- MIROC-ESM 1 1 1 1 1 1 1 1 1 
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We identified seasons with extreme winter precipitation/storminess and summer 

temperature/precipitation by ranking observed series. The rarity of the most extreme (i.e. top-

ranked) seasonal metric was assessed by fitting parametric distributions to the observed record 

for the period overlapping the historical model runs (1901-2005) and evaluating the cumulative 

density function. Resulting non-exceedance probabilities were then converted to 𝑧𝑧 -scores from 

the standard normal distribution: 

𝑧𝑧 =  𝜙𝜙−1[𝐹𝐹(𝑥𝑥)] 

where 𝐹𝐹(𝑥𝑥)  is the cumulative distribution function for variable 𝑥𝑥  (e.g. mean winter 

precipitation) and 𝜙𝜙−1  is the inverse cumulative distribution function (i.e. the percentage-

point/quantile function) for the standard normal distribution (Wilks, 2011). Thus, 𝑧𝑧 indicates 

the value of the standard normal deviate with a non-exceedance probability equal to 𝑥𝑥 . 

Conversion to 𝑧𝑧-scores permits straightforward comparisons between and within series. 

To describe seasonal rainfall we select the widely used gamma distribution (e.g. Wilks and 

Eggleson, 1992). For mean summer temperatures and storminess we select the normal 

distribution. The former is frequently parameterized in this way (e.g. Schär et al., 2004; Hansen 

et al., 2012) and, along with storminess (mean BI sea level pressure throughout DJF), is 

theoretically suited to this distribution, as outlined by the central limit theorem (Wilks, 2011). 

The goodness-of-fit of the normal and gamma distributions for the respective observed 

variables was assessed via a 5000-trial Monte Carlo simulation following Clauset et al. (2009). 

This procedure estimates the probability of obtaining a Kolmogorov-Smirnov (KS) test statistic 

as large as obtained when comparing the data and candidate distribution if the null hypothesis 

(that the data does indeed follow that distribution) is true.  

Earth Science and 
Technology, Atmosphere 
and Ocean Research 
Institute (The University of 
Tokyo), and National 
Institute for Environmental 
Studies 

MIROC-ESM-
CHEM 1 1 1 1 1 1 1 1 1 

Max-Planck-Institut für 
Meteorologie (Max Planck 
Institute for Meteorology) 

MPI-ESM-LR 3 3 3 3 3 3 3 3 3 
MPI-ESM-

MR 3 3 1 3 3 1 3 3 1 

Meteorological Research 
Institute MRI-CGCM3 1 1 1 1 1 1 1 1 1 

Norwegian Climate Centre NorESM1-M 1 1 1 1 1 1 1 1 1 
NorESM1-ME 1 1 1 1 1 1 1 1 1 

 Total 99 99 67 98 98 68 98 98 67 
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Where we report return periods for seasonal values in the text, these are defined as the 

reciprocal of the respective exceedance (non-exceedance) probabilities of the fitted 

distributions for winter precipitation, storminess and temperature (summer precipitation). 

Calculated 𝑧𝑧 -scores and return periods are however sensitive to sampling variation. An 

indication of this sensitivity is provided by a 10,000-realization bootstrap simulation, in which 

30-year samples from the respective seasonal observations are randomly selected (with 

replacement) to fit the distributions.  

To assess systematic changes in 𝑧𝑧-scores through the observational record, we use a sliding 

window approach, whereby distributions are fitted to successive 30-year samples. The 𝑧𝑧-scores 

for extreme seasons are then recalculated using these updated distributions. Decreases 

(increases) in the absolute value of 𝑧𝑧  indicate the likelihood of the extreme season was 

relatively higher (lower) during the respective 30-year window. We also assess trends in the 

underlying time series using simple least-squares regression (Box et al., 2002; Hanna et al., 

2012). The significance of all trends is calculated using a standard t-test, with appropriate 

adjustment made for autocorrelation in the series, which reduces the effective sample size (cf. 

Santer et al. 2000).  

When assessing future changes in the probability of the extreme seasons, we use the historical 

component of the model integrations (i.e. 1901-2005) to evaluate 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑧𝑧−1, where 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 is the 

value (of the relevant metric) which yields a 𝑧𝑧-score equal to that achieved by the respective 

extreme seasons in the observational record. Note that calculation of 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒, involves re-fitting 

the distributions (gamma and normal) for each variable and model run. In the projected part of 

the series (2006-2099) we then compute 𝑧𝑧 for 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒  using distributions again updated using 

sliding 30-year samples. Changes in 𝑧𝑧  between the historical and projected series provide 

insight into how the likelihood of the extreme seasons may evolve in a changing climate.  

For the historical component of the modelled data, the suitability of the normal and gamma 

distributions to describe the distribution of the respective variables was assessed via the same 

Monte Carlo technique applied to the observations. To examine whether the suitability of these 

distribution types changes though time (and particularly throughout the projected RCP 

experiments), we take the simple approach of calculating the KS statistic for sliding 30-year 

samples. A systematic increase (decrease) in KS would suggest that the distribution types 

become progressively less (more) suitable as time progresses. 

3. Results  
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3.1 Observations 

Observed series were used to identify the most extreme seasons on record and quantify their 

rareness (Figure 2). The suitability of the respective distributions to describe the observations 

was evaluated via Monte Carlo simulation. For no series could the null hypothesis (that the 

data were drawn from the candidate distribution) be rejected at the 0.05 level. Thus, we assume 

that the fitted gamma and normal distributions are suitable to describe the respective variables 

and can be used to evaluate the rarity of given seasonal conditions.  

 

Figure 2. The line plots provide time series of the respective variables, in which the dotted line is a 10-year 
(centred) moving average. The seasons classified as most extreme (wettest winter, driest summer, hottest summer, 
and winter with lowest mean sea-level pressure – the ‘stormiest’) are highlighted by red stars. Histograms show 
the distribution of the variables, with fitted gamma (winter/summer precipitation) and normal (winter storminess 
and summer temperature) distributions overlain (red line). 

In terms of dry summers, 1995 stands out as the most exceptional since 1850, registering a 𝑧𝑧 

value of -2.26. Using the relation 1/𝑝𝑝 to evaluate the return period of such an event (where 𝑝𝑝 is 

the probability of a season at least as extreme for the respective 𝑧𝑧 value), we obtain a value of 

84 years for this summer. The second and third driest summers occurred in 1913 and 1869, 

both of which had 𝑧𝑧-scores of -2.20 and estimated return periods of 73 years. For wet winters, 

the most extreme on record occurred in 1994, with a 𝑧𝑧-score of 2.15 and corresponding return 

period estimate of 63 years. Ranked second and third were the years 1995 and 1883, registering 

𝑧𝑧-scores of 1.96 (return period 40 years) and 1.81 (return period 28 years), respectively. The 

recent wet winter 2013/14 ranks 7th in the 165-year IIP series, with a respective 𝑧𝑧-score and 

return period of 1.72 and 23 years.  

The hottest summer in the observational record was in 1995, with a 𝑧𝑧-score of 2.84 and return 

period of 441 years. The summers of 2006 and 1976 - with 𝑧𝑧-scores (return periods) of 2.30 
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(94 years) and 2.27 (85 years) - were ranked second and third respectively. Our simpler 

storminess metric concurs with Matthews et al. (2014) which showed 2013/14 was ranked first; 

the two series also agree about second place (1914/15), but third (1935/36) according to our 

series was fourth according to Matthews et al. (2014). The stormiest winter has a 𝑧𝑧-score of -

3.32 and estimated return period of 2198 years. Storminess in 1915 and 1936 registered 𝑧𝑧-

scores of -2.68 and -2.26, with associated return periods of 274 and 84 years respectively.  

The return periods quoted should not be overstated because they are sensitive to choice of 

reference period (and distribution), as demonstrated by the bootstrap simulation results (Table 

2). Some of this variation reflects a systematic change in likelihood throughout the 

observational period (Figure 3). With the exception of winter storminess, all extreme seasons 

show signs of increasing likelihood in the record. Using the regression lines in Figure 3 to 

smooth shorter-term variations in 𝑧𝑧, the chance of a summer as warm as 1995 shows the largest 

increase, with a 𝑧𝑧-score of 3.61 (return period of 6415 years) at the beginning of the series 

(1900-1929 ), declining to 2.37 (return period of 114 years) for the most recent period assessed 

(1985-2014). This translates into a 56-fold increase in the likelihood of such a warm summer. 

Table 2. Results from bootstrap simulation in which 30-year samples from the observational record were 
randomly selected (with replacement) and normal (JJA temperature and DJF storminess) or gamma (JJA/DJF 
precipitation) distributions fitted. 𝑍𝑍-scores were then calculated for the most extreme seasons according to these 
distributions. The process was repeated 10,000 times, with 5th and 95th percentiles evaluated. 1 𝑍𝑍-scores are 
arranged according to absolute values, but the signed numbers are displayed here. 2This field provides the relevant 
metric when distributions are fit to the entire record (see Section 2 for years of observation).  

Metric 
1𝒁𝒁-score Return period (years) 

2Whole period  5th 
percentile 

95th 
percentile Whole period  5th 

percentile 
95th 

percentile 

JJA 
precipitation -2.26 -1.93 -2.42 84 29 622 

DJF 
precipitation 2.15 2.08 2.60 63 30 502 

JJA air 
temperature 2.84 2.19 2.77 441 60 4436 

DJF 
storminess -3.32 -3.34 -4.42 2198 202 210334 
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The summer and winter precipitation series exhibit an increasing likelihood of extreme seasons, 

registering an approximate halving of the return period (i.e. doubling likelihood) when 

comparing the start (1850-1879) and end (1981-2010 (summer); 1985-2014 (winter)) of the 

series. Increased likelihood of extremely wet winters and warm summers is significant at the 

0.05 level according to the trends in |𝑧𝑧 | (Figure 3 and Table 3). For extreme summer 

precipitation, pronounced low-frequency variability evident in Figure 3 means that the p-value 

is much larger (and hence not interpreted as significant). The trend analysis also indicates that 

the likelihood of a winter as stormy as 2013/14 decreased significantly over the period 1900-

2014.  

 

Figure 3. Z-scores for top-ranked seasons when distributions (gamma = precipitation; normal = storminess and 
air temperature) are fitted to sliding 30-year samples. Note that here we plot |z|, hence a decrease equates to an 
increasing likelihood of occurrence. The x-coordinate corresponds to the centre year of the 30-year sample. 

Changes in the likelihood of extremes can result from changes to the mean and/or variance of 

the interannual series being assessed (e.g. Katz and Brown, 1992; Schär et al., 2004; Hansen 

et al., 2012), so we investigated trends in the mean and variance of each respective variable 

(Figure 4 and Table 3). For means, trends were calculated from annual series with variance 

assessed using the 30-year running samples shown in Figure 4. The change in mean summer 

air temperature is the only trend that is statistically significant at the 0.05 level, reflecting 

0.93°C warming over the period 1900-2014. For both summer and winter precipitation our 

analysis finds that trends in the mean have ~20% chance of being drawn from a population 

with no trend, and highlight that the increase in winter precipitation (+25.7 mm) over the period 

investigated essentially compensated for the decrease in summer (-25.6 mm). Our analyses also 



 12 

indicate that the trends in mean sea level pressure and variability for all variables are too weak 

to approach statistical significance at the 0.05 or even 0.10 level. 

Table 3. Trends in mean and variance based on observed data (given per decade). p-values give the probability 
that the population the sample is drawn from has a trend of 0. 1 𝒛𝒛 is dimensionless. 2We provide the change in 
mean over the period of observation by multiplying the trend by the number of years of observation (cf. Box et 
al., 2002). 3We provide the trend in the standard deviation.  

 

The variance and mean have increased for wintertime precipitation and summer temperature, 

so both factors contribute to the increasing likelihood of extreme seasons throughout the 

observational record (cf. Figure 5). To explore the relative importance of these factors, we 

performed two experiments. First, we forced the variability of the respective series to be 

constant throughout the record (fixed at the variance calculated for the period spanning the 

whole record), but allowed the mean to vary. Then we reversed the experiment, fixing the mean 

to that calculated for the entire record, and allowing the variance to change as before. [Note 

that the variance can be rescaled using 𝑥𝑥𝑠𝑠� + 𝑥𝑥′𝑠𝑠
𝜎𝜎𝑓𝑓
𝜎𝜎𝑠𝑠

 where 𝑥𝑥  is the variable of interest, the 

overbar (𝑥𝑥𝑠𝑠� ) and prime (𝑥𝑥′𝑠𝑠) denote the mean and prime, respectively, whilst 𝜎𝜎 indicates the 

variance; the subscripts refer to a sample (subscript 𝑠𝑠) of the full record (subscript 𝑓𝑓). The mean 

of a selected sample can similarly be adjusted by adding the difference (𝑥𝑥𝑓𝑓��� − 𝑥𝑥𝑠𝑠�  ) to each 

observation].  

We used these relations to adjust the variances and means of summer temperature and winter 

precipitation for the sliding 30-year samples as above. Holding the variance (mean) constant 

allows us to infer changes in likelihood that would have occurred if only the mean (variance) 

Metric (years of 

record; units) 

1Trend in 

|𝒛𝒛| 

p-value 

for 

trend 

in 𝒛𝒛-

score 

Trend in 

mean  

p-value 

for trend 

in mean 

2∆ in mean 
3Trend in 

variance  

p-value 

for trend 

in 

variance 

JJA precipitation 

(1850-2010; °C ) 
-0.037 0.697 -1.59 0.203 -25.61 -0.622 0.335 

DJF precipitation 

(1850-2014; mm) 
-0.037 0.009 1.58 0.184 25.73 0.535 0.332 

JJA air temperature 

(1900-2014; mm) 
-0.145 0.036 0.081 0.000 0.93 0.012 0.372 

DJF storminess 

(1900-2014; hPa) 
0.116 0.002 -0.040 0.639 -0.57 -0.012 0.861 
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had changed over the observational period (Figure 6). For summer air temperature, results 

underline the much greater importance of changes in the mean in driving the increasing 

likelihood for such warm summers; enhanced likelihood of wetter winters is to a greater extent 

the combined consequence of increasing mean winter precipitation and variance, as evidenced 

by the similar upward trends in likelihood when either the mean or variance is held constant.  

 

Figure 4. Running 30-year means (top) and variances (bottom). Prior to calculating running statistics, all variables 
were standardized by subtracting the mean and dividing by the standard deviation. Darker lines are least-squares 
trend lines fitted to the smoothed data to indicate the direction of change. Trends in variance discussed in the text 
and Table 2 are the same as those plotted, but trends in means utilize the raw annual series; smoothed data are 
only shown here for clarity of illustration.  

 

 

 

 

 

 

 

Figure 5. Fitted normal probability density functions for 30-year mean summer air temperature samples taken 
from the beginning and end of the observed record. The area under each curve integrates to 100%. The vertical 
line highlights summer temperature in 1995. Note that more of the distribution extends beyond this limit for the 
recent 30-year sample. This results from a shifting of the mean to the right, as well as a broader distribution (i.e. 
larger variance). 
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Figure 6. Time-evolving z-scores (solid lines, left axes) and corresponding p-values (dotted lines, right axes) for 
the top-ranked seasons, when distributions are fitted to sliding 30-year samples. Each line corresponds to a 
different experiment, in which the mean or variance is held constant, whilst the other is allowed to evolve; the 
‘original’ series is the same as plotted in Figure 3. 

 

3.2.Model Projections 

The Monte Carlo simulation (Section 2) indicated that the gamma and normal distributions are 

generally suitable for describing the respective variables in the historical component of the 

CMIP5 simulations, as the null hypothesis could not be rejected at the 0.05 level in a minimum 

of 86% (winter precipitation) and maximum of 95% (winter storminess) of the ensemble 

members. Moreover, visual inspection of the evolving KS-statistics provides little indication 

that the respective distributions become less suitable through time (Figure 7). The projected 

changes in the likelihood of extreme seasons were therefore assessed using these parametric 

distributions, with results presented in Figure 8. The historical climate model series do broadly 

agree with observations regarding the sign of the changes in 𝑧𝑧-scores over the common period, 

but appreciable spread is evident between individual model runs while median changes are 

more modest than observed (Figure 9). However, on the basis of Figure 8 we note that for 

summertime precipitation in particular, low-frequency variability in the observed z-scores is 

more pronounced than modelled, with running values trending from close to the lowest values 
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observed in the CMIP5 ensemble (pre 1950) to the highest (around 1970). We return to the 

significance of this modelled low-frequency underdispersion in Section 4. 

In the RCP experiments, substantial changes in 𝑧𝑧 are projected for all series except winter 

storminess (Figure 8 and Table 4). Particularly dramatic is the very large change in the 

likelihood of summers as warm as 1995, with a median 𝑧𝑧-score by the end of the 21st Century 

less than -1 under RCP8.5, indicating that, for this period, the likelihood of summer 

temperatures exceeding those of 1995 would be ~85%. Temperatures as cool as 1995 would 

be expected to occur on average only once in seven years. Thus, for a 30-year period at the end 

of the 21st Century, 4-5 years out of 30 could be anticipated to be as cool as 1995 (the hottest 

summer in the observational series) while 25-26 years would be expected to be warmer. This 

represents an almost 250-fold increase in the likelihood of a summer as warm as 1995 relative 

to 1901-2005. RCP4.5 changes are more subtle, but considerable enough to make the summer 

heat of 1995 close to “normal” by the end of the 21st Century, with a median 𝑧𝑧 -score 

approaching 0.3. 

 

Figure 7. Ensemble mean values of the Kolmogorov-Smirnov test statistic (KS) for 30-year samples for the RCP 
experiments. Note that the historical (projected) components of the respective series are plotted with solid (dotted) 
lines.  

Summer (dry) and winter (wet) precipitation extremes show similar increases in likelihood over 

the 21st Century. Under RCP8.5 the median of model runs indicates that by the end of the 

century, both summers as dry as 1995 and winters as wet as 1994 are projected to occur 

approximately one in every 8 years, making these events respectively ~10 and 8 times more 

likely than during the historical period (Section 2). Unsurprisingly, these changes are more 

muted under RCP4.5. By the end of the century median z-scores of -1.92 and 1.56 are found 
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for summer and winter precipitation, corresponding to return periods of 36 and 17 years, 

respectively. Projections of our storminess metric give no suggestion of increasing likelihood 

for extreme seasonal conditions.  

 

Figure 8. Evolution of 𝑧𝑧-scores in the historical and RCP experiment calculated for centred, 30-year sliding 
windows. The shaded region of the CMIP5 ensemble spans 5th to 95th percentiles, whilst the solid lines provide 
the median. The discontinuity between the historical and RCP8.5 medians is because only a subset of historical 
model runs continues to RCP8.5. Note that the observed series are also displayed in each panel and the different 
scaling on the respective y-axes.  

 

Figure 9. Least-squares trends in 𝑧𝑧-scores (per year) during the historical CMIP5 experiments (1901-2005). The 
black line is the kernel density estimate, providing a smoothed illustration of the density summarised in the 
underlying histogram (grey outline). The red line highlights the median of this distribution whilst the arrow 
indicates the gradient of the trend lines plotted in Figure 3.  
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Although the median changes in seasonal precipitation and summer temperature are substantial, 

we emphasize that the projected uncertainty is large enough for the reference 𝑧𝑧-scores to lie 

within the 90% ensemble confidence intervals for precipitation (summer and winter) under 

RCP4.5 (Table 4). For RCP8.5, the reference 𝑧𝑧-score for summer precipitation remains above 

the 5th percentile (i.e. the ensemble indicates more than 5% chance that summers as dry as 1995 

will be less likely by the end of the 21st Century). By contrast, there is more than a 95% chance 

that summers as hot as 1995 and winters as wet as 1994 will be more likely by the end of the 

21st Century under RCP8.5 (Table 4). 

To explain variability in likelihood in more detail, we assessed the evolving means and 

variances of the projected series (Figures 10 and 11), with changes relative to the 1961-1990 

period reported in Table 4 for consistency with previous studies. The median increase (decrease) 

in winter (summer) precipitation by the end of the 21st Century is 16.8 % (-18.6 %) under 

RCP8.5, and 9 % (-4 %) for RCP4.5. The equivalent summer temperature changes are 3.1°C 

(RCP8.5) and 1.9°C (RCP4.5). These changes are similar in magnitude to those found by Fealy 

and Sweeney (2007), who reported summer precipitation decreases of -20 % and winter 

increases of 15 % under the A2 SRES scenario (representing a high emissions forcing). 

Uncertainty in summer precipitation is, however, large in our ensemble, with no change within 

the 90 % confidence interval under both RCPs (Table 4). The temperature changes here also 

concur with Sweeney et al. (2008), who concluded that a summer temperature increase of 3°C 

was projected by 2080 under the same A2 scenario. Mean winter sea level pressure shows no 

change under either RCP according to our assessment. 

The projections indicate essentially stationary variance for mean winter sea-level pressure and 

summer precipitation throughout the 21st Century, but this does not extend to summer air 

temperature and winter precipitation, where median increases in the variance of 109 % and 49 

%, respectively, are suggested by the end of the 21st Century. Only in the case of summer air 

temperature under RCP8.5 does zero change in the variance fall outside the 90% confidence 

region (Table 4). The concurrent increases in variance and mean would both contribute to 

enhanced likelihood of extremely warm summers and wet winters. As with our assessment of 

observations, we explored the relative importance of these mean and variance changes by 

repeating the 30-year sliding-window analysis for the projections to assess changes in the 

associated 𝑧𝑧-values, whilst alternately holding these moments (mean and variance) constant at 

their historical values (see Section 3.1). Evidently, it is again changes in the mean that drive 
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the enhanced projected likelihood of extremely warm summers. This dominance is less clear 

for winter precipitation, but changes in variance are still of secondary importance (Figure 12).  

Table 4. Summary of CMIP 5 projections for the end of the 21st century (2070-2099).1We provide the z-score of 
the most extreme season on record in brackets for convenience. 2Units of the change in mean are °C for air 
temperature and % for all other variables. 3Changes in variance are given as %. Note that for comparison to 
previous studies, all changes in mean and variance are referenced to the 1961-1990 period in the historical 
experiment. 

 1Metric 

z-score 2∆Mean 3∆ Variance 

median 
5th %-

tile 

95th%

-tile 
median 

5th %-

tile 

95th%-

tile 
median 

5th %-

tile 

95th%-

tile 

R
C

P 
4.

5 

JJA 

precipitation 

(z = -2.26) 

-1.92 -2.86 -0.99 -4.02 -22.97 8.65 101.02 59.56 179.51 

DJF 

precipitation 

(z = 2.14) 

1.56 1.07 2.17 8.97 3.32 16.32 120.85 71.18 205.72 

JJA air 

temperature 

(z = 2.83) 

0.34 -1.36 2.22 1.87 0.35 2.95 124.40 67.86 270.80 

DJF 

storminess 

(z = -3.32) 

-3.31 -4.35 -2.56 -0.01 -0.13 0.16 101.15 58.61 161.46 

R
C

P 
8.

5 

JJA 

precipitation 

(z = -2.26) 

-1.16 -2.39 -0.35 -18.56 -34.88 5.39 99.05 58.98 168.09 

DJF 

precipitation 

(z = 2.14) 

1.14 0.28 1.80 16.84 4.43 30.79 148.53 76.30 254.88 

JJA air 

temperature 

(z = 2.83) 

-1.03 -2.99 0.60 3.08 1.46 5.14 208.62 100.01 449.38 

DJF 

storminess 

(z = -3.32) 

-3.35 -4.84 -2.36 0.02 -0.21 0.29 105.73 56.17 175.50 
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Figure 10.Centred 30-year running means of the respective variables, expressed as anomalies from 1901-2005. 
See Figure 8 caption for further details.  

 

Figure 11. Centred 30-year running variances for the respective variables. Units are given as percent of 1901-
2005 variance. See Figure 8 caption for further details. 
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Figure 12. Time-evolving z-scores (solid lines, left axes) and corresponding p-values (dotted lines, right axes) for 
the top-ranked seasons, when distributions are fitted to sliding 30-year samples in the historical and RCP8.5 
experiments. Each line corresponds to a different experiment, in which the mean or variance is held constant, 
whilst the other is allowed to evolve; the ‘original’ series is the same as the median plotted in Figure 8.  

4. Discussion and Conclusion 

Over the period spanned by observational records the likelihood of extremely wet winters and 

hot summers increased significantly. These changes were driven mainly by a trend towards 

wetter mean winters and warmer mean summers, with smaller contributions from increasing 

year-to-year variation in these variables. At the most extreme, the likelihood of a summer as 

warm as 1995 has increased by a factor of more than 50 over the observational period. Whilst 

such changes are dramatic, similarly large increases in the probability of extremely warm 

seasons have been reported elsewhere (Schär et al., 2003; Hansen et al., 2012). These changes 

should not be taken lightly, as an increase in the occurrence of extremely warm summers may 

have significant consequences for society (cf. Subak et al., 2000), not least for human health. 

Research has shown, for example, that despite the temperate IoI climate mortality rates in 

Ireland are temperature-dependent (Goodman et al., 2004; Gleeson et al., 2013; Pascal et al., 

2013), whilst Pascal et al. (2013) specifically highlighted the excess mortality during the 

summer of 1995. Although we only considered changes in the mean summer temperature here, 

and not the occurrence of heatwaves, we note that previous IoI studies observed the frequency 

of hot days to increase in line with mean summer temperatures (McElwain and Sweeney, 2003). 
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This scaling is anticipated to continue in future (Fealy and Sweeney, 2008; Mullan et al., 2012; 

Gleeson et al., 2013). Thus, the possibility of summer temperatures as warm as 1995 occurring 

almost 50% and 90% of the time by the end of the 21st Century according to RCP4.5 and 8.5, 

respectively, must be of concern. Moreover, there could be enhanced warming with coincident 

episodes of poor air quality in urban areas (Wilby, 2008). 

Climate model projections of increases in the likelihood of extremely dry summers and wet 

winters - continuing trends suggested by the long-term observations – also imply significant 

challenges for water resource management. Historically, high winter rainfall totals have 

resulted in widespread flooding throughout the British-Irish Isles (Wilby and Quinn, 2013; 

Muchan et al., 2015), and hydrological modelling suggests that projected changes in seasonal 

precipitation for the IoI effects corresponding changes in the annual flow regime, thus likely 

resulting in increased winter flood risk and summer drought (Charlton et al., 2006; Steele-

Dunne et al., 2008; Bastola et al., 2012). Relative to changes in summer air temperature, 

however, projected changes in extremely wet winters and dry summers are more subtle, and 

the probability of seasons like those witnessed in 1994/1995 may still be relatively low by the 

end of the 21st Century, particularly if aggressive cuts in greenhouse gas emissions lead to a 

trajectory more consistent with RCP4.5.  

In light of the results in Section 3.2 it is also important to note the limited ability of the CMIP5 

models in capturing low-frequency variability in summertime precipitation. McCarthy et al. 

(2015) detailed the important role the Atlantic Multidecadal Oscillation (AMO) in sea-surface 

temperatures (SSTs) plays in determining IoI precipitation during this season, yet it is known 

that the CMIP5 ensemble captures the atmospheric fingerprint of the AMO poorly (Ruiz-

Barradas et al., 2013). Thus, we highlight that the future projections detailed here are unlikely 

to represent decadal-scale fluctuations in precipitation that may be driven by SST variability. 

As a consequence, even if the CMIP5 ensemble realistically resolves the IoI climate change 

signal for a given RCP, substantial low-frequency deviations in summertime precipitation – 

not evident in the constituent CMIP5 model runs - may be possible. We therefore emphasise 

that summertime CMIP5 precipitation projections are likely underdispersed, and this should be 

kept in mind if leveraging these data for adaptation planning.   

Model projections gave no suggestion of an increase in the probability of the stormiest winter 

on record, with conditions like those experienced during 2013/14 remaining highly unlikely 

even until the end of the 21st century. This somewhat conflicts with previous research using the 
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CMIP5 ensemble, as Lehmann et al. (2014) found evidence for increasing 21st Century eddy 

kinetic energy over the BI region, whilst Zappa et al. (2013a) used a cyclone-tracking algorithm 

to infer that the number of both cyclones and “strong” cyclones would increase over the same 

region and period. Whilst the CMIP5 models are known to have difficulty simulating a realistic 

North Atlantic storm track, these projected changes are robust to biases (Zappa et al., 2013a, 

b). We note, however, that our results are not directly comparable with these assessments as 

we employed a larger number of model runs than either study, and used a very different metric 

to infer “storminess”. We suggest that the latter is the most likely reason for this discrepancy. 

In selecting seasonal mean sea level pressure, our measure of storm activity is simple, but 

correlates well with the more sophisticated definition of Matthews et al. (2014); it also correctly 

identifies the occurrence of more prominent stormy seasons (Section 2). However, measures 

which emphasise individual synoptic features (as in Lehmann et al. (2013) and Zappa et al. 

(2013a)) will be more sensitive to changes in the characteristics of extratropical cyclones. In 

cases where storms are compensated by more frequent episodes of higher pressure, our 

integrated measure of synoptic activity will not detect changes in the occurrence or severity of 

storm events. However, at present this explanation for discrepancy between storminess metrics 

remains conjecture and we suggest that this be explored further in future research examining 

in detail the projected changes in synoptic atmospheric circulation affecting IoI. 

In the context of atmospheric dynamics, we highlight here the possibility that the extreme 

seasonal conditions projected to increase in likelihood may in the future be synoptically 

dissimilar to their historical analogues. For example, historically warm summers in the IoI 

region have often been characterised by dry conditions typical of anticyclonic circulation (cf. 

Jones et al., 1999), but future warm summers may not necessarily be driven by the same 

atmospheric circulation: warming can be expected across weather types, so the same high 

temperatures may in the future be realised under other circulation regimes. Practically, this 

means that future summers as warm as observed extremes may be very different regarding 

other meteorological quantities (e.g. wind speed/direction, humidity and air quality). The same 

principle extends to seasonal precipitation extremes, given that regional precipitation intensity 

is projected to increase (Gleeson et al., 2013; Zappa et al., 2013a). Future winters as wet as the 

historical extremes, for example, may therefore require fewer days of rainfall to attain these 

totals. In summary, we highlight the possibility that future realisations of historically extreme 

conditions should not be assumed to experience weather similar to the analogues used herein. 
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It is also important to emphasise that for all variables, the results presented here provide only 

a first-order assessment of the changing likelihood of extreme conditions. Our analysis draws 

upon a large number of model runs from CMIP5 giving equal weight to all constituent series 

regardless of their physical realism (Liepert et al., 2013) or ability to capture the past IoI climate. 

We also note that output from CMIP5 is spatially coarse, and as a result will not capture 

important features of the IoI climate that may be important in determining the changing 

likelihood of extreme seasons. For example, the complex influence of topography on rainfall 

generating processes will be poorly represented at this scale (Fealy and Sweeney, 2007; 

Sweeney, 2014). We have also not attempted to resolve spatial variability in projected climate 

changes across the island. However, given the modest spatial scale of the IoI relative to the 

synoptic systems which define its weather, we assert that this simplification is defendable. 

Indeed, previous spatially disaggregated projections of IoI for temperature and precipitation 

have shown relatively modest variability across the island (Sweeney et al., 2008). 

We suggest that future research should be tasked with updating the analogues as new extreme 

seasons emerge, thus ensuring contemporary events are leveraged appropriately to aid in 

climate change communication. To this end, we highlight that at the time of writing (January, 

2016), the BI-region has experienced an exceptionally wet December, and if such conditions 

persist, the winter of 2016 could be a candidate for this treatment. We also note the opportunity 

of extending our analyses by scaling the changing likelihood of extreme seasons to changes in 

mean global temperature (cf. Seneviratne et al., in press), thus permitting more tangible 

illustration of the regional climate impacts associated with given greenhouse gas emission 

trajectories. 

 
In summary, our findings suggest that IoI climate has experienced a substantial change in the 

occurrence of extreme seasonal temperatures and rainfall that, in the earlier half of the 20th 

century, would have been considered highly exceptional. The observed increase in likelihood 

is consistent with projected future changes in the IoI climate, and our study indicates that such 

events are likely to become less the exception and more the norm as further warming is 

experienced. This is most apparent in the almost 250-fold (RCP 8.5; relative to 1901-2005) 

increase in the likelihood of a summer as warm as 1995 - the warmest currently on record.  

In light of this, our preparedness to reduce emissions and plan appropriately is critical for 

determining the range of unavoidable impacts we are likely to experience. However, despite 

its significance, communicating the exact scale of the challenge climate change poses has, to 
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date, proved difficult. We hope that by contextualising such changes relative to observed 

extremes, our analysis will prove useful in this regard as it provides more tangible reference 

points for a wide range of audiences. Such references may provide insight into how physical 

systems, as currently configured, may respond to future change, and hence what actions will 

be required to ensure appropriate mitigation and adaptation. Thus, it is hoped that our results 

will reduce ‘psychological distancing’ from the reality of climate change, whilst enhancing the 

accessibility of climate risk information.  
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