
Critical Infrastructure Automated Immuno-Response 

System (CIAIRS) 

Sahar Badri, Paul Fergus, William Hurst 

Department of Computer Science, 

Liverpool John Moores University, 

Byrom Street 

Liverpool, L3 3AF, UK 

S.KBadri@2010ljmu.ac.uk, P.Fergus, W.Hurst{@ljmu.ac.uk} 

 

 
Abstract— Over the last decade, critical infrastructures have 

become increasingly complex. They now possess levels of 

automation which requires the integration of, often, mutually 

incompatible technologies. In addition, the data sets generated are t, 

vast and intricate level of interdependency between infrastructures 

has grown. Any failures, caused by cyber-attacks, have the ability to 

spread through a system of systems and are a challenge to detect. 

Therefore, this paper firstly discusses the interdependency challenges 

facing critical infrastructures; and how it can be used towards 

creating a support network against cyber-attacks. In much the same 

way as the human immune system is able to respond to intrusion, our 

proposed system is able to detect cyber-attacks and share the 

knowledge with interconnected partners. In order to demonstrate our 

approach, a simulation framework of 8 critical infrastructures is 

presented. Furthermore, our big data analysis techniques, used to 

identify and share threats between infrastructures, are discussed in 

depth. 

Index Terms— Critical Infrastructure, Big Data, Cyber-Security, 

Simulation, Data Analytics, Immune System, Interdependency 

1.  INTRODUCTION 

Critical infrastructures play a significant role in the world 

around us. Their service provision has become more 

widespread, to the point where it is ubiquitous in many 

societies [1]. To maintain continuous supply, infrastructure 

interconnectivity has become highly complex; particularly due 

to the increase in demand for the amenities. This has led to an 

increased interdependence between infrastructures and their 

underlying physical layers. One infrastructure’s provision 

relies heavily on another. Due to this increased connectivity, 

now, more than ever before, critical infrastructures face a 

number of possible digital threats. In result, Critical 

Infrastructure Protection (CIP) has become an significant 

topic for research focus [2]. 

This interdependency challenge, within the critical 

infrastructure system of systems, has the potential to cause a 

cascading effect, with unprecedented disaster outcomes. 

Therefore, understanding the interconnectivity behaviour 

between the CI’s, and how it changes depending on the 

complexity, can help in reducing the effect before cascading 

occurs. This would control the damage and limit the impact 

[4].  

Every new interdependency reveals a fresh vulnerability in 

the system of systems, which creates new attacks risks [5]. 

The research presented in this paper, focuses on understanding 

the links between critical infrastructures. The aim is take 

advantage of the concept of an immune system characteristic 

to simplify and predict potential problems before they spread 

through a network of infrastructures. As with any other 

systems, critical infrastructure faces a number of possible 

types of digital attack. In this paper, a system framework, 

which is able to identify threats to a network and 

communicate the potential impact, is put forward. The system 

is evaluated using data constructed through a simulation of a 

network of critical infrastructures. Data analysis is conducted 

using data classifiers to identify system anomalies and present 

a model of behaviour to share with other infrastructures. 

The paper is organised as follows. Section 2 presents a 

background discussion on critical infrastructures, 

interconnectivity in a system of systems and on mapping the 

concept of an immune system to a computing environment. 

Section 3 highlights the data collection process used for our 

system design and development. Section 4 provides an 

overview of the system framework and presents initial results. 

A discussion of the findings is put forward in Section 5 and 

the paper is concluded in Section 6. 

2. BACKGROUND 

Critical infrastructures (CI) are defined as the arrangement of 

both systems and assets, which are essential and affect the 

security, economy, public health or safety of a nation [6][7]. 

As Command et al., detail, critical infrastructures, can be 

divided into three groups: physical assets, human assets, and 

cyber assets [7]. Specifically this can include water, energy, 

information and telecoms, chemical, industry, transportation, 

banking and finance, public health, agriculture and food, 

postal and shipping, and the defence industry [2].  

2.1 Critical Infrastructure Security Challenges 

Considerable effort has been expended on the protection of 

critical infrastructures; it is still an ongoing and persistent 

challenge. Various factors contribute to this, for example, 

there is a lack of understanding about the interdependency 



scheme within critical infrastructures groupings. Moreover, 

there is no single approach about how the elements of a 

critical infrastructure’s functionally affect a connected partner. 

Rinaldi et al., [9][3] for example, identify four groups to 

categorise infrastructure interconnectivities. 

 Physical interdependency: Two infrastructures are 

physical interdependent to each other if their output 

materials are linked. 

 Geographic Interdependency: The infrastructures are 

geographically interdependent if an environmental change 

can affect both infrastructures. 

 Logical Interdependency: Two infrastructures logically 

interdependent of each other if their connection is through 

a specific mechanism such as policies, regulation, etc. 

 Cyber Interdependency: The infrastructures are cyber 

interdependent if the infrastructures depend on 

information transmission. SCADA is one example of a 

communication system that could cause cyber 

interdependency between infrastructures. 

With many systems, this raises several problems, 

particularly with the analysing or modelling of infrastructure 

networks which are relied on by multiple CIs. Some of these 

factors, which could affect the interdependencies, are 

indicated by Rinaldi et al., [9]. They can include elements 

such as time scales, geographic scales, cascading and higher 

order effects, social/psychological elements, operational 

procedures business policies, restoration and recovery 

procedures, government regulatory, legal, policy regimes and 

finally stakeholder concerns. These factors are critical and can 

have a detrimental impact on the system.  

2.2 Interconnectivity Modelling 

Modelling individual infrastructures is well researched area, 

however, modelling of multiple interdependent infrastructures 

is still at an immature phase [9]. Interdependency models can 

be grouped into six different broad categories ranging from 

highly aggregated tools to very detailed, high-resolution and 

high-fidelity models [9]. 

The first category is the aggregate supply and demand tools 

category, which evaluates the total demand for infrastructure 

services in a region. The second category is the dynamic 

simulation category. This can be used to examine a CI's 

operations, the effects of disruptions and the associated 

downstream consequences. In addition, dynamic simulation 

can be used to examine the effects of law, policies and 

regulations upon the operation of a CI. The third category is 

that of agent-based models, which are used in a wide spectrum 

of interdependency and infrastructure analyses. The fourth 

category is the physical-based model category where physical 

aspects of infrastructures can be analysed with some standard 

engineering techniques.  

As an example of modelling, discussed by Han et al., is 

known as Interpretive Structural Modelling (ISM) [11]. 

According to Han et al., the ISM methodology can analyse the 

interactions of several critical infrastructures in relation to 

their mutual influences within a complex system [11]. Hence, 

it is possible to identify the driving infrastructures which can 

aggravate other infrastructures and their dependents. In their 

research, Han et al., apply ISM techniques on a system of 

eight infrastructures to develop a framework that shows 

interrelationships of CIs. They also classify the different 

infrastructures criticality according to their driving 

dependence and power [11]. Those relationships which can be 

used to lead the whole system to be a more efficient 

infrastructure system were found as a result. 

By using both modelling and CI interdependency 

simulation methods, to find the relationship between different 

CI systems, this research aims to be able to predict the next 

system that might fail and prevent cascading failure occurring. 

Much how the human immune system is able to work a 

complex system to fight off illness, it is our ambition to 

develop a system which can repel cyber-attacks from a 

network of critical infrastructures. Consequently, the 

following subsection focuses on mapping the human immune 

system into a computational environment. 

2.3 The Human Immune System Model 

Various important systems within the human body function 

intangibly but are vital to our life. One of these systems is the 

immune system. This is considered as one of the most 

complicated smart systems due to the manner in which is able 

to keep the human body healthy. One of the most remarkable 

behaviours of the immune system is the way it can distinguish 

between self-cells (which are the body’s own cells) and the 

non-self-cells (which the immune system attempts to destroy). 

Moreover, the functionality or the method the immune system 

uses to succeed, had encouraged researchers to try to emulate 

the immune system in other areas, such as computer 

technology. This field of research is referred to as Artificial 

Immune Systems (AIS). The transfer for the AIS has results 

important achievement, which lead to entering new 

prospective to the computer technology defence [13].  

The properties of the immune system make it function 

differently from other systems, in order to perform its duties 

in the most effective way. Castro et al., list a number of 

properties of the immune system [14]. Some of these 

properties include the following: 

- Pattern recognition.    -   Anomaly detection 

- Uniqueness.                -   ‘Distributivity’. 

- Self-identity.               -  Immune learning and memories. 

- Autonomy.                  -  No secure layer. 

- Integration with other systems. 

Sompayrac et al., describes how the immune system works 

in a very comprehensive way [15]. The immune system is 

divided into two systems: the first system is the Innate 

Immune System, which is a natural barrier. The second 



system is the Adaptive Immune System, which is lymphocyte. 

Both systems have a remarkable feature in being able to 

memorise different attacks. However, the mechanisms, which 

the innate and the adaptive immune systems use in order to 

memorise attacks, differ. The Innate Immune System 

memorise mechanism depends on a ‘hard-wired’ memory that 

has developed a pattern-recognition process to spot the 

signatures of regular attackers. Moreover, the innate memory 

mechanism knowledge built up over a long period of time and 

this system has the ability to develop itself as human but not 

updatable. 

On the other hand, the Adaptive Immune System memorise 

mechanism depends on remembering the attacks the body has 

previously faced during its lifetime. The immune system 

mechanism idea in the human body could help in protecting 

different computer systems, and in particular computer 

networks that are relied upon by critical infrastructure systems. 

However, establishing methods for how the human defence 

concept can be applied effectively in the context of computer 

networks is a challenge. In order to do this, a number of 

examples will be highlighted to show how the functionality 

can be translated to apply to different infrastructures.  

Elsadig et al.,[16] have used the concept of self-healing  

from the human body and translated it to software based on 

danger theory. Their method uses three different agents. The 

three agents are sense, adaptive and self-healing agents (SH), 

which cooperate in order to achieve a full healing system.  

Province et al., use multi-agents in order to imitate the 

human immune system idea based on the B cell [17]. The 

main concept of their work is to build an immune system 

based on the multi-agent functionality, which communicates 

two agents who have the same goal using an immune network. 

Taking Yeom et al., as the last example, they used the 

immune system idea in order to create a distributed multi-

agent method [18]. They present the B and the T cell as two 

different agents. They used a number of algorithms in order to 

simulate the T and B cell mechanisms. Highlighting, through 

the literature survey, critical infrastructure systems and the 

human body systems share some similarities, such as the 

interdependency between their systems. This can result in a 

new way of predicting a failure or a problem in an 

interdependent critical infrastructure system. However, all of 

these techniques contributed towards the design of our 

framework for a Critical Infrastructure Automated Immuno-

Response System within a big data environment. 

3.  DATA COLLECTION 

In order to reach the aim of this research a highly 

comprehensive simulation program is developed using 

Siemens Tecnomatix. The simulation is used to evaluate the 

proposed system, form the process layout and constructed the 

product lifecycle management. This stage involved the 

development of seven critical infrastructures that could affect 

a compound of housing units. Implementing the system 

involved two main points: Setting up the interconnectivity at a 

high level, and constructing the mechanisms of each 

infrastructure down to a low level. These points present a 

realistic data from the building construction components. 

Using this approach, granular dataset are constructed for the 

big data analysis process. 

3.1 Simulation 

The eight infrastructures are: Hydroelectricity, Electricity 

Grid, Water Distribution, Sewage System, Nuclear Power, 

Coal Power, Factory and House infrastructure, which are 

linked either by pipes or cables. The selection of these critical 

infrastructures was made, as they are the well-known 

infrastructures present in most developed countries.  

The data construction process depends on the connectivity 

between the different system and the system’s faults, each 

based on realistic infrastructure behaviour. The expectation is 

that, through analysing the data from different attack scenarios 

on the system, cyber-attacks can be communicated between 

different infrastructures and suitable countermeasures can be 

established. Figure 1 presents an overview of the global 

critical infrastructure system of systems, and the different 

supply chains, such as water pipes, electricity cables and 

sewage system. 

 

Figure 1. System Overview 

Figure 2 illustrate the components within the water 

distrusted system, as a sample of one of the eight main CI that 

are presented in Figure 1. 

 

Figure 2. Water System Overview 



3.2 Data Sample 

In order to understand the behaviour of the system two data 

sets are constructed for analysis. A normal system set, 

constructed from a two hour simulation sample. Then 

numbers of recognized faults were introduced to the system as 

abnormal behaviours in order to construct a dataset of the 

system under attack. For this paper, a fault in the water pipe 1 

and the water pipe connected to the houses compound inside 

the water distributed critical infrastructure are selected as an 

example. Table (1) and (2) display data samples from normal 

behaviour mode and the abnormal mode in the Water 

Distribution Infrastructure, consecutively. 

Table 1 Normal Simulation Data Sample  

Time F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

Normal Data Set 

01:57.0 0 3 1 0 0 0 0 1 0 0 

01:57.2 0 3 1 0 0 0 0 0 1 0 

01:57.5 0 3 1 0 0 0 0 0 1 0 

01:57.8 0 3 1 0 0 0 0 0 1 0 

01:58.0 0 3 1 0 0 0 0 0 1 0 

01:58.3 0 3 1 0 0 0 0 0 1 0 

01:58.5 0 3 1 0 0 0 0 0 1 0 

01:58.7 0 3 1 0 0 0 0 0 1 0 

01:59.0 0 3 1 0 0 0 0 0 1 0 

 

Table 2 Abnormal Simulation Data Sample  

Time F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

Abnormal Data Set 

01:57.0 0 3 1 2 1 0 0 0 0 0 

01:57.2 0 2 1 2 1 1 0 0 0 0 

01:57.5 0 3 1 2 1 1 0 0 0 0 

01:57.8 0 3 1 2 1 1 0 0 0 0 

01:58.0 0 3 1 2 1 1 0 0 0 0 

01:58.3 0 3 1 1 1 2 0 0 0 0 

01:58.5 0 3 1 1 1 2 0 0 0 0 

01:58.7 0 3 1 1 1 2 0 0 0 0 

01:59.0 0 3 1 1 1 2 0 0 0 0 

The Water Distribution Infrastructure consists of 10 

components. Data collection was conducted with a sampling 

rate of 4 Hertz (which is every 0.25 of a second). The system 

consists of 147 components in total. The numbers in the tables 

represent the units which flow in the water pipe. It is clear that 

the between the time 1:57 to 1:59 the level of the water was 

increased. Table (3) explains the Water Distribution 

components in detail. 

 

 

 

Table 3 Component Description for Water Distribution Infrastructure 

4. APPROACH 

The framework put forward in this section assists and guides 

critical infrastructures on how to behave when abnormal 

behaviour is detected. This information is then shared to other 

infrastructures. This concept draws from the example of an 

immune system characteristic, to share and assist other 

infrastructures from abnormal behaviours and prevent cyber-

attacks from having a cascading impact. 

4.1 System Framework 

The framework presented below (Figure 3), displays a high-

level of functions work together in order to indicate abnormal 

behaviours are occurring and the mitigation process. 

Network Data

User Simulation Program

Data 

Manager 

Data 

Preparation

Decision 

Interconnected Critical 

Infrastructures

Data Base

User Interface

Action

Data Analysis

Attack TypeDecision 

Communicate

 
Figure 3 The System Framework. 

Abbreviation Component Description  

F1 Electricity cable from the Electricity Grid to the 

WD in the WD 

F2 Water pipe 1 from the source in the WD 

F3 WD  Assembly 

F4 Water pipe 2 in the WD 

F5 WD treatment 

F6 Water pipe 3 after the treatment in the WD 

F7 WD Storage 

F8 Water pipe 4 in the WD 

F9 Water pipe from WD to Houses in the WD 

F10 Water pipe from WD to Factory in the WD 



The different components that form the system, and the 

flow between the components, are displayed above. The 

system starts with the collection of data from the network 

(provided by the simulation) and introduces it to Data 

Manager. At this point data is sent for analysis, involving a 

data classification process. Here machine learning algorithms, 

presented in the next subsection, detect behavioural changes 

which constitute abnormal behaviour. Once the abnormal 

signals are detected, a comparison with the previously stored 

behaviours is conducted in order to assess if the pattern is 

known. Depending on the network connectivity between the 

CIs, the system would then start share the new abnormal 

behavior with interconnected partners. This would help other 

CI plan for an emerging attack of cascading impact. At all 

times an administrator overviews the system functions. 

4.3 Data Analysis 

This sub-section details the process involved in detecting 

abnormal behaviour for sharing with other infrastructures. For 

the purpose of this paper, 48 records of data are used for the 

classification process consisting of 24 normal and 24 

abnormal behaviour records. The records of data are 

comprised of 18 features. 

Since the   standard deviation is a valid measure that 

indicate the distance value from the mean. Both the mean and 

the standard division have been selected in order to give an 

accurate comparison in generating the classifiers. Table 3 

presents the result of the classicisation process, which 

involved using 6 well-known machine learning algorithms. 

The best values are obtained by ParzenC and KNNC. In 

addition the Sensitivity and Specificity detection rates are also 

higher than other classifiers. This refers to the detection of 

normal and abnormal behaviours respectively.  

Table 3. Classification Results 

Classifiers AUC% Sensitivity Specificity 

LDC 79.17 0.706 1.000 

UDC 50.00 0.500 0.500 

QDC 50.00 0.500 0.500 

SVC 75.00 0.667 1.000 

Parzenc 87.50 0.800 1.000 

KNNC 87.50 0.800 1.000 

Using the above techniques to detect behaviour changes, 

patterns of behaviour would be developed and communicated 

to other infrastructures for mitigation and remediation 

planning.  

5. DISCUSSION  

In this section, a discussion on the results is presented. Table 4 

present 2x2 confusion matrix for the ParzenC classifier with 

87.50% accuracy identifier and 3 incorrectly identified, as a 

demonstration of how the results for Table 3 are calculated. 

 

Table 4. ParzenC Confusion Matrix 

True Labels 
Estimated Labels 

1 2 Totals 

1 12 0 12 

2 3 9 12 

Totals 15 9 24 

Figure 4 displays a graph of the ParzenC classification for 

two of the eighteen features. The ellipses displayed, refer to 

likelihood contours, where the points inside the ellipse are 

most likely to belong to that grouping. The blue ellipses 

consist of data that comes from the normal behaviour dataset 

and the red referring to threat behaviour data. Threat 

behaviour can be identified as a result of one grouping clearly 

standing out from the other. 

The process functions by creating a scatter plot of the 

values from both of the selected features then drawing the 

ellipses based on the division of the data. The ellipses, 

displayed, refer to likelihood contours, where the points inside 

the ellipse are most likely to belong to that grouping. 

 

Figure 4. ParzenC Visualisation & Figure 5. KNNC Visualisation 

The blue ellipses consist of data that comes from the 

normal behaviour dataset and the red ones referring to threat 

behaviour data. Threat behaviour can be identified as a result 

of one grouping clearly standing out from the other. Similarly, 

Figure 5 displays a visualisation of the classification results 

for the KNNC classification process. Feature 1, on the x-axis, 

refers to one of the dominant features and Feature 2, on the y-

axis, and refers to one of the lesser dominant features from the 

dataset. Two features were used in each visual representation 

to demonstrate how the classifiers function. The graph 

displays that some changes in behaviour can be identified but 

often some are subtle and difficult to identify. 

6. CONCLUSION 

The growth which the Critical Infrastructure interconnectivity 

is one the main challenges when countering the growing 

cyber-threat. The research presented in this paper 

demonstrates a technique for the detection of abnormal 

behaviour within a CI and offers and approach for sharing the 

information with other infrastructures, using the human 

immune system as a reference model. A frame work was 

proposed, as was a simulation approach for constructing big 



data sets for analysis. Using ParzenC and KNNC, two data 

classification techniques, we achieved high accuracy in the 

detection of abnormal behaviours. Our future work will 

involve automating the system to be able to offer a set of 

recommended changes to an administrator in response to a 

cyber-attack taking place. The recommendations will be 

shared within a network of interconnected critical 

infrastructures. 
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