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ABSTRACT  

The protein tyrosine kinase-2 (PTK2) gene encodes focal adhesion kinase, a structural 1 

protein involved in lateral transmission of muscle fiber force. We investigated 2 

whether single nucleotide polymorphisms (SNPs) of the PTK2 gene were associated 3 

with various indices of human skeletal muscle strength and the inter-individual 4 

variability in the strength responses to resistance training. We determined unilateral 5 

knee extension single repetition maximum (1-RM), maximum isometric voluntary 6 

contraction (MVC) knee joint torque and quadriceps femoris muscle specific force 7 

(maximum force per muscle physiological cross-sectional area), before and after 9-8 

weeks of knee extension resistance training in 51 untrained young men. All 9 

participants were genotyped for the PTK2 intronic rs7843014 A/C and 3’ UTR rs7460 10 

A/T SNPs. There were no genotype associations with baseline measures or post-11 

training changes in 1-RM or MVC. Although the training-induced increase in specific 12 

force was similar for all PTK2 genotypes, baseline specific force was higher in PTK2 13 

rs7843014 AA and rs7460 TT homozygotes than in their respective rs7843014 C- (P 14 

= 0.016) and rs7460 A-allele (P = 0.009) carriers. These associations between muscle 15 

specific force and PTK2 SNPs suggest that inter-individual differences exist in the 16 

way force is transmitted from the muscle fibers to the tendon. Therefore, our results 17 

demonstrate for the first time the impact of genetic variation on the intrinsic strength 18 

of human skeletal muscle.  19 

 20 

Key words: Protein tyrosine kinase-2 (PTK2); focal adhesion kinase (FAK); gene 21 

polymorphisms; costameres; lateral force transmission.  22 

23 
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INTRODUCTION 24 

Muscle force is transmitted to the tendon along the length of a muscle fiber and also 25 

laterally via attachments to the surrounding matrix of connective tissue (27). It has 26 

been suggested that an increase in lateral attachments after resistance training might 27 

result in an enhanced muscle specific force [maximum force per physiological cross-28 

sectional area (PCSA)] (7, 12). Such attachments have been identified as intra-29 

sarcolemmal protein complexes known as “costameres” (19), which are associated 30 

with the lateral transmission of muscle fiber force (6). Thus, costameres could enable 31 

each muscle fiber to act as multiple force-generating units, thus increasing the specific 32 

force of the whole muscle.  33 

 34 

Mechanical tension is essential in regulating costameric protein expression (29) and 35 

resistance training is known to modulate the expression of costameric proteins, such 36 

as desmin (32), alpha-1-syntrophin and dystrophin (14) in humans, while focal 37 

adhesion kinase (FAK) and paxillin expression and activity are increased in stretch-38 

induced hypertrophied rooster skeletal muscle (11). The integrin-associated tyrosine 39 

kinase, FAK, has been shown to play a major role in costamere formation and 40 

turnover (4, 20) and FAK expression is controlled at the level of the protein tyrosine 41 

kinase-2 (PTK2) gene. Therefore, polymorphisms of the PTK2 gene could potentially 42 

underpin the considerable inter-individual variability reported in untrained human 43 

muscle specific force [ranging from 22 to 40 N·cm-2 (8)], and in the training-induced 44 

relative change in specific force, which varies between -5% and +39% (9). 45 

 46 

As muscle strength and training responses are important from a clinical perspective, 47 

e.g. the response to rehabilitation following injury, we aimed to elucidate whether 48 
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single nucleotide polymorphisms (SNPs) of the PTK2 gene were associated with in 49 

vivo muscle specific force and functional measures of strength, both before and after 50 

resistance training. We hypothesized that two PTK2 SNPs (the intronic rs7843014 51 

and the 3’ UTR rs7460 SNP) would be associated with QF muscle specific force and 52 

with the change in specific force following training.  53 

 54 

MATERIALS AND METHODS 55 

Participants  56 

Fifty-one untrained Caucasian males, aged 20.3 ± 3.1 years, height 178.1 ± 5.6 cm, 57 

body mass 75.4 ± 10.6 kg, body mass index (BMI) 23.7 ± 2.6 (mean ± SD) provided 58 

written informed consent prior to their involvement in the study, which complied with 59 

the Declaration of Helsinki and was approved by the local ethics committee of the 60 

Manchester Metropolitan University. Study volunteers were excluded if their age was 61 

outside the range of 18-39 years, they had a history of lower-limb fracture, had taken 62 

part in strength training within the 12 months prior to the study, had used dietary 63 

supplements or performance enhancing aids, or if they were considered to be in ill 64 

health (determined by their responses to a health questionnaire). Participants were 65 

familiarized with all test procedures and equipment within a 14-day period prior to the 66 

baseline measurements. Phenotype data from these participants have been reported 67 

previously (9). 68 

 69 

Habitual physical activity rating 70 

The habitual physical activity rating (PAR) of each participant was assessed by 71 

questionnaire (2) immediately prior to the training period. The overall PAR was 72 

scored using a scale from 1 to 5 points, where 1 was the least active, 3 was 73 
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intermediate and 5 was extremely active. Participants were asked to maintain their 74 

PAR and habitual dietary intake over the course of the study.  75 

 76 

Experimental design 77 

Maximum patellar tendon force, QF muscle volume, physiological cross-sectional 78 

area (PCSA) and specific force were determined in the right limb [as described in 79 

Method 2 of (8)] before and after nine weeks of high-intensity unilateral knee 80 

extension resistance training (10) in 51 previously untrained men. In addition, all 81 

participants had blood samples isolated, which were genotyped for the PTK2 rs7460 82 

A/T and rs7843014 A/C SNPs.  83 

 84 

Progressive resistance training 85 

The supervised resistance training protocol has been described in detail elsewhere 86 

(10). Briefly, supervised knee extension training was performed unilaterally three 87 

times per week for nine weeks. The maximum training load that could be lifted once 88 

only (1-RM) throughout the full range of knee extension (110° to 20° of knee flexion; 89 

0° = full knee extension) was assessed at the beginning of the training program and 90 

re-evaluated at the start of each week on a standard knee extension machine 91 

(Technogym, Gambettola, Italy). The training intensity was set in relation to the 1-92 

RM and was therefore progressively increased throughout the nine weeks of training. 93 

Each session comprised a warm-up set of 10 knee extension repetitions at 40% of the 94 

revised 1-RM, followed by four sets (2 min rest between each) of 10 repetitions at 95 

80% 1-RM. Compliance with the training protocol was 100%, with each participant 96 

completing all 27 training sessions.  97 

 98 
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Maximum patellar tendon force  99 

The method used to assess maximum patellar tendon force has been explained in 100 

detail elsewhere (8). In summary, participants performed isometric knee extension 101 

maximal voluntary contractions (MVCs) on a dynamometer (Cybex Norm, Cybex 102 

International, Ronkonkoma, NY) at optimum knee joint angle, which ranged from 70-103 

90° knee flexion. Participants were seated with a hip angle of 85° (supine = 180°) and 104 

were fixed with inextensible straps to the strength-testing chair. Co-contraction torque 105 

of the antagonist muscles during knee extension MVC was calculated by comparing 106 

electromyographic activity of the biceps femoris muscle during maximal isometric 107 

knee extension and maximal isometric knee flexion (21). Two bipolar silver chloride 108 

surface electrodes (Neuroline, Medicotest, Rugmarken, Denmark) were placed 20 mm 109 

apart along the sagittal axis over the muscle belly (the location was recorded on an 110 

acetate for further tests) and one reference electrode was positioned over the lateral 111 

tibial condyle. The root mean square of the raw EMG signal was calculated over one 112 

second around the peak torque during each maximum voluntary isometric knee 113 

extension and flexion at optimum joint angle and the torque produced by the 114 

hamstrings during knee extension was estimated assuming a linear relationship 115 

between torque and EMG activity (21). The estimated antagonist torque obtained at 116 

the optimum knee extension joint angle was used to calculate the maximum overall 117 

knee extension torque. Voluntary QF muscle activation was assessed using the 118 

interpolated twitch technique (25), whereby the participant received a supramaximal 119 

twitch (Digitimer stimulator model DS7, Welwyn Garden City, UK) via two 7.5 cm x 120 

12.5 cm self-adhesive electrodes (Versastim, Conmed, New York, NY) placed distally 121 

(anode) and proximally (cathode) over the QF muscle, once before MVC (control 122 

twitch) and once during MVC. True maximum torque (TMT) was calculated as: 123 
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TMT = MVC(C) · (1-t/T)-1
 124 

where t is the amplitude of the superimposed twitch, T is the value of the twitch 125 

before the MVC and MVC(C) is MVC corrected for antagonist muscle co-activation. 126 

The percentage of voluntary muscle activation was given by: 127 

100 · (1-t/T) 128 

The patellar tendon moment arm (dPT) was determined using a 0.2-T magnetic 129 

resonance imaging (MRI) scanner (G-Scan, Esaote Biomedica, Genoa, Italy), as 130 

previously described (30). Sagittal and coronal-plane knee scans were acquired using 131 

a Turbo 3D T1-weighted sequence with the following scanning parameters: time of 132 

repetition 40 ms; time to echo 16 ms; matrix 256 x 256; field of view 180 mm x 180 133 

mm; slice thickness 3.4 mm; interslice gap 0 mm. The knee was scanned at rest with 134 

the participant in the supine position and the knee fully extended. Coronal scans were 135 

used to identify the appropriate sagittal scans, which were used to locate the centre of 136 

rotation (COR), i.e. the midpoint of the shortest distance between the two femoral 137 

condyles and the tibial plateau, and dPT was defined as the perpendicular distance 138 

between the COR and the axis of the patellar tendon (30). Previously reported ratios 139 

of dPT at full extension (0 degrees knee flexion) to dPT at of 70, 80 and 90 degrees 140 

knee flexion (3) were used to calculate dPT at optimum knee joint angle in this study. 141 

Subsequently, maximum force resolved at the patellar tendon (Ft) was calculated as:  142 

Ft = TMT / dPT 143 

 144 

Muscle physiological cross-sectional area (PCSA)  145 

QF muscle PCSA was determined from a method that has been described in detail 146 

previously [Method 2 of (8)]. In brief, ultrasonography (MyLab25, Esaote Biomedica, 147 

Genoa, Italy) was used to identify femur length (the distance from the proximal origin 148 
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of the VL muscle to the tibiofemoral contact point). ACSA of each component QF 149 

muscle was assessed from transverse MRI scans acquired at 40% femur length from 150 

the distal end. QF muscle volume (Vm) was calculated by adapting a previously 151 

described method (15) that incorporated femur length, the ACSA of each constituent 152 

QF muscle and a series of regression equations. VL muscle fascicle length (Lf) and 153 

pennation angle (θp) were measured during knee extension MVC at optimum knee 154 

angle using ultrasonography at 50% of the muscle length along the mid-sagittal plane. 155 

Dividing Vm by VL muscle Lf provided QF PCSA [VL Lf has been shown to be 156 

representative of the Lf for the whole QF muscle group (8)].  157 

 158 

In vivo muscle specific force  159 

QF muscle force is reduced when resolved along the patellar tendon according to the 160 

θp. Therefore, QF PCSA was multiplied by the cosine of VL θp, which provided the 161 

reduced QF PCSA. Consequently, specific force was determined by dividing Ft by the 162 

reduced QF PCSA (8).  163 

 164 

Blood sampling  165 

A 10-mL blood sample was drawn into 10-mL EDTA tubes (BD Vacutainer Systems, 166 

Plymouth, UK) from a superficial forearm vein. The whole blood was aliquotted into 167 

2-mL tubes (Eppendorf AG, Hamburg, Germany) and stored at -80°C until 168 

subsequent analysis.  169 

 170 

DNA extraction and determination of PTK2 genotype  171 
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Automated DNA extraction was performed using a QIAcube (Qiagen, Crawley, UK) 172 

in association with the QIAamp DNA Blood Kit (Qiagen, Crawley, UK), and 173 

following the QIAamp spin protocol for DNA purification from whole blood. 174 

 175 

Real-time polymerase chain reaction (PCR) was performed to determine the genotype 176 

of the PTK2 polymorphisms in each participant. Reactions were carried out on 96-177 

well microtiter plates. Each 10-μL reaction volume contained: 5-μL Genotyping 178 

Master Mix (Applied Biosystems, Foster City, CA), 4.3-μL nuclease-free H2O 179 

(Qiagen, Crawley, UK), 0.5-μL genotyping assay mix (Applied Biosystems, Foster 180 

City, CA), plus 0.2-μL sample DNA at a concentration of ~30 ng·μL-1 and an 181 

A260/A280 ratio of 1.7–1.9. TaqMan rs7843014 and rs7460 SNP genotyping assay 182 

mixes were used, and each mix included the appropriate TaqMan primers and probes.  183 

 184 

For control wells, 0.2-μL nuclease-free H2O replaced the DNA template. Following 185 

sealing (Microseal ‘B’ adhesive seal, BioRad Laboratories, Hercules, CA) and 186 

centrifugation at 8,000 RPM for 1 min, DNA amplification (Chromo4 Real-Time 187 

PCR Detection System, BioRad Laboratories, Hercules, CA) was performed using the 188 

following PCR protocol: denaturation at 95°C for 10 min, followed by 40 cycles of 189 

incubation at 92°C for 15 s then annealing and extension at 60°C for 1 min. PTK2 190 

genotypes were ultimately determined using Opticon Monitor 3.1 software (BioRad 191 

Laboratories, Hercules, CA). All samples were analyzed in duplicate and in all cases 192 

there was 100% agreement between genotype for samples from the same participant.  193 

 194 

We performed the genotyping in accordance with published genotyping and quality 195 

control recommendations (5). These included describing genotyping assays and 196 
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protocols in detail, producing an overview of sample ID and well number prior to 197 

genotyping, including external control samples, incorporating internal controls by 198 

genotyping samples in duplicate (from the same DNA collection), comparing current 199 

genotype frequencies with previously published frequencies in a similar population 200 

and evaluating the level of agreement with the Hardy-Weinberg principle. The extent 201 

of linkage disequilibrium (LD) between the two PTK2 SNPs was investigated by 202 

using freely available software (http://linkage.rockefeller.edu/ott/eh.htm) to estimate 203 

the haplotype frequencies. The difference between the expected and observed 204 

haplotype frequencies was then calculated and reported as D’ and R2.  205 

 206 

Statistical analysis 207 

Genotype frequencies for each PTK2 SNP were tested for compliance with the Hardy-208 

Weinberg principle using χ2 tests. Repeated measures ANOVAs [within subjects 209 

factor: time (pre- and post-training); between subjects factor: group (3 genotype 210 

levels)] were used to detect associations between each PTK2 SNP and 1-RM, MVC 211 

knee joint torque and QF muscle specific force before and after training. If a tendency 212 

was observed between group or for a group x time interaction, i.e. 0.05 < P < 0.10, the 213 

two genotypes with similar means were pooled and the ANOVA re-run with post-hoc 214 

independent t-tests. The individual and combined contributions of the PTK2 SNPs 215 

towards the inter-individual variance in muscle specific force were determined using a 216 

multiple linear regression model that included both SNPs. Significance was accepted 217 

when P < 0.05 and statistical tests were performed using SPSS v19. All data are 218 

presented as mean ± standard deviation (SD) unless otherwise stated.  219 

 220 

RESULTS 221 
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PTK2 genotypes 222 

The genotype frequencies for the PTK2 rs7843014 (AA = 37.3%; AC = 41.2%; CC = 223 

21.6%) and rs7460 (AA = 25.5%; AT = 41.2%; TT = 33.3%) polymorphisms were all 224 

in Hardy-Weinberg equilibrium (P ≥ 0.473). Further, the PTK2 rs7843014 A/C and 225 

rs7460 A/T allele frequencies were similar to those reported elsewhere for Caucasian 226 

populations (31).  227 

 228 

Habitual physical activity rating  229 

The habitual physical activity rating (PAR) for the total cohort was 2.7 ± 0.3 and can 230 

be described as slightly less than “intermediate” (2). Furthermore, none of the 231 

physical characteristics (age, stature, body mass, BMI) or PAR differed between 232 

genotype regarding either polymorphism: PTK2 rs7843014 A/C (P ≥ 0.135); rs7460 233 

A/T (P ≥ 0.102). 234 

 235 

Single repetition maximum (1-RM)  236 

Baseline 1-RM (54.3 ± 11.0 kg for the whole cohort) did not differ between genotype 237 

for both the rs7843014 (ANOVA, genotype P = 0.659; Table 1) and the rs7460 238 

(ANOVA, genotype P = 0.740; Table 1) SNPs. Similarly, the % change in 1-RM 239 

(+66.8 ± 30.2% for the entire group) did not differ between genotype for either SNP 240 

(rs7843014: ANOVA, time x genotype P = 0.306; Table 1; rs7460: ANOVA, time x 241 

genotype P = 0.839; Table 2).  242 

 243 

Table 1 near here. 244 

 245 

Maximum isometric voluntary contraction (MVC) knee joint torque 246 
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Before training, MVC torque (248 ± 52 N·m for the entire cohort) did not differ 247 

between genotype regarding either the rs7843014 (ANOVA, genotype P = 0.826; 248 

Table 1) or the rs7460 (ANOVA, genotype P = 0.697; Table 2) SNPs. In addition, the 249 

% change in MVC torque (26.1 ± 10.7% for the whole group) did not differ between 250 

genotype for either SNP (rs7843014: ANOVA, time x genotype P = 0.642; Table 1; 251 

rs7460: ANOVA, time x genotype P = 0.553; Table 2).  252 

 253 

Table 2 near here.  254 

 255 

Muscle physiological cross-sectional area (PCSA)  256 

Prior to training, QF muscle PCSA for the total cohort was 239 ± 40 cm2, and there 257 

was no association with either SNP (ANOVA, genotype P ≥ 0.314). Nine weeks of 258 

resistance training led to a 5.8 ± 4.5% increase in muscle PCSA (ANOVA, time P < 259 

0.0005), which was independent of PTK2 genotype (ANOVA, time x genotype P ≥ 260 

0.963).  261 

 262 

Muscle specific force  263 

Regarding untrained muscle specific force (25.5 ± 5.2 N·cm-1 for the entire group), 264 

there were non-significant tendencies for PTK2 rs7843014 AA homozygotes to 265 

produce higher muscle specific force than their AC and CC counterparts (ANOVA 266 

genotype P = 0.078; Table 1), and the muscles of PTK2 rs7460 TT homozygotes to 267 

have higher specific force than AA and AT genotypes (ANOVA, genotype P = 0.058; 268 

Table 2). When the PTK2 rs7843014 AC and CC genotypes were pooled, the QF 269 

muscles of individuals homozygous for the A-allele expressed higher specific force 270 

than carriers of the C-allele before training (ANOVA, genotype P = 0.023; Table 1; t-271 



 13

test P = 0.016; Fig. 1). Similarly, when the PTK2 rs7460 AA and AT genotypes were 272 

combined, QF muscle specific force was found to be higher in TT homozygotes than 273 

in A-allele carriers before training (ANOVA, genotype P = 0.017; Table 2; t-test P = 274 

0.009; Fig. 1).  However, there was no significant interaction between training and 275 

PTK2 genotype concerning QF muscle specific force and both the rs7843014 276 

(ANOVA, time x genotype P = 0.601; time P < 0.0005; Table 1) and rs7460 277 

(ANOVA, time x genotype P = 0.461; time P < 0.0005; Table 2) PTK2 SNPs, 278 

implying that specific force increased similarly among all three genotypes of both 279 

SNPs (16.4 ± 11.2% for the whole cohort).  280 

 281 

Fig. 1 near here 282 

 283 

As both SNPs of the PTK2 gene were associated with QF muscle specific force, and a 284 

large proportion of participants (33%) possessed both ‘preferential’ genotypes, it was 285 

further investigated whether or not the loci and PTK2 alleles were independent from 286 

each other. The estimated haplotype frequencies are presented in Table 3, and the 287 

deviation of the observed haplotype frequency from the expected frequency was 288 

calculated and defined as the linkage disequilibrium (LD). The LD for the two PTK2 289 

polymorphisms was D’ = 0.905 and R2 = 0.700, which suggests that the two 290 

polymorphisms are in LD and are not completely independent from one another.  291 

 292 

Table 3 near here.  293 

 294 

Both PTK2 SNPs were associated with untrained muscle specific force, therefore the 295 

contribution of each SNP to the inter-individual variance in the respective muscle 296 
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phenotype was investigated. On an individual basis, PTK2 rs7843014 genotype 297 

correlated with baseline muscle specific force (R2 = 0.091; P = 0.031), suggesting that 298 

genotype for this SNP alone contributed to ~9% of the inter-individual variability in 299 

muscle specific force in the untrained state. PTK2 rs7460 genotype also correlated 300 

with baseline muscle specific force (R2 = 0.102; P = 0.022), thus implying that 301 

genotype for this SNP explained ~10% of the inter-individual variability in untrained 302 

muscle specific force. Combining the two PTK2 SNPs in a multiple regression model 303 

led to a tendency towards a correlation with untrained muscle specific force (R2 = 304 

0.105; P = 0.071). Although this correlation did not reach statistical significance, it is 305 

interesting to note that the coefficient of determination was similar to that of the 306 

individual PTK2 SNPs, which is probably due to the relatively high LD between the 307 

two SNPs.  308 

 309 

DISCUSSION 310 

We investigated whether associations existed between polymorphisms of the PTK2 311 

gene and human skeletal muscle strength phenotypes before and after resistance 312 

training. The two PTK2 gene polymorphisms were significantly associated with the 313 

inter-individual variability in muscle specific force but did not contribute to the 314 

observed inter-individual variation in the training response. Thus, our results highlight 315 

a novel association between sequence variations in the PTK2 gene and the intrinsic 316 

force generating capacity of human skeletal muscle, possibly via influences on lateral 317 

force transmission. It should be noted, however, that the data presented in this study 318 

are preliminary in that the sample size is a limitation. Thus, future studies should 319 

attempt to replicate our findings using larger cohorts from the same and other ethnic 320 
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populations, which would increase both the power of the study and the confidence in 321 

our results.  322 

 323 

The genotype frequencies for the PTK2 rs7843014 (AA = 37%; AC = 41%; CC = 324 

22%) and rs7460 (AA = 26%; AT = 41%; TT = 33%) SNPs observed in our study 325 

were comparable to those reported previously for Caucasian populations (31). 326 

Baseline values for our entire cohort were similar to those reported elsewhere for this 327 

population concerning 1-RM lifting strength (13), isometric MVC knee joint torque 328 

(18), QF muscle PCSA (16) and specific force (16). Our observed 67% increase in 1-329 

RM for the whole cohort was higher than some (22), but less than other (23, 24) 330 

reports of 1-RM strength gains following a similar period of knee extensor strength 331 

training. The 26% increase in isometric knee extensor MVC strength was less than 332 

some (26), but greater than other (1, 17) previously reported gains in isometric 333 

strength following a similar duration of knee extensor training. Regarding muscle 334 

hypertrophy, our observed 6% increase in QF muscle PCSA was comparable to 335 

previous reports of QF muscle size gains following resistance training of similar type 336 

and duration (1, 17). The 16% increase in muscle specific force was also comparable 337 

to that reported elsewhere following resistance training of the QF muscle, although in 338 

older individuals (21).  339 

 340 

Focal adhesion kinase (FAK) plays an integral role in the costamere protein complex 341 

(4, 20) that is involved in the lateral transmission of force (6). As FAK is encoded by 342 

the PTK2 gene, we hypothesized that polymorphisms of this gene would explain part 343 

of the inter-individual variability in QF muscle specific force between untrained 344 

young men. We determined that individuals homozygous for the rs7843014 A-allele 345 
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had a higher muscle specific force than carriers of the C-allele, while QF muscle 346 

specific force was greater in rs7460 TT homozygotes compared to their A-allele 347 

counterparts.  348 

 349 

Of the 19 participants who possessed one or both of the preferential PTK2 genotypes 350 

(rs7843014 AA or rs7460 TT), 17 people possessed both genotypes. Individually and 351 

combined, these two SNPs explained ~10% of the inter-individual variability in 352 

muscle specific force in the untrained state. Thus, these findings suggest that the two 353 

SNPs are not independently associated with in vivo muscle specific force but that they 354 

are in linkage disequilibrium, which is supported by a D’ value of 0.91 and  R2 value 355 

of 0.70. This opens up several theoretical possibilities: 1) only one locus is 356 

functionally important regarding muscle specific force; 2) the SNPs become 357 

functional only when they occur together; 3) neither SNP influences muscle specific 358 

force but both are in linkage disequilibrium with the true functional variant that was 359 

not genotyped. In any case, neither of the PTK2 SNPs investigated in our study are of 360 

a kind likely to influence the amino acid sequence of the protein product. However, an 361 

alteration in DNA sequence in the 3’UTR region of a gene (e.g. the PTK2 rs7460 A/T 362 

polymorphism) has the potential to alter the level, location or timing of gene 363 

expression, while intronic genomic variants (e.g. the PTK2 rs7843014 A/C 364 

polymorphism) generally have the potential to influence gene expression and mRNA 365 

stability (28). Therefore, a potential influence of PTK2 gene polymorphisms on the 366 

concentration and time course of FAK expression warrants future investigation.  367 

 368 

We hypothesized that PTK2 genotype would influence muscle specific force, leading 369 

to associations with functional measures of strength, such as maximum dynamic 370 
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lifting strength (1-RM) and isometric MVC knee joint torque. While we did find 371 

PTK2 genotype associations with untrained QF muscle specific force, we observed no 372 

association with baseline 1-RM or MVC torque. Although the intrinsic strength of the 373 

muscle undoubtedly contributes to both 1-RM and MVC torque, extrinsic factors such 374 

as neural drive, moment arm length, muscle size and architecture are also known to 375 

influence such strength measures independent of specific force (8), thus potentially 376 

masking any genotype associations with 1-RM and MVC torque.  377 

 378 

Mechanical tension is known to regulate costameric protein expression (29) and 379 

resistance training increases the expression of costameric proteins, such as desmin 380 

(32), alpha-1-syntrophin and dystrophin (14) in humans, and FAK in hypertrophied 381 

rooster skeletal muscle (11). Therefore, we hypothesized that PTK2 genotype would 382 

influence the previously reported inter-individual variability in the training-induced 383 

change in muscle specific force, 1-RM and MVC torque (9), possibly through a 384 

genotype-dependent change in costameric density with loading. However, we found 385 

no association between either PTK2 SNP and the relative changes in muscle specific 386 

force, 1-RM or MVC torque following 9 weeks of resistance training. If any inherent 387 

difference between PTK2 genotype in the level of FAK protein expression is not 388 

preferentially enhanced with loading, muscle specific force will increase similarly 389 

between genotype. The higher muscle specific force at baseline might then be 390 

attributable to a greater muscle costameric density, which could be realized by 1) a 391 

higher number of costameres per muscle fiber perimeter and/or 2) a larger number of 392 

smaller fibers per muscle with a higher fiber perimeter to area ratio. Preliminary 393 

(unpublished) histological data from our laboratory suggest that people with the 394 

‘preferential’ PTK2 AA genotype do have smaller muscle fiber CSAs than their ‘non-395 
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preferential’ genotype counterparts, and together with a non-association between 396 

PTK2 genotype and muscle PCSA reported here, this would support the second 397 

hypothesis. In this case, a larger loading-induced increase in FAK expression in 398 

people with the higher baseline specific force, i.e. people with the ‘preferential’ PTK2 399 

genotypes, might be offset by a relatively greater loading-induced increase in the 400 

perimeter of large compared to small fibers (assuming a similar relative increase in 401 

fiber CSA). This would lead to a similar increase in total muscle costameric density 402 

between genotype, which in turn would lead to comparable training-induced increases 403 

in muscle specific force. 404 

 405 

Summary and conclusions 406 

The inter-individual variability in QF muscle specific force can be partly explained by 407 

polymorphisms of the PTK2 gene that encodes FAK, a structural protein involved in 408 

the lateral transmission of muscle fiber force. Future experiments should investigate 409 

potential associations between PTK2 genotype and FAK expression in skeletal 410 

muscle. These results highlight the impact of genetic variation on the intrinsic 411 

strength of human skeletal muscle.  412 
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Tables 

Table 1. Baseline values and training-induced changes in muscle strength variables in participants 

according to protein tyrosine kinase-2 (PTK2) rs7843014 genotype; repeated measures ANOVA P-

values are presented for genotype (Pre) and training response (∆) comparisons for the 3 genotypes (P1), 

and AA vs. AC + CC (P2). 

 PTK2 rs7843014 genotype    

Strength 

variable 

AA 

(n = 19) 

AC 

(n = 21) 

CC 

(n = 11) 

P1 AC + CC 

(n = 32) 

P2 

Pre 1-RM (kg) 55.0 ± 13.2 53.8 ± 9.7 54.1 ± 10.9 0.659 53.9 ± 10.0 0.979 

∆ 1-RM (%) 64.4 ± 31.9 64.6 ± 28.2 77.0 ± 31.9 0.306 69.0 ± 29.6 0.511 

Pre MVC (N·m) 252 ± 58 245 ± 52 245 ± 42 0.826 245 ± 48 0.546 

∆ MVC (%) 26.7 ± 8.0 25.4 ± 12.5 26.2 ± 11.9 0.642 25.7 ± 12.1 0.443 

Pre SF (N·cm-2) 27.7 ± 6.4 24.2 ± 3.7 23.9 ± 4.4 0.078 24.1 ± 3.9* 0.023 

∆ SF (%) 16.2 ± 10.5 14.7 ± 11.3 20.0 ± 12.4 0.601 16.5 ± 11.8 0.797 

AA homozygote; AC heterozygote; CC homozygote; Pre before training; ∆ relative change after 

training; 1-RM single repetition maximum; MVC maximum isometric voluntary contraction knee joint 

torque; SF quadriceps femoris muscle specific force; *significantly different from AA genotype (post-

hoc independent t-test: P = 0.016).  

 

 



 23

Table 2. Baseline values and training-induced changes in muscle strength variables in participants 

according to protein tyrosine kinase-2 (PTK2) rs7460 genotype; repeated measures ANOVA P-values 

are presented for genotype (Pre) and training response (∆) comparisons for the 3 genotypes (P1), and 

TT vs. AT + AA (P2). 

 PTK2 rs7460 genotype    

Strength 

variable 

AA 

(n = 13) 

AT 

(n = 21) 

TT 

(n = 17) 

P1 AA + AT 

(n = 34) 

P2 

Pre 1-RM (kg) 54.6 ± 9.7 53.0 ± 10.4 55.7 ± 13.4 0.740 53.6 ± 10.0 0.706 

∆ 1-RM (%) 69.3 ± 32.3 67.7 ± 27.3 65.2 ± 34.0 0.839 68.4 ± 28.9 0.650 

Pre MVC (N·m) 243 ± 47 244 ± 51 256 ± 58 0.697 244 ± 49 0.402 

∆ MVC (%) 28.7 ± 11.7 25.1 ± 12.6 25.2 ± 7.0 0.553 26.5 ± 12.2 0.706 

Pre SF (N·cm-2) 24.0 ± 4.0 24.2 ± 3.6 28.1 ± 6.6 0.058 24.1 ± 3.7** 0.017 

∆ SF (%) 20.8 ± 11.9 14.4 ± 11.6 15.5 ± 9.8 0.461 16.9 ± 12.0 0.975 

AA homozygote; AT heterozygote; TT homozygote; Pre before training; ∆ relative change after 

training; 1-RM single repetition maximum; MVC maximum isometric voluntary contraction knee joint 

torque; SF quadriceps femoris muscle specific force; **significantly different from TT genotype (post-

hoc independent t-test: P = 0.009).  
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Table 3. Estimates of haplotype frequencies regarding the protein tyrosine kinase-2 (PTK2) rs7843014 

(A/C) and rs7460 (A/T) polymorphisms. 

Allele at locus 1 

(rs7843014 A/C) 

Allele at locus 2 

(rs7460 A/T) 

Haplotype frequency 

A T 0.519 

A A 0.060 

C T 0.021 

C A 0.401 
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Figure legend 

Fig. 1. Baseline quadriceps femoris muscle specific force according to non-preferential (white bars) 

and preferential (black bars) genotypes of the protein tyrosine kinase-2 (PTK2) rs7843014 (preferential 

genotype: AA) and rs7460 (preferential genotype: TT); *P = 0.016 significantly different from pooled 

PTK2 rs7843014 AC + CC genotypes; **P = 0.009 significantly different from combined PTK2 

rs7460 AA + AT genotypes.  
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