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ABSTRACT  

Alternative measures of muscle size, strength and power to those used in previous 

studies could help resolve the controversy surrounding associations between 

polymorphisms of the angiotensin-I converting enzyme (ACE) and alpha-actinin-3 

(ACTN3) genes and skeletal muscle phenotypes, and the responses to resistance training 

(RT). To this end we measured quadriceps femoris muscle volume (Vm), physiological 

cross-sectional area (PCSA), maximum isometric force (Ft), specific force (Ft per unit 

PCSA), maximum isoinertial strength (1-RM) and maximum power (Wmax; n=40) 

before and after 9 wk knee extension RT in 51 previously untrained young men, who 

were genotyped for the ACE I/D and ACTN3 R577X polymorphisms. ACTN3 R-allele 

carriers had greater Vm, 1-RM and Wmax than XX homozygotes at baseline (all P<0.05) 

but responses to RT were independent of ACTN3 genotype (all P>0.05). Muscle 

phenotypes were independent of ACE genotype before (all P>0.05) and after RT (all 

P>0.01). However, people with the ‘optimal’ ACE/ACTN3 genotype combination had 

greater baseline 1-RM and Wmax compared to those with the ‘sub-optimal’ profile (both 

P<0.0125). We show for the first time that the ACTN3 R577X polymorphism is 

associated with human Vm and, independently and in combination with the ACE I/D 

polymorphism, influences 1-RM and Wmax.  
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INTRODUCTION 

There has been widespread interest in the contribution of genetic differences to the 

inter-individual variability in human muscle size and strength, and the adaptations to 

resistance training (RT) (Bray et al. 2009). However, the influence of angiotensin-I 

converting enzyme (ACE) and -actinin-3 (ACTN3) gene polymorphisms remains 

controversial. The functional ACE gene I/D polymorphism is characterised by either the 

presence (insertion allele, I) or absence (deletion allele, D) of a 287 amino acid base 

pair fragment within intron 16 on chromosome 17 (Rigat et al. 1990). Accordingly, 3 

genotypes exist: II, ID and DD, and D-allele carriers express higher ACE activity than 

II homozygotes (Rigat, Hubert 1990). ACE converts angiotensin I (Ang I) to Ang II and 

is expressed in skeletal muscle (Reneland & Lithell 1994), where Ang II has been 

shown to modulate skeletal muscle hypertrophy in response to mechanical loading 

(Gordon et al. 2001). Thus, the larger proportion of ACE D-allele carriers among elite 

power athletes compared to endurance athletes and the general population (Nazarov et 

al. 2001; Woods et al. 2001) suggests that the D-allele may predispose to a larger 

muscle size and hence greater strength. Yet, in untrained people it is equivocal whether 

ACE I/D genotype is associated with these phenotypes (Charbonneau et al. 2008; 

McCauley et al. 2009; Pescatello et al. 2006; Thomis et al. 2004; Williams et al. 2005), 

or the responses to RT (Charbonneau, Hanson 2008; Folland et al. 2000; Pescatello, 

Kostek 2006; Thomis, Huygens 2004; Williams, Day 2005).   

 

A common single nucleotide polymorphism (SNP) of the human ACTN3 gene results in 

either an arginine (R) or a stop codon (X) at amino acid 577 of exon 16 on chromosome 

11 (North & Beggs 1996), leading to the existence of 3 genotypes: RR, RX, and XX.  
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XX homozygotes are unable to produce -actinin-3, a cytoskeletal protein found only in 

type II muscle fibres that attaches actin filaments to the Z-line (Beggs et al. 1992; Mills 

et al. 2001; North et al. 1999). A deficiency in this protein might therefore impair the 

performance of type II fibres (MacArthur & North 2007) that are larger, able to contract 

faster and are more powerful than type I fibres (Bottinelli et al. 1996; Gilliver et al. 

2009; Widrick et al. 2002), which could explain why XX homozygotes are under-

represented among elite power athletes (Yang et al. 2003). However, evidence for an 

ACTN3 R577X SNP association with untrained human muscle phenotypes is 

contentious (Clarkson et al. 2005; McCauley, Mastana 2009; Vincent et al. 2007) and it 

is unclear which ACTN3 genotype is associated with the greatest response to RT 

(Clarkson, Devaney 2005; Delmonico et al. 2007). More comprehensive measures of 

muscle strength and size, such as maximum force resolved at the tendon, physiological 

cross-sectional area (PCSA) and specific force (maximum force per unit PCSA), may 

elucidate associations between muscle phenotype and the ACE I/D and ACTN3 R577X 

polymorphisms before and/or in response to RT.  

 

Therefore, we aimed to determine whether the ACE I/D and ACTN3 R577X 

polymorphisms, independently or in combination, were associated with detailed 

measures of muscle strength, power and size before and after RT. We hypothesised that 

the ACE D-allele and the ACTN3 R-allele would be associated with greater muscle 

strength, volume and power in the untrained state, and with greater responses to RT.  
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MATERIALS AND METHODS 

Participants 

Fifty-one untrained (no history of strength training in the last 12 mo), healthy Caucasian 

males [20.3 ± 3.1 years, height 178.1 ± 5.6 cm, body mass 75.4 ± 10.6 kg, body mass 

index (BMI) 23.7 ± 2.6 kg·m
-2

 (mean ± SD)] provided written informed consent prior to 

participation in the study, which complied with the Declaration of Helsinki and was 

approved by the local ethics committee of Manchester Metropolitan University. All 

participants were recreationally active but did not partake in >3 hours structured 

physical activity a week, as assessed via interview and questionnaire (Baecke et al. 

1982). Participants were instructed to maintain their habitual physical activity levels and 

dietary behaviour for the duration of the study.  

 

Experimental design 

Participants were familiarised with all testing procedures within 14 days before the 

baseline measurements. Maximum isometric patellar tendon force, quadriceps femoris 

(QF) muscle volume, PCSA and specific force were determined in the right limb before 

and after 9 wk unilateral knee extension RT, as previously specified (Erskine et al. 

2009; Erskine et al. 2010). Maximum power output (Wmax) of the same limb was 

determined before and after RT in a subsample (n = 40) on a modified isokinetic cycle 

ergometer, as described in detail elsewhere (Erskine et al. 2011). All participants were 

genotyped for the ACE I/D and ACTN3 R577X polymorphisms.  

 

Progressive resistance training (RT) 
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Unilateral knee extension RT was performed 3 x wk
-1

 for 9 wk on a standard knee 

extension machine (Technogym, Gambettola, Italy). The maximum load that could be 

lifted during one repetition, i.e. the single repetition maximum (1-RM), was not only 

assessed pre and post 9 wk RT, but also prior to the first session of each week. This 

enabled us to set the training intensity relative to the 1-RM; thus, the training intensity 

was increased progressively throughout the 9 wk RT. Each training session consisted of 

a warm-up set of 10 reps at 40% 1-RM and 4 sets of 10 reps at 80% 1-RM with 2 min 

rest in between sets. All training sessions were supervised and verbal encouragement 

was given throughout each session. Compliance with the RT protocol was 100%, i.e. 

each participant completed all 27 RT sessions. 

 

Maximum isometric patellar tendon force (Ft) 

Participants performed maximal voluntary isometric knee extension contractions 

(MVCs) on a dynamometer (Cybex Norm, Cybex International, Ronkonkoma, USA) at 

optimum knee joint angle (70-90° knee flexion). Co-contraction torque of the antagonist 

muscles during MVC was estimated by comparing electromyographic activity of the 

biceps femoris muscle during MVC knee extension and MVC knee flexion (Reeves et 

al. 2004). Voluntary QF muscle activation was assessed using the interpolated twitch 

technique (Erskine, Jones 2009) and the patellar tendon moment arm (dPT) was 

determined via magnetic resonance imaging (MRI) (Erskine, Jones 2009). True 

maximal torque (TMT) was calculated by correcting MVC knee extension torque for 

QF activation and antagonist muscle co-activation. Subsequently, maximum force 

resolved at the patellar tendon (Ft) was calculated as: Ft = TMT·dPT
-1
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Muscle volume, PCSA and specific force  

QF volume (Vm) was calculated by adapting a previously described method that 

incorporated femur length, the anatomical CSA of each of the 4 constituent QF heads at 

40% femur length and a series of regression equations (Morse et al. 2007). Vastus 

lateralis (VL) muscle fascicle length (Lf) and pennation angle (p) were measured 

during isometric knee extension MVC using ultrasonography (MyLab25, Esaote 

Biomedica, Genoa, Italy) at 50% VL length along the mid-sagittal plane. Dividing Vm 

by Lf provided QF PCSA, which was multiplied by the cosine of VL p to give the 

reduced QF PCSA. Ft divided by the reduced QF PCSA gave QF muscle specific force 

(Erskine, Jones 2009).  

 

Maximum power output (Wmax) 

Wmax was assessed on a modified isokinetic cycle ergometer (Lode Standard, 

Groningen, The Netherlands). The pedals contained strain gauges that registered the 

foot forces at right angles to the top surface of the pedal (Erskine, Jones 2011). The 

participant performed a maximal 6 s sprint at five predetermined, randomly assigned 

isokinetic pedal frequencies (130, 110, 90, 70 and 50 RPM), each separated by 5 min 

rest. The highest power recorded in the trained limb over all five pedal frequencies was 

defined as Wmax.  

 

Blood sampling, DNA extraction and determining ACE and ACTN3 genotype  

Automated DNA extraction was performed using a QIAcube (Qiagen, Crawley, UK), 

following the QIAamp spin protocol for DNA purification from whole blood (drawn 

from an antecubital vein), as described previously (Erskine et al. 2012). Real-time 
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polymerase chain reaction (PCR) was used to determine the genotype of the ACE and 

ACTN3 polymorphisms in each participant. Reactions were carried out on 96-well 

microtitre plates. Each 10-L reaction volume contained: 5 L Genotyping Master Mix 

(Applied Biosystems, Foster City, USA), 4.3 L nuclease-free H2O (Qiagen), 0.5 L 

genotyping assay mix (Applied Biosystems), plus 0.2 L sample DNA at a 

concentration of ~30 ng·L
-1

 and an A260/A280 ratio of 1.7–1.9. For the ACTN3 

R577X, the respective TaqMan rs1815739 SNP genotyping assay mix (Applied 

Biosystems) was used, which included the appropriate TaqMan primers and probes. The 

structures of the three primers (150 nM of each) and VIC (150 nM) and FAM (75 nM) 

probes contained in the genotyping assay mix for the ACE I/D polymorphism were 

manufactured by Applied Biosystems according to previously described methods (Koch 

et al. 2005) (Table 1). For control wells, 0.2 L nuclease-free H2O replaced the DNA 

template. Following sealing (Microseal ‘B’ adhesive seal, BioRad Laboratories, 

Hercules, USA) and centrifugation at 8000 RPM for 1 min, DNA amplification 

(Chromo4 Real-Time PCR Detection System, BioRad Laboratories) was performed 

using the following PCR protocols: ACE I/D: 50 cycles of incubation at 92C for 15 s 

(denaturation) then annealing and extension at 57C for 1 min. ACTN3 R577X: 

denaturation at 95C for 10 min, followed by 40 cycles of incubation at 92C for 15 s 

then annealing and extension at 60C for 1 min. ACE and ACTN3 genotypes were 

ultimately determined using Opticon Monitor 3.1 software (BioRad Laboratories). All 

samples were analyzed in duplicate and in all cases there was 100% agreement between 

genotype for samples from the same participant.  

 

Table 1 near here. 
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Data analysis and statistics  

ACE and ACTN3 genotype frequencies were tested for compliance with the Hardy-

Weinberg equilibrium using 2
 tests. Repeated-measures ANOVAs [within factor: time 

(pre/post training); between factor: genotype (three levels)] were used to detect 

genotype associations for each polymorphism separately with all muscle phenotypes (1-

RM, Ft, Vm, specific force and Wmax) and their response to RT. If a significant genotype 

effect or genotype x training interaction was observed, a one-way ANOVA with 

Bonferroni post-hoc test was used to locate the genotype difference in baseline values or 

RT-induced changes. Based on the hypothesis that ACE D-allele carriers would express 

higher baseline values and greater training-induced changes in muscle phenotypes than 

ACE II homozygotes, repeated-measures ANOVAs were performed where the results 

for DD and ID genotypes were pooled. Similarly, the results for ACTN3 RR and RX 

genotypes were pooled and compared with those of XX homozygotes. One-tailed 

Spearman correlations determined the ACTN3 genotype-dependent variance in baseline 

1-RM and Wmax; the 3 genotypes for the ACTN3 polymorphism were coded as follows: 

ACTN3 XX = 0, RX = 1, RR = 2. Partial Spearman correlations determined the 

relationships between Vm and Wmax and ACTN3 genotype (controlling for each variable 

in succession). The combined effect of both polymorphisms on muscle phenotypes and 

related RT responses was assessed by repeated-measures ANOVAs: individuals with 

the ‘optimal’ ACE/ACTN3 genotype combination, i.e. ACE DD or ID and ACTN3 RR or 

RX, were compared with individuals who had the ‘sub-optimal’ combination, i.e. only 

one or none of the ‘preferential’ genotypes. In all cases, the level of statistical 

significance was set at  = 0.05 and corrected for multiple genotype-phenotype testing 
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(Holm 1979). All data are presented as mean ± standard deviation (SD) unless 

otherwise stated.  

 

RESULTS 

ACE and ACTN3 genotypes 

The genotype frequencies for the ACE (II = 11.8%; ID = 51.0%; DD = 37.3%) and 

ACTN3 (RR = 39.2%; RX = 47.1%; XX = 13.7%) polymorphisms were in Hardy-

Weinberg equilibrium (P ≥ 0.811). The ACE and ACTN3 genotype frequencies for those 

who completed the Wmax protocol (n = 40) did not differ from those of the main group. 

The ACE I/D (Rigat, Hubert 1990) and ACTN3 R577X (Yang, MacArthur 2003) allele 

frequencies were similar to those reported elsewhere for Caucasian populations.  

 

Single repetition maximum (1-RM)  

There were no differences in 1-RM between ACE genotypes before (P > 0.05) or in 

response to RT (P > 0.01; Table 2). Although 1-RM gains were independent of ACTN3 

genotype (P > 0.05; Table 3), there was a tendency for ACTN3 XX homozygotes to 

have a lower baseline 1-RM compared to their RR and RX counterparts (P = 0.080; 

Table 3). When RR and RX genotypes were combined, baseline 1-RM was lower in XX 

homozygotes than in R-allele carriers (P < 0.01; Table 3). Furthermore, people with the 

‘optimal’ ACE/ACTN3 genotype combination (n = 39) had a higher 1-RM than those 

with the sub-optimal profile (n = 12) at baseline (P = 0.010) but not in response to RT 

(P > 0.05; Table 4).   

 

Table 2 near here.  
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Maximum patellar tendon force and muscle specific force 

There were no differences in maximum tendon force between genotype of the ACE I/D 

or ACTN3 R577X polymorphism, either before (both P > 0.05), or in response to RT 

(both P > 0.05; Tables 2 and 3). Similarly, muscle specific force did not differ between 

genotype of either the ACE I/D or the ACTN3 R577X polymorphism, either before 

(both P > 0.05), or in response to RT (both P > 0.05; Tables 2 and 3). The ‘optimal’ 

ACE/ACTN3 genotype combination did not influence maximum patellar tendon force or 

muscle specific force either at baseline (P > 0.0167) or in response to RT (P > 0.05; 

Table 4).  

 

Muscle volume (Vm) 

Baseline Vm did not differ between ACE genotype (P > 0.05; Table 2) and the training-

induced Vm gains were independent of ACE genotype (P > 0.05; Table 2). Vm gains 

were also independent of ACTN3 genotype (P > 0.05; Table 3) but ACTN3 genotype 

was associated with baseline Vm (P < 0.0167), and RR homozygotes had a greater Vm 

than XX (P = 0.018) but not RX (P = 0.159) genotypes (Table 3). Combining RR and 

RX genotypes demonstrated that Vm was greater in ACTN3 R-allele carriers than in XX 

homozygotes (P < 0.017; Table 3). However, Vm was not affected by the ‘optimal’ 

ACE/ACTN3 genotype profile either at baseline (P > 0.0167) or in response to RT (P > 

0.05; Table 4). 

 

Table 3 near here.  
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Maximum power (Wmax)  

There were no differences in Wmax between the 3 ACE genotypes before (P > 0.05; 

Table 2) or in response to RT (P > 0.05; Table 2). Although training-induced Wmax gains 

were independent of ACTN3 genotype (P > 0.05), R-allele carriers demonstrated greater 

Wmax than XX homozygotes before RT (P < 0.0125; Table 3). In addition, the ‘optimal’ 

ACE/ACTN3 genotype combination was associated with greater Wmax at baseline (P < 

0.0125) but not with the response to RT (P > 0.05; Table 4). 

 

Table 4 near here.  

 

Correlation analyses 

There was a tendency for ACTN3 genotype to correlate with baseline 1-RM (R
2
 = 0.053, 

P = 0.059). Baseline Vm correlated with Wmax having controlled for ACTN3 genotype 

(R
2
 = 0.116; P = 0.017), while ACTN3 genotype correlated with baseline Vm (R

2
 = 

0.144, P = 0.003) and Wmax (R
2
 = 0.092; P = 0.029). ACTN3 genotype was still 

correlated with Vm after controlling for Wmax (R
2
 = 0.085; P = 0.036), but after 

controlling for Vm, ACTN3 genotype no longer correlated with Wmax (R
2
 = 0.030; P = 

0.147).  
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DISCUSSION 

We investigated whether using precise measures of skeletal muscle size, strength and 

power phenotypes (including measurements of agonist and antagonist muscle 

activation, muscle-tendon moment arm and muscle architecture, not previously assessed 

in ACE or ACTN3 genotype studies) could help resolve the controversy surrounding 

associations between ACE and ACTN3 gene polymorphisms and muscle strength, power 

and size before, and in response to, resistance training (RT). We found that ACTN3 R-

allele carriers had a greater Vm, Wmax and 1-RM than XX homozygotes, and that people 

with the ‘optimal’ combined ACE/ACTN3 genotype profile had a higher 1-RM and 

greater Wmax in the untrained state than those with the ‘sub-optimal’ profile.  

 

ACE DD homozygotes have been reported to have larger QF muscles than their II 

counterparts (Charbonneau, Hanson 2008), while no genotype-dependent differences 

have been reported for the elbow flexor muscle group (Pescatello, Kostek 2006; 

Thomis, Huygens 2004). In correspondence with the latter observation, we found no 

association between ACE genotype and QF Vm or PCSA. Whatever the discrepancy at 

baseline, our work and other studies on the QF (Charbonneau, Hanson 2008) and elbow 

flexor (Pescatello, Kostek 2006; Thomis, Huygens 2004) muscle groups showed that 

muscle hypertrophy in response to RT was independent of ACE genotype. Collectively, 

these findings suggest that the influence of the ACE I/D polymorphism on human 

skeletal muscle size and training-induced hypertrophy is minimal. It was therefore 

unsurprising that ACE genotype was not associated with maximum isometric patellar 

tendon force, which corresponds with other measures of isometric strength and ACE 

genotype (McCauley, Mastana 2009; Pescatello, Kostek 2006; Thomis, Huygens 2004). 
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However, the training-induced increase in isometric strength has been found to be more 

pronounced in carriers of either the I- (Pescatello, Kostek 2006) or the D-allele 

(Folland, Leach 2000). We and others (Thomis, Huygens 2004; Williams, Day 2005), 

however, have found no ACE genotype association with this particular training 

response, even though we accounted for voluntary muscle activation, antagonist co-

activation and moment arm length to measure the maximum force resolved at the 

tendon.  

 

Controversy also surrounds the ACTN3 R577X SNP regarding human muscle strength, 

power and size. In accord with smaller muscle fibre CSA in -actinin-3 deficient mice 

than in wild-type mice (Chan et al. 2008), we found that RR homozygotes had larger Vm 

than their XX counterparts. Vm is a strong determinant of Wmax (O'Brien et al. 2009; 

Pearson et al. 2006) and, while we found that both Vm and Wmax were related to ACTN3 

genotype, the relationship between ACTN3 genotype and Wmax was no longer significant 

once we controlled for Vm. Therefore, the association between Vm and ACTN3 genotype 

probably underlies the greater Wmax observed in our untrained R-allele carriers 

compared to XX homozygotes. In addition, type II muscle fibres are larger and more 

powerful than type I fibres (Bottinelli, Canepari 1996; Gilliver, Degens 2009; Widrick, 

Stelzer 2002) and the muscles of our R-allele carriers might have had a larger 

proportion of type IIx fibres than XX homozygotes (Vincent, De Bock 2007), which 

would have affected both Vm and Wmax. The lack of -actinin-3 in type II fibres of XX 

homozygotes is thought to affect muscle function during high-velocity shortening 

contractions (MacArthur & North 2004; Yang, MacArthur 2003), which is supported by 

the lower 1-RM and Wmax (both of which have a shortening component) in our XX 
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homozygotes and no association between ACTN3 genotype and maximum isometric 

patellar tendon force or QF muscle specific force. Therefore, although ACTN3 

genotype-dependent differences in muscle fibre-type composition and the lack of -

actinin-3 in type II fibres of XX homozygotes should not be discounted as possible 

explanations, our data indicate that associations between ACTN3 genotype and muscle 

isoinertial strength and power are primarily via the SNP’s association with Vm.  

 

In addition to the individual influence, we investigated the combined effect of the ACE 

I/D and ACTN3 R577X polymorphisms on muscle phenotypes before and after RT. We 

found that those people with the ‘optimal’ genotype combination, i.e. the ACE DD or 

ID plus ACTN3 RR or RX genotypes, had a greater 1-RM and Wmax in the untrained 

state compared to those people with the less favourable profile. Thus, the influence of 

the ACE I/D polymorphism on maximum strength/power in untrained young healthy 

men is only significant when considered in combination with the ACTN3 R577X SNP. 

Other studies have found no strength/power advantage of possessing the ‘optimal’ 

combined profile in young healthy men (Rodriguez-Romo et al. 2010) or older adults 

(Bustamante-Ara et al. 2010; Garatachea et al. 2012), although these investigations 

included different strength/power phenotypes to those assessed in this study.  

 

In conclusion, ACTN3 R-allele carriers demonstrated larger muscle volume, greater 

power and isoinertial strength than XX homozygotes in the untrained state but the 

responses to RT were unrelated to ACTN3 genotype. Furthermore, while the ACE I/D 

polymorphism was not individually associated with muscle phenotype or training 
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response, when combined with the ACTN3 R577X SNP, the ‘optimal’ genotypes were 

associated with greater isoinertial strength and maximum power.  

 

Perspectives  

The importance of genetics in determining sporting performance has gained 

considerable interest over the last decade, with the ACE I/D and ACTN3 R577X 

polymorphisms being identified as strong candidates for predisposing elite 

strength/power athlete status (Nazarov, Woods 2001; Woods, Hickman 2001; Yang, 

MacArthur 2003). Although the mechanisms and hypotheses behind these associations 

are clear, the findings in untrained muscle phenotypes, and the responses to RT, are 

eqivacol (Charbonneau, Hanson 2008; Clarkson, Devaney 2005; Delmonico, Kostek 

2007; McCauley, Mastana 2009; Thomis, Huygens 2004). The discrepancies in 

literature could be due to the way these complex phenotypes have been previously 

defined. Therefore, by assessing maximum muscle force resolved at the tendon, 

maximum power, muscle volume and specific force with state-of-the-art techniques, 

this study sought to shed new light on the potential genotype-phenotype associations by 

providing measures of muscle size and strength/power that have not previously been 

investigated in ACE or ACTN3 genotype studies. This is the first study to demonstrate 

multiple associations between ACTN3 genotype and muscle volume, maximum 

isoinertial strength and maximum power, as well as the combined influence of the ACE 

I/D and ACTN3 R577X polymorphisms on the inter-individual variability in maximum 

isoinertial strength and maximum power.   
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Tables 

Table 1. The structures of the three different primers and two probes contained in the ACE I/D 

genotyping assay mix. VIC and FAM probes were conjugated with the 5’ ends of the I- and D-allele-

specific oligonucleotides, respectively. Minor groove binder (MGB) groups were attached to the 3’ ends 

of the oligonucleotides. 

Primer ACE111  Primer ACE112 Primer ACE113 I-allele specific probe  D-allele specific probe  

(5’-3’) (5’-3’) (5’-3’) (VIC-ACE100) (FAM-ACE100) 

CCCATCCTTTC-

TCCCATTTCTC 

AGCTGGAATAA-

AATTGGCGAAAC 

CCTCCCAAAG-

TGCTGGGATTA 

VIC-5’-AGGCGTGA-

TACAGTCA-3’-MGB 

FAM-5’-TGCTGCCTA-

TACAGTCA-3’-MGB 
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Table 2. Baseline values and training-induced changes in muscle strength, size and power in individuals 

according to angiotensin-I converting enzyme (ACE) I/D genotype.   

 ACE genotype  

Variable II 

(n = 6) 

ID 

(n = 26) 

DD 

(n = 19) 

ID + DD 

(n = 45) 

Pre 1 RM (kg) 47.0 ± 7.6 55.4 ± 11.3 54.7 ± 11.2 55.1 ± 11.1 

∆ 1 RM (%) 103 ± 26 65 ± 27 61 ± 31 63.2 ± 28.0 

Pre Ft (N) 5359 ± 983 5883 ± 1114 5669 ± 997 5793 ± 1060 

∆ Ft (%) 16.8 ± 11.8 23.5 ± 10.8 21.1 ± 11.2 22.5 ± 10.9 

Pre SF (N·cm
-2

) 24.6 ± 4.8 26.1 ± 5.4 24.8 ± 5.1 25.6 ± 5.3 

∆ SF (%) 13.5 ± 12.7 17.3 ± 10.1 16.0 ± 12.6 16.8 ± 11.2 

Pre Vm (cm
3
) 2034 ± 279 2114 ± 279 2068 ± 221 2095 ± 254 

∆ Vm (%) 5.8 ± 3.5 6.1 ± 3.6 5.2 ± 3.1 5.7 ± 3.4 

Pre PCSA (cm
2
) 229 ± 33 239 ± 42 242 ± 42 241 ± 41 

∆ PCSA (%) 3.9 ± 3.6 6.9 ± 5.0 5.0 ± 3.7 6.1 ± 4.6 

Pre Wmax (W) 1322 ± 227 1437 ± 210 1432 ± 185 1435 ± 198 

∆ Wmax (%) 16.4 ± 5.9 2.9 ± 12.3 3.5 ± 10.9 3.1 ± 11.6 

I, insertion allele; D, deletion allele; Pre, before training; ∆, relative change after training; 1-RM, single 

repetition maximum; Ft, maximum isometric patellar tendon force; SF, quadriceps femoris muscle 

specific force; Vm, quadriceps femoris muscle volume; PCSA, quadriceps femoris muscle physiological 

cross-sectional area; Wmax, maximum power output measured in a subsample (II n = 4; ID n = 22; DD n = 

14; DD + ID n = 36). 
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Table 3. Baseline values and training-induced changes in muscle strength, size and power in individuals 

according to -actinin-3 (ACTN3) R577X genotype.  

 ACTN3 genotype  

Variable RR 

(n = 20) 

RX 

(n = 24) 

XX 

(n = 7) 

RR + RX 

(n = 44) 

Pre 1-RM (kg) 55.3 ± 9.6 56.1 ± 12.5 45.7 ± 4.5 55.8 ± 11.2*** 

∆ 1-RM (%) 70.7 ± 28.2 63.6 ± 31.9 71.0 ± 32.7 66.8 ± 30.1 

Pre Ft (N) 5960 ± 1026 5674 ± 976 5351 ± 1370 5804 ± 998 

∆ Ft (%) 17.3 ± 10.9 24.5 ± 10.5 25.7 ± 10.6 21.2 ± 11.1 

Pre SF (N·cm
-2

) 25.3 ± 6.0 26.1 ± 3.8 23.7 ± 6.8 25.7 ± 4.9 

∆ SF (%) 11.7 ± 12.1 19.0 ± 9.6 21.0 ± 10.5 15.7 ± 11.3 

Pre Vm (cm
3
) 2197 ± 244** 2053 ± 246 1895 ± 185 2118 ± 253* 

∆ Vm (%) 5.5 ± 3.9 6.4 ± 3.1 4.3 ± 2.6 5.9 ± 3.5 

Pre PCSA (cm
2
) 253 ± 47 229 ± 37 238 ± 40 240 ± 43 

∆ PCSA (%) 6.1 ± 4.0 5.7 ± 5.3 5.6 ± 3.2 5.9 ± 4.7 

Pre Wmax (W) 1478 ± 195 1424 ± 198 1251 ± 158 1449 ± 196*** 

∆ Wmax (%) 4.1 ± 10.7 6.8 ± 11.8 -3.5 ± 14.3 5.6 ± 11.2 

RR, wild-type homozygote; RX, heterozygote; XX, mutant homozygote; Pre, before training; ∆, relative 

change after training; 1-RM, single repetition maximum; Ft, maximum isometric patellar tendon force; 

SF, quadriceps femoris muscle specific force; Vm, quadriceps femoris muscle volume; PCSA, quadriceps 

femoris muscle physiological cross-sectional area; Wmax, maximum power output measured in a 

subsample (RR n = 16; RX n = 19; XX n = 5; RR + RX n = 35); *** P < 0.010, ** P < 0.0167 and * P < 

0.025 significantly different from XX genotype.   
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Table 4. Baseline values and training-induced changes in muscle strength, size and power in individuals 

grouped according to the ‘optimal’ strength/power polygenic profile (ACE DD or ID + ACTN3 RR or 

RX) vs. the ‘sub-optimal’ profile (possessing either one or both of ACE II and ACTN3 XX).  

Variable Optimal profile Sub-optimal profile 

  (n = 39)  (n = 12) 

Pre 1-RM (kg) 56.7 ± 11.1*** 46.4 ± 6.0 

∆ 1-RM (%) 63.0 ± 28.1 81.9 ± 33.5 

Pre Ft (N) 5906 ± 1002 5207 ± 1074 

∆ Ft (%) 21.8 ± 10.9 21.8 ± 12.1 

Pre SF (N·cm
-2

) 26.0 ± 4.9 23.6 ± 5.7 

∆ SF (%) 15.9 ± 11.0 17.9 ± 12.1 

Pre Vm (cm
3
) 2131 ± 247 1947 ± 240 

∆ Vm (%) 5.9 ± 3.5 5.2 ± 3.1 

Pre PCSA (cm
2
) 241 ± 44 232 ± 27 

∆ PCSA (%) 6.1 ± 4.7 4.7 ± 3.5 

Pre Wmax (W) 1465 ± 190** 1283 ± 182 

∆ Wmax (%) 4.2 ± 11.0 5.3 ± 15.0 

Pre, before training; ∆, relative change after training; 1-RM, single repetition maximum; Ft, maximum 

isometric patellar tendon force; SF, quadriceps femoris muscle specific force; Vm, quadriceps femoris 

muscle volume; PCSA, quadriceps femoris muscle physiological cross-sectional area; Wmax, maximum 

power output measured in a subsample (Total n = 40; Optimal profile n = 31; Sub-optimal profile n = 9); 

*** P = 0.010 and ** P < 0.0167 significantly different from XX genotype.   

  


