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In many vertebrate societies, forced eviction of group members is an important determinant of 22 

population structure, but little is known about what triggers eviction. Three main explanations are 23 

(1) the reproductive competition hypothesis; (2) the coercion of cooperation hypothesis; and (3) the 24 

adaptive forced dispersal hypothesis. The last hypothesis proposes that dominant individuals use 25 

eviction as an adaptive strategy to propagate copies of their alleles through a highly structured 26 

population. We tested these hypotheses as explanations for eviction in cooperatively breeding 27 

banded mongooses (Mungos mungo), using a 16-year dataset on life history, behaviour and 28 

relatedness. In this species, groups of females, or mixed-sex groups, are periodically evicted en 29 

masse. Our evidence suggests that reproductive competition is the main ultimate trigger for eviction 30 

for both sexes. We find little evidence that mass eviction is used to coerce helping, or as a 31 

mechanism to force dispersal of relatives into the population. Eviction of females changes the 32 

landscape of reproductive competition for remaining males, which may explain why males are 33 

evicted alongside females. Our results show that the consequences of resolving within-group conflict 34 

resonate through groups and populations to affect population structure, with important implications 35 

for social evolution. 36 

Keywords: eviction; conflict; cooperation; reproductive competition; coercion; forced dispersal 37 

 38 

Introduction 39 

Individuals living in ‘viscous’ groups, in which there are severe constraints on dispersal, face 40 

numerous conflicts of interest with other group members.  In cooperative breeders, conflict can 41 

arise over reproduction, helping effort, parental care, and dispersal [1–3]. Much theoretical and 42 

empirical work has focused on how individuals resolve these within-group conflicts. In both insect 43 

and vertebrate societies, individuals may use threats, aggression, punishment and various strategies 44 

of negotiation to settle conflicts without breaking up the group [4–6]. In other cases, however, 45 

within-group conflict results in the forcible eviction of one or more group members, typically 46 

following intense, targeted aggression [7–10]. Eviction often leads to the permanent dispersal of 47 
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individuals, or coalitions of individuals, and may be a major source of gene flow between groups 48 

[11,12]. Determining what triggers eviction is therefore important to understand the factors that 49 

shape population genetic structure and demography in viscous populations, and hence social 50 

evolution [13,14]. 51 

In social vertebrates, eviction often appears to be driven by conflict over reproductive or social 52 

status within groups. In some mammal species, dominant individuals maintain their reproductive 53 

monopoly by evicting reproductive competitors from the group [7,15]. For example, in meerkats, 54 

Suricata suricatta, dominant females evict subordinate females in the latter half of their (own) 55 

pregnancy, often as a strategic measure to avoid infanticidal attacks on their pups [16]. Subordinates 56 

that are pregnant when evicted experience a deterioration in condition, elevated stress levels, and 57 

often spontaneously abort before gaining re-admittance to their group [7]. Consequently, eviction 58 

reduces future, as well as current, reproductive competition from the perspective of the dominant 59 

by suppressing subordinates’ future reproductive success. In fish that form size-based hierarchies, 60 

dominant individuals use the threat of eviction to deter subordinates from growing large enough to 61 

challenge their position [17–19]. As a result, in the coral dwelling goby, Paragobiodon xanthosomus, 62 

subordinates starve themselves to avoid triggering eviction [20]. 63 

Alternative explanations for eviction are based on the idea that dominant individuals can use 64 

eviction to coerce their subordinates to help. For example, the pay-to-stay hypothesis [21] suggests 65 

that dominant individuals can threaten helpers with eviction unless they behave cooperatively. 66 

Additionally, dominant individuals might evict temporarily to coerce helpers to work harder on their 67 

return [22], or evict permanently to establish a reputation for punishment and thereby induce 68 

remaining helpers to cooperate [23]. Clear evidence in support of such coercive mechanisms comes 69 

from the cooperative cichlid, Neolamprologus pulcher. Helpers that are experimentally prevented 70 

from helping are subject to elevated aggression from dominants and subsequently help more, as 71 

predicted if aggression is a signal of impending eviction [9,24]. In addition, helpers that are 72 

temporarily removed are often evicted on their return, and those that are reaccepted work harder 73 
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thereafter [25]. In cooperative birds and mammals evidence for the pay-to-stay hypothesis is less 74 

clear-cut. In superb fairy-wrens, Malurus cyaneus, temporary removal of helpers results in increased 75 

aggression from dominants [26], while in naked mole-rats, Heterocephalus glaber, and meerkats 76 

there is evidence that uncooperative helpers are subject to aggression from dominant breeders 77 

[27,28]. In addition, temporarily evicted female meerkats are more likely to allolactate on their 78 

return to the group than non-evicted females [29]. By contrast, studies of bell miners, Manorina 79 

melanophrys, [30,31] and chestnut-crowned babblers, Pomatostomus ruficep, [32] have failed to 80 

find support for mechanisms based on pay-to-stay or punishment. 81 

A third, unexplored hypothesis is that eviction is an adaptive forced dispersal strategy used by 82 

breeders to spread copies of their alleles through the wider population. Traditionally, studies of 83 

cooperative breeders have used the number of surviving offspring as a measure of fitness. However, 84 

groups of cooperative breeders can be thought of as miniature populations embedded within a 85 

wider metapopulation [33]. In this kind of structured population, what matters is not just the 86 

number of offspring that are successfully raised, but how successful these offspring are at dispersing 87 

to form or join new groups, and in turn produce dispersing offspring of their own - sometimes 88 

referred to as metapopulation fitness [34,35]. Forced dispersal could be a strategy to maximise 89 

metapopulation fitness, over and above any immediate benefits evictors might gain by reducing 90 

local competition (although more intense local competition should strengthen selection for forced 91 

dispersal). If eviction is primarily a strategy to export copies of alleles, one would expect dominants 92 

to evict related individuals rather than unrelated individuals, to evict when local competition is high, 93 

and to evict when the evictees have the best chance of dispersing successfully to found or usurp new 94 

groups.  95 

Banded mongooses, Mungos mungo, are a good system to test hypotheses about the causes and 96 

function of eviction in cooperative societies because evictions are common and conspicuous. This 97 

species lives in mixed-sex groups of around twenty adults, plus offspring. Each eviction event starts 98 

suddenly, lasts several days, and involves intense aggression from males and females directed 99 
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toward multiple individuals. Aggression continues until groups of females, and on occasion groups of 100 

males alongside them, are driven away from the group, sometimes limping or bleeding [8] (see the 101 

video of a typical eviction event in the Electronic Supplementary Material (ESM)). Up to 26 102 

individuals have been observed to be evicted in a single eviction event [8]. Evictees are sometimes 103 

allowed to return to their group within a week (‘temporary evictions’) or they may disperse 104 

permanently (‘permanent evictions’; [36]). In mixed-sex, permanent eviction events, males and 105 

females form same-sex cohorts and disperse separately, most likely to avoid inbreeding [37]. 106 

In banded mongoose groups there is intense reproductive competition among both males and 107 

females [38]. Among males, a few high-ranking ‘mate guarding’ males aggressively monopolise 108 

access to females during oestrus: on average the oldest three males sire 85% of offspring in each 109 

group [39]. Most females give birth in each breeding attempt, usually on the same day [40], and the 110 

communal litter is reared by the whole group [41,42]. Pups compete for food and access to helpers, 111 

and the per capita reproductive success of females declines as the number of breeding females 112 

grows large [15]. There is also conspicuous helping behaviour exhibited by both parents and non-113 

parents. Both males and females ‘babysit’ offspring at the den in the first month after birth [41], and 114 

after pups emerge they are guarded and provisioned by adult ‘escorts’ [43]. 115 

In this paper we investigated what triggers eviction events in groups of banded mongooses. We 116 

tested three distinct but non-exclusive hypotheses: (1) eviction is a response to reproductive 117 

competition; (2) eviction is used to coerce cooperation; (3) eviction is an adaptive forced dispersal 118 

strategy. We make the following predictions (Table 1). First, if eviction is a response to reproductive 119 

competition we predict that an eviction event is more likely to occur when intrasexual competition is 120 

high, and when ecological conditions are unfavourable for successful reproduction. Other things 121 

being equal, increasing relatedness should reduce the probability of an eviction event, because 122 

dominants should be more tolerant of kin competitors [44], and because kinship should reduce 123 

competitive effort within groups [45,46]. Second, if eviction is used to coerce helpers we predict a 124 

higher probability of eviction following breeding attempts where helping performance was poor, 125 
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where the outside options for helpers are good [47,48], and where relatedness is low [49]. In 126 

addition, if eviction is used as a mechanism to enforce harder work, we expect eviction events to 127 

result in improved helping performance in the subsequent breeding attempt. Third, if eviction is a 128 

means by which dominants force copies of their alleles into the wider population we expect eviction 129 

events to occur when relatedness in the group is high, when local competition is high, and when 130 

ecological conditions are favourable for successful dispersal. 131 

We tested these predictions using a dataset of 496 breeding attempts for which we had information 132 

on group composition, reproductive success, helping behaviour, relatedness, ecological conditions, 133 

and whether eviction occurred. Note in this paper we explicitly focus on the factors that trigger 134 

group eviction events, rather than on what features of individuals determine the risk of being 135 

evicted. 136 

 137 

Materials and Methods 138 

(a) Study population and data collection 139 

We studied a population of banded mongooses on the Mweya Peninsula, Queen Elizabeth National 140 

Park, Uganda (0°12’S, 27°54’E), between October 1996 and February 2013. Details of habitat are 141 

given elsewhere [38]. Daily measurements of temperature and rainfall were recorded by the Uganda 142 

Institute of Ecology Meteorological Station and, later, using our own weather station. Over the 16-143 

year study period, we observed 496 breeding attempts in 16 groups. Following [40], we defined a 144 

communal litter as one where all pregnant females gave birth within 30 days of one another. We 145 

defined a breeding attempt as the 67 day period prior to the birth of each litter (comprised of a 7 146 

day oestrus and a 60 day gestation [50]). We defined an eviction event to have occurred in a 147 

breeding attempt if one or more individuals left their group for at least one day following a period of 148 

intense aggression toward themselves or other group members [15,36]. In practice, evictions are 149 
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conspicuous and noisy events that are easy to recognise. Typically, individuals leave only after being 150 

repeatedly attacked, but much aggression occurs in the bushes where we are unable to identify the 151 

aggressors or their victims. Instances where individuals left their group without any observed 152 

aggression toward any group member were defined as voluntary dispersal events and were not 153 

considered in our analysis. Groups were visited every 1 to 3 days to record life history and 154 

behavioural data. Most were habituated to human presence, allowing observers to watch and follow 155 

them from less than 5m. One or two individuals in each group wore a radio collar (Sirtrack Ltd., 156 

Havelock North, New Zealand) with a 20-cm whip antenna (Biotrack Ltd., UK) that enabled groups to 157 

be located. Individuals were easily identifiable by either colour-coded plastic collars or, more 158 

recently, unique shave markings on their back. Individuals were regularly trapped to maintain these 159 

identification markings (see [51] for details). On first capture a 2 mm skin sample was collected from 160 

the end of the tail using sterilised scissors for genetic analyses. DNA was extracted and used to 161 

assign parentage and estimate relatedness using a panel of 43 polymorphic microsatellite markers 162 

(see [52] for further details). 163 

 164 

(b) Statistical analyses 165 

We used an information-theoretic approach [53] in which we compared the explanatory power of 166 

models to investigate the factors that predict the probability that: 167 

(i) an eviction event occurred in a breeding attempt (‘Female evictions’). Since females are 168 

evicted in every eviction event, we focused the analysis on the factors predicted to influence 169 

female eviction; 170 

(ii) when an eviction event occurred, males were evicted alongside females (‘Male evictions’). 171 

Here we focused the analysis on the factors predicted to influence male eviction; 172 

(iii) when an eviction event occurred, it was temporary rather than permanent (‘Temporary 173 

evictions’). Since temporary evictions could be either female only or mixed-sex events, we 174 
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included factors predicted to influence both male and female eviction. An eviction was 175 

defined as temporary if more than 50% of the evicted cohort were allowed to return to their 176 

group. 177 

For each analysis, we constructed a candidate set of models which together provided a 178 

comprehensive test of the predictions of our 3 hypotheses: reproductive competition, coercion of 179 

cooperation, and adaptive forced dispersal. The models incorporated additive combinations of the 180 

main terms predicted to influence eviction probability for the hypotheses, together with specific 2-181 

way interactions where we considered these biologically relevant. 182 

  183 

(1) Models of eviction as a response to reproductive competition 184 

To test whether an eviction event is more likely to occur when reproductive competition is high, we 185 

fitted the number of reproductive competitors at the start of the breeding attempt (denoted B), 186 

mean monthly rainfall (mm) (E) in the previous 6 months, the interaction between these social and 187 

ecological variables (B:E), and mean group relatedness (R) as fixed effects. Rainfall and insect 188 

abundance are correlated [38,54, Marshall et al., unpublished data] so we expect low rainfall to 189 

intensify competition for food resources. In the ‘Female evictions’ analysis, reproductive competitors 190 

were defined as females 10 months and over (10 months is the age at first conception; [15,55]). In 191 

the ‘Male evictions’ analysis, reproductive competitors were defined as males 3 years and over (3 192 

years is the first age at which males typically become regular mate guards; [37]). In the ‘Temporary 193 

evictions’ analysis, male and female reproductive competitors were defined as above and fitted as 194 

separate fixed effects. 195 

 196 
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(2) Models of eviction as coerced cooperation 197 

The coercion of cooperation hypothesis predicts that eviction should be triggered by poor helper 198 

performance, but it is not clear whether animals should respond to the outcome of helping (i.e. 199 

reproductive success), or to helping behaviour per se. We separately investigated these alternatives 200 

by using two indices of helping performance: (i) female reproductive success (CS); and (ii) helping 201 

effort (CE). We also examined the change in helping performance (ΔCS or ΔCE). 202 

(i) Female reproductive success, CS, was defined as the number of emergent pups in the previous 203 

breeding attempt, per female that contributed to the communal litter. To account for differences in 204 

CS that could be explained by differences in the amount of help available, we included the number of 205 

helpers available to babysit that litter (H) and the interaction between these terms (CS:H). The 206 

interaction term is necessary to capture the difference between the same reproductive outcome 207 

achieved with few helpers versus many helpers. We included mean group relatedness (R) and mean 208 

monthly rainfall (E) as main effects. In the ‘Female evictions’ analysis, we defined helpers as females 209 

aged 6 months to 3 years, since females younger than 3 years are classed as subordinate and are 210 

more likely to participate in helping [43,56]. In the ‘Male evictions’ analysis, helpers were defined as 211 

males aged 6 months to 3 years, since males do not become consistent breeders until around 3 212 

years of age and, until then, contribute more to helping [37,57]. In the ‘Temporary evictions’ 213 

analysis, male and female helpers were defined as above and fitted as separate fixed effects. 214 

To investigate if eviction is used to coerce helpers to work harder in the subsequent breeding 215 

attempt, we tested whether the change in helping performance from one litter to the next predicted 216 

the probability that an eviction event occurred in the interim. We reasoned that if eviction is used as 217 

a punishment to improve future helping performance, an eviction event (and temporary eviction 218 

events in particular) should be associated with an increase in helping performance of remaining or 219 

returning helpers after eviction. We fitted ∆CS, ∆H and the interaction between them (∆CS:∆H) as 220 

fixed effects, where ∆CS is the change in female reproductive success (i.e. the number of emergent 221 
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pups, per female that contributed to the litter), and ∆H is the change in the number of available 222 

helpers, across two consecutive breeding attempts (the breeding attempt before the eviction, and 223 

the subsequent breeding attempt). Again, we included mean group relatedness (R) and mean 224 

monthly rainfall (E) as fixed effects. Note that ∆CS and ∆H are likely to be affected by the problem of 225 

regression to the mean [58] because extremely high or low values in the first measure of a given 226 

variable are more likely to move closer to the mean in a second measure of that variable. We 227 

controlled for potential problems with regression to the mean following the methods in [58] (see the 228 

ESM).  229 

(ii) Helping effort, CE, was defined as the contribution by helpers (H) to babysitting in the previous 230 

breeding attempt (i.e. CE = number of helpers that babysat per day of babysitting). We repeated the 231 

analyses outlined above, replacing CS with CE. In the ‘Female evictions’ analysis, CE was defined as the 232 

number of female babysitters aged 6 months to 3 years left per day of babysitting of the previous 233 

litter. In the ‘Male evictions’ analysis, CE was defined number of male babysitters aged 6 months to 3 234 

years left per day of babysitting of the previous litter. In the ‘Temporary evictions’ analysis, CE was 235 

defined as in the previous two analyses and fitted as separate fixed effects. In the ‘Temporary 236 

eviction’ analysis, the model including both the change in female helpers’ babysitting effort and 237 

male helpers’ babysitting effort was too complex to fit to the reduced sample of data and so these 238 

variables were fitted in separate models. Since data on babysitting behaviour was not available for 239 

all breeding attempts, analysis using this helping effort measure of helping performance was 240 

performed on a reduced sample (see ESM Table 2, ESM Table 4 and ESM Table 6). 241 

 242 

(3) Models of eviction as an adaptive forced dispersal strategy 243 

To test whether an eviction event is more likely to occur when relatedness is high, ecological 244 

conditions are good and local competition is intense, we fitted mean group relatedness (R), mean 245 

monthly rainfall (E), group size (all individuals over 6 months) (G), the interaction between 246 



11 
 

relatedness and rainfall (R:E), and the interaction between relatedness and group size (R:G) as fixed 247 

effects. We included group size to allow for the possibility that local resource competition 248 

contributes to the timing of eviction events. The interaction between relatedness and rainfall is 249 

particularly important to test the prediction that high group relatedness in combination with 250 

favourable ecological conditions will make an eviction event more likely to occur. The definitions of 251 

R, E and G were consistent across our three analyses. An alternative prediction is that the nature of 252 

competition under which adaptive forced dispersal operates could be reproductive, rather than 253 

resource related. We fitted an identical set of models to those described above, but replacing G for 254 

the number of reproductive competitors (B) in each of the three analyses. 255 

 256 

Comparing model performance 257 

Models, including a null model containing no fixed effects, were estimated using generalised linear 258 

mixed models (GLMM). Group ID was included as a random intercept to control for repeated 259 

measures across groups. In all analyses we used the maximum sample size for which we had data on 260 

all the terms in all the models (ESM Tables 1-6).  In all three analyses, the eviction metric was fitted 261 

as the binomial response variable using a logit link function in the lme4 package in R 3.1.2 [59,60]. 262 

We performed subsets selection of the maximal model under each hypothesis using the ‘MuMIn’ 263 

package [61], which examines all possible combinations of terms in each full model. Models were 264 

ranked by Akaike’s Information Criteria (AIC), or corrected AIC (AICc) in analyses where N/k < 40, 265 

where N is the sample size and k is the number of parameters in the maximal model [53]. We 266 

defined a ‘top model set’ as models ≤ Δ6 AIC (or AICc) units of the best supported model [62], after 267 

excluding any models where a simpler nested version attained stronger support (applying the 268 

‘nesting rule’ of [62]). Full model tables are provided in the ESM. 269 

 270 
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Results 271 

Observations of eviction 272 

In total, we observed 47 eviction events in 8 out of 16 groups in our population between October 273 

1996 and February 2013 resulting in the expulsion of 457 individuals. More females than males were 274 

evicted; in the 46 events for which we knew the sex and identities of the evictees, evictions resulted 275 

in the expulsion of 274 females and 170 males, with the median evicted cohort comprising 24% of 276 

the total group (range 3% - 60%). Just 3 eviction events (6%) resulted in the eviction of a single 277 

individual. In 25 (53%) of eviction events only females were evicted, with a median of 6 females 278 

evicted in a single event (range 1-12). On average, an eviction event resulted in the expulsion of 40% 279 

of female group members (range 6% - 79%). In the remaining 22 eviction events (47%) a cohort of 280 

males was evicted alongside a cohort of females. In these cases the median number of evictees was 281 

13 individuals (range 6-26); median number of female evictees was 6 (range 2-15) and median 282 

number of male evictees was 9 (range 1-17). On average, an eviction event resulted in the expulsion 283 

of 35% of male group members (range 3% - 65%). Males were only ever evicted alongside females. 284 

In 8 out of 22 mixed-sex evictions (36%), some or all of both sexes dispersed permanently as a 285 

consequence of eviction. In all these cases, the evicted cohorts of males and females split into single-286 

sex groups and dispersed separately. In 47% of all eviction events, all evictees were eventually 287 

readmitted to their group after persistently attempting to re-join. In 32%, some evicted individuals 288 

(both males and females) were allowed to return but others were not. Of temporarily evicted 289 

individuals, 69% were readmitted to their group within 1 week, 97% within 1 month, and all 290 

individuals within 6 months of eviction. 291 

 292 
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Testing the hypotheses 293 

(i) Female evictions 294 

Models of the reproductive competition hypothesis were by far the best predictors of the probability 295 

of an eviction event occurring during a breeding attempt (Table 2). Specifically it was the model 296 

containing the number of breeding females that performed the best out of the candidate model set, 297 

with an eviction event more likely to occur when there were more breeding females (Figure 1). 298 

Models of the reproductive competition hypothesis had a cumulative adjusted Akaike’s model 299 

weight of 100% of retained models from the top model set when helping performance was 300 

measured in terms of female reproductive success (CS) (Table 2), and 95% when helping 301 

performance was measured in terms of helping effort (CE) (ESM Table 2).   302 

(ii) Male evictions 303 

The probability that males were evicted with females, given that an eviction occurred, was also best 304 

explained by the reproductive competition hypothesis (analysis using the female reproductive 305 

success (CS) measure of helping performance). Specifically, the model that performed best contained 306 

the number of breeding males (Table 3), with males more likely to be evicted with females as the 307 

number of breeding males increased (Figure 2). The only other model to be retained after applying 308 

the nesting rule [62] was the model of adaptive forced dispersal containing group size and mean 309 

group relatedness, with males more likely to be evicted alongside females in larger groups and when 310 

group relatedness was low, although this model only attained an adjusted weight of 5%. When 311 

performing the same analysis but using the helping effort (CE) measure of helping performance on a 312 

reduced sample size, the only model that was retained was the null model which contained an 313 

intercept but no fixed effects (ESM Table 4). 314 
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(iii) Temporary evictions 315 

None of our hypotheses explained whether eviction events were temporary rather than permanent. 316 

The null model performed better than all other models and this result was consistent whether 317 

female reproductive success (CS) or helping effort (CE) was used as a measure of helping 318 

performance (ESM Table 5 and ESM Table 6). 319 

 320 

Discussion 321 

Previous work on eviction in this species highlighted reproductive competition as a driver of female 322 

evictions, but did not consider male or temporary evictions, or test alternative hypotheses for 323 

eviction behaviour [8,15,36]. For both female and mixed-sex eviction events, the reproductive 324 

competition hypothesis best explained our data. Females were more likely to be evicted when there 325 

were many breeding females in the group. These female eviction events are likely to radically alter 326 

the landscape of intrasexual competition among remaining males, which may explain why groups of 327 

males are commonly evicted alongside females. Males were more likely to be evicted when there 328 

were many breeding males in the group, again supporting the hypothesis that high levels of same-329 

sex reproductive competition is a trigger for mass eviction.  330 

Sex differences in the intensity of reproductive competition may explain why evictions of females 331 

are almost twice as common as male evictions. Reproductive competition is particularly intense 332 

among female banded mongooses because dominants are unable to suppress reproduction by 333 

younger females and suffer substantial fitness costs when large numbers of subordinate females 334 

breed alongside them [15,56]. Dominant males, by contrast, can usually prevent subordinate males 335 

from mating, and so are less sensitive to the presence of additional males in the group. However, 336 

dominant males are not immune from reproductive competition because they cannot fully control 337 

the mating behaviour of females [39,50]. Dominant males might also evict (usually younger) 338 
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subordinates before these become genuine reproductive competitors, similar to the explanations for 339 

eviction in size-based fish hierarchies [17–20]. At the same time, young male banded mongooses 340 

that are excluded from breeding have less to gain from putting up a fight to stay in their natal group 341 

compared to females. This potential difference in the level of resistance offered could explain why 342 

males sometimes disperse voluntarily, while female dispersal events almost always involve intense 343 

aggression. 344 

We found little evidence to support the idea that mass evictions are triggered when it is adaptive for 345 

dominants to force subordinates to disperse. We did find weak support for a model that showed 346 

that males were more likely to be evicted with females when groups were large, but when mean 347 

group relatedness was low. This effect of relatedness is the opposite of that predicted under the 348 

adaptive forced dispersal hypothesis. Eviction of either sex was not more likely when mean group 349 

relatedness was high, nor when ecological conditions were benign. We cannot rule out adaptive 350 

forced dispersal entirely, however, because (1) we currently lack information about the long term 351 

fate of evictees in the wider population; and (2) we currently lack a formal model of the adaptive 352 

forced dispersal hypothesis which might provide discriminating predictions beyond those based on 353 

our simple verbal arguments. Concerning point (1), eviction did result in the permanent dispersal of 354 

193 individuals, which is 72% of the individuals in our population that left their natal group [37]. 355 

Eviction is therefore likely to be a major determinant of gene flow and population structure in this 356 

system. Concerning (2), demographic models of kin selection [13,63] usually assume that dispersal is 357 

under the full control of the offspring themselves, or under full maternal control (e.g. [64], but see 358 

[65]). Our observations of eviction, by contrast, suggest that in many real systems, no single party 359 

has full control over group membership, and group dynamics are a compromise between the 360 

interests of evictors and evictees. A model embedding a conflict resolution mechanism (e.g. similar 361 

to Higashi and Yamamura’s [44] insider-outsider conflict model) in a demographic framework could 362 

be a useful tool to predict population consequences of reproductive competition.  363 



16 
 

Finally, we found little evidence to support the coercion of cooperation hypothesis for mass eviction 364 

in this system. This contrasts with strong evidence that eviction, and the threat of eviction, is used to 365 

coerce helpers to work harder in the cooperative cichlid N. pulcher [9,24,25,49,66]. Why should 366 

eviction be effective to coerce cooperation in cichlids but not banded mongooses? We suggest two 367 

reasons. First, theory suggests that acts and threats of eviction will be much less effective at coercing 368 

cooperation when targeted at a group of individuals rather than specific individual helpers [15]. In a 369 

group of helpers, the threat of mass eviction creates a tragedy-of-the-commons over helping effort 370 

since the effort of any hard working helper can be readily exploited by the idleness of other 371 

potential evictees. Eviction is likely to be much more effective at inducing cooperation when 372 

targeted at individual transgressors, for example in dyads and in groups which exhibit a strict rank 373 

hierarchy (such as cooperative cichlids; [9,19,49]). Second, threats of eviction are predicted to be 374 

less effective at inducing pre-emptive cooperation when evictees are often reaccepted into the 375 

group, as in banded mongooses ([15]; this paper) and meerkats [16]. The best tests of the coercion 376 

of cooperation hypothesis require experimental reduction of helper effort [9,24], or manipulation of 377 

the availability of outside options [66,67], which is logistically challenging in birds and mammals. 378 

Further innovative experimental tests in a wider range of cooperative vertebrates would help to test 379 

the coercion of cooperation hypothesis more rigorously. 380 

To summarise, our results suggest that intrasexual reproductive competition is the trigger for mass 381 

eviction of both sexes from groups of banded mongooses. Eviction of females appears to alter the 382 

landscape of intrasexual competition among males, leading to the mass eviction of males at the 383 

same time as, but separate from, the eviction of females. We did not find evidence to link eviction 384 

events to the enforcement of helping or the propagation of alleles through a structured population. 385 

Nevertheless, our study highlights that the consequences of resolving within-group reproductive 386 

competition can scale up to affect population structure and demography. This link between within-387 

group conflict strategies and population processes has been little studied theoretically or 388 
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empirically, but may be an important determinant of life history evolution in viscous animal 389 

societies. 390 

391 
Figure 1 392 
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Table 1: Predicted effects of social and environmental variables on the probability of eviction under 587 

the three hypotheses described in the text. Numbered references provide theoretical or empirical 588 

support for the predictions.   589 

Hypothesis Number of 
Competitors 

Quality of ecological 
conditions 

Prior helping 
performance* 

Change in helping 
performance* 
following eviction 

Mean group 
relatedness 

Reproductive 
Competition 

More same-sex 
competitors 
→ more intrasexual 
competition 
→ more evictions 
 

Poorer conditions 
→ more intrasexual 
competition 
→ more evictions 

No clear prediction No clear prediction Lower relatedness 
→ more intrasexual 
competition [45,46] 
→ more evictions 

Coercion of 
Cooperation 

No clear prediction Better conditions 
→ groups less stable 
[48], or helpers work 
less hard [47]  
→ more evictions 
 

Poorer helping 
performance  
→ more evictions 

Positive change 
→ more evictions 

Lower relatedness 
→ groups less stable 
[48], or more 
coercion required 
[49] 
→ more evictions 
 

Adaptive 
Forced 
Dispersal 

Larger group size 
→ more resource 
competition 
→ more evictions 
Or 
More same-sex 
competitors 
→ more 
reproductive 
competition 
→ more evictions 
 

Better conditions 
→ more successful 
dispersal  
→ more evictions 
 

No clear prediction No clear prediction Higher relatedness 
→ forced dispersal 
more effective  
→ more evictions 

* measured by outcome or helping effort  590 
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Table 2: ‘Female evictions’. Model performance in predicting the probability of an eviction event 591 

occurring during a breeding attempt (N=415 breeding attempts in 15 groups). Analysis using the 592 

female reproductive success (CS) measure of helping performance under the coercion of cooperation 593 

hypothesis. Models comprise the top model set where ΔAIC ≤ 6. 594 

Hyp. Int. B E R B:E R:B R:E k logLik AIC ΔAIC wi Retained Adj. wi 

R -5.44 0.37      3 -108.63 223.26 0.00 0.34  1.00 

A -3.34 0.11  -14.46  1.76  5 -107.25 224.50 1.24 0.18   

A/R -5.49 0.37  0.42    4 -108.62 225.25 1.99 0.13   

R -5.45 0.37 0.00     4 -108.63 225.26 2.00 0.13   

A -3.29 0.11 0.00 -14.52  1.77  6 -107.25 226.50 3.24 0.07   

A/R -5.51 0.37 0.00 0.43    5 -108.62 227.24 3.99 0.05   

R -5.37 0.36 0.00  0.00   5 -108.63 227.26 4.00 0.05   

A -3.34 0.11 0.00 -14.11  1.77 -0.01 7 -107.25 228.49 5.23 0.02   

A -5.25 0.37 0.00 -1.44   0.03 6 -108.60 229.21 5.95 0.02   

R -5.42 0.36 0.00 0.44 0.00   6 -108.62 229.24 5.98 0.02   

Hyp. = Hypothesis: A = Adaptive Forced Dispersal; R = Reproductive Competition. Columns 2 to 7 show parameter effect 595 

sizes from GLMMs on the logit scale: Int. = Intercept; B = number of breeding females; E = mean rainfall in previous 6 596 

months; R = mean group relatedness;  : = interaction. k = number of estimated parameters including a random intercept 597 

for group ID; logLik = log-likelihood; AIC = Akaike’s information criterion; ΔAIC = change in AIC value from the best 598 

performing model; wi = Akaike’s model weight; Retained = ticks indicate that the model was retained after applying the 599 

nesting rule of [62]; Adj. wi = adjusted Akaike’s model weight for the retained models. Blank cells indicate that the term 600 

was absent from that model.  601 
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Table 3: ‘Male evictions’. Model performance in predicting the probability that males are evicted 602 

alongside females when an eviction event occurs (N=37 eviction events in 7 groups). Analysis using 603 

the female reproductive success (CS) measure of helping performance under the coercion of 604 

cooperation hypothesis. Models comprise the top model set where ΔAICc ≤ 6.  605 

Hyp. Int. B E R B:E R:B G k logLik AICc ΔAICc wi Retained Adj. wi 

R -2.28 0.38      3 -20.42 47.57 0.00 0.51  0.95 
R -1.81 0.39 -0.01     4 -20.32 49.88 2.32 0.16   

A/R -2.16 0.38  -0.68    4 -20.41 50.07 2.51 0.15   

R -0.30 -0.10 -0.04  0.01   5 -19.78 51.51 3.94 0.07   

A -0.94 0.11  -9.71  2.02  5 -20.24 52.41 4.85 0.05   

A/R -1.64 0.39 -0.01 -0.90    5 -20.31 52.55 4.98 0.04   

A -3.82   -1.58   0.15 4 -22.08 53.41 5.84 0.03  0.05 

Hyp. = Hypothesis: A = Adaptive Forced Dispersal; R = Reproductive Competition. Column headings as in Table 2, with the 606 

addition of G = group size; AICc = corrected Akaike’s information criterion; ΔAICc = change in AICc value from the best 607 

performing model. Ticks indicate that the model was retained after applying the nesting rule of [62]. Blank cells indicate 608 

that the term was absent from that model.  609 
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 610 

Figure 1: The probability of an eviction event occurring during a breeding attempt against the 611 

number of breeding females (N=415 breeding attempts in 15 groups). The line shows model 612 

predictions (± standard error). 613 
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 614 

Figure 2: The probability that males are evicted alongside females when an eviction event occurs 615 

(N=37 eviction events in 7 groups). The line shows model predictions (± standard error). 616 


