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ABSTRACT Various morphological measures demon-
strate convergent evolution in ruminants with their natu-
ral diet, in particular with respect to the browser/grazer
dichotomy. Here, we report quantitative macroanatomical
measures of the tongue (length and width of specific parts)
of 65 ruminant species and relate them to either body
mass (BM) or total tongue length, and to the percentage of
grass in the natural diet (%grass). Models without and
with accounting for the phylogenetic structures of the
dataset were used, and models were ranked using Akaike’s
Information Criterion. Scaling relationships followed geo-
metric principles, that is, length measures scaled with BM
to the power of 0.33. Models that used tongue length
rather than BM as a body size proxy were consistently
ranked better, indicating that using size proxies that are
less susceptible to a wider variety of factors (such as BM
that fluctuates with body condition) should be attempted
whenever possible. The proportion of the freely mobile
tongue tip of the total tongue (and hence also the corpus
length) was negatively correlated to %grass, in accordance
with concepts that the feeding mechanism of browsers
requires more mobile tongues. It should be noted that
some nonbrowsers, such as cattle, use a peculiar mecha-
nism for grazing that also requires long, mobile tongues,
but they appear to be exceptions. A larger corpus width
with increasing %grass corresponds to differences in snout
shape with broader snouts in grazers. The Torus linguae is
longer with increasing %grass, a finding that still war-
rants functional interpretation. This study shows that
tongue measures covary with diet in ruminants. In con-
trast, the shape of the tongue (straight or “hourglass-
shaped” as measured by the ratio of the widest and small-
est corpus width) is unrelated to diet and is influenced
strongly by phylogeny. J. Morphol. 000:000-000, 2015.
© 2015 Wiley Periodicals, Inc.

KEY WORDS: browser; grazer; oral processing; lip;
muzzle; palate

INTRODUCTION

In herbivores, the tongue is used as a prehensile
organ that is involved in grasping diet items.
Fundamental differences in feeding modes in

© 2015 WILEY PERIODICALS, INC.

grazing and browsing ruminants (Hofmann and
Stewart, 1972; Gagnon and Chew, 2000) correspond
to differences in the spatial arrangement and phys-
ical properties of diet items (reviewed in Clauss
et al., 2008b). As part of these adaptations, differ-
ences in tongue anatomy between the feeding-types
could be expected. Based on the unpublished thesis
by Schmuck (1986), Hofmann (1988; 1989) sug-
gested that torus length, in relation to total tongue
length, is shorter in browsers than in grazers, and
that the freely mobile part of the tongue is longer
in browsers than in grazers. This observation
appears plausible under the assumption that a
long, freely movable part of the tongue is a prereq-
uisite for the manipulation of heterogeneous diet
objects as in browse, where selected leaves may be
arranged in very close proximity to undesirable
plant parts such as thorns or twigs. Grazers, con-
versely, have often been perceived of showing adap-
tations of a wide distal snout that allows them to
achieve higher bite sizes during grazing (Gordon
and Illius, 1988; Fraser and Theodor, 2011; Tennant
and MacLeod, 2014), particularly in short-grass
grazers (Codron et al., 2008). Such anatomical
adaptations could also be reflected in tongues that
have wider tips.

Additional Supporting Information may be found in the online
version of this article.
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In contrast to the findings that indicate that vari-
ous browsers may be characterized by tongues with
a long freely mobile part (Hofmann, 1988; 1989),
Hassanin et al. (2012) used the presence of an
“extensible tongue” as a phylogenetic characteristic
of giraffids in comparison to other ruminant fami-
lies. Based on observations of extensible tongues in
cattle and tragulids, Clauss (2014) doubted the
validity of this approach. Therefore, a comparative
evaluation of the proportion of the “freely movable”
part of the tongue in different ruminant species is
warranted. An important limitation of the original
unpublished investigation of Schmuck (1986) had
been that the body mass (BM) of the investigated
specimens had not been available in most cases.
BM is typically included in analyses of comparative
anatomy where structures are measured that can
be expected to vary, in their dimensions, with BM.
Here, we augment this dataset with additional
measurements of tongues in specimens with known
BM, and with additional literature data, to test for
a systematic effect of feeding-type on tongue meas-
urements. In doing so, we also intend to clarify
whether macroscopic tongue anatomy is among the
soft tissue characteristics suitable for the recon-
struction of ruminant phylogeny (Clauss, 2014).
The following hypotheses guided our approach:

1. We expected a geometric scaling, with linear
measurements scaling against each other (such as
the length of a tongue part vs. total tongue length)
in a linear fashion, that is, with a scaling exponent
of 1.0, and with linear measurements scaling with
BM at an exponent of 0.33 (Calder, 1996).

2. Because we consider the tongue to be a compara-
tively invariable structure that does not respond,
in its dimensions, to environmental influence,
whereas BM will vary due to a variety of factors,
we expect better fit (i.e., lower Akaike Informa-
tion Criterion [AIC] values) for models relating
tongue measurements to tongue length than for
models using BM as the independent variable.

3. Ruminants with a lower percentage of grass in
their natural diet (i.e., “browsers,” Clauss et al.,
2003) have higher proportions of a freely mobile
tongue part than ruminants with a higher per-
centage of grass in their natural diet (i.e.,
“grazers”). We assume convergence of an adap-
tation to a diet niche to be demonstrated if our
proxy for the diet niche (percentage of grass)
contributes significantly to models that relate
tongue measures to both a body size and a diet
proxy, even when controlling for phylogeny.

METHODS

The data originate from a long-lasting effort of the senior
author to collect data on as many ruminant species as possible.
For the dataset, information on 65 species were available,
including 42 from the original thesis of Schmuck (1986), 26
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from hitherto unpublished data from the senior author, four
from the thesis of Markgraf (2000), after a literature research
two from Shao et al. (2010), one from Erdogan and Pérez (2013)
and one from Lonnberg (1900). BM data was available for the
same specimens from which the tongue measurements had
been taken in 31 species and was extracted from other litera-
ture in the other 34 species (sources indicated in Table 1). Spe-
cies were characterized by the percentage of grass (%grass, a
continuous measure) in their natural diet (sources indicated in
Table 1).

Measurements were taken on tongues either directly after
dissection (some specimens of Schmuck, 1986; Markgraf, 2000
and all specimens of Hofmann unpublished; Shao et al., 2010;
Erdogan and Pérez, 2013), after freezing and defrosting (speci-
mens from Markgraf, 2000), or after formalin fixation at vari-
ous time points after death (most specimens from Schmuck,
1986). Preservation status of material from Lonnberg (1900)
was unknown. The specimens were taken either from the wild
during hunting collections or from captivity, either due to fatal-
ities or culling in zoos or from venison slaughtering procedures.
We did not expect tongue measurements to be influenced by
husbandry conditions or diet and, thus, consider the variation
in origin not problematic. With respect to the influence of dif-
ferences in preservation status of the material from which
measurements were taken (e.g., shrinkage due to formalin stor-
age), we assumed such effects to affect all tongue parts in equal
proportions; the use of such different material was expected to
contribute to the potential result that the total tongue length
would yield a better data fit than BM as a basis for
comparisons.

Measurements taken from the tongues are illustrated in Fig-
ure 1 and represent linear distance measurements (i.e., not fol-
lowing any curvatures of the organ) taken with callipers,
rounded to the nearest millimetre. They include 1) total tongue
length from the tip to the end of the Radix linguae, 2) the torus
length from the Fossa linguae to the end of the R. linguae, 3)
the width of the torus at its widest point, 4) the corpus length
from the tip to the F. linguae, 5) the width of the corpus at its
narrowest point, 6) the width of the corpus at its widest point,
and 7) the length of the free portion of the tongue defined as
the part rostral to the most rostral insertion of the Frenulum
linguae on the ventral side of the tongue. The corpus width
ratio represents the proportion of the widest corpus width
divided by the narrowest corpus width, with values of 1 indicat-
ing no difference between the two. Because in our dataset, the
widest corpus part was always anterior to the narrowest corpus
part, low values indicate a comparatively straight tongue,
whereas high values indicate a “spoon-“ or “hourglass-shaped”
tongue. The proportion of the free portion of the tongue was
calculated as the percentage of the length of the free portion of
the total tongue length. Not all measurements were taken in
all specimens.

Individual measurements are given in the supporting infor-
mation. Measurements on individual specimens were summar-
ized as species averages; in doing so, care was taken that
averages of the reference measures (BM and tongue length)
was always taken only from the same specimens for which the
target tongue measures were available. For statistical evalua-
tions, BM and linear measurements (length, width) were log;o-
transformed. Analyses were performed in R 2.15.0 (R Develop-
ment Core Team, 2011) with Ordinary Least Squares (OLS)
using the package nlme (Pinheiro et al., 2011) and phylogenetic
generalized least squares (PGLS) using the package caper
(Orme et al., 2010). In contrast to a common recommendation
(Freckleton, 2009), we display results of both OLS and PGLS
analyses, because the comparison is often informative about the
structure of the dataset (Clauss et al., 2013; 2014; 2015). For
PGLS, data were linked to a supertree of extant mammals with
branch lengths (Bininda-Emonds et al., 2007; 2008), assigning
the position of Oryx leucoryx of that tree to Oryx beisa (which
was not included in that tree). The tree is displayed in the sup-
porting information (Supporting Information, Fig. S1). When
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Radlix
linguae

Fossa———~_ —~ | ———_1 1
linguae

Fig. 1. Tongue measurements taken for this study: (1) total
tongue length, (2) torus length, (3) torus width, (4) corpus
length, (5) corpus width at narrowest point, (6) corpus width at
broadest point. The length of the free portion of the tongue is
measured as the distance between the tongue tip and the inser-
tion of the Frenulum linguae on the underside of the tongue, not
visible in this view. Drawing by Jeanne Peter.

repeating the analyses with a more recent tree based on molec-
ular data from the 10kTree website (Arnold et al., 2010) that is
continuously updated, which covered 61 of our 65 species, qual-
itatively similar results were obtained (not displayed). The phy-
logenetic signal /. was estimated using maximum likelihood
(Revell, 2010) in caper (Orme et al., 2010). A can vary between
0 (no phylogenetic signal) and 1 (the observed pattern is pre-
dicted by the phylogeny; similarity among species scales in pro-
portion to their shared evolutionary time; Pagel, 1999;
Freckleton et al., 2002); that is, we assumed Pagel’s correlation
structure. We analysed first the restricted dataset for which
actually measured BM of the investigated specimens were
available, and second the complete dataset, including specimens
for which BM estimates were based on literature data. In this
latter dataset, BM of two specimens that were not fully grown
adults were adjusted visually to match the overall pattern
(Oryx gazella, Taurotragus oryx, indicated in Table 1). For each
tongue measure, we evaluated the effect of BM and the effect of
tongue length, as well as the additional effect of %grass in Gen-
eral Linear Models; that is, according to either

log y=a+blog(sizeproxy)

or

logy=a+blog (sizeproxy)+c% grass

where y is the tongue measurement in question, a is a constant,
b the scaling factor of the size proxy (which can be either BM
or total tongue length), and ¢ the factor describing the influence
of Jograss.

Ratios (the corpus width ratio and the proportion of the free
portion of the tongue) were additionally also tested against
%grass only according to

y=a+c% grass.

Models were compared for goodness-of-fit using AIC; follow-
ing guidelines published for wildlife research, we selected as
best-supported models those with a AAIC score of <2, where
AAIC = AIC—minimum AIC within the candidate model set
(Burnham and Anderson, 2001, 2002). The significance level
was set to 0.05. For visualisation, length measurements were
plotted relative to BM®33. Results from the dataset limited to
specimens with actually measured BM are displayed in the
supporting information (Supporting Information, Table S1).

RESULTS

There was a significant positive relationship
between BM and tongue length (Tables 2 and Sup-
porting Information, Table S1; Fig. 2). Measure-
ments were according to geometric principles;
most measures of length scaled with BM at an
exponent that included 0.33 in the confidence
interval, or with tongue length at an exponent
that included 1.0 in the confidence interval (or the
confidence interval came very close to these
values; Tables 2 and Supporting Information,
Table S1).

In general, results in OLS and PGLS did not dif-
fer, in spite of an often significant phylogentic sig-
nal. Invariably, PGLS models were better
supported as indicated by lower AIC values. Com-
pared with OLS, PGLS reduced significance of the
influence of %grass in several cases (Tables 2 and
Supporting Information, Table S1) and detected an
influence of BM or tongue length on the corpus
width ratio where OLS did not indicate it
(Table 2).

In general, the results of the two datasets (the
smaller dataset with actually measured BM in
Supporting Information, Table S1, and the larger
dataset with additional measures related to BM
data from the literature in Table 2) did not deviate
much from each other. The phylogenetic signal did
not become systematically stronger with in the
larger dataset (no higher values for 1), but was
mostly determined with greater confidence as indi-
cated by more frequent significant differences in
the estimation of 4 from both 0 and 1 (i.e., the con-
fidence interval for A excluded 0 and 1 more often).
In the case of corpus width, BM yielded the best
relationship in the smaller dataset (Supporting
Information, Table S1), but tongue length in the
larger dataset (Table 2). The corpus width ratio
was not significantly related to either BM or
tongue length in the smaller dataset (Supporting
Information, Table S1), in contrast to the larger
one (Table 2). The expansion of the dataset never
led to %grass being less significant than in the
smaller one, but raised %grass to the level of a sig-
nificant covariable in the case of torus width, cor-
pus width, and the free portion length.

Journal of Morphology
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Fig. 2. Relationship between BM (in kg) and tongue length (in
c¢m) in ruminant species (representing the raw data of the com-
plete dataset of Table 1 with specimens whose BM was meas-
ured and whose BM was taken from the literature). Error bars
indicate standard deviation. For statistics, see Table 2.

Models using tongue length as the independent
variable were usually better supported than those
using BM (Table 2), with the exception of corpus
width and the corpus width ratio in the smaller
dataset (Supporting Information, Table S1).

The natural diet, as assessed by %grass, had a
significant influence on several measurements
(Table 2 and Supporting Information, Table S1).
Variation in %grass had no significant effect on
total tongue length (Fig. 3A) because animals with
a higher %grass had a comparatively a shorter
corpus (Fig. 3B) and a longer torus (Fig. 3C). A
higher %grass was associated with a wider corpus
width, and there was no tendency for an associa-
tion with a smaller torus width after including
phylogeny in the analysis (Table 2). The corpus
width ratio (whether tongues were straight or
poon-shaped) was not associated with %grass
when phylogeny was controlled for (Table 2).
Finally, a higher %grass was associated with a
lower proportion of the free part of the tongue of
its overall length in both the reduced or the
expanded dataset (Fig. 4).

DISCUSSION

Comparative studies often rely on data from a
variety of sources—for example, BM data is often
taken from another source than the measurement
in question (Clauss et al., 2008b). The question
arises whether this approach is satisfactory, or
whether only data from specimens should be
included whose BM had been actually recorded in
parallel to the measurement in question. Given
the lack of principal differences between the data-
set using only original BMs, and the one allowing
also additional species with literature BM data,
accepting literature BM data was acceptable in
the case of macroscopic tongue anatomy. However,
BM itself may not always be the most useful proxy

Journal of Morphology

for body size. BM may be subjected to systematic
seasonal variation or other variation related to the
nutritional and health status of the animal (e.g.,
Schwartz et al., 1987; Adamczewski et al., 1992;
Lane et al., 2014). Given that many morphological
measures that may be of interest can be expected
to show less corresponding variation, such as skel-
etal measures or in our case tongue length, it
should always be considered if a less variable ref-
erence measure as a proxy for body size is avail-
able. For example, rather than using literature
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Fig. 3. Relationship between the percentage of grass in the
natural diet and A) the relative total tongue length, B) the rela-
tive corpus length, C) the relative torus length in ruminant spe-
cies (all in em kg 3% representing the complete dataset of
Table 1 with specimens whose BM was measured and whose BM
was taken from the literature). For statistics, see Table 2.
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Fig. 4. Relationship between the percentage of grass in the
natural diet and the proportion of the free part of the tongue of
the total tongue length in all ruminant species in which this
measurement was taken. For statistics, see Table 2.

BM data to correlate with her cranial skeletal
measurements, Spencer (1995) or Codron et al.
(2008) used the length of the maxillary molar row
as a body size proxy. The fact that relationships
with tongue length were nearly always better sup-
ported than those with BM (Tables 2 and Support-
ing Information, Table S1) emphasizes the
relevance of this approach.

Our results must be considered with caution
due to the unknown influence of the different pres-
ervation stages of the material from which meas-
urements were taken. As they are, they clearly
support the conclusions of Hofmann (1988; 1989)
that torus length, in relation to total tongue
length, is shorter in browsers than in grazers, and
that the tongue of browsers generally has a longer
freely mobile part than that of grazers. Our
results suggest that using the characteristic of an
“extensible tongue” as a phylogenetic peculiarity of
giraffids only (Hassanin et al., 2012) is not correct.
The estimation of the phylogenetic signal 1 in sev-
eral of the PGLS models indicates a certain phylo-
genetic structure in tongue morphology, most
prominent in the corpus width ratio, that is,
whether a tongue is straight or “hourglass-
shaped.” This characteristic might be particularly
useful as a soft tissue phylogenetic signal because
it is apparently not subject of convergent evolution
as an adaptation to diet.

When discussing tongue function, it should be
remembered that the tongue is a muscular hydro-
stat (Smith and Kier, 1985), and the degree to
which it can be protruded from the mouth cannot
really be deducted from static macroanatomical
measurements. How much the tongue can be elon-
gated will not only depend on its resting shape, but
also on the arrangement of internal muscle fibres.
In the absence of comparative data on such
arrangements, or on measurements of tongue pro-
trusion in live animals, conclusions drawn from

macroscopic resting shapes must remain prelimi-
nary. Comparative studies on the internal architec-
ture of ruminant tongues, including quantification
of the relative contributions of longitudinal, trans-
verse, and perpendicular muscle fibres, would be
welcome.

The findings of Hofmann (1973; 1985; 1988;
1989; 2000) on convergent morphological charac-
teristics of the feeding apparatus and digestive
tract of different ruminant feeding-types have not
only inspired a variety of similar studies (reviewed
in Clauss et al., 2008b), but have also been ques-
tioned based on a lack of feeding-type differentia-
tion when a large set of morphological variables
taken from Hofmann (1973) was analyzed together
(Pérez-Barberia et al., 2001). Criticism against
that latter work includes the fact that character
choice was not based on considerations of function-
ality but on sheer availability (similar to our
approach in this study for some of our characters),
and not even backed by speculative explanations
(Clauss et al., 2008b). In contrast, a series of tests
on selected, putatively functionally relevant meas-
ures has confirmed convergence among feeding-
types in anatomical measures related to muzzle
and snout shape (Fraser and Theodor, 2011; Ten-
nant and MacLeod, 2014), the salivary glands
(Hofmann et al., 2008) and the masseter (Clauss
et al., 2008a), teeth (Heywood, 2010; Kaiser et al.,
2010), the intraruminal papillation (Clauss et al.,
2009), the rumen and the reticulum (Clauss et al.,
2010) as well as the omasum (Clauss et al.,
2006a), and in measures related to digestive effi-
ciency (Pérez-Barberia et al., 2004) and rumen
physiology (Dittmann et al., 2015). Similar to the
findings of this study, the results of these analyses
usually demonstrate convergence, but also indicate
an interspecific measurement variability that
makes a confident allocation of a feeding-type
based on any single measure questionable. In this
study, this is evident in the data scatter even in
those relationships that are statistically signifi-
cant. Additionally, adaptations of the digestive
tract may also have evolved in response to other
selective pressures than the botanical grass-
browse dichotomy, in particular among grazers
and mixed feeders (Codron et al., 2008; Dittmann
et al., 2015), so that a tight correlation between
diet and morphology need not be expected within
certain sections of the feeding-type continuum
(Clauss and Hofmann, 2014). Also, not all morpho-
logical adaptations need to be convergent in all
phylogenetic groups, as e.g. evident in the compa-
ratively small salivary glands reported in giraffids
regardless of the fact that they are strict browsers
(Clauss et al., 2006b; Sauer et al., 2016).

A functional interpretation of the findings of
this study must remain hypothetical, and will
revolve around the process of food ingestion. An
intuitive assumption is that browsers, which have

Journal of Morphology
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to pluck leaves off twigs or from between thorns,
may need particularly long tongues, which would
fit the results of our study. However, Hofmann
(1988) explained, naming cattle and Pere David’s
deer (Elaphurus davidianus) as specific examples,
that some grazers also use their tongue (rather
than their lips or their incisors and the maxillary
“dental pad”) for harvesting grass. Correspond-
ingly, cattle have a particularly long freely mobile
tongue tip. Conversely, other ruminants such as
sheep and goats graze with their lips and do not
use their tongues to harvest forage (Baumont
et al., 2006). To our knowledge, no systematic com-
pilation exists that compares how ruminant spe-
cies harvest the food they ingest (using either
mainly their lips, their tongues, or their incisors).
Descriptions of individual species that compare
the use of different parts of the oral ingestion
apparatus in terms of their relevance for food har-
vest are also lacking. The overall pattern observed
in our study here suggests that the feeding behav-
ior of cattle, that is, the use of a long tongue to
harvest grass bundles, is not the most prominent
strategy among grazers, which, therefore, mostly
have comparatively shorter free tongue tips.
Whether differences between the feeding-types in
terms of the mobility of the lips, as stated, for
example, by Hofmann (1989) or Searle and Shipley
(2008), can really be demonstrated in comparative
datasets remains to be shown.

A longer free portion of the tongue explains the
longer corpus in browsing ruminants (Fig. 3B). It
cannot, however, explain observations on the
length and width of the torus (Fig. 3C). The dis-
tinct appearance of the Torus linguae is a charac-
teristic of ruminants (Hofmann, 1988) whose
function remains to be elucidated. The increasing
corpus breadth with at higher proportions of grass
in the natural diet might be related to the concept
that grazing ruminants have broader muzzles
(Gordon and Illius, 1988; Janis and Ehrhardt,
1988; Solounias et al., 1988; Solounias and Moel-
leken, 1993; Spencer, 1995) or palates (Hofmann,
1988) than browsers. It must be noted that this
concept has been challenged based on phylogenetic
independent contrast analysis that did not detect
a significant difference in incisor arcade breadth
between categorical ruminant feeding-types
(Pérez-Barberia and Gordon, 2001). In contrast,
both Fraser and Theodor (2011) and Tennant and
MacLeod (2014) found that other measures of
snout shape actually matched categorical feeding-
types, even when corrected for phylogeny, with
browsers having more pointed and narrower snout
shapes than grazers. It appears reasonable to
assume that tongue shape reflects this difference
to a certain extent, as suggested by our results.
With more data such as ours becoming available,
more comprehensive analyses combining various
morphological characteristics of the feeding appa-
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ratus (e.g., Fraser and Rybczynski, 2014) will
become feasible. In particular, data on ingestive
behaviour (using lips vs. teeth vs. tongue for har-
vesting plants) would be an important addition in
this respect.
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