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Abstract: The development of an efficient and cost-effective solution to solve a complex problem 
(e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications 
of Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data 
from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with 
humans. Effectively collaborative analytics based on the collected massive data from humans and 
devices is quite essential to improve the efficiency of industrial production/service. In this study, we 
propose a Collaborative Sensing Intelligence (CSI) framework, combining collaborative intelligence 
and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with 
integrating massive spatio-temporal data from different sources and time points. To deploy the CSI 
for achieving intelligent and efficient industrial production/service, the key challenges and open 
issues are discussed as well.11

12 Keywords: Big Data Analytics; Collaborative Intelligence; Industrial Sensing Intelligence; Internet 
of Things.13

14

15 1. Introduction

Given the rapidly evolving demands of industrial production/service for safety [1,2],16

17 efficiency [3] and environmental friendliness [4], various sensors and wireless devices have been 
18 widely deployed to industrial environments [5,6]. On this basis, the Internet of Things (IoT) 
19 for industrial applications is being gradually developed [7,8], which is named as: Industrial IoT 
20 (IIoT) [9]. With the IIoT, massive data is being collected on a daily basis. Collaboratively analyzing 
21 based on the massive data that comes from different objects and different time points, can help to 
22 obtain efficient and cost-effective solutions to achieve safe, high-efficiency and eco-friendly industrial 
23 production/service [10]. Moreover, such data-centric solutions are flexible and low-cost.

In this study, based on the massive spatio-temporal data from different devices and different24

25 time points, with developing the potential of big data analytics, we design a Collaborative Sensing 
26 Intelligence (CSI) framework. This framework facilitates the cooperativity of big data analytics.

On the CSI framework basis, an industrial intelligence ecosystem can be constructed with the27

28 dynamic collaboration of different objects (an example is illustrated in Fig. 1).
The scientific contributions of this article are listed as follows.29

Pages 1 – 18.
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Figure 1. An industrial intelligence ecosystem. In this ecosystem, different objects (e.g., humans and 
machines) are working as an efficient whole with effective dynamic collaboration. The ecosystem 
consists of two parts: (i) sensing of humans with smart devices. Humans (workers) share information 
with each other and with various sensors, and (ii) sensing of sensors embedded in machines. Through 
the sensors that are embedded in different industrial equipment, a variety of status information (even 
weather information) can be obtained and shared with other information sources.

• The definitions of both terms, Collaborative Intelligence (CI) and Industrial Sensing Intelligence30

31 (ISI), are proposed under the background of IoT and big data analytics.
• This study clearly answers why and how designing the CSI framework based on the IIoT32

33

34

35

can be achieved. The key components of this framework are described in detail. Moreover, 
two on-going efforts about developing the framework are introduced and discussed. This 
CSI framework aims to achieve the dynamic collaboration between different objects, and such 
collaboration is based on massive spatio-temporal data.36

• We list and analyze the challenges and open research issues for developing and realizing the37

CSI framework.38

39 The remainder of this article is organized as follows. In Section 2, we clearly define the terms CI and 
40 ISI, and discuss their advances. Section 3 answers why and how we design the CSI framework, with 
41 integrating CI into ISI. Moreover, this section also displays and describes the key components of CSI 
42 framework. On this basis, two on-going efforts are introduced and discussed to provide the details 
43 about how to achieve CSI in industrial applications. Section 4 presents what are the challenges and 
44 open research issues for deploying this CSI framework to the dynamic environment of industry. This 
45 article is concluded in Section 5.

46 2. Definitions and Advances

As the basis of CSI framework, the terms CI and ISI are clearly defined, and their advances are47

48 discussed, in this section.

49 2.1. What is Collaborative Intelligence?

In industrial production/service, based on the IIoT: (i) what is intelligence? (ii) why we need50

51 this intelligence? and (iii) what is and why we need “collaborative”? Then, from the answers of these 
52 questions, the term CI can be clearly defined.

The intelligence of industrial production/service in the IIoT can be described as: industrial53

54 production/service includes a series of complex and dangerous processes, so how to minimize the 
55 manual intervention in these processes, is an important issue for improving the safety, efficiency
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56 and eco-friendliness of production/service. On this basis, automation becomes very important [11]. 
57 Then the intelligence can be defined as the ability to acquire information or knowledge based on the 
58 IIoT, and apply the acquired information or knowledge to construct deliverable process models, for 
59 achieving or improving the automation of industrial production/service.

From the above description about intelligence, the development of the intelligence on60

61 processes is a requisite and important step to realize the high-efficiency automation of industrial 
62 production/service.

In addition, effective collaboration between different industrial processes is important and63

64 necessary to realize the intelligence of industrial production/service. That is, the intelligence on 
65 industrial production/service is a series of collaborations between different industrial processes.

The definition of “Collaborative Intelligence” is described in Definition 1.66

67 Definition 1. Under the background of big data analytics, Collaborative Intelligence is the ability to 
68 acquire information or knowledge from massive data, for constructing a problem-solving network1. 
69 Based on the network, the purpose of Collaborative Intelligence is to realize the automation of 
70 industrial production/service, or to improve the performance of the automation. Moreover, the 
71 massive data is collected from different autonomous equipment of industrial systems.

In summary, due to the close correlation between processes, the collaboration between them is72

73 indispensable. With analyzing the massive data that comes from different autonomous equipment, 
74 the collaboration can be achieved. Based on such collaboration, intelligence can be easily and quickly 
75 deployed on different industrial systems. Along with this deployment, the automation of industrial 
76 production/service can be developed. Moreover, as the basis of intelligence, acquiring information 
77 or knowledge is possible based on massive data that is collected by various sensors and wireless 
78 devices. These sensors and wireless devices are embedded in autonomous equipment, for monitoring 
79 or controlling the processes of industrial production/service.

80 2.2. What is Industrial Sensing Intelligence?

Based on the sensors and wireless devices deployed in industrial environments, the definition81

82 of “Industrial Sensing Intelligence (ISI)” is described in Definition 2. This definition considers the 
83 characteristics of industrial problems2, and is under the background of big data analytics.

84 Definition 2. Through dynamically mining and analyzing the massive spatio-temporal data that 
85 is collected from industrial ecosystems (Fig. 1), useful information/knowledge can be acquired to 
86 improve the ability of industrial automation.

Definition 2 has taken into account these three important aspects:87

• Mining and analyzing spatio-temporal data. The data is collected from industrial ecosystems88

89

90

(an example is shown in Fig. 1). In such ecosystems, there are various sensors and wireless 
devices to sense surroundings and to collect the data from different data sources and time 
points. Based on the collected data, mining and analyzing the data is with certain logic.91

92 • Acquiring useful information/knowledge. It is the important aspect to achieve the 
“intelligence” of industry. Industrial automation is the first step of realizing industrial93

1 A problem-solving network is proposed for exploiting the potential of “the collaboration between different objects” and
“the wisdom of crowds”, and for transferring information-intensive organizations to network society. It is set for solving
problems rather than building relationships.

2 The characteristics of a typical industrial problem include these two aspects: (i) the environment of industrial
production/service is highly dynamic and complex [12], and (ii) industrial production/service includes a series of highly 
correlated processes [13].
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intelligence. With acquired useful information/knowledge, industrial automation can be94

95 improved and enter into the intelligent era.
• Considering the characteristics of industrial problems. In the definition, the description,96

97

98

“through dynamically mining and analyzing”, is to consider the characteristic about “highly 
dynamic and complex”, and the description, “spatio-temporal data”, is to consider the 
characteristic about “a series of correlated processes”.99

From the definition of ISI, it is obvious that ISI consists of physical sensing, data mining and100

101 analysis, and information/knowledge acquirement and utilization.

102 2.3. Advances

103 2.3.1. Collaborative Intelligence

CI is able to utilize extensive information or knowledge to construct a problem-solving network,104

105 for complex industrial problems. Based on this, collaborative intelligent systems are built for complex 
106 industrial production/service.

CI involves extensive and intensive collaboration of different members as an efficient team107

108 to solve problems. Such collaboration possesses great potential on problem resolution under 
109 challenging environments [14]. It obviously can provide more information/knowledge for designing 
110 improved solutions than any single member could. It achieves the flexibility in how members are 
111 deployed. It gives a nonstop real-time learning opportunity to a team. Moreover, such collaboration 
112 has the potential of integrating diverse contributions 3 into a platform to produce a creative solution 
113 for successfully solving a problem [15].

Based on the above advantages, CI has been widely studied. As an important existing114

115 platform for CI, HUB-CI (HUB with CI) [16] is the next generation of collaboration-supported system 
116 developed at Purdue University. On this platform basis, Prabhu Devadasan et al. have designed the 
117 model CIMK that measures CI by the multi-objective optimization on the parameters of collaboration, 
118 and suggests the optimal operating points for various clients, with greater flexibility.

The advance of CI is briefly discussed. Relevant studies are classified in Tab. 1, and we list some119

120 typical literature for each classification using as examples. And we discuss several studies in detail to
make the meaning of each classification easy to be understood.

Table 1. Classification of the Studies on CI

Classification Typical Application Typical Recent Literature

Human-based CI
Smart search and 

recommendation in 
social networks

[17–19]
[20–23]

IoT-based CI
Optimizing the 
performance of 

intelligent systems
[24–26]

121

In Tab. 1, the relevant studies can be classified into two classes, Human-based CI and IoT-based122

123 CI, depending on the difference of participants.
Human-based CI. As the typical applications of human-based CI, the smart search and124

125 recommendation of social networks have been widely studied.
In the literature [17,18], Vincent W. Zheng et al. have developed a mobile recommendation126

127 system to answer two popular location-related queries in our daily life, “(1) if we want to do

3 Different members contribute different information/knowledge, skill and experience to problem resolution.
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something such as sightseeing or dining in a large city like Beijing, where should we go? (2) If we want128

129 to visit a place such as the Bird’s Nest in Beijing Olympic park, what can we do there?”. This system 
130 includes three important algorithms that are based on collaborative filtering to address the data 
131 sparsity problem 4. By these three algorithms, the advantages of collaboration can be highlighted. 
132 The first algorithm uses a collective matrix factorization model to provide recommendation, based 
133 on the merged data from all of the users. The second algorithm uses a collective tensor and matrix 
134 factorization model to provide personalized recommendation. The third algorithm further improves 
135 previous two algorithms by using a ranking based collective tensor and matrix factorization model.

As the important supportive work of above-mentioned achievement from Vincent W. Zheng et136

137 al., in the literature [19], they have presented User-centered Collaborative Location and Activity 
138 Filtering (UCLAF) to merge the data from different users together, and have applied the collaborative 
139 filtering to find like-minded users and like-patterned activities at different locations.

IoT-based CI. As the typical applications for such CI, optimizing the performance of intelligent140

141 systems has attracted attention.
In IoT and intelligent system related studies, the study for intelligent transportation systems is142

143 an important aspect. In the literature [24], a collaborative framework is proposed for the real-time 
144 traffic information collection, fusion and sharing. The real-time traffic information is reported by 
145 various front-end devices of intelligent transportation systems, for example, vehicle-mounted GPS 
146 receiver. The framework integrates real-time traffic information from different data sources to be 
147 able to improve the performance of intelligent transportation system, for example, enabling the 
148 high-accuracy prediction for real-time traffic status.

As another important intelligent system, the intelligent healthcare service system, Byung Mun149

150 Lee et al. have introduced a collaboration protocol to share health information between IoT personal 
151 health devices [25]. By such information sharing, the quality of healthcare service can be improved.

On the other side, the collaboration between different members perhaps results in serious152

153 mistakes. If a collaboration is not efficient and even is incongruous, a minor mistake in this 
154 collaboration will fall into a syndrome known as “groupthink” [27], and the syndrome makes the 
155 mistake be amplified, which results in a fiasco [28]. How to make a collaboration efficient, is an 
156 important and difficult problem. The book [29] presents an approach. Its premise is that preliminary 
157 work is performed by professionals of intelligence community: mining information/discovering 
158 knowledge from the target work and members of a collaborative team. The effectiveness and 
159 correctness about making this premise have been verified in the research achievement [30].

160 2.3.2. Industrial Sensing Intelligence

Based on the development of IoT technology in industrial applications, sensing intelligence has161

162 drawn wide attention, on account of these advantages: (i) with the help of sensing intelligence, 
163 efficient monitoring and controlling can be achieved to reduce the costs and energy consumption 
164 of industrial production/service, and (ii) with the help of sensors and wireless devices embedded in 
165 industrial machines and systems, the maintenance of these machines and systems is controllable and 
166 automatable, and especially, these machines and systems are deployed in remote and hard-to-reach 
167 areas. Sensing intelligence has been successfully applied to many industrial applications such as 
168 monitoring, controlling, maintenance and security, [31]. Typical industrial applications of sensing 
169 intelligence are introduced as follows.

Factory automation. A factory is a highly dynamic ecosystem, so automation is necessary in170

171 such environment. Traditional actuators combined with control units have been used for factory 
172 automation. With the development of wireless and sensor technologies, the adoption of WSNs

4 The data comes from each user and is used to do recommendation, but each user has limited data, which makes the
recommendation task difficult.
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173 (Wireless Sensor Networks) and RFID (Radio Frequency Identification) on the actuators and control 
174 units for factory automation has experienced impressive growth over the past decade [32,33]. This is 
175 ISI-based factory automation.

In the manufacturing environment of a factory, two main activities are included, manufacturing176

177 operations and equipment maintenance [34]. In recent years, based on these two main activities, the 
178 studies on factory automation pay much attention to these four aspects [6,35]: (i) the monitoring 
179 and controlling for manufacturing processes, (ii) the safety and maintenance for machines, (iii) 
180 the resource tracking for manufacturing workshops, and (iv) high-level logistics and supply chain 
181 management.

An ISI-based factory automation system consists of various devices, e.g., sensors, controllers and182

183 heterogeneous machines, and these devices can be combined together through the communications 
184 between each other. The communication component is the most important part of factory automation. 

In Tab. 2, we list the communication protocols that can be used in ISI-based factory automation.

Table 2. Relevant Protocols for ISI-based Factory Automation

Wireless

Communication Protocol Relevant Standard

Maximum
Data Rate
(Mbit/s)

Maximum
Data

Payload
(Bytes)

IEEE 802.15.1 1 339
IEEE 802.15.3 110 2044
IEEE 802.15.4 0.25 102

Bluetooth
Ultra-WideBand (UWB) 

ZigBee
WiFi IEEE 802.11a/b/g 54/11/54 2312

185

By using ISI-based factory automation, (i) the theoretical study achievements on factory186

187 automation can be improved, and (ii) the ability of factory automation can be enhanced to achieve 
188 safe, efficient and eco-friendly factory production.

Energy industry. As another important application of sensing intelligence, the application189

190 environment of energy industry and factory automation is different. In energy industry, the sensing 
191 intelligence is mainly applied to inaccessible environments to monitor and control industrial systems. 
192 In factory automation, the sensing intelligence is mainly applied to highly dynamic and large-scale 
193 environments.

With the development of sensing technology and the extensive deployment of sensors,194

195 sensing-intelligence-supportive renewable energy industry (e.g., solar, tidal and geothermal energy) 
196 has become a new and important study aspect. The equipment for accessing renewable energy is 
197 often located in remote areas such as mountains, seas and volcanoes. Despite this, real-time control 
198 is necessary for the units of energy harvesting, for example, for a wind turbine, based on the data 
199 from wind-direction sensors, a yaw-drive motor turns the nacelle to face the wind. Moreover, the 
200 sophisticated units that are embedded in equipment require frequent maintenance [36]. Sensing 
201 intelligence is proposed for both purposes, real-time control and maintenance, in renewable energy 
202 industry [37].

203

204

205

206

• Real-time control. Based on the development of sensing intelligence in real-time control, first, 
the real-time data of environmental conditions 5 can be collected by the spatially distributed 
sensors and wireless devices. These sensors and wireless devices are embedded in energy 
harvesting systems. Then, by using the collected environmental data, the relationship between 
generated energy and different seasons can be analyzed. With the analyzing results, the optimal207

5 Environmental conditions include wind speed, temperature, humidity, rainfall and geothermal activity.



7 of 18

208

209

210

parameter configuration can be acquired and used to control the equipment that is the main 
component of energy harvesting system. In a word, based on sensing intelligence, the process 
of energy harvesting is high-efficiency and automatical, [38,39]. Moreover, such real-time 
intelligent control has been used in smart home services as well [40].211

• Maintenance. The sensors that are embedded in various units of equipment, interact with212

213

214

215

the equipment to take a number of measures such as the scheduling of maintenance [41], the 
reconfiguration of certain operations [42] and the emergency shutdown of equipment [43]. 
With the sensing intelligence in maintenance, unnecessary downtime can be prevented, and 
equipment failure costs can be reduced.216

In recent years, as the important part of energy industry, “Smart Grid” has attracted great217

218 attention of researchers. The smart grid represents a vision of future electricity grid, and it is radically 
219 different from current electricity grids that have been deployed. It is an electricity grid that uses 
220 analog or digital communication technology to collect information and take action for automatically 
221 improving the efficiency, reliability, economic benefit and sustainability of the production and 
222 distribution of electricity, [44]. In the literature [45], Ramchurn et al. have presented: delivering 
223 the decentralized, autonomous and intelligent system, smart grid, is a grand challenge for computer 
224 science and artificial intelligence research. As a typical case that is tightly related to the CSI framework 
225 in the smart grid, optimizing the electricity usage of electric vehicles is worth studying. For example, 
226 with analyzing the spatio-temporal trajectory data from an intelligent transportation system, the 
227 routing pattern of electric vehicles can be acquired, and then a national electric supply company 
228 can make time- and area-divisiory electricity prices to control the usage of electricity and therefore to 
229 improve the efficiency of smart grid.

230 3. Collaborative Sensing Intelligence

Based on the above two definitions and IIoT, with integrating CI into ISI, an effective CSI231

232 framework can be designed.

233 3.1. Why and How we design the CSI framework?

Why we design the CSI framework? This framework can improve the efficiency of IIoT. In234

235 industrial production/service, the internal logical processes are intricate and precise [46]. A large 
236 amount of different equipment is involved in these logical processes. For achieving high-efficiency 
237 industrial production/service, effective collaboration is necessary between different equipment and 
238 between different logical processes. The CSI framework can organize multi-sourced data and make 
239 different data sources collaborative each other based on the data. The multi-sourced data is collected 
240 from the different equipment and different logical processes of industrial production/service based 
241 on the IIoT.

Effective collaboration is possible, with the help of massive data. First, with the application of242

243 IoT technology in industry, massive data can be collected by widely distributed various sensors and 
244 wireless devices [7]. And then, as the natural advantage of data, different data is easily processed 
245 and even merged together [47]. Finally, the effective collaboration between different equipment and 
246 processes can be achieved, with processing and merging different data from multiple sources.

Based on (i) the requirements of industrial production/service and the benefit of CSI framework,247

248 and (ii) the feasibility of achieving collaboration, the question about “why” is answered.
Moreover, the data-based collaboration can cost-effectively develop the intelligence of industrial249

250 production/service [48]. For example, in chemical industry, different equipment is used in different 
251 production stages and different data is collected. For improving the ability of acquiring information 
252 or knowledge, and applying the acquired information or knowledge to realize the automation of 
253 production, collaborating the different equipment based on the data is an effective and low-cost 
254 method.
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How we design the CSI framework? Considering the characteristics of industrial problems,255

256 integrating CI into ISI is a practicable method to achieve the CSI framework. Various sensors and 
257 wireless devices have been widely deployed to industrial equipment, and massive data is collected by 
258 these sensors and wireless devices. On this basis, the CSI framework is designed. Figure 2 illustrates

the architecture of CSI framework.

From... ...To
Sensing Data
Everywhere

Integrated Analytics
Collaboration: E2E/P2P

Information/Knowledge
Anytime
Anywhere

x(i, t-1) x(j, t) x(k, t+1)

Figure 2. Architecture of CSI framework. From: the massive data from industrial ecosystems. To:
mined information/discovered knowledge, which can be used in algorithm design to solve industrial
problems. [..., x(i, t− 1), x(j, t), x(k, t+ 1), ...] is the state series relating to “location” and “time”, which
is used in the collaborative analysis that is based on different state data from different equipment. E2E
denotes equipment-to-equipment collaboration, and P2P is for person-to-person.

259

In Fig. 2, the availability of massive data is not a problem in industry, owing to the wide260

deployment of sensors and wireless devices. The problems are: how to integrate different data261

and filter out noise to find the data we need, and how to get the data into right hands to discover262

useful information/knowledge. CI empowers systems to intelligently transform vast amounts of263

operational data into actionable information/knowledge that is accessible and available anytime,264

anywhere.265

Based on the available data from different autonomous equipment of industrial systems, how266

to construct a problem-solving network, is an important and difficult problem, and constructing the267

problem-solving network is the main target and contribution of CSI as well. As the common and268

important features of the data collected from different autonomous equipment, “time” and “location”269

can be used as collaborative parameters to integrate the different data. A time or location series can270

be considered as a Markov chain. With the change of time or location, the state of a problem we want271

to solve, undergoes transitions from one state to another in a state space, and the state space includes272

various current states from different relevant equipment. With the help of the feature parameters of273

data, the data can be integrated to achieve the collaboration of different autonomous equipment, and274

the integrated data can be used to mine and discover useful and actionable information/knowledge.275

On this basis, the problem-solving network can be constructed.276

3.2. Key Components of CSI277

The CSI framework consists of three components (Fig. 2): (i) sensing data collection, (ii)278

integrated analytics with collaboration, and (iii) information mining and knowledge discovery.279

Sensing data collection. In an industrial ecosystem, massive data has been collecting by the280

sensors and wireless devices, which are deployed in everywhere. Moreover, this component is the281

basis of integrated analytics, so collecting enough spatio-temporal data is important and necessary.282

Integrated analytics. This is the core component of CSI. Effective integration of different data is283

an important and basic premise to mine/discover useful and actionable information/knowledge.284

Such integration is collaboration-based. How to make different objects collaborate with each285

other is the problem we need to solve to make the second component more practical. Industrial286

production/service includes a series of processes and actions, and these processes and actions are287

location- and time-related. A spatio-temporal Markov chain can be used to process the relationships288

between these processes and actions. Based on such processing, the collaboration between different289

objects is achieved.290

The detailed design and description of spatio-temporal Markov chain [49,50] are shown as291

follows. First, a series of processes and actions of industrial production/service, produce a series292
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of different states, ..., x(i, t − 1), x(j, t), x(k, t + 1), ..., where x(., .) is the function of the parameters293

294 “location” and “time”. Then, these states meet the Markov property that is described in Definition 3. 
295 Finally, the state transitions of industrial processes can be denoted by a spatio-temporal Markov 
296 chain, and the state transitions are based on the state space of industrial production/service (an 
297 example is illustrated in Fig. 3).

Definition 3. A stochastic process has the Markov property, if the conditional probability distribution298

of future states of the process depends only upon the current state, not on a series of preceding states.299

So the Markov property can be formulated as: Let {X(t), t ≥ 0} be a time continuous stochastic300

process, which is assumed to be the set of non-negative integers, and then for every n ≥ 0, time301

points 0 ≤ t0 < t1 < · · · < tn, and states x0, x1, ..., xn, the process holds that P(X(tn) = xn |302

X(tn−1) = xn−1, X(tn−2) = xn−2, ..., X(t0) = x0) = P(X(tn) = xn | X(tn−1) = xn−1).303

This definition shows that only the current state provides information to the future behavior of304

process. Historical states of the process do not add any new information.305

Figure 3 provides an example to explain how to do data processing by the spatio-temporal306

Markov chain.

x(0, 1)

x(1, 1)

x(2, 1)

x(3, 1)

x(0, 2)

x(1, 2)

x(2, 2)

x(3, 2)

x(0, 3)

x(1, 3)

x(2, 3)

x(3, 3)

p
10

p11

p12

p00

p01

p
10

p11

p12

p
21

p22

p23

Figure 3. A spatio-temporal Markov chain for the processes of industrial production/service. P =

{p10, ..., pij, ...} (i, j ∈ {0, 1, 2, 3}) is the set of processes, x(i, t) (i ∈ {0, 1, 2, 3}, t ∈ {1, 2, 3}) denotes the
state space at the time t, and i is the location number of the equipment that is with the state x(i, t).

307

The spatio-temporal data of this example is a series of states (x(i, t)), and the states at different308

309 time points are linked by a set of processes (pij). As the most important information that can be 
310 used to link two different states, location and time stamp are included in each state. In this example, 
311 there are four states in the state space of the time point t = 1, x(0, 1), x(1, 1), x(2, 1), x(3, 1). The 
312 state x(1, 1) transfers to x(0, 2), x(1, 2), x(2, 2), with corresponding processes p10, p11, p12, and these 
313 transitions are based on certain probabilities. As time goes on, step by step, the Markov chain 
314 of this specific industrial production/service can be achieved. Such a Markov chain enables the 
315 collaboration between different Things and Time Points, based on the massive spatio-temporal data.

Information mining and knowledge discovery. On the second component basis, with the help316

of: (i) the representative parameters of industrial processes, and (ii) the spatio-temporal Markov chain317

that is based on the representative parameters, the rules about the industrial processes can be learned,318

and then these rules form useful and actionable information/knowledge according to a particular319

logical sequence. Based on the mined information and the discovered knowledge, various intelligent320

algorithms can be designed to solve the problems and to meet the requirements of industry.321
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322 3.3. On-going Efforts

The CSI framework simplifies the integrated analytics between different data sources, and323

324 integrates these data sources with their respective semantics, for enabling an industrial problem to 
325 obtain an optimized solution with using comprehensive information. Based on two on-going efforts, 
326 the details of developing CSI framework in industrial applications are visually provided.

327 3.3.1. Dynamic Detection of Toxic Gases

As an important part of industry, in large-scale petrochemical plants, the leakage of toxic gases is328

329 a serious threat to humans and the environment [51]. It is necessary to develop an intelligent leakage 
330 detection solution for timely rescue and control.

The industrial production of large-scale petrochemical plants can be represented by a series331

332 of collaborative behaviors in dynamic environments. However, in most existing large-scale 
333 petrochemical plants of China for instance, only static wireless sensor nodes are deployed for 
334 detecting toxic gases. These static nodes are independent of each other to alert operators to the 
335 possible leakage of toxic gases. A static node raises the alarm, when and only when the sensed 
336 reading for a certain toxic gas is larger than a predefined threshold in a certain location. Because 
337 of these three “certain”: (i) certain toxic gas, (ii) predefined threshold, and (iii) certain location, the 
338 static sensor based detecting systems are at a distinct disadvantage in dynamic industrial production 
339 environments. This “disadvantage” includes four aspects:

• It is difficult to locate the leaking source of a toxic gas without tracking the change of340

341

342

343

concentration of the toxic gas. The concentration of a toxic gas is constantly changing as 
locations shift and time goes by. In such a dynamic environment, only using independent 
static sensor nodes, the change of the concentration cannot be tracked without the collaboration 
between different sensor nodes.344

• It is difficult to track and monitor the active workers in a large-scale petrochemical plant. In345

346

347

348

a petrochemical plant, it is vitally important to identify the geographical locations of workers, 
and to monitor the body signs (e.g., heart rate) of these workers, when the leakage of toxic gases 
happens. The collaboration is necessary between different active workers to locate a worker and 
to estimate/predict the impact of production environment on the health of the worker.349

• For a certain sensor, it only can detect a toxic gas, and for a detecting system, different sensors350

351

352

353

354

355

are needed to detect different toxic gases. In the complex environment of a petrochemical plant, 
it is hard to make an optimal decision about what certain types of sensors are needed in a 
certain location to detect certain toxic gases. In addition, a petrochemical plant is an uncertain 
environment, and under this environment, a chemical reaction is possible between different 
toxic gases. This reaction produces new toxic gases that cannot be detected by the deployed 
sensors. Moreover, embedding all possible sensors into a detecting system is not cost-effective.356

• It is difficult to set an optimal threshold for the sensed reading of toxic gas concentration. For357

358

359

360

example, for a carbon monoxide sensor, the predefined threshold is x, and in an accident, the 
leaking source of carbon monoxide gas is far away from this sensor. When the sensed reading of 
this sensor is larger than the predefined threshold x, the carbon monoxide gas has been widely 
diffused and has already got out of control.361

Based on the characteristics of industrial problems, the CSI framework is designed and used to362

363 solve existing problems in industrial systems. It is based on analyzing massive spatio-temporal data 
364 from various devices in IIoT environments.

Figure 4 illustrates an on-going effort, a CSI-based system, which improves the capability of365

366 detecting on toxic gases in a large-scale petrochemical plant.
As the important two components of this application, Fig. 5 provides the details of367

368 sensor-embedded wearable wireless devices and static wireless sensor nodes.
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Figure 4. An application scenario of CSI framework to improve the capability of detecting toxic gases 
in a large-scale petrochemical plant. This application consists of four components: sensor-embedded 
wearable wireless devices, static wireless sensor nodes, WiFi-enabled wireless base stations and a 
remote monitoring center. The wearable wireless devices are worn by workers, and collaborate 
with static wireless sensor nodes to sense surrounding environment and collect spatio-temporal 
data. The data is sent to the remote monitoring center via WiFi-enabled wireless base stations. 
In the monitoring center, based on the collected data, by data-centric dynamic collaboration, the 
collaborative networking among different wireless devices can be achieved. Such networking 
constructs a problem-solving network to detect the leakage of toxic gases. Moreover, on such 
networking basis, the CSI can be achieved in this scenario.

(a) (b)

Figure 5. (a) Sensor-embedded wearable wireless devices: smart helmet and wrist watch. (b) 
Static wireless sensor node. The smart helmet is sensor-embedded, and it works with the wrist 
watch to dynamically detect toxic gases. The static node is supported by solar energy and enables 
to persistently measure the concentration of gases in the air, e.g., CO, SO2 and CH4, and other 
environmental information, e.g., wind speed, humidity and temperature.

For example, first, along with the daily walk of workers in a petrochemical plant, massive369

370 spatio-temporal data is collected by smart helmets, and the smart helmets collaborate with static 
371 sensor nodes via communication-enabled wrist watches. Then, the collected data by smart helmets 
372 and static nodes is submitted to a remote monitoring center. Finally, the massive spatio-temporal data 
373 is analyzed based on the CSI framework. Such analysis enables the collaborative networking among
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374 different wireless devices to construct a problem-solving network, and analysis results are returned 
375 to wrist watches.

For the special problem, the leakage of toxic gases in large-scale petrochemical plants: because376

377 of the wide deployment of wireless devices, massive data is collected from these different devices. 
378 The collected data includes different information from different locations and time points. Using 
379 the massive spatio-temporal data based CSI framework, the widest detecting can be achieved as the 
380 efficient and cost-effective solution of the leakage problem.

381 3.3.2. Citizen Sensing of La Poste

Figure 6 provides an example: integrating two different data sources to improve the performance382

383 of services or solutions for mail delivery. This example is based on citizen sensing and machine 
384 sensing. Based on sensing and communication operations, sensors can share their data, which

provides enhanced situational awareness that any system cannot offer alone.

Figure 6. An example about networking two different data sources to improve the quality of service 
(a use case from La Poste). Integrating the spatio-temporal data from citizen sensing with the data 
from machine sensing, provides enhanced experience and situational awareness. Such integration 
forms more complete information than either form of sensing can provide alone. And it enables the 
collaborative networking among different wireless devices.

385

From the example of Fig. 6, the collaboration of different data sources can provide enhanced386

387 services or solutions with harmonious context. Such harmony can be achieved by the integration of 
388 data from different data sources, and the integration process is based on a certain logical sequence 
389 for these different data sources. So based on the integration capability of CSI for different data, 
390 the collaboration-based sensing intelligence improves the effectiveness of industrial systems to the 
391 resolution of complex problems.

Moreover, based on: (i) the above discussion about the advances of CI and ISI, and (ii) this392

393 on-going effort on CSI, a new application trend can be observed: realizing the interaction between 
394 the crowd wisdom of humans and sensing intelligence, in IIoT, for solving various complex problems 
395 of industry.

Sensing intelligence of industrial applications interacting with the crowd wisdom of humans.396

397 It includes two aspects: (i) participatory sensing in IIoT. Burke et al. assert: “participatory 
398 sensing will make deployed devices interactive, and participatory sensor networks enable different 
399 sensor-embedded machines to collect, analyze and mine data, and then to discover and share 
400 respective knowledge” [52]. In the era of big data, participatory sensing is the process where 
401 individuals and communities use devices or modules to collect and analyze systematic data for 
402 learning and discovering knowledge [53]; (ii) crowd wisdom of humans. For example, as of March 
403 2014, Twitter receives 500 million tweets per day, so mining the wisdom of crowds based on this
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404 type of big data has been made possible. To strengthen the decision-making ability of industrial 
405 systems, as an effective strategy, interacting with the crowd wisdom of humans has attracted the 
406 attention of researchers [54], and the strategy has the prospect about improving the ability of sensing 
407 intelligence [55].

In summary, the production/service of industry consists of a series of complex processes. High408

409 safety, efficiency and eco-friendliness are required during such production/service. However, how to 
410 make industrial environments and machines be safe, and how to improve the efficiency of industrial 
411 production/service, are long-term challenges. Meanwhile, the industrial production/service needs to 
412 ensure the friendly interaction with surroundings. The data-centric collaboration uses comprehensive 
413 sensors and big data analytics to provide an efficient and cost-effective solution for a complex 
414 industrial problem.

4. Key Challenges and Open Issues415

The CSI framework is used to face the growing demands of IIoT, and to achieve the intelligence416

of industrial production/service. The key challenges and open issues on deploying this framework417

to practical industrial applications are worthy to be investigated and discussed, with considering the418

characteristics of industrial problems, under the background of IoT and big data analytics.419

4.1. Key Challenges420

The challenges come from these two aspects: data and functionality.421

Data:422

• Data analytics [56,57]. It is the bottleneck of CSI framework, due to the lack of scalability423

for different data sets. Based on the characteristics of industrial problems, CSI analyzes424

spatio-temporal data sets. These data sets are collected from different industrial equipment425

and different time points, and they have different semantics, different formats, different sizes426

and different contexts.427

• Structuring data. Transforming unstructured data into a unified structured format to later428

429

430

431

432

analysis is a challenge for the CSI framework. As the basis of our intelligence framework, 
spatio-temporal data is not natively structured, e.g., daily running log data of different 
industrial equipment [58], and such unstructured data is typically text-heavy, and contains 
important log information such as dates, running parameters of equipment and values of these 
running parameters.433

• Data privacy and knowledge access authorization [59,60]. Data privacy and knowledge access434

authorization are important for data owners. However, in the CSI framework, between data435

owners and data consumers, sharing data and knowledge is needed and important for good436

collaboration. For example, two different industrial systems, they are data sources and they437

belong to different departments. Because of the high correlation of industrial processes, what438

level is just enough and how to define the level of privacy and access authorization between439

these two different industrial systems are challenges that are worth studying.440

• Generic data model [61]. For making the spatio-temporal data of CSI framework be able to be441

used in knowledge discovery, a generic data model needs to be designed. However, different442

data has different formats, contexts, semantics, complexity and privacy requirements. The443

design of the generic data model is a challenge.444

Functionality:445

• Knowledge discovery [62]. In the era of big data, for mining the potential of big data446

analytics, it is vitally important to discover knowledge with understanding the nature (e.g.,447

correlations, contexts and semantics) of data. However, it is still an open challenge for the CSI448

framework, because knowledge discovery is a complex process under the dynamic environment449

of industrial production/service.450
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• Effective and high-efficiency knowledge utilization [63]. Along with the wide use of sensors and451

wireless devices in IIoT, data is being produced by humans and machines at an unprecedented452

rate. This leads many industrial departments to explore the possibility of innovating with453

the data that is captured to be used as the part of future Information and Communication454

Technology (ICT) services. The major challenge is how to release and use the knowledge that is455

mined from the massive data of industrial departments.456

• Support for particular applications. In a particular application, specific data mining and training457

are required to perform knowledge discovery. For example, for detecting the leakage of toxic458

gases, based on static and wearable wireless nodes embedded sensors (they generate massive459

dynamic data: sensing records with time stamps and location tags), real-time data mining460

algorithms are needed to mine such data and to monitor dynamic industrial environments.461

The CSI framework is required to have the ability to support these special requirements, and462

to make data owners and data consumers be able to communicate with each other for effective463

data mining and knowledge discovery.464

• Real-time processing/controlling [64]. For example, because of the dynamic nature of industrial465

applications, real-time processing/controlling is necessary. However, due to the complexity of466

industrial processes and the differences of networking performance between different industrial467

devices, for an intelligence framework, real-time processing/controlling is hard to be achieved.468

• Interfaces between internal modules. The interfaces between different internal modules play the469

main role in affecting the performance of workflow. However, how to design effective interfaces470

is a challenge for the design of high-efficiency CSI framework. First, we need to make the471

inside of each internal module clear enough, and then each internal module needs to provide472

respective parameters to design the corresponding interface. The difficulty of this design is:473

which parameters of each internal module affect workflow performance and how they affect it.474

• Development of a security model [65]. A security model is capable of providing privacy475

and authority management. In the CSI framework, there are numerous roles and various476

corresponding parameters, e.g., data owners and data consumers. So how to design an477

appropriate and moderate security model is a challenge for achieving a safe and resource-shared478

intelligence framework.479

4.2. Open Issues480

Based on the aforementioned challenges, the open research issues are listed as follows,481

482 considering the particularity of IIoT-based industry.

• Data integration [66]. Data is the basis of CSI framework, and for the collaborative capability483

484

485

486

487

488

489

490

491

between different data sources, data integration is an important research issue. The goal of data 
integration is to combine the data residing at different sources, and to tie these different sources 
controlled by different owners, under a common schema. In the book [67], AnHai Doan et al. 
have provided and discussed: (i) the typical examples of data integration applications from 
different domains such as Business, Science and Government, (ii) goal of data integration, and 
why it’s a hard problem, and (iii) data integration architecture. On this basis, considering 
the particularity of IIoT-based industry, the biggest problem of data integration, is how to 
automatically achieve a correct logical sequence for data integration, according to the real 
processes of industrial production/service.492

493

494

495

496

497

• Data mining algorithms [68]. Based on the data collected from a variety of sensors and wireless 
devices that are distributed in industrial intelligent ecosystems, adequate data mining is an 
important issue for the CSI framework. Such mining is based on industrialized algorithms that 
are suitable for large-scale, complex and dynamic industrial production/service. For example, 
by mining the big monitoring data from a large-scale petrochemical plant, the potential leaking 
sources of toxic gases can be predicted, and based on such prediction, the safety of large-scale498
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industrial production can be improved. The study in this topic is still very limited, due to the499

500 limitation of technology on big data analytics.
• Collaborative knowledge discovery algorithms [69]. For the CSI framework, designing501

502

503

504

505

algorithms to enable the collaboration between crowd wisdom and industrial sensing 
intelligence for discovering useful knowledge is a valuable research issue. However, due 
to the limitation of technology on the big data analytics and data processing in large-scale, 
complex and dynamic industrial environment, and the problem of data integration, the study 
in collaborative knowledge discovery is still limited.506

• Real-time algorithms [70]. Industrial production/service includes a series of dynamic processes.507

508

509

510

511

512

513

514

515

516

The real-time algorithms on data processing, data analysis and decision making are necessary 
for an intelligence framework to improve the timeliness of dynamic processes in industrial 
production/service. Shen Yin et al. [71] have proposed two real-time schemes for the 
fault-tolerant architecture proposed in [72]. This architecture is designed for the fault-tolerant 
control of industrial system. One is a gradient based iterative tuning scheme for the real-time 
optimization of system performance. The other is an adaptive residual generator scheme for 
the real-time identification of the abnormal change of system parameters. Other than this 
fault-tolerant control, in other aspects of industry, real-time algorithms are very important as 
well, for example, detecting toxic gas in highly dynamic production environment. However, 
there are no achievements for these “other aspects”.517

• Trusted and privacy-protected model design [73]. The privacy of data and knowledge is518

519

520

521

522

523

important for data owners and data consumers in a collaborative framework. For the CSI 
framework, it is indispensable to study and design a trusted and privacy-protected (i) data 
model for data processing and analysis, and (ii) knowledge model for knowledge discovery 
and utilization. Such models are an important part of collaborative framework. However, its 
design is based on different requirements from data owners and data consumers for different 
applications. There is no a unified standard for such design.524

525 5. Conclusion

Facing the growing demands of industrial production/service on improving the safety,526

527 efficiency and eco-friendliness, and meeting the cost-effective objectives, based on the IIoT and the 
528 characteristics of industrial problems, we have proposed the CSI framework with combining CI and
529 ISI. This sensing- and collaboration-based intelligence framework has the potential to improve the 
530 performance of industrial systems by providing better awareness and control to dynamic industrial
531 environments and correlated production/service processes, with analyzing and integrating massive 
532 spatio-temporal data. Moreover, because the spatio-temporal data is collected from things and 
533 humans, CSI can achieve improved automated decision making with ISI collaborating with the crowd
534 wisdom of humans. In addition, the challenges and open issues for developing the CSI framework 
535 have been explored and discussed. The aim is to identify innovative research issues for industrial
536 intelligence, and deploy the CSI framework to practical industrial applications.
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