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Abstract 9 

While menopause has long been known as a characteristic trait of human reproduction, evidence for 10 

post-reproductive lifespan (PRLS) has recently been found in other mammals. Adaptive and non-11 

adaptive hypotheses have been proposed to explain the evolution of PRLS, but formal tests of these 12 

are rare. We use a phylogenetic approach to evaluate hypotheses for the evolution of PRLS among 13 

mammals. In contrast to theoretical models predicting that PRLS may be promoted by male 14 

philopatry (which increases relatedness between a female and her group in old age), we find little 15 

evidence that male philopatry led to the evolution of a post-reproductive period. However, the 16 

proportion of life spent post-reproductive was related to lifespan and patterns of philopatry, 17 

suggesting that the duration of PRLS may be impacted by both non-adaptive and adaptive processes. 18 

Finally, the proportion of females experiencing PRLS was higher in species with male philopaty and 19 

larger groups, in accordance with adaptive models of PRLS. We suggest that the origin of PRLS 20 

primarily follows the non-adaptive 'mismatch' scenario, but that patterns of philopatry may 21 

subsequently confer adaptive benefits of late-life helping. 22 
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 25 

Introduction 26 

 Menopause has long been known as a characteristic of human reproduction [1] but the 27 

existence of post-reproductive lifespan (PRLS) in other mammalian species has been recognised 28 

relatively recently [2, 3]. Post-reproductive periods of 20+ years (similar to that observed in humans) 29 

have been found in two long-lived cetacean species [4]. Shorter periods of PRLS have been identified 30 

in a wide range of mammalian species, including cetaceans, primates and rodents [2]. However, the 31 



existence of post-reproductive lifespan is an evolutionary paradox; natural selection would be 32 

expected to disfavour the premature cessation of reproduction. Why then is PRLS so widespread? 33 

 PRLS may have an adaptive value. For example, menopause could be favoured if mothers 34 

provide help to adult offspring, thereby increasing the production of grand-offspring [5]. Lahdenperä 35 

et al. [6] showed that human grandmothers are able to boost the reproductive success of their 36 

children. Similarly, in killer whales, post-reproductive females appear to extend the longevity of their 37 

adult offspring [7]. This adaptive ‘grandmother hypothesis’ for the evolution of PRLS depends on the 38 

presence of kin towards whom help can be directed. 39 

 Johnstone and Cant [8] developed a model to explain the involvement of kin selection in the 40 

evolution of prolonged PRLS in cetaceans and humans which suggested parallel routes for the 41 

evolution of PRLS. While early humans are believed to have been male-philopatric, in killer whales 42 

and short-finned pilot whales neither sex disperses and mating occurs outside the family group. 43 

These dispersal strategies are predicted to lead to an increase in relatedness to other group 44 

members throughout the lifetime of a female. In both situations, females begin their reproductive 45 

life away from their father and other paternal relatives (either because she has dispersed or because 46 

she was the product of an extra-group mating). However, her sons remain within the social group, 47 

and hence relatedness between the female and local males (and therefore average relatedness to 48 

group members) increases over the female's lifespan, thereby leading to the evolution of an 49 

adaptive period of post-reproductive helping behaviour [8]. 50 

 While the literature focuses on PRLS as an adaptive trait, it could simply be a non-adaptive 51 

by-product of other life history traits. PRLS is of short duration in most mammals, leading to the 52 

proposal that PRLS is a consequence of mismatch in somatic versus reproductive senescence [2]. 53 

This mismatch may be more likely to occur in long-lived species as the associated variability in 54 

maximum lifespan leads to an increased probability that some individuals exceed the age by which 55 

oocytes are depleted.  56 



 Attempts to test the predictions of adaptive versus non-adaptive hypotheses for the 57 

evolution of PRLS are lacking, despite a theoretical framework for both classes of explanation [2, 8]. 58 

In this study, we use a comparative approach to investigate whether natural history traits can 59 

predict the existence and extent of PRLS among mammals. If PRLS has arisen adaptively due to kin 60 

selection, we expect sex-specific dispersal dynamics to be important in the evolution of PRLS [8]. 61 

Alternatively, if PRLS arises primarily due to a mismatch between somatic and reproductive ageing, 62 

then we would expect PRLS to be seen in longer-lived species. 63 

Methods 64 

Data Collection 65 

 A literature search was conducted to identify all mammalian species for which reliable PRLS 66 

data is available (see supplementary material for our strategy for categorising PRLS including 67 

caveats, and Table S1 for the data obtained). We recorded the presence or absence of PRLS, the 68 

duration of PRLS, and the frequency with which PRLS is experienced in the population. For species 69 

which we had data on the presence or absence of PRLS we continued our literature search to obtain 70 

data on natural history variables likely to influence local relatedness (male philopatry, female 71 

philopatry, and group-size), and lifespan (in years), which could influence the mismatch between 72 

somatic and reproductive ageing. Only data from wild populations was used since captivity can alter 73 

the incidence and details of PRLS [9] and therefore arguably adds no information to evolutionary 74 

studies of the trait. A dated phylogenetic tree of mammals was obtained from the literature [10] and 75 

pruned in Mesquite [11] to leave the 26 mammal species for which we had PRLS data (note that we 76 

included three populations of humans in some analyses so some sample sizes were greater than 26). 77 

This pruned tree was used for all comparative analyses conducted. 78 

Statistical analysis 79 

What influences the presence of PRLS? 80 



We fit generalised linear mixed models (GLMMs) with a binomial error structure using 81 

Markov chain Monte Carlo (MCMC) with an inverse gamma hyperprior to investigate whether each 82 

natural history variable (male philopatry, female philopatry, group size and lifespan) was a predictor 83 

of the presence of PRLS. We coded the absence or presence of PRLS as having states 0 and 1 84 

respectively and used this as our response variable. The phylogeny was included as a random effect 85 

to account for evolutionary history and these models were run in the MCMCglmm package in R [12]. 86 

To avoid over-parameterisation each model contained only one explanatory variable. Each MCMC 87 

GLMM was run for 15 million generations, the first 500,000 of which were conservatively discarded 88 

as burnin. The chain was sampled every 10,000 generations, giving 1,450 posterior samples for each 89 

model. 90 

For significant predictors of the presence/absence of PRLS we also reconstructed ancestral 91 

states to further assess how the traits evolved with respect to each other. Ancestral state 92 

reconstruction was conducted using Bayesian stochastic mapping in phytools [13] and inference 93 

made based on 10,000 simulations. 94 

What influences the duration of PRLS? 95 

We measured relative duration of PRLS as the proportion of maximum lifespan spent post-96 

reproductive (Table S1).  We tested for effects of each natural history variable (male philopatry, 97 

female philopatry, group-size, and lifespan) individually on the relative duration of PRLS using 98 

generalised estimating equations (GEEs), which were fitted in the ape package in R [14]. The 99 

variance-covariance matrix for the GEEs was specified based on the phylogeny, which controls for 100 

phylogenetic relationships between species by including this information within the model.  101 

What influences the frequency of PRLS? 102 

To investigate which factors influence the proportion of individuals that experience PRLS, we 103 

modelled this variable as a function of each natural history variable (male philopatry, female 104 



philopatry, group-size, and lifespan). We used GEEs to control for any influence of phylogeny which 105 

were fit as described in the preceding section. 106 

 107 

Results and Discussion 108 

 We took a phylogenetic approach to investigate natural history factors influencing post-109 

reproductive lifespan in mammals with the aim of assessing whether adaptive or non-adaptive 110 

scenarios best explain its evolution. In accordance with theoretical work by Johnstone and Cant [8], 111 

we found a significant association between the presence of PRLS and male philopatry (MCMC 112 

GLMM: β=340.52, P=0.018, Table S2). However, Johnstone and Cant’s model predicts that male 113 

philopatry is a key (but not the only) evolutionary driver of PRLS, which was not supported by our 114 

results. All 5 species with confirmed male philopatry exhibited PRLS, but ancestral state 115 

reconstructions suggest that PRLS evolves first, followed by male philopatry (at least in primates) 116 

(Figure 1). Furthermore, 50% of the 18 species with dispersing males also exhibited PRLS, again 117 

suggesting that male philopatry is unlikely to explain the origin of PRLS in mammals. 118 

If PRLS is typically of short duration then it is possible that patterns of philopatry are 119 

important in the evolution of an extended period of PRLS due to their influence on kinship [4].  120 

Supporting this, we found that species with female philopatry had significantly shorter periods of 121 

PRLS (GEE: β±SE=-1.573±0.681, t1,20=-2.308, P=0.048, Table S3, Figure 2a), and species with male-122 

philopatry had a (non-significant) trend for increased periods of PRLS (GEE: β±SE=1.394±0.676, 123 

t1,20=2.063, P=0.071, Table S3). However we note that we cannot rule out the possibility that male 124 

philopatry is associated with PRLS via its positive relationship with lifespan (pGLS: t=4.06, df=1,20, 125 

P=0.001). Furthermore, factors other than dispersal patterns are expected to influence the adaptive 126 

evolution of PRLS, such as the opportunity for late-life helping and competition (which we did not 127 

fully investigate here), but Johnstone and Cant [8] propose dispersal as an important driver.  128 



We found that the relative duration of PRLS was greater in longer-lived species (GEE: 129 

β±SE=0.038±0.011, t1,23=3.482, P=0.007, Table S3, Figure 2b). While a previous study [15] found a 130 

relationship between time spent postreproductive and lifespan, they modelled the total duration of 131 

PRLS, rather than the relative duration (as we have calculated here). Our measure is unlikely to be 132 

inherently associated with lifespan, and therefore suggests that the relationship between PRLS and 133 

lifespan is not simply an artefact of longer living species spending more months/years post-134 

reproductive. Instead, our results are consistent with the idea that extended PRLS can occur due to 135 

mismatching of somatic and reproductive ageing [2]. It could also be related to selection on 136 

increased male lifespan, which could in turn lead to extended female lifespan via intersexual genetic 137 

correlations, even if they are not reproductive [2, 16, 17]. Disentangling these alternative non-138 

adaptive scenarios would require detailed investigation into the evolutionary genetic constraints on 139 

lifespan across a wide range of mammals.  140 

The proportion of females experiencing PRLS was higher in male philopatric species (GEE: 141 

β±SE=1.900±0.786, t1,15=2.418, P=0.047, Table S3, Figure 2c), suggesting that male philopatry could 142 

drive the evolution of widespread PRLS in a species [7]. We also found that PRLS was more prevalent 143 

in larger groups (GEE: β±SE=0.051±0.014, t1,15=3.762, P=0.0075, Table S3, Figure 2d), possibly 144 

because these contain more philopatric young, and hence greater opportunities for helping.  145 

However, there was significant covariation between male philopatry and group size (GEE: 146 

β±SE=43.680±18.437, t1,20=2.369, P=0.045), making it difficult to distinguish between their effects, 147 

especially with the limited number of species for which data is currently available. Future models of 148 

the evolution of PRLS may benefit from exploring these relationships further by investigating the 149 

impacts of both group size and philopatry on kinship dynamics.  150 

 151 

Conclusions 152 



We tested the predictions of the most common adaptive model for the evolution of PRLS [8] 153 

and our results provide mixed support for such a model. We suggest that adaptive models such as 154 

that by Johnstone and Cant [8] may be important in explaining prolonged periods of PRLS (as they 155 

were intended to do), but do not provide a good explanation for the occurrence of shorter periods 156 

of PRLS that seem to be prevalent across mammals [2, 5]. Rather, the evolutionary origin of PRLS 157 

appears to primarily follow a non-adaptive scenario such as the 'mismatch' hypothesis [2, 18]. 158 

Patterns of philopatry may subsequently confer adaptive benefits of late-life helping which extends 159 

the duration and frequency of PRLS [5, 7, 8]. Under this scenario we suggest that the prolonged 160 

periods of PRLS found in a few species such as humans and cetaceans are a consequence of non-161 

adaptive origins followed by adaptive evolutionary 'tinkering'. Our results also demonstrate that for 162 

some analyses, it may be important to consider different components of PRLS separately, rather 163 

than combined in a single measure such as PrR [15]. Different factors are likely to govern the 164 

evolution of the presence, absence and duration of PRLS and conflation of these elements in a single 165 

index limits our ability to evaluate many ideas.  166 
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 185 

Figure Legends 186 

Figure 1. Summary of ancestral state reconstructions for PRLS (left) and male philopatry (right). 187 

Posterior probabilities (PP) of state 1 (trait is present) are represented by a greyscale gradient. 188 

Figure 2. Relationships between the duration of PRLS and (a) female philopatry, (b) maximum 189 

lifespan, and between the prevalence of PRLS  and (c) male philopatry and (d) group size. 190 
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