

LJMU Research Online

Mulliner, E, Maliene, V and Malys, N

Comparative analysis of MCDM methods for the assessment of sustainable housing affordability

http://researchonline.ljmu.ac.uk/id/eprint/2777/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Mulliner, E, Maliene, V and Malys, N (2015) Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega, 59 (part B). pp. 146-156. ISSN 0305-0483

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Table 1. Initial matrix for MCDM

Criteriai			Measur	Weight	Alternatives <i>j</i>									
		Z	ement		A_1	A_2	A_3	A_4	A_5	A_6	<i>A</i> ₇	A_8	A_9	A_{10}
1	House prices in relation to income	-	Ratio	0.063135	3.5	4.9	4.7	4.9	5.1	4	4.8	3.6	3.8	4.7
2	Rental costs in relation to income	-	%	0.063135	19	30	24	28	28	24	29	30	23	25
3	Interest rates and mortgage availability	-	%	0.058055	60	60	60	60	60	60	60	60	60	60
4	Availability of rented accommodation	+	%	0.058055	1.3	0.4	0.32	0.82	0.3	0.6	0.1	1.1	0.7	1.4
5	Availability of low cost homeownership products	+	Points	0.051524	2	1	1	1	2	2	3	3	1	2
6	Availability of market value home ownership products	+	%	0.04717	1.1	2.8	2.3	2.7	2.7	2.5	1.3	1.1	2.3	3
7	Crime	-	Rate	0.044267	135	39	58	41	57	56	65	135	89	75
8	Access to employment	+	Points	0.053701	3	3	3	3	3	2	3	3	3	3
9	Access to public transport	+	Points	0.049347	4	3	4	5	4	4	4	5	5	6
10	Access to good quality schools	+	Points	0.050073	5	6	5	5	4	4	3	5	6	6
11	Access to shopping facilities	+	Points	0.045718	3	1	2	2	3	1	2	3	1	3
12	Access to health services	+	Points	0.047896	9	9	9	9	9	9	9	9	9	9
13	Access to child care	+	Points	0.046444	6	6	6	5	6	6	6	6	6	6
14	Access to leisure	+	Points	0.039913	6	3	5	5	4	5	4	5	4	4
15	Access to open green public space	+	Points	0.043541	3	3	3	3	3	3	3	3	3	3
16	Presence of environmental problems	-	%	0.044267	24	1.5	29.3	4	21.1	19.4	15.9	13	46.6	30.5
17	Quality of housing in area	+	%	0.055152	72.4	70.3	69.1	79.4	86.2	89.9	77.5	72.8	89.1	82.9
18	Energy efficiency of housing in area	+	%	0.05225	60	55	57	53	57	64	63	66	61	68
19	Waste management in area	+	%	0.04209	35	35	35	35	35	35	35	35	35	35
20	Deprivation in area	-	%	0.044267	97.6	5	5.2	3.1	0	38.8	83.5	93.7	62.1	22.1

* The sign (+/-) indicates that a greater/lesser criterion value satisfies sustainable housing affordability

Critoriai		7	Maight	Alternatives <i>j</i>										
	Criteria		weight	1	2	3	4	5	6	7	8	9	10	
1	House prices in relation to incomes		0.063135	5.1	3.7	3.9	3.7	3.5	4.6	3.8	5	4.8	3.9	
2	Rental costs in relation to incomes	+	0.063135	30	19	25	21	21	25	20	19	26	24	
3	Interest rates and mortgage availability	+	0.058055	60	60	60	60	60	60	60	60	60	60	
4	Availability of rented accommodation	+	0.058055	1.3	0.4	0.32	0.82	0.3	0.6	0.1	1.1	0.7	1.4	
5	Availability of low cost homeownership products		0.051524	2	1	1	1	2	2	3	3	1	2	
6	Availability of market value home ownership products		0.04717	1.1	2.8	2.3	2.7	2.7	2.5	1.3	1.1	2.3	3	
7	7 Crime		0.044267	39	135	116	133	117	118	109	39	85	99	
8	Access to employment	+	0.053701	3	3	3	3	3	2	3	3	3	3	
9	Access to public transport	+	0.049347	4	3	4	5	4	4	4	5	5	6	
10	Access to good quality schools	+	0.050073	5	6	5	5	4	4	3	5	6	6	
11	Access to shopping facilities	+	0.045718	3	1	2	2	3	1	2	3	1	3	
12	Access to health services	+	0.047896	9	9	9	9	9	9	9	9	9	9	
13	Access to child care	+	0.046444	6	6	6	5	6	6	6	6	6	6	
14	Access to leisure	+	0.039913	6	3	5	5	4	5	4	5	4	4	
15	Access to open green public space	+	0.043541	3	3	3	3	3	3	3	3	3	3	
16	Presence of environmental problems	+	0.044267	24.1	46.6	18.8	44.1	27	28.7	32.2	35.1	1.5	17.6	
17	Quality of housing in area	+	0.055152	72.4	70.3	69.1	79.4	86.2	89.9	77.5	72.8	89.1	82.9	
18	Energy efficiency of housing in area	+	0.05225	60	55	57	53	57	64	63	66	61	68	
19	Waste management in area	+	0.04209	35	35	35	35	35	35	35	35	35	35	
20	20 Deprivation in area		0.044267	0	92.6	92.4	94.5	97.6	58.8	14.1	3.9	35.5	75.5	

 Table 2. Initial matrix for MCDM with all criteria calculated as benefit criteria*

*Table 2 only relates to WSM, WPM and revised AHP 1 since such methods can only use benefit criteria.

Mathad	Alternatives												
Ivietnoa	A 1	A ₂	A ₃	Α4	A 5	A ₆	A ₇	A ₈	A ₉	A ₁₀			
W/SM rank	0.1015	0.0972	0.0962	0.1055	0.1013	0.0989	0.0903	0.1024	0.0932	0.1134			
VVSIVITATIK	4	7	8	2	5	6	10	3	9	1			
	0	0.0923	0.0932	0.1029	0.0981	0.0972	0.0811	0.0905	0.0835	0.1105			
VVPIVITATIK	10	6	5	2	3	4	9	7	8	1			
Revised AHP 1	0.81	0.7812	0.7816	0.832	0.8121	0.7937	0.7407	0.8131	0.7682	0.8884			
rank	5	8	7	2	4	6	10	3	9	1			
Revised AHP 2	0.9222	0.8434	0.8445	0.9824	0.9278	0.8775	0.7326	0.9308	0.8079	1.1365			
rank	5	8	7	2	4	6	10	3	9	1			
	0.4713	0.629	0.4889	0.7909	0.6148	0.5445	0.299	0.5271	0.252	0.8092			
TOPSISTATIK	8	3	7	2	4	5	9	6	10	1			
CODDAS rank	0.099	0.1015	0.0961	0.1096	0.1021	0.0982	0.0891	0.1009	0.0912	0.1123			
COPRASTANK	6	4	8	2	3	7	10	5	9	1			

Table 3<u>1</u>. Data obtained by ranking of the alternatives using different MCDM methods

	Methods									
Priority of alternatives	WSM	WPM	Revised AHP (approaches 1 and 2)	TOPSIS	COPRAS					
1	A ₁₀	A ₁₀	A ₁₀	A ₁₀	A ₁₀					
2	A 4	A 4	A 4	A 4	A 4					
3	A ₈	A 5	A ₈	A ₂	A 5					
4	A 1	A ₆	A 5	A 5	A ₂					
5	A 5	A ₃	Α ₁	A ₆	A ₈					
6	A ₆	A ₂	A ₆	A ₈	A 1					
7	A ₂	A ₈	A ₃	A ₃	A ₆					
8	A 3	A ₉	A ₂	A 1	A 3					
9	A 9	A 7	A 9	A 7	A 9					
10	A 7	A 1	A 7	A 9	A 7					

Table 4<u>2</u>.Priority of alternatives determined using different MCDM methods

Methods		WS	WSM		WPM		ed AHP /2	ТО	PSIS	CO	PRAS
WSM	VSM 1.0		00	.179		.995		.860		.9	944
WPM		.179		1.000		.189		.389		.306	
Revised AHP 1		.995		.189		1.000		.831		.925	
Revised AHP 2		.995		.189		1.000		.831		.925	
TOPSIS		.860		.389		.831		1.000		.969	
COPRAS		.944		.306		.925		.969		1.000	
	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0

Table 5. Correlation between alternative rankings computed using different MCDM methods-

Similarity matrix is represented as a heat-map (shown below table 5) that shows the level of correlation between ranking results. The colour red indicates the most dissimilar rankings. MCDM method pairs with absolutely equal rankings has a Pearson correlation value equal to "1" and are indicated in the colour green.

Change of criterion weight -5% +50% +5% -50% MCDM Sensitivity coefficient SC* method >1 >1 >1 Occurance of sensitivity coefficient amongst 20 criteria WSM WPM **Revised AHP 1 Revised AHP 2** TOPSIS

>1

Table 6.Distribution of sensitivity coefficients SC*s.

COPRAS