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African origin of the malaria parasite Plasmodium vivax

A full list of authors and affiliations appears at the end of the article.

Abstract

Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent

from most of central Africa due to the near fixation of a mutation that inhibits the expression of its

receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not

understood because P. vivax is believed to have originated in Asia. Here we show, using a non-

invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically

infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that

ape parasites lack host specificity and are much more diverse than human parasites, which form a

monophyletic lineage within the ape parasite radiation. These findings indicate that human P.

vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P.

vivax parasites are derived from a single ancestor that escaped out of Africa.

Of the five Plasmodium species known to cause malaria in humans, P. vivax is the most

widespread1. Although highly prevalent in Asia and Latin America, P. vivax is thought to be

absent from west and central Africa due to the near fixation of a mutation that causes the

Duffy-negative phenotype in indigenous African peoples1,2. The Duffy antigen receptor for

chemokines (DARC) is used by P. vivax merozoites to invade red blood cells3. Since the

absence of DARC on the surface of erythrocytes confers protection against P. vivax malaria,

this parasite has long been suspected to be the agent that selected for this mutation2,4,5.

However, this hypothesis has been difficult to reconcile with the proposed evolutionary

origin of P. vivax6-8. The closest relative of P. vivax is believed to be P. cynomolgi9, which

infects macaques. These two parasites form a lineage within a clade comprised of at least

seven other Plasmodium species, all of which infect primates only found in Asia. The

consensus view has thus been that P. vivax emerged in Southeast Asia following the cross-

species transmission of a macaque parasite6-9. Under this scenario, the Duffy-negative
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mutation prevalent in west central African people was selected by another unidentified

pathogen4, and its high frequency prevented P. vivax from entering central Africa.

Recently, P. vivax-like parasites have been identified in a limited number of African

apes10-13, and some mosquitoes (Anopheles species) trapped in their vicinity13,14. Molecular

characterization of these parasites showed that they are very similar to, but apparently

distinct from, human P. vivax13. These findings raised the possibility that a sylvatic P. vivax

reservoir exists in wild-living apes or other African primate species. However, since only

very few of these sylvatic parasites have been identified, information concerning their

geographic distribution, host species association, prevalence and relationship to human P.

vivax is lacking. In fact, most evidence of this natural P. vivax reservoir has come from pets

and apes in wildlife rescue centres. Since captive apes can become infected with

Plasmodium species that do not normally infect them in their natural habitat10,15, studies of

wild-living populations are essential.

African apes are highly endangered and live in remote forest regions, rendering invasive

screening for infectious agents both impractical and unethical. As an alternative, we have

developed methods that permit the detection and amplification of pathogen specific nucleic

acids from ape faecal DNA16-19. This approach enabled us to trace the origins of human

immunodeficiency virus type 1 (HIV-1) to chimpanzees (Pan troglodytes) in west central

Africa18, and to identify the precursor of human P. falciparum in western gorillas (Gorilla

gorilla)10. Here, we used a similar approach to investigate the molecular epidemiology of P.

vivax infection in wild-living apes. Screening more than 5,000 faecal samples from 78

remote forest sites, we tested ape communities throughout central Africa. Since conventional

polymerase chain reaction (PCR) analysis is error-prone and has the potential to confound

phylogenetic analyses10, parasite sequences were generated using single genome

amplification (SGA), which eliminates Taq polymerase-induced recombination and

nucleotide substitutions from finished sequences20,21.

In this study, we show that western (G. gorilla) and eastern gorillas (G. beringei), and

chimpanzees (P. troglodytes), but not bonobos (P. paniscus), are endemically infected with

P. vivax-like parasites, and that infection rates in wild ape communities are similar to those

in human populations with stable parasite transmission. Analysing over 2,600 SGA-derived

mitochondrial, apicoplast and nuclear sequences, we also show that ape parasites are

considerably more diverse than human parasites and do not cluster according to their host

species. In contrast, human parasites form a monophyletic lineage that falls within the

radiation of the ape parasite sequences. These results indicate that human P. vivax arose

from within a Plasmodium species that infects wild-living chimpanzees and gorillas, and

that all extant human P. vivax parasites evolved from a single ancestor that spread out of

Africa.

Results

Host species association and distribution of ape P. vivax

Using PCR primers designed to amplify P. vivax mitochondrial (mt) DNA, we screened

5,469 faecal specimens from ape communities sampled at 78 forest sites throughout sub-
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Saharan Africa (Fig. 1). Except for 196 samples from habituated apes, all other specimens

were derived from non-habituated communities (Supplementary Table 1). Ape species and

subspecies were identified by faecal mtDNA analysis10,18,19. A subset of specimens was

also subjected to microsatellite analyses to estimate the number of sampled individuals

(Supplementary Table 1). Targeting a 297-base-pair (bp) mtDNA fragment (Supplementary

Fig. 1a), we found P. vivax-like sequences in faecal DNA from western gorillas (G. gorilla),

eastern gorillas (G. beringei) and chimpanzees (P. troglodytes), but not from bonobos (P.

paniscus) (Table 1). Infections were most common in central chimpanzees (P. t. troglodytes)

and western lowland gorillas (G. g. gorilla), with infected individuals identified at 76% of

field sites, including six locations where P. vivax was found in both of these species (Fig. 1).

Ape P. vivax was also endemic in eastern chimpanzees (P. t. schweinfurthii) and eastern

lowland gorillas (G. b. graueri), with infected apes documented at 38% of field sites.

Despite this wide geographic distribution (Fig. 1), the proportion of ape faecal samples that

contained P. vivax-like sequences at any given field site was low: among 2,871 chimpanzee

and 1,844 gorilla samples that were analysed, only 45 and 32 were found to be PCR

positive, respectively (Table 1). Correcting for specimen degradation and redundant

sampling, and taking into account the sensitivity of the non-invasive diagnostic test, we

estimated the proportion of P. vivax sequence positive individuals for each field site

(Supplementary Table 1). The resulting values of 4% to 8% (Table 1) were lower than

prevalence rates previously determined for P. falciparum-like (Laverania) parasites in wild

apes10, but they were very similar to P. vivax parasite rates reported for endemically infected

human populations1. In humans, point estimates of patent blood infection rarely exceed 7%,

even in hyperendemic areas, and a parasite rate of greater than 1% indicates stable

transmission1.

Since human P. vivax can induce dormant liver infections, we considered the possibility that

ape parasite DNA might be excreted into faeces in the absence of a productive blood stage

infection and thus inflate our infection rate estimates. To examine this, we compared the

sensitivity of PCR-based parasite detection in blood and faecal samples from captive

chimpanzees housed at a wildlife rescue centre (SY). Importantly, these chimpanzees were

kept in outside enclosures immediately adjacent to the habitat of wild apes and were thus

exposed to the same mosquito populations. Although blood and faecal samples were not

matched, 11 of 48 chimpanzees (23%) were found to be P. vivax positive by blood analysis,

as compared to 1 of 68 chimpanzees (1.5%) by faecal analysis (Supplementary Table 2).

Thus, faecal P. vivax detection is considerably less sensitive than blood detection, most

likely because of lower parasite loads, and may underestimate the number of infected apes

by an order-of-magnitude. This likely explains our failure to detect ape P. vivax in wild-

living Nigeria-Cameroonian chimpanzees (P. t. ellioti) and Cross River gorillas (G. g.

diehli), for which only very few faecal samples were available (Table 1). Indeed, we

subsequently confirmed P. vivax infection by blood analysis in five Nigeria-Cameroonian

chimpanzees that were sampled in captivity (Supplementary Table 3), and although not

tested in this study, western chimpanzees (P. t. verus) have previously been shown to carry

this parasite in the wild12. Thus, all four subspecies of the common chimpanzee as well as

western and eastern gorillas are infected with P. vivax, indicating the existence of a

substantial sylvatic reservoir.
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Given the widespread infection of both chimpanzee and gorilla populations, the fact that

over 700 bonobo fecal samples from eight different collection sites were P. vivax negative

came as a surprise (Fig. 1). Since wild-living bonobos also lack P. falciparum-related

parasites10, yet are susceptible to infection with human P. falciparum in captivity21, this

finding may reflect a paucity of transmitting mosquito vectors. In humans, a mutation (T to

C, at position -33) in the GATA-1 transcription factor binding site within the promoter

region of the DARC gene22 yields resistance to P. vivax infection, but sequence analysis of

the same region in 134 ape samples, including 28 from bonobos, indicated that none had this

substitution (Supplementary Fig. 2). In addition, all ape DARC genes analysed encoded a

blood-group antigen with aspartic acid at amino acid 42, rather than the glycine found in the

protective Fya allele in humans (Supplementary Fig. 2)23.

Finally, we asked whether other primates in central Africa might harbour P. vivax-like

parasites. Using the same P. vivax specific PCR primers, we screened 998 blood samples

from 16 Old World monkey species that had previously been collected for molecular

epidemiological studies of simian immunodeficiency viruses24,25. Testing samples from 11

different locations in southern Cameroon and the western parts of the Democratic Republic

of the Congo (DRC), we failed to detect P. vivax infection in any of the animals tested

(Supplementary Fig. 3). Although 501 of the 998 blood samples (50.2%) yielded a PCR

amplicon, all of these represented Hepatocystis spp. infections as determined by sequence

analysis (Supplementary Table 4). Thus, we found no evidence for a P. vivax reservoir in

these African monkey species.

Single genome amplification of P. vivax sequences

To examine the evolutionary relationships of ape and human parasites, we amplified the

complete P. vivax mitochondrial genome in three partially overlapping fragments

(Supplementary Fig. 1a). This was done using single genome amplification (SGA) followed

by direct amplicon sequencing, which eliminates Taq polymerase-induced recombination

and nucleotide substitution errors, and provides a proportional representation of the parasite

sequences that are present in vivo10,20. Alignment of these sequences revealed two single

nucleotide variants (SNVs) that distinguished all ape from all human parasites

(Supplementary Fig. 1b; a third previously proposed SNV13 was polymorphic among the

ape samples in our dataset). We thus designed PCR primers to amplify a fragment (fragment

D) that included both SNVs on the same SGA amplicon (Supplementary Fig. 1). Although

only a subset of P. vivax positive faecal samples yielded this larger mtDNA fragment, we

were able to generate fragment D sequences from 22 chimpanzees and 9 gorillas, 17 of

which were sampled in the wild (Supplementary Table 3). Since most database sequences

are derived by conventional PCR approaches, we also used SGA to amplify fragment D

sequences from the blood of P. vivax infected humans, to produce Taq polymerase error free

sequences20. These samples included 94 international travellers, who had acquired P. vivax

while visiting malaria endemic areas, as well as 25 P. vivax infected individuals from China,

Thailand, Myanmar and India who sought treatment for clinical malaria (Supplementary

Table 5), and thus provide a globally representative sample of human P. vivax infections.
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Phylogenetic analysis of all SGA-derived P. vivax mtDNA sequences showed that the ape

parasites formed two distinct clades (Fig. 2). One clade, represented by sequences from just

two chimpanzee samples (termed BQptt392 and DGptt540; see legend of Fig. 2 for an

explanation of sample nomenclature), was almost as divergent from the remaining ape and

human parasites as were other Plasmodium species, and thus likely represents a previously

unidentified species. All other ape parasite sequences were closely related to each other and

to human P. vivax sequences, and thus appear to represent a single species (Fig. 2). Within

this P. vivax clade, chimpanzee- and gorilla-derived sequences were interspersed, but all

human-derived sequences formed a single well-supported lineage that fell within the

radiation of the ape parasites. Inclusion of previously published non-SGA sequences

confirmed this topology, although many of the database sequences exhibited long branches

suggestive of PCR errors (Supplementary Fig. 4a). Interestingly, the one P. vivax sequence

recently identified in a European traveller who became infected after working in a central

African forest13 did not fall within the human P. vivax lineage, but clustered with parasites

obtained from wild-living chimpanzees and gorillas (Supplementary Fig. 4a). This confirms

the suspicion that this traveller acquired his infection by cross-species transmission from a

wild ape.

To examine the robustness of these phylogenetic relationships, we selected additional

genomic regions that had previously been used for evolutionary studies of P. vivax7,26.

These included portions of the apicoplast caseinolytic protease C (clpC) gene as well as the

nuclear genes encoding lactate dehydrogenase (ldh), adenylosuccinate lyase (asl), cell

division cycle 2-related kinase (crk2) and β-tubulin (β-tub). Although fewer ape samples

yielded amplification products, this was most likely due to lower copy numbers of

apicoplast and nuclear genomes compared to mitochondrial DNA. Nonetheless, many

samples yielded more than one P. vivax haplotype, indicating co-infection with multiple

locally circulating variants (Supplementary Table 3). To increase the number of suitable

reference sequences, we also amplified these same fragments from P. vivax positive human

samples, and for some gene regions, from related macaque parasites. The resulting

phylogenies yielded very similar topologies, with human parasites always forming a

monophyletic lineage. Moreover, this lineage fell within the radiation of the P. vivax-like

ape sequences for five of the six loci tested (Fig. 3; Supplementary Figs. 5-7). In contrast,

chimpanzee and gorilla sequences were again interspersed, suggesting that P. vivax is often

transmitted between the two ape hosts.

The apicoplast and nuclear gene sequences also confirmed the existence of the second,

closely related, ape Plasmodium species. Sequences obtained for the clpC, ldh and crk2

genes (Fig. 3; Supplementary Fig. 6) from one or the other of the same two chimpanzee

samples that yielded divergent mtDNA sequences (DGptt540 and BQptt392) were again

clearly distinct from P. vivax. In the mtDNA, ldh and 5′ crk2 phylogenies, this new species

was the closest relative of P. vivax (although strong support for this was only found in the

latter two trees), while in the other trees relationships were not well resolved. While the new

species appears to be rare, it was found in samples from two locations about 110 km apart.

Moreover, its detection depended on the cross-reactivity of P. vivax-specific PCR primers,

indicating that its prevalence and host association remain to be determined. Nonetheless,
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existing parasite sequences indicate that African apes not only harbour P. vivax, but also its

closest relative.

Relative diversity of ape and human P. vivax

Since the phylogenetic analyses indicated that human P. vivax strains were derived from

within the radiation of ape parasites, we expected the human strains to exhibit lower genetic

diversity. To test this directly, we calculated the relative nucleotide diversity of SGA-

derived ape and human P. vivax sequences. Indeed, values for the average number of

nucleotide differences per site (π) were higher for ape parasites than for human parasites at

all loci tested. However, the extent of this increased diversity varied among genes (Table 2).

For example, the diversity of mtDNA sequences was only 1.4 times higher among the ape

parasites than among the human parasites, while for the apicoplast sequence this value was 6

times higher. For nuclear genes the ape sequences were 9 (asl, ldh) to 50 (crk2) times more

diverse (Table 2). If the levels of diversity were in fact similar in the ape and human

parasites, it would be most unlikely to observe this difference consistently across this

number of loci (e.g., Mann-Whitney U-test applied to the four nuclear loci, p=0.014).

The relative diversity of the various genes also differed between ape and human parasites.

For example, for ape parasites, nuclear gene sequences were 12-25 times more diverse than

mtDNA, whereas this ratio was only 1-2 for human parasites (Table 2). In the absence of

positive selection or demographic changes, relative diversities within species should be

similar to those between species. Thus, for comparison, we calculated distances between

orthologous sequences from P. vivax and the closely related P. cynomolgi9. For four of the

five loci, the relative diversity (scaled to the mtDNA value) among ape P. vivax strains was

remarkably similar to the relative interspecific divergence (Table 2); the single exception

was crk2, which was unusually diverse among the ape parasites (compared to other nuclear

loci), but also the most conserved nuclear gene between species. In contrast, the diversity

values for nuclear and apicoplast genes (relative to mtDNA) among human P. vivax strains

were strikingly low (Table 2). This reduced diversity among the human P. vivax strains most

likely reflects a recent bottleneck which, depending on the composition of the founder

population, could have affected the relative diversity of organelle and nuclear genomes

differently.

Discussion

Our finding that wild-living apes in central Africa show widespread infection with diverse

strains of P. vivax and harbour a distinct but related Plasmodium species, provides new

insight into the evolutionary history of human P. vivax, and potentially solves the paradox

that a mutation conferring resistance to P. vivax occurs at high frequency in the very region

where this parasite is absent. These results indicate that human P. vivax arose from within a

Plasmodium species that infects chimpanzees and gorillas, and indicate an origin in Africa

rather than, as previously assumed, in Asia6-8. One interpretation of the phylogenies is that a

single host switch from apes gave rise to human P. vivax, analogous to the origin of human

P. falciparum10. However, this seems unlikely in this case since ape P. vivax does not divide

into gorilla- and chimpanzee-specific lineages, and since humans are susceptible to both
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natural13 and experimental27 ape P. vivax infections. Thus, a more plausible interpretation is

that an ancestral P. vivax stock was able to infect humans, gorillas and chimpanzees in

Africa until the Duffy negative mutation started to spread (perhaps around 30,000 years

ago28) and eliminated P. vivax from humans there. Under this scenario, extant human-

infecting P. vivax represents a bottlenecked lineage that survived after spreading out of

Africa. Much more recently, concomitant with host migrations, human P. vivax has been

reintroduced to Africa29.

A number of alternative scenarios for the origins of ape and human P. vivax have recently

been discussed13, but none of these seems plausible in light of the present data. All previous

models assumed that P. vivax originated in humans in Asia, following the cross-species

transmission of a monkey parasite, and that humans then brought the parasite to African

apes. This assumption has been based on the fact that the closest known relatives of P. vivax

all seem to infect Asian primates6-9. However, we now show that chimpanzees harbour a

Plasmodium species that is more closely related to P. vivax than are any of the Asian

primate parasites. Thus, it is more parsimonious to assume that the common ancestor of

these two species existed in Africa. How this lineage was introduced into African apes

remains unknown; however, this appears to have occurred a long time before the origin of P.

vivax.

To explain current levels of genetic diversity in ape and human P. vivax strains, previous

models invoking an Asian origin either require human P. vivax in Asia to have gone extinct,

prior to repopulation from Africa, or necessitate Asian P. vivax to have gone through a

bottleneck (of unknown cause)13. In contrast, the African origin model does not require such

an ancestral (now extinct) human P. vivax population in Asia, but explains the reduced

diversity of human parasites as resulting from an out-of-Africa bottleneck, as seen in P.

falciparum30, and in humans themselves31. It has also been suggested that P. vivax is more

likely to have spread from Asia to Africa, because human P. vivax strains in Asia seem to be

the most diverse13,32, and because phylogeographic analyses indicated elevated migration

rates from Asia (especially India) to Africa6. However, this is now explained more simply

by the extinction of human P. vivax in Africa, which would have had high diversity, due to

the spread of the Duffy negative mutation. P. vivax strains currently infecting humans in

Africa are indeed of Asian origin, but this reflects a re-introduction and occurred only

recently, perhaps with the peopling of Madagascar from Asia within the last few thousand

years33.

If the origin of P. vivax had been due to transmission from macaques in southeast Asia, this

would imply a convoluted evolutionary history, given the timescales that have been invoked.

Estimates of the time of the last common ancestor of human P. vivax are generally on the

order of hundreds of thousands of years ago. For example, using mitochondrial DNA

sequences this ancestor was estimated to have existed about 400,000 years ago32, and a

more recent comparison of nuclear genome sequences suggested a similar date34. Modern

humans are thought to have evolved in Africa and to first have entered Asia no more than

60,000 years ago35. Thus, if the estimates of the timescale of the coalescence of human P.

vivax lineages are correct, the recipient of the transmission from macaques must have been

some earlier hominin species, and P. vivax must have diversified for a long time in that host
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before numerous lineages were transmitted to modern humans after they emerged from

Africa.

The existence of a sylvatic P. vivax reservoir has public health implications. First, it solves

the mystery of P. vivax infections in travellers returning from regions where 99% of the

human population is Duffy negative36,37. Second, it raises the possibility that humans living

in close proximity of chimpanzees and gorillas may become infected by ape P. vivax. A

recent study of individuals attending a health clinic in the Republic of Congo revealed that

10% carried antibodies specific for preerythrocytic stages of P. vivax, suggesting continuing

exposure to P. vivax sporozoites from an unidentified source38. Since ape P. vivax is highly

prevalent, especially in west central Africa, wild-living chimpanzees and gorillas could

serve as an infection reservoir, especially in areas where an influx of Duffy positive humans

through commerce and travel coincides with increasing forest encroachment and ape habitat

destruction. Although Duffy negative individuals are generally protected from blood stage

infections, recent studies in Madagascar39 and Ethiopia40 have shown that P. vivax is not

absolutely dependent on the Duffy receptor. It will thus be important to assess the potential

of ape parasites to acquire this phenotype, once the underlying genetic determinants have

been identified in human strains. The possibility that ape P. vivax may spread via

international travel to countries where human P. vivax is actively transmitted should also be

considered. Since ape P. vivax is much more diverse than human P. vivax (Figs. 2 and 3;

Table 2), it is potentially more versatile to escape treatment and prevention measures,

especially if human and ape parasites were able to recombine. Given the documented

propensity of P. vivax for host switching13,27, it seems important to screen Duffy positive

and negative humans in west central Africa, as well as transmitting mosquito vectors, for the

presence of ape P. vivax. Such studies are now possible through the development of

molecular tools that distinguish ape from human P. vivax, which also permit the screening of

faecal samples for liver-derived parasite DNA in the absence of patent blood infection. This

information is necessary to inform malaria control and eradication efforts and to assess

future human zoonotic risk.

Methods

Ape samples

5,469 faecal samples newly (TL site) or previously collected from wild-living chimpanzees

(P. troglodytes), western gorillas (G. gorilla), eastern gorillas (G. beringei), and bonobos (P.

paniscus) for molecular epidemiological studies of simian retroviruses18,19,41-44 and

Laverania parasites10 were selected for P. vivax screening. All specimens were derived from

non-habituated apes, except for 170 samples from chimpanzees in Gombe National Park

(GM), Tanzania, and 26 samples from gorillas in the Dzanga-Sangha Reserve (DS), Central

African Republic, who were habituated to the presence of human observers. Samples were

collected (1:1 vol/vol) in RNAlater (Life Technologies), transported at ambient

temperatures, and stored at -80°C. Faecal DNA was extracted using the QIAamp Stool DNA

Mini Kit (Qiagen, Valencia, CA) and used to amplify portions of the host mitochondrial

genome to confirm species and subspecies origin18,19,41-44. A subset was also subjected to

microsatellite analysis at 4 to 8 polymorphic loci10,18,41-44 to estimate the number of
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sampled individuals (Supplementary Table 1). In addition to faecal samples from wild

populations, we also obtained stool and blood samples from sanctuary chimpanzees and

gorillas that were kept in outside enclosures immediately adjacent to the habitat of wild

apes. These included 113 faecal and 66 blood samples from chimpanzees housed at the

Sanaga Yong Rescue Centre (SY), 2 faecal samples from gorillas and 14 blood samples

from chimpanzees housed at the Limbe Wildlife Centre (LI), and 8 blood samples from 6

chimpanzee and 2 gorillas housed at the Mfou National Park Wildlife Rescue Centre (MO),

all located in Cameroon. Faecal samples were collected from known individuals under direct

observation. Blood samples were obtained by veni-puncture (dried blood spots, whole

blood, buffy coats, red blood cells) and represented left-over material from routine health

examinations or were collected for specific veterinary (diagnostic) purposes. Blood and

fecal collections were approved by the Ministries of Health and Environment of Cameroon.

Two chimpanzees at the SY sanctuary were suspected to suffer from malaria and sampled

during severe febrile illnesses. One had positive blood smears on site and was subsequently

identified to be PCR positive for P. reichenowi, while the other was PCR positive for ape P.

vivax. Both responded to malaria treatment. A few additional chimpanzees who tested PCR

positive for either Laverania or ape P. vivax exhibited milder symptoms at or near the time

of sampling, but the majority of captive apes, including several who were Laverania and/or

non-Laverania sequence positive by blood analysis, were asymptomatic at the time of blood

collection. These individuals were also blood smear negative. Samples were shipped in

compliance with Convention on International Trade in Endangered Species of Wild Fauna

and Flora regulations and country specific import and export permits. DNA was extracted

from whole blood and dried blood spots using the QIAamp Blood DNA Mini Kit (Qiagen,

Valencia, CA).

Monkey samples

To investigate the full host range of P. vivax, we screened blood samples from 998 non-

human primates sampled in Cameroon and the Democratic Republic of the Congo

(Supplementary Table 4). Collection and molecular characterization of these samples have

been described24,25,45, except for samples from the BO, MO, MA and MS field sites

(Supplementary Fig. 3). Briefly, samples were collected from primate bushmeat as dried

blood spots or whole blood using strategies specifically designed not to increase

demand24,25,45. DNA was extracted using the QIAamp blood kit (Qiagen, Courtaboeuf,

France) and the species origin was determined by amplifying a 386 bp mtDNA fragment

spanning the 12S rRNA gene using single round PCR24,25. The non-human primate samples

were obtained with approval from the Ministries of Health and Environment and the

National Ethics Committees of Cameroon and the Democratic Republic of the Congo,

respectively.

Human samples

To increase the number of human P. vivax reference sequences and to generate sequences

devoid of PCR error, we obtained a global sampling of human P. vivax infections. These

included dried blood spots or DNA samples from (i) 61 international travellers diagnosed at

the Malaria Reference Laboratory of the London School of Hygiene and Tropical Medicine,

London, UK (designated MRL), (ii) 35 international travellers diagnosed at the Department
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of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (designated

SW), and (iii) 32 residents of malaria endemic areas in China (designated GX; n=10),

Myanmar (V0; n=10), Thailand (PVAR; n=2) and India (IN; n=10), who sought treatment at

local health clinics (Supplementary Table 5). In all cases, P. vivax infection was initially

identified by microscopy and then confirmed by diagnostic PCR followed by direct

amplicon sequencing. DNA was extracted from whole blood or dried blood spots using

QIAamp DNA Mini Kit (Qiagen, Valencia, CA). Anonymised DNA samples previously

collected by the MRL were provided under its remit to undertake epidemiological

surveillance relevant to imported malaria in the UK. All other subjects provided written

informed consent for the collection and analysis of samples, which were sent without patient

identifiers and other patient information, except for the country of (known or presumed) P.

vivax acquisition. The study was approved by the Institutional Review Boards of the

University of Pennsylvania, the Karolinska Institute, and the Pennsylvania State University.

Other Plasmodium species

Genomic DNA from, or dried blood spots containing, P. inui (catalogue number

MRA-486F), P. simiovale (MRA-488F), P. cynomolgi (MRA-350G), and P. fragile

(MRA-352G) were obtained from the Malaria Research and Reference Reagent Resource

Center (MR4) of the American Type Culture Collection (ATCC, Manassas, VA) to generate

single genome derived reference sequences for phylogenetic analyses.

Microsatellite analyses

Ape faecal samples that have previously been subjected to microsatellite analyses have been

reported10, except for bonobo samples obtained at the TL field site, which were obtained

more recently. Briefly, faecal DNA was extracted and used to amplify eight polymorphic

microsatellite loci. Amplification products were analysed on an automated sequencer

(Applied Biosystems, CA) and sized using GeneMapper 4.0 (Applied Biosystems). For

individual identification, samples were first grouped by mitochondrial DNA haplotype.

Within each haplotype, samples were then grouped by microsatellite genotypes. Since

samples were partially degraded due to prolonged storage at ambient temperatures, we

allowed allelic mismatches at up to six loci to guard against allelic dropout, but only if they

represented a missing allele. This conservative genotyping approach likely underestimates

the number of individuals screened and thus reflects a minimum estimate. Samples with

evidence of DNA admixture (multiple peaks for the same locus) were discarded.

P. vivax diagnostic PCR

Faecal and blood samples were screened by conventional PCR for P. vivax mitochondrial

(cox1) sequences as described46. Although originally designed to amplify P. vivax

sequences from samples co-infected with Laverania species, the primers were found to also

amplify Hepatocystis spp. mitochondrial DNA (Supplementary Table 4). Primers Pv2768p

(5′‐GTATGGATCGAATCTTACTTATTC-3′) and Pv3287n (5′‐

AATACCAGATACTAAAAGACCAACAATGATA -3′) were used in the first round of

PCR, while Pv2870p (5′-TTGCAATCATAAAACTTTAGGTC-3′) and Pv3185n (5′‐

TCCTCCAAATTCTGCTGCTGTAGATAAAATG-3′) were used in the second round,
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yielding a 297 bp amplicon (Supplementary Fig. 1a). Amplicons were gel purified and

sequenced directly to confirm Plasmodium infection.

Single genome amplification of P. vivax gene sequences

To derive P. vivax sequences devoid of PCR errors, including Taq polymerase induced

misincorporations and template switching, blood and faecal samples from P. vivax infected

apes and humans were subjected to single genome amplification methods, essentially as

described10,20. DNA was extracted and endpoint diluted such that fewer than 30% of PCR

reactions yielded an amplification product. According to a Poisson distribution, a well

yielding a PCR product at this dilution will contain only a single amplifiable template more

than 83% of the time. Multiple different gene regions were amplified, including

mitochondrial fragments S, A, B, C and D (Supplementary Fig. 1a), the apicoplast clpC gene

(574bp), and the nuclear genes ldh (713 bp – 724 bp), asl (838 bp), crk2 (666 bp), and β-tub

(684 bp) (Supplementary Table 3). Primers were designed in conserved regions of the P.

vivax genome, except for a set of ldh primers intended to amplify more diverse macaque

parasites, which were designed using both P. vivax and P. knowlesi consensus sequences

(Supplementary Table 9). PCR cycling conditions were as described10, except for varying

elongation times depending on the length of the amplicon (one minute per 1 kb amplicon

length). Amplification products were sequenced directly and analysed using Sequencher

(Gene Codes Corporation, Ann Arbor, MI). All sequences with double peaks in the

chromatogram were discarded, except for sequences derived from ape faecal samples that

contained a single double peak. Single double peaks in SGA sequences either indicate the

presence of two P. vivax variants differing by a single nucleotide or a PCR misincorporation

within the first or second round of PCR. We resolved these ambiguous sites by selecting the

nucleotide that was identical to the ape P. vivax consensus. This conservative approach

avoided the loss of otherwise valuable sequence information. Genbank accession codes of

newly derived SGA sequences are listed in Supplementary Tables 6 and 7.

DARC genotyping

To examine whether P. vivax infected and uninfected apes exhibited sequence

polymorphisms in their DARC promoter and/or adjacent coding sequences, we amplified a

1,286bp region of the DARC gene in two partially overlapping PCR fragments from 134 ape

(faecal and blood) samples (Supplementary Fig. 2a). Fragment A was amplified using

DARCpF1 (5′-GCTGTCCCATTGTCCCCTAG-3′) and DARCpR8 (5′-

GGCCCCATACTCACCCTGTGC-3′) in the first round of PCR, while DARCpF3 (5′‐

GCACAATGATACACAGCAAAC-3′) and FYPdn (5′‐

CCATGGCACCGTTTGGTTCAGG-3′)47 were used in the second round. Fragment B was

amplified using DARC_F5 (5′-AGGCAGTGGGCGTGGGGTAAG- 3′) and DARC_R5 (5′‐

AGCCATACCAGACACAGTAGCC-3′) in the first round, and DARC_NTF1 (5′‐

TTGGCTCTTATCTTGGAAGCAC-3′) and DARC_NTR1 (5′‐

TGGTGAGGATGAAGAAGGGCAGT-3′) in the second round. PCR conditions were the

same as those used to amplify P. vivax mitochondrial DNA. Amplicons were directly

sequenced and analyzed using Sequencher.
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Ape P. vivax infection rates

For sites where the number of sampled chimpanzees was known (Supplementary Table 1),

P. vivax infection rates were estimated based on the proportion of positive individuals (but

correcting for test sensitivity; see below), with 95% confidence limits determined assuming

binomial sampling. For field sites where the number of sampled individuals was not known,

infection rates were estimated based on the number of faecal samples, but correcting for

specimen degradation, oversampling and the sensitivity of the diagnostic PCR test. The

latter was estimated by determining the proportion of PCR positive specimens from P.

vivax-infected apes that were sampled more than once on the same day, as previously

described10. Including data from 14 such apes (6 central chimpanzees, 5 eastern

chimpanzees and 3 western gorillas), we estimated the sensitivity to be 32% (17 of 53

samples were positive; confidence limits were determined assuming binomial sampling).

Using previously reported values for oversampling10 (1.77, 1.84, 3.74, 2.06 and 1.84 for

central chimpanzees, western gorillas, eastern chimpanzees, eastern gorillas and bonobos,

respectively) and sample degradation10 (0.13), the proportion of P. vivax sequence positive

apes was estimated for each field site (Table 1 and Supplementary Table 1). However, since

P. vivax detection in faecal samples is considerably less sensitive than in blood, the resulting

prevalence rates should be interpreted as minimum estimates.

Nucleotide diversity calculations

Newly generated ape and human P. vivax sequences were aligned with sequences from the

complete genomes of five P. vivax reference strains (Salvador I, India VII, Mauritania I,

North Korean, and Brazil I). Other than these five reference strains, only SGA-derived

sequences were included in the analysis, so as to not inflate diversity values by including

Taq polymerase induced errors. Identical sequences from the same sample or individual

were excluded; identical sequences from different samples or individuals were retained. For

each gene, sequences were aligned using ClustalW48, and both ape and human P. vivax

alignments were trimmed to the same length. The nucleotide diversity (π) of human and ape

parasite sequences was calculated for six P. vivax gene fragments (mtDNA fragment D,

apicoplast clpC, nuclear ldh, asl, crk2 and β-tub) using DnaSP version 5.10 (ref 49).

Distance calculation from P. cynomolgi

For each P. vivax gene, the same set of sequences as used for the diversity calculation was

aligned with one P. cynomolgi reference sequence9. The distance from each P. vivax

sequence to the P. cynomolgi reference was calculated using the R package version 3.0-8

with the Tamura-Nei correction50,51, and the mean distance was calculated for each gene.

Phylogenetic analyses

Sequence alignments were constructed using ClustalW version 2.1 (ref 48) and manually

adjusted using MacClade52. Regions that could not be unambiguously aligned were omitted

from subsequent phylogenetic analyses. Nuclear gene sequences were subjected to

recombination analysis using GARD53. Evolutionary models for phylogenetic analyses were

determined using the Akaike information criterion with Modeltest (version 3.7)54 and

PAUP*55. Maximum-likelihood phylogenies with bootstrap support (100 replicates) were
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estimated jointly with model parameter values by means of PhyML (version 3)56 using both

nearest-neighbour interchange (NNI) and subtree pruning and regrafting (SPR) with

Neighbor Joining and 10 random-addition starting trees57. Posterior probabilities for nodes

in phylogenetic trees were calculated using MrBayes (version 3.2)58, using an average

standard deviation of partition frequencies <0.01 as a convergence diagnostic. Trees were

constructed from mitochondrial fragment D sequences (2,524 bp, Fig. 2 and Supplementary

Fig. 4a), apicoplast clpC sequences (574 bp, Fig. 3b), and nuclear β-tub (664 bp,

Supplementary Fig. 5), ldh (711 bp, Fig. 3a and Supplementary Fig. 4b), crk2 (271 bp and

372 bp, Supplementary Fig. 6) and asl (838 bp, Supplementary Fig. 7) sequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Geographic distribution of P. vivax in wild-living apes
Field sites are shown in relation to the ranges of three subspecies of the common

chimpanzee (P. t. ellioti, magenta; P. t. troglodytes, red; and P. t. schweinfurthii, blue),

western (Gorilla gorilla, yellow) and eastern (Gorilla beringei, light green) gorillas, as well

as bonobos (Pan paniscus, green). Circles, squares and hexagons identify field sites where

wild-living chimpanzees, gorillas, or both species were sampled, respectively. Ovals

indicate bonobo sampling sites. Triangles denote the location of wildlife rescue centres (see

Supplementary Table 1 for a list of all field sites and their two-letter codes). Forested areas

are shown in dark green, while arid and semiarid areas are depicted in yellow and brown,

respectively. Major lakes and major rivers are shown in blue. Dashed white lines indicate

national boundaries. Sites where ape P. vivax was detected are highlighted in yellow, with

red lettering indicating that both chimpanzees and gorillas were infected.
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Figure 2. Evolutionary relationships of ape and human P. vivax parasites in mitochondrial gene
regions
The phylogenetic positions of mitochondrial fragment D (2,524 bp; Supplementary Fig. 1a)

sequences from ape and human P. vivax strains are shown in relation to human and macaque

parasite reference sequences. All sequences were generated by SGA20, except for human

(Salvador I, India VII, Mauritania I, North Korean, Brazil I) and simian reference strains

from the database (see Supplementary Tables 6-8 for GenBank accession numbers). Ape

sequences are color-coded, with capital letters indicating the field site (Fig. 1) and lower

case letters denoting species and subspecies origin (ptt: P. t. troglodytes, red; pte: P. t.
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ellioti, orange; pts: P. t. schweinfurthii, blue; ggg: G. g. gorilla, green). Human sequences

are depicted by haplotype (rectangles) and labeled according to their geographic origin in

Oceania (light grey), Africa (white), South and Central America (black), South and South

East Asia (striped) and the Middle East (dark grey). Haplotypes that include more than one

sequence are indicated, with the numbers of sequences listed to the right. A second lineage

of related parasite sequences from chimpanzee samples DGptt540 and BQptt392 likely

represents a new Plasmodium species. The tree was inferred using maximum likelihood

methods56. Numbers above and below nodes indicate bootstrap values (≥ 70%) and

Bayesian posterior probabilities (≥ 0.95), respectively (the scale bar represents 5 nucleotide

substitutions).
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Figure 3. Evolutionary relationships of ape and human P. vivax parasites in nuclear and
apicoplast gene regions
a,b, The phylogenetic positions of (a) lactate dehydrogenase (ldh) gene (711 bp) and (b)

caseinolytic protease C (clpC) gene (574 bp) sequences from ape and human P. vivax strains

are shown in relation to human and macaque parasite reference sequences. All sequences

were generated by SGA20, except for human (Salvador I, India VII, Mauritania I, North

Korean, Brazil I) and simian reference strains from the database (asterisks indicate SGA-

derived ldh sequences for P. simiovale, P. cynomolgi, and P. fragile; see Supplementary
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Tables 6-8 for GenBank accession numbers). Newly derived ape P. vivax sequences are

labeled and color-coded as in Fig. 2. Human and simian reference sequences are shown in

black. Human ldh haplotypes are depicted as described in Fig. 2. Related parasite sequences

from chimpanzee samples DGptt540 (ldh) and BQptt392 (clpC) likely represents a new

Plasmodium species. Trees were inferred using maximum likelihood methods56. Numbers

above and below nodes indicate bootstrap values (≥ 70%) and Bayesian posterior

probabilities (≥ 0.95), respectively (the scale bars represents 5 and 1 nucleotide (nt)

substitutions, respectively).
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