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Nanomaterials are defined as material consisting of parti-
cles, in an unbound state/as an aggregate/agglomerate,
which for Z50% of the particles in the number size
distribution have a size between 1 and 100 nm, according
to the European Commission Recommendation on the defi-
nition of nanomaterial (European Commission, 2011). They
comprise different types of substances such as metal (e.g.
Au, Ag, Fe) and metal oxide nanoparticles, as well as
fullerenes, carbon nanotubes or quantum dots. Specific
characteristics include the particle shape, surface area/
charge/chemistry, state of dispersion, state of agglomera-
tion, particle size distribution, solubility and porosity. These
characteristics contribute to their properties, which has
enabled the increasing use of nanomaterials in many fields
of technology, a trend which is foreseen to considerably
expand in the future.
0.1016/j.pisc.2014.11.015
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The hazard and risk assessment of nanoparticles, how-
ever, is not yet developed adequately to ensure safety of
their use. One reason is the lack of consistent, comparable
and publicly accessible toxicity data. Efforts in nanotoxicity
research are undertaken globally, however, they are dis-
perse, as is the publication of data. Inconsistent data are
due, for example, to poorly characterised nanomaterials or
arbitrary experimental conditions. Moreover, the organisa-
tion and representation of the data is inconsistent.

Computational models for toxicity prediction are increas-
ingly important to support risk assessment. They include the
formation of categories of chemicals and subsequent read-
across, i.e. prediction by interpolation of activities, as well
as (quantitative) structure–activity relationships ((Q)SARs).
The models are based on the understanding that chemical
structure and thus the physico-chemical properties of a
molecule are directly responsible for biological activity, and
effects may be predicted from this relationship (see
Figure 1). Their development relies on high quality experi-
mental data and chemical structure information.

Therefore, in order to build a suitable foundation of
toxicological data for the development of in silico models
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Figure 1 General scheme showing the correlation between a
physico-chemical descriptor and biological activity/toxicity.
The QSAR is built in the attempt to fit a line of best fit of the
type y=ax+c, where a is the slope and c is the intercept.
Usually, several descriptors are included.

Figure 2 Workflow of data collection in view of the develop-
ment of computational models for nanotoxicity prediction.
Data collection taking into account standardisation efforts is
followed by a step of quality assessment to obtain the final
datasets, which can be integrated into overarching databases
and feed into the development of in silico models predicting
nanoparticle toxicity, both supporting the safety evaluation of
nanomaterials.
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for nanomaterial toxicity prediction, available data relating
to the physical, chemical and toxicological properties of
nanoparticles and their structures have been, and are
being, collected from different sources and through a
comprehensive literature review within the EU NanoPUZ-
ZLES and NanoBRIDGES projects.

Generally, a cross-institutional, cross-project, even glo-
bal effort is needed to overcome the fragmentation of work
to generate and evaluate toxicity data for nanoparticle risk
assessment. Data collection needs to be coordinated in
order to make valid conclusions on nanoparticle toxicity for
risk assessment. Thus, this work is integrated in the on-
going research within the Nanosafety Modelling Cluster
comprising five research projects developing in silico mod-
els for nanotoxicity, and generally within the NanoSafety
Cluster for collaboration across EU projects (www.nanosafe
tycluster.eu) and the US-EU initiative for a dialogue
between US and EU researchers (us-eu.org). A standardised
data exchange format to share data and a unified ontology
for data collection is needed to ensure a certain quality
standard in terms of completeness, avoid duplication, allow
a comparison between data from different sources and
make it possible to integrate different datasets into one
database. ISA-TAB-nano (Thomas et al., 2013) has been
identified as a suitable standard format, defining a set of
linked spreadsheet files (Investigation, Study, Assay and
Material), with a pre-defined file structure and syntax for
(meta)data.

Furthermore, the quality and suitability of the data for
developing predictive toxicology models are being assessed.
Evaluation criteria were developed to assess the relative
quality of literature nanoparticle data sets and their
usefulness for building computational models for nanopar-
ticles based on Klimisch et al. (1997) criteria (Lubiński
et al., 2013). The successful development of nano-QSAR
models depends not only on the quality of experimental
data, but also on the availability of sufficiently large data
sets. The quality assessment approach is being extended in
ongoing work.

The overall approach pursued in this project to collect
data in view of the development of computational models
for prediction of nanotoxicity is summarised in Figure 2.
The data compilation performed has allowed for the
development of QSAR models for nanoparticle toxicity. As
a first step, “nanodescriptors” have to be defined to reflect
the specific intrinsic nanoparticle properties, e.g. stucture
and electronic states resulting from quantum effects of the
nanosize.

There are various types of methodologies to develop
nano-QSAR models for the prediction of toxicity. One
example of such a model for metal oxide nanoparticles is
that developed by Puzyn et al. (2011). It describes the
cytotoxicity of 17 metal oxide nanoparticles (ZnO, CuO,
V2O3, Y2O3, Bi2O3, In2O3, Sb2O3, Al2O3, Fe2O3, SiO2, ZrO2,
SnO2, TiO2, CoO, NiO, Cr2O3, La2O3) to the bacterium E.
coli, based on experimental testing. The toxicity decreased
in the order Me2+4Me3+4Me4+. The model is based on the
enthalpy of formation of a gaseous cation which has the
same oxidation state as the metal ion in the oxide structure.

Another example is the model for genotoxicity of metal
oxide nanoparticles developed by Golbamaki Bakhtyari
et al. (2013). Chromosomal aberrations, oxidative DNA
damage, DNA strand breaks, and mutations have been found
in the literature to be caused by metal nanoparticles. The
authors collected in vivo and in vitro data on nano metal
oxide (Al2O3, NiO, Co3O4, CuO, Fe2O3, Fe3O4, TiO2, ZnO,
SiO2, V2O3, V2O5, MnO2) genotoxic effects and developed a
nano-QSAR model for genotoxicity prediction, correlating
genotoxicity to the electronegativity of oxygen, the core–
core repulsion in eV – reflecting the binding energy between
atoms in the cluster – and the enthalpy of detachment of
metal cations from the cluster surface.

Regarding environmental effects, Mokshina et al. (2013)
evaluated acute toxicity data for metal oxide nanoparticles
towards the aquatic organisms Daphnia magna and Para-
mecium multimicronucleatum. They used descriptors based
on the liquid-drop and surface-area-difference models
applying statistical approaches such as random forest and
neural network methods to develop models predicting the
acute aquatic toxicity of metal oxide nanoparticles to these
organisms.
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Further in silico models for metal oxides in the literature
include a model for predicting the oxidative stress potential
of metal oxide nanoparticles (TiO2, CuO, ZnO, FeO, Fe2O3,
Fe3O4), using reactivity descriptors to characterise their
energy structure (Burello and Worth, 2011). The oxidative
stress potential is predicted through their ability to transfer
electrons and perturb the overall intracellular redox state.
Another nano-SAR model was based on high-throughput
in vitro toxicity screening assay data for bronchial epithelial
(BEAS-2B) cells and ranked the cytotoxicity of metal oxide
nanoparticles (Al2O3, CeO2, Co3O4, TiO2, ZnO, CuO, SiO2,
Fe3O4, WO3) based on the descriptors atomisation energy of
the metal oxide, period of the nanoparticle metal, nano-
particle primary size, and nanoparticle volume fraction (Liu
et al., 2011).

In conclusion, a global effort is needed to overcome the
fragmentation of efforts to generate and evaluate toxicity
data for the risk assessment of nanoparticles. The aim of the
present work was to bridge the gaps between experimental
and computational approaches and to compile data to create
a dataset suitable for the development of in silico models for
nanoparticle toxicity assessment. Nano-QSAR models can
predict the toxicity for new nanoparticles and thus support
the hazard and risk assessment of nanomaterials.
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