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Dominant females in social species have been hypothesised to reduce the reproductive success of 14 

their subordinates by inducing elevated circulating glucocorticoid concentrations. However, this 15 

‘stress-related suppression’ hypothesis has received little support in cooperatively breeding species, 16 

despite evident reproductive skews among females. We tested this hypothesis in the banded 17 

mongoose (Mungos mungo), a cooperative mammal in which multiple females conceive and carry to 18 

term in each communal breeding attempt. As predicted, lower-ranked females had lower 19 

reproductive success, even among females that carried to term. While there were no rank-related 20 

differences in faecal glucocorticoid (fGC) concentrations prior to gestation or in the first trimester, 21 

lower-ranked females had significantly higher fGC concentrations than higher-ranked females in the 22 

second and third trimesters. Finally, females with higher fGC concentrations during the third 23 

trimester lost a greater proportion of their gestated young prior to their emergence from the 24 

burrow. Together, our results are consistent with a role for rank-related maternal stress in 25 

generating reproductive skew among females in this cooperative breeder. While studies of 26 

reproductive skew frequently consider the possibility that rank-related stress reduces the 27 

conception rates of subordinates, our findings highlight the possibility of detrimental effects on 28 

reproductive outcomes even after pregnancies have become established. 29 
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In animal societies, subordinate females often have lower reproductive success than dominant 32 

females. The stress-related suppression hypothesis proposes that dominant females suppress 33 

subordinate reproduction through behaviours that lead to chronic elevations in circulating 34 

glucocorticoids (GCs) and consequent reproductive down-regulation [1–4]. Notably though, 35 

compelling support for this hypothesis remains scarce in cooperatively breeding societies, where 36 

reproductive skews among females are frequently apparent [1,2; but see 3,5]. Stress-related 37 

suppression might only be necessary, however, in the subset of cooperative breeders in which 38 

subordinate females do still attempt to breed, as complete reproductive restraint by subordinates 39 

might otherwise obviate the need for dominants to stress their subordinates [3,6,7]. Furthermore, 40 

stress-related suppression could actually be difficult to detect using the approach most-commonly 41 

employed to test it (comparisons of the average GC levels of dominants and subordinates), if 42 

dominants target only a subset of likely breeders and do so only during periods when subordinate 43 

reproduction would otherwise be costly to dominants [3,5,6]. These suggestions have led to calls for 44 

further tests in cooperatively breeding species in which subordinates do attempt to breed, focussing 45 

on those subordinates attempting to breed at the same time as their dominants [3,6]. 46 

While socially-induced GC elevations have frequently been considered a potential cause of reduced 47 

conception rates among subordinates, they also have the potential to compromise the outcomes of 48 

established pregnancies. For example, elevated GCs during pregnancy may impact in utero or early 49 

post-natal development and affect offspring health, condition, and survival [6,7]. While studies of 50 

cooperatively breeding mammals have shown that being subjected to aggression by the dominant 51 

female is associated with increased abortion rates among subordinates [3,8], whether rank-related 52 

maternal stress compromises reproductive outcomes among subordinates that do manage to carry 53 

to term has yet to be investigated. If subordinate reproductive success was reduced as a result of 54 

elevated GC concentrations during gestation, one might make three predictions: pregnant females 55 

of lower social rank will have (1) reduced reproductive success and (2) elevated GC concentrations 56 



during gestation, and (3) females experiencing higher gestational GCs will have reduced reproductive 57 

success. 58 

Here, we test these three predictions with a detailed investigation of faecal glucocorticoid (fGC) 59 

concentrations and reproductive success in female banded mongooses (Mungos mungo). Banded 60 

mongooses live in stable cooperatively breeding groups comprising a “core” of breeding adults (1–5 61 

females and 3–7 males) that reproduce 3–4 times per year, alongside a subset of younger individuals 62 

that breed occasionally [9]. Aggression received by pregnant subordinates can result in eviction and 63 

abortion [8], but pregnant subordinates do often breed successfully alongside pregnant dominants 64 

[9]. The rank-related patterns of reproductive success among females that carry to term have yet to 65 

be investigated, along with the role that GCs may play in generating them. 66 

 67 

Methods 68 

We studied a population of banded mongooses living in Queen Elizabeth National Park, Uganda 69 

(0°12’S; 29°53’E) between December 2010 and April 2014. All animals were marked and habituated 70 

to close observation (< 5 m). Groups were observed every 1 - 4 days to record all breeding events. 71 

We ran generalised linear mixed models (GLMMs) using the lme4 package [10] in R v3.1.1 [11] with 72 

Poisson and binomial data fitted with log and logit link functions, respectively. Female, social group, 73 

and litter identities were included as random intercepts in all models to control for repeated 74 

measures.  75 

 76 

Pregnancy can be detected at around 40 days by swelling of the abdomen [12] and birth can be 77 

detected by a sudden decrease in female body size [13]. Females were captured during pregnancy to 78 

estimate the number of foetuses each carried by palpation [12]. We assigned maternity using a 79 



combination of phenotypic and microsatellite data; full details are given in [14]. Analyses of 80 

reproductive success were limited to communal litters in which at least one pup emerged. 81 

 82 

We collected 218 faecal samples from 35 females prior to and during gestation (2.5 ± 0.3 samples 83 

per female pregnancy, mean ± SE; number of samples collected per time period: pre-gestation = 59 84 

samples, first trimester = 57 samples, second trimester = 45 samples, third trimester = 54 samples). 85 

Full details of sample collection and hormone analysis including validations are given in [15]. In brief, 86 

all samples were collected between 6:30am and 10:00am and stored on ice [15]. Hormones were 87 

extracted from faecal samples using a wet-weight extraction (adapted from [16]) and then analysed 88 

using an enzyme immunoassay.  89 

 90 

1. Do lower ranking female experience reduced reproductive success? 91 

We calculated three measures of reproductive success for each female recorded as having given 92 

birth: (i) the number of foetuses, (ii) the number of emergent offspring, and (iii) the proportion of 93 

foetuses surviving to emergence. We fitted each of these three measures as a response variable in a 94 

GLMM. Rank (determined by ranked age following [17]) was fitted as a fixed effect as were female 95 

age, group size, rainfall (month prior to conception), and pre-conception body mass [13] to control 96 

for other factors which may lead to variation in reproductive success.   97 

 98 

2. Do lower ranking females experience elevated fGCs during gestation? 99 

We fitted fGC concentrations as a response variable in a GLMM with rank as the main predictor of 100 

interest. As GC concentrations may vary within a breeding attempt, we also fitted an interaction 101 

between rank and stage of pregnancy (pre-gestation; first trimester; second trimester; third 102 



trimester) as well as fixed effects of female age, group size, rainfall, and pre-conception body mass 103 

to control for other factors which may contribute to fGC variation.   104 

 105 

3. Do females with higher fGCs during gestation have reduced reproductive success? 106 

We fitted the number of emergent offspring and the proportion of foetuses surviving to emergence 107 

as response variables in two separate GLMMs with fGCs during the third trimester as the predictor 108 

of interest. We focused this analysis on fGCs in the third trimester because that is when we saw the 109 

clearest difference in fGCs between low- and high-ranking females.  110 

 111 

Results 112 

Lower-ranking females that carried to term experienced lower reproductive success than higher-113 

ranking females, both when measured as the number of assigned offspring (χ2
(1) = 4.18, P = 0.041, 114 

figure 1a) and the proportion of foetuses surviving to emergence (χ2
(1) = 4.29, P = 0.038, figure 1c). 115 

There was no effect of rank on the number of foetuses carried by a female (χ2
(1) = 0.027, P = 0.87). 116 

We found a significant interaction between female rank and pregnancy stage on fGC concentrations: 117 

lower-ranking females did not differ from higher-ranking females prior to conception or during the 118 

first trimester but had elevated fGCs during the second and third trimesters (χ2
(1) = 4,18, P = 0.041, 119 

figure 2). Females experiencing higher fGC concentrations during the third trimester had fewer 120 

assigned offspring than those with lower GCs (χ2
(1) = 5.26, P = 0.022, figure 1b) and a lower 121 

proportion of their foetuses survived to emergence (χ2
(1) = 4.07, P = 0.044, figure 1d). Full model 122 

outputs are included in supplementary material (S1). 123 

 124 



Discussion 125 

Our findings are consistent with the hypothesis that subordinate female banded mongooses exhibit 126 

reduced reproductive success as a result of rank-related maternal stress during gestation. Lower-127 

ranked females had lower reproductive success than higher-ranked females (despite conceiving 128 

litters of the same size), both when measured as the proportion of foetuses surviving to emergence 129 

and the number of emergent offspring. Whereas higher- and lower-ranked females had similar fGC 130 

concentrations prior to gestation and during the first trimester, lower-ranked females showed 131 

significantly elevated fGC concentrations during the second and third trimesters. These results 132 

highlight the possibility that stress-related suppression of subordinate reproduction arises through 133 

gestational effects that compromise offspring survival either during the latter stages of pregnancy or 134 

soon after birth (prior to emergence from the burrow). Accordingly, females that experienced higher 135 

fGC concentrations during the third trimester had fewer emergent pups and a lower proportion of 136 

foetuses surviving to emergence. 137 

 138 

Rank-related differences in reproductive success among female mammals commonly occur due to 139 

differences in conception rates, either because subordinate females exercise reproductive restraint 140 

or because their ability to conceive is compromised by active interference by dominant females 141 

[18,19]. In contrast, we have demonstrated a rank-related difference in reproductive success within 142 

females that carry to term. As there was no observable rank-related variation in litter size in utero, 143 

this rank-related difference in reproductive success could well have arisen from pre-natal 144 

developmental impacts on offspring survival either during late pregnancy or during the early post-145 

natal period. A role for rank-related maternal stress during late gestation in generating these effects 146 

on offspring survival would be consistent with experimental evidence that late-gestational GC 147 

elevations can inhibit offspring development [4,20]. In the absence of experimental evidence of a 148 

role for maternal GC elevations, however, it is also possible that alternative mechanisms, such as 149 



early post-natal infanticide [21], play a role in generating the observed rank-related variation in 150 

offspring survival from detection as a foetus to emergence from the burrow. 151 

 152 

The stress-related suppression hypothesis posits that elevated GC concentrations observed in lower 153 

ranking females are a result of aggression from dominant females.  However, conspicuous 154 

aggression among female banded mongooses is rare outside of eviction events [9]. As such, the 155 

elevated GC concentrations observed here may not be a product of overt aggression. Our findings 156 

cannot be attributed instead to simple age effects, in which younger females struggle to meet the 157 

resource-demands of gestation (and hence exhibit differential GC elevations), as our analyses 158 

control for variation in absolute age and attribute variation in both reproductive success and 159 

gestational GC concentrations to variation in rank per se. However, the gestational GC elevations of 160 

lower-ranked females could arise at least in part from energetic differences during gestation. For 161 

example, subordinates may be competitively excluded from resources by dominant females. 162 

Alternatively, as intra-sexual conflict among females may frequently be resolved without overt 163 

physical conflict, these GC elevations could also reflect responses to more subtle rank-related 164 

outcomes, such as social isolation [22]. Either way, our findings highlight the possibility that stress-165 

related suppression of subordinate reproduction may occur in the absence of conspicuous 166 

aggression. 167 
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 194 

Figure 1. (a, c) Maternal rank and (b, d) gestational fGC concentrations predict female reproductive 195 
success. Points show raw values and lines with shaded regions show predicted trends with 196 
confidence intervals from GLMMs. 197 
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 201 

Figure 2. Female fGC concentrations vary during gestation dependant on maternal rank. Dots show 202 
raw values and lines and shaded areas show predicted estimates and confidence intervals from a 203 
GLMM. Significance values from post-hoc testing of the effect of maternal rank on fGC 204 
concentrations (a) within a pre-gestation phase and (b-d) during 3 trimesters where ‘NS’: p > 0.05; 205 
‘**’: p < 0.001. 206 
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