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A B S T R A C T   

Maritime autonomous surface ships (MASS), presenting the future of maritime transport, are attracting 
increasing attention from the international maritime community. The collision risk analysis of MASS reveals 
unsolved challenges, which without appropriate solutions, will result in the error prone development of the 
relevant risk control measures and policies. Among the challenges, two significant ones in the existing literature 
are the lack of historical failure data to realise quantitative risk assessment, and 2) the complex causal rela
tionship among the relevant risk factors. This paper aims to develop a new Fault Tree Analysis-Fuzzy Bayesian 
Network (FTA-FBN) model to conduct the collision risk assessment of MASS with uncertainty in data. First, it 
establishes a causal relationship among the risk factors through an FTA. Secondly, mapping the obtained FTA 
diagram into a BN allows fault diagnosis and the identification of the most important factors influencing MASS 
collisions. In this process, a survey is conducted to collect the primary data for configuring the conditional 
probabilities of the relevant influential factors and quantifying the developed BN for risk diagnosis and pre
diction. Finally, the new model is verified by using sensitivity analysis and three axioms and then applied to 
conduct scenario-based risk prediction and diagnosis to generate insightful findings to guide MASS navigation 
safety. The results demonstrate that the FTA-FBN model realizes the simplification of the expert scoring process, 
reduces computational complexity, and addresses the challenge of constructing causal relationships between 
MASS collisions and their risk factors due to the scarcity of historical accident data. Additionally, the BN 
backward reasoning identifies key collision risks, including external physical attacks, inadequate training of 
shore-based operators, insufficient maintenance of ship equipment and systems, and cyber-security threats. The 
new model when being adapted, can provide a reference for the formulation of safe navigation policies and 
provide important insights for shipping companies to ensure the safe navigation of their ships and shipbuilders to 
optimise ship design.   

1. Introduction 

Conducting MASS risk assessments can help ship owners and oper
ators identify risks that may affect navigational safety and operational 
efficiency, thereby safeguarding navigational safety, reducing property 
damage and improving the efficiency of ship operations. Fault Tree 
Analysis – Fuzzy Bayesian Network (FTA-FBN) is a combination of three 
methods, FTA (Ruijters and Stoelinga, 2015; Wang et al., 2021), fuzzy 
logic and BN. Using FTA in conjunction with FBN can improve the ac
curacy and reliability of risk assessment(Cem Kuzu et al., 2019; Choi and 
Chang, 2016) in particularly when historical failure data is incomplete, 

and the risk factors show high interdependency among them. Specif
ically, FTA can be used to construct fault tree models to identify the root 
causes and critical events of system failures, while FBN can be used to 
process probabilistic and uncertainty information in fault tree models to 
provide accurate and reliable risk assessment results. FTA, fuzzy FTA, 
FTA-BN have been widely used in previous maritime risk assessment 
(Sokukcu and Sakar, 2022; Trucco et al., 2008; Wang et al., 2021; Zhang 
et al., 2018), Table 1 shows the differences between FTA, FFTA, BN, 
FTA-BN, FTA-FBN and STPA. At present, among the most challenges of 
MASS risk assessment is the lack of historical data. Within this context, 
Zhang et al. (Zhang and Zhang, 2023) adopted the entropy-TOPSIS 
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method for quantitative assessment of MASS navigational risk using 
traditional ship data. Given the fact that the navigational risks of 
traditional manned ships and MASS are different, Zhang et al. (D. Zhang 
et al., 2022) combined traditional ship data and MASS experimental 
data to conduct new MASS collision risk analysis. Although showing the 
attractiveness, it is still arguable in terms of the harmony of the histor
ical failure data on manned ships and experimental data on MASS for 
MASS collision analysis. Hannaford et al. (Hannaford and Hassel, 2021) 
used scoring scales and structured interviews to obtain expert experi
ence purely with regard to MASS to improve the credibility of the 
relevant analysis. However, the used methods for processing the data is 
straightforward, causing the concerns on their ability of handling the 
uncertainty in the data directly relating to MASS as well as its ability of 
incorporating the interdependence among the risk factors. This paper 
aims to apply a holistic method of FTA-BN to evaluate MASS collision 
risk using primary data from the domain experts for the first time within 
the context of MASS collision risk. FTA-BN has been used to analyse risk 
of high uncertainty in the fields of chemical, mineral, nuclear safety, etc. 
(Goodman, 1988; Iverson et al., n.d.), but yet in the context of MASS. 

Bolbot et al. (2023) and Guo et al. (2023) identified and analyzed the 
risk factors due to the MASS’s interaction with other ships by BN. 
Wróbel et al. (2020) used a Systematic Theory Process Analysis (STPA) 
approach to model the safety structure of an autonomous merchant 
vessel from a qualitative perspective firstly, then quantitatively assess it 
in conjunction with the literature review. In addition, Chaal et al. (2020) 
and Zhou et al. (Zhou et al., 2020, 2021) also conducted hazard iden
tification and analysis of system safety and crash risk of MASS using 
STPA. MASS overcomes the risks associated with human negligence in 
keeping watch, failure to follow a prescribed course and physical and 
psychological discomfort, and uses communication equipment, ma
chinery and control systems to transmit information and operate the 
ship remotely. Bucchianico et al. (2016) disclosed that human errors 
were transferred from the crew to the shore-based operators. While 
reducing the collisions caused by human negligence lookout (Haugen 
et al., 2018), it also brings new risks such as cyber security (Chang et al., 
2021; Rødseth and Burmeister, 2015; Wróbel et al., 2017), communi
cation failures (Larisa Dobryakova et al., 2016) and mechanical equip
ment failures (Abaei et al., 2021). Besides, Veitch et al. (Veitch and 
Alsos, 2022) conducted a detailed review based on 42 studies on MASS 
navigational safety, which showed that shore-based operators are 

critical to ship navigational safety and that the commonly used research 
methods are STPA (W. Li et al., 2023; Ventikos et al., 2020) and BN. A 
review on MASS risk and reliability analysis road strength planning is 
well documented in the literature (Z. Li et al., 2023). 

Different with the previous studies in the current literature, this 
paper makes methodological contributions by proposing a new FTA-FBN 
model and its application for quantitative assessment of collision acci
dent risks of MASS. From an applied research perspective, this paper also 
makes new contributions including: 1) Identifying the risk factors 
influencing MASS collisions through the literature review, and purifi
cation and verification; 2) Using FTA to establish the logical relationship 
between MASS collision risk factors; 3) Using the fuzzy theory to convert 
expert judgements into relevant probabilities to realise the quantitative 
evaluation of the collision accidents of MASS; 4) Using BN to predict the 
probability of MASS collisions and the identification of key risk factors 
influencing MASS collisions by fault diagnosis; 5) Developing a useful 
tool based on the FTA-FBN model to support quantitative evaluation of 
MASS at different levels of uncertainty in risk data. 

The rest of this paper is organized as follows. Section 2 identifies the 
collision risk factors for MASS. Section 3 describes the new methodol
ogy. Section 4 analyzes the MASS risk using newly collected primary 
data and the sensitivity analysis is conducted to validate the model 
before the result discussion. Section 5 draws the conclusions. 

2. Identification the risk factors influencing the collisions of 
MASS 

2.1. MASS risk analysis review 

Recently, risk assessment for MASS has gradually become a popular 
topic, and many scholars have conducted risk identification and analysis 
from the perspectives of human error, ship systems and equipment, and 
cyber security, respectively (Bolbot et al., 2022; Chang et al., 2021; C. 
Fan et al., 2020; Fan et al., 2022, 2021). In MASS, Romas et al. (Ramos 
et al., 2020) argue that the human element is transferred from a ship to 
the shore-based operators. Fan et al. (Fan and Yang, 2023), Bahoo
Toroody et al. (Bahootoroody et al., 2022) and Yoshida et al. (2021) 
used machine learning algorithms in conjunction with experiments 
conducted by experienced captains (D. Zhang et al., 2022) to analyse the 
relationship between the mental load of the maneuvering crew and the 

Table 1 
Differences between FTA, FFTA, BN, FTA-BN, FTA-FBN and STPA.  

Method Description Advantage Drawback Applicable scenario 

FTA Hierarchical top-down deductive 
reasoning and the application of gate 
logic symbols to establish the causal 
chain of events leading to failures. 

Comprehensively identifies factors contributing 
to system failure and is suitable for complex 
systems. Intuitive, systematic, easy to 
understand and communicate complex 
relationships. 

Only suitable for static analysis, 
struggles with complex 
dependencies and uncertainty. 

In industries such as nuclear power, 
marine, and aviation, employing FTA 
early in system design can identify 
potential design flaws and optimize the 
design. 

FFTA Incorporating fuzzy logic into FTA to 
address uncertainty. 

Enhancing FTA adaptability and practicality 
through flexible handling of imprecise data. 

Model construction and 
computation are complex, 
requiring expertise to define 
fuzzy sets. 

Risk assessment where data are 
imprecise or incomplete. 

BN Representing probabilistic 
relationships between variables using 
nodes and edges. 

Effectively handles uncertainty and incomplete 
data, supporting probabilistic reasoning and 
fault diagnosis. 

Complex to build and compute, 
requiring large amounts of data 
and expertise. 

Diagnosis, prediction, machine learning, 
and recommender systems for complex 
systems. 

FTA-BN Combining FTA’s systems analysis 
and BN’s probabilistic reasoning 

Capable of handling complex dependencies and 
feedback relationships; can perform fault 
diagnosis and provide quantitative analysis. 

Complex to construct, requiring 
extensive domain knowledge 
and data processing 
capabilities. 

Suitable for complex environments that 
require probabilistic reasoning or 
involve significant uncertainties. 

FTA- 
FBN 

Integrating fault tree analysis with 
fuzzy Bayesian networks to manage 
uncertainty and ambiguity in fault 
data. 

Ideal for early design phases, enhancing design 
safety and handling of system uncertainty; 
capable of managing complex dependencies; 
effectively addresses risk assessments without 
historical data. 

Complex modeling requiring 
significant expertise. 

Ideal for scenarios with incomplete or 
inaccurate data and complex system 
relationships, as well as for conducting 
risk assessments without historical data. 

STPA Cybernetics-based safety analysis 
methods for identifying potential 
control failures. 

Analyzing known failures and exploring 
interactions and processes that may lead to 
system failure. 

The analysis process is both 
time-consuming and complex, 
demanding a high level of 
expertise from the analyst. 

Design and operation of complex and 
safety-critical systems, such as 
aerospace and nuclear power.  
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safety of MASS navigation. 
Secondly, MASS collision risk is studied from the perspective of 

collision avoidance systems and path planning. For instance, the design 
and development of collision avoidance systems (Hwang and Youn, 
2022; Kim et al., 2022; Namgung and Kim, 2021; Ni et al., 2022), 
real-time collision avoidance detection systems (Yoo and Lee, 2021; W. 
Zhang et al., 2022; Zhang et al., 2021), and collision avoidance-based 
path planning (Geng et al., 2019; Mou et al., 2021; Namgung, 2021). 
Collision avoidance systems use artificial intelligence and machine 
learning to autonomously sense their surroundings, obtain information 
about the vessel in real time and make decisions with much less reliance 
on people. However, the test results of the system depend on the number 
of test scenarios and their coverage, and the number of ship collision 
scenarios is often limited and only fits specific research interests. 

Huang et al. (Huang and van Gelder, 2020) modelled MASS move
ments from a temporal and spatial perspective. Li et al. (2021) improved 
on the method using a rule-aware time-varying conflict risk (R-TCR) 
based ship collision avoidance algorithm, which does not rely on expert 
judgement and takes into account multi-ship encounters. However, 
operator preferences cannot be fully taken into account due to different 
operator qualifications and the uncertainty of the target vessel’s 
movement is ignored. 

Overall, through the review studies on MASS, in area of navigation 
risk and reliability analysis (Z. Li et al., 2023; Thieme et al., 2018), cyber 
security (Schinas and Metzger, 2023), and the advantages, challenges 
and future directions of MASS (Chae et al., 2020; Chen et al., 2023; 
Goerlandt, 2020), it is witnessed that new quantitative risk analysis 
models for MASS collisions are highly demanded in the current litera
ture. In this work, we conducted a survey to collect expert opinions on 
collisions in MASS, due to insufficient collision data for assessment. The 
application of Noisy-OR in calculating the conditional probability of BN 
simplifies the calculation process, reduces the complexity of expert 
scoring, and enhances the accuracy of the conditional probability table 
(CPT). This technique is highly valuable when dealing with noisy and 
uncertain observational data in practical problems. 

2.2. Identification of MASS collision risk factors 

The first step of carrying out ship collision risk is to identify the 
relevant influential factors (S. Fan et al., 2020; H. Li et al., 2023). The 
factors were manually collected from maritime accident reports (S. Fan 
et al., 2020) and then filtered based on their frequency of occurrence. In 
this process, accident reports were sourced from the official website of 
the China Maritime Safety Administration (MSA，https://www.msa. 
gov.cn). After thorough review, a total of 330 reports were collected 
for the period 2015 to 2021. To ensure the study’s accuracy and reli
ability, further screening was conducted. Inland vessel collisions and 
other irrelevant reports were eliminated through manual review, 
focusing solely on maritime collisions. Ultimately, 294 marine collision 
reports were retained. Out of 294 collision reports, we selected factors 
that occurred more than 15 times (S. Fan et al., 2020). We determined 
that a frequency limit of 15 adequately covers commonly occurring risk 
factors, based on our professional judgement and research experience. 
This choice helps us avoid excessive focus on rare factors and better 
reflects the common risk factors in collisions. Prior research and in
dustry practice (Wang and Yang, 2018) have shown that this option is a 
widely accepted and more reasonable and meaningful choice. Next, the 
literature survey taking into account MASS collision risk factors were 
conducted to purify the ones identified from accident reports. The pu
rified risk factors are then identified in this paper, are shown in Table 2. 

After manual extraction and purification, the most frequently 
occurred risk factors influencing ship collisions and MASS navigation in 
the literature, such as natural environmental factors (wind, rain and 
fog), were further examined by the domain experts of MASS expertise to 
ensure their fitness in the MASS collision risk analysis. The selected 
experts and their qualifications are introduced in the methodology 

section (e.g. Section 3.1). Finally, after filtering and collating, the risk 
factors are summarized in four aspects: human, ship system equipment, 
cyber security and environment. 

Among the collision risk factors for MASS, developer errors are sig
nificant. An engineer reported that due to coding logic errors and 
improper handling of boundary conditions by the algorithm, MASS 
failed to execute effective collision avoidance during tests, nearly 
causing an accident. Meanwhile, Romas et al. (Ramos et al., 2018) and 
Man et al. (Abilio Ramos et al., 2019) also highlighted that coding errors 
and inadequately designed human-machine interfaces are common 
during the development and testing phases of MASS, increasing collision 
risks. Furthermore, in a U.S. self-driving car incident, incorrect coding 
led the collision detection subsystem to malfunction, erroneously 
causing the vehicle to pull over and severely injure a pedestrian, 
underscoring the grave consequences and severity of coding errors. 

3. Data and methodology 

3.1. Data sources 

Expert scoring has been widely used in maritime risk analysis, factor 
identification, data acquisition (Qiao et al., 2020). However, MASS 
currently lacks historical data on collisions. This paper therefore uses an 
expert scoring method (based on fuzzy values, in Section 3.2) to conduct 
a survey and obtain expert opinion as a data source for MASS collision 
accidents. The expert’s field of work, title, years of experience and ed
ucation can reflect the expert’s experience, cognitive and judgmental 
abilities, which to a certain extent can affect the accuracy of the results. 
This study mainly selects experts using the following criteria (Qiao et al., 
2020; Ung, 2021; Yazdi et al., 2017).  

1) Professional qualifications: The selected experts have profound 
knowledge in the fields of navigation, automation, ship engineering 
and human-computer interaction, and they all come from univer
sities, shipping companies, autonomous ship research institutes and 
shipyards around the world. They have rich theoretical knowledge 
and practical experience, which can make the questionnaire results 
more comprehensive and reliable.  

2) MASS working experience: having direct or indirect involvement in 
the research and development, operation or management of MASS, 
which ensures that they have a practical basis for understanding the 
human factors in MASS operation.  

3) Years of work experience and educational background: this implies 
to some extent whether the experts are experienced or not, for 
experienced experts, it can make the calculation more realistic and 
accurate, and the highest degree obtained can reflect the cognitive 
ability, knowledge level, etc. of the experts. 

A total of 40 questionnaires were distributed and 34 valid (with the 
answers to all the questions) questionnaires were returned. Although the 
number of experts is relatively small, the respondents cover a wide range 
of key areas related to MASS. These areas include engineers involved in 
MASS design and development, experienced shipmasters, chief mates, 
and chief engineers, as well as experts and academics in MASS naviga
tional risk research. They have extensive experience in working with 
MASS and can provide assessments and insights from multiple per
spectives. In addition, the respondents are representative of universities, 
shipping companies, autonomous ship research institutes, and shipyards 
around the world. Among them, 88.24% had intermediate posts or 
above, 82.36% had working experience of more than 10 years, and the 
expert qualification information is shown in Table 3. 

According to the risk factors identified in Section 2.1, 19 question
naire questions are designed for the possibility of collisions caused by 
each factor, as shown in Table 10 in the appendix. Due to the large 
content of the questionnaire, linguistic terms can better help domain 
experts to express their opinions. In the literature, 4–7 linguistics terms 
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Table 2 
Risk factors are derived from accident reports, the literature and expert judgements.  

Level 1 Level 2 Level 3 Description Source Traditional 
ships 

MASS 

Human error Shore-based 
manipulation 
errors 

Improper operation of 
shore-based operators 

Due to carelessness or lack of knowledge, 
operators may make poor decisions, 
neglect monitoring, perform incorrect 
maneuvers, and fail to follow collision 
avoidance rules (including failure to 
maintain safe speeds) 

(Wahlström et al., 2015; Man, 2015;  
Haugen et al., 2018; Man et al., 2018;  
Ahvenjärvi, 2016), 
(Porathe, 2014; Ramos et al., 2020;  
Chalmers University of Technology, 
Sweden et al., 2014; Bucchianico et al., 
2016)  

✓ 

Failure to take 
effective avoidance 
actions in time 

In emergency situations, operators fail to 
keep a high vigilance, respond slowly, do 
not comply with collision avoidance rules 
(such as using safe speeds), and delay 
taking early avoidance measures like 
slowing down. 

✓ ✓ 

Failure to perform the 
obligation to avoid 
ships 

It means that when ships meet, they fail to 
comply with Article 13 of the collision 
avoidance rules and fail to fulfill the 
obligation of surrendering.  

✓ 

Insufficient training of 
shore-based operators 

Operators have insufficient control skills 
and emergency response capabilities, and 
do not have corresponding ship driving 
qualifications. 

✓ ✓ 

Inconsistent work of 
ship and shore 

It refers to the disharmony of ship-shore 
work caused by inconvenient 
communication between ship-shore staff.  

✓ 

Developer errors Improper system 
design 

As the system developer is not a senior 
captain, and the navigation experience is 
insufficient, there is a certain discrepancy 
between the designed system and the 
actual operation process.  

✓ 

Human coding errors 
of the system 

It refers to coding errors that occur during 
coding by developers.  

✓ 

Some of the risk 
factors for 
traditional ships 

Negligent lookout The crew did not use visual, auditory and 
other means to look out. 

Ship’s collision accident reports ✓  

Poor communication Poor crew communication between ships. ✓  
Operation errors The captain or crew did not fully estimate 

the risk of a certain water area, resulting 
in operational errors. 

✓  

Physiological factors Seasickness, fatigue, eating disorders, etc. ✓  
Psychological factors Negative emotions caused by poor 

psychological quality and long-term work 
pressure. 

✓  

Ship system 
equipment 
failure 

Management 
issues 

Failure to regularly 
inspect and maintain 
ship equipment 

The company fails to regularly inspect and 
maintain the ship according to relevant 
regulations. 

(Man, 2015; Ahvenjärvi, 2016;  
Porathe, 2014; Ramos et al., 2020;  
Chalmers University of Technology, 
Sweden et al., 2014; Bucchianico et al., 
2016; Hogg and Ghosh, 2016; Thieme 
and Utne, 2017; Lazakis et al., 2016;  
Rødseth and Burmeister, 2015; Wróbel 
et al., 2017), (H.-C. Burmeister et al., 
2014), (H. Burmeister et al., 2014;  
Zghyer et al., 2019), (C. Fan et al., 
2020) 

✓ ✓ 

Incomplete safety 
management system 

The company has not established a safe 
management system, and has failed to 
effectively manage and monitor the 
navigation dynamics and ship equipment 
dynamics of its sailing ships. 

✓ ✓ 

Failure of system 
and equipment 

Radar sensing system 
failure 

It refers to the fault caused by the poor 
contact between the starting contactor of 
radar or the poor contact between carbon 
brush and commutator.  

✓ 

Ship-Shore 
communication 
failure 

Due to bad weather and its own error 
code, the communication between ship 
and shore fails, operators may not be able 
to adjust the speed in time to respond to 
changing sea conditions or traffic, thus 
increasing safety risks.  

✓ 

Sensor failure Refers to the sensor failure caused by fixed 
deviation or drift deviation.  

✓ 

Structure and 
performance 

Overloading Refers to the overload of the ship during 
the shipping process. 

✓ ✓ 

Ship performance The structure and stability of the ship are 
poor, and the design and construction of 
the ship have not been strictly examined 
and inspected. 

✓ ✓ 

Situational judegment 
ability 

The command and situation judgement 
ability of the MASS to the shore-based 
control center.  

✓ 

Target recognition 
ability 

Refers to the ability of autonomous ships 
to identify surrounding targets during 
navigation.  

✓ 

(continued on next page) 
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are often used to support experts’ subjective evaluation (Z. Yang et al., 
2009) such as very small, small, slightly small, medium, slightly large, 
large and very large. In this study, questionnaires were distributed using 
the Questionnaire Star survey tool, and experts were only required to 
select the appropriate options based on their own empirical judgement, 
and the results were eventually collected for processing and analysis of 
the data. 

3.2. The methodology 

It is necessary and vital to conduct the risk assessments of MASS for 
the safe operations of ships, particularly concerning the co-existence of 
manned and autonomous ships. Scholars have studied the safety of 
MASS navigation from different perspectives. There are various methods 
suitable for maritime safety risk assessment. Zhang et al. (2018) used FT 
and fuzzy theory to evaluate the fire accident of the Nanjing Yangtze 
River Bridge. This method cannot diagnose faults and handle uncer
tainty problems. In order to overcome the uncertainty problem, Sakar 

et al. (Kabir, 2017) combined the FTA with BN for the ship grounding 
accident. Although the FTA-BN model overcomes the uncertainty 
problem, the prior probability of BN is determined by collecting reports, 
so it is inapplicable to research lacking historical data. Notably, Trucco 
et al. (2008) also used FTA-BN to incorporate human and organizational 
factors into the maritime risk analysis. Sokukcu et al. (Sokukcu and 
Sakar, 2022) used the FTA-BN model combined with expert opinions to 
conduct probabilistic risk analysis on collision risks. This research 
overcomes the constraints of FTA in terms of conditional dependence 
and static characteristics, but in the calculation of BN conditional 
probability, it is directly converted according to the logic gate rule (i.e. 
the CPT is 0 or 1), and then it is fine-tuned by experts. 

To evaluate MASS navigation risk, there is a lack of historical data on 
accidents, and single methods (such as BN, fuzzy theory, etc.) cannot 
establish the logical relationship between risk factors (Kabir, 2017). 
Therefore, in this section, a new methodology of four steps, as shown in 
Fig. 1 is put forward. First, it uses FTA to identify the risk factors that 
influence MASS collisions. Then, it establishes the logical relationship 

Table 2 (continued ) 

Level 1 Level 2 Level 3 Description Source Traditional 
ships 

MASS 

Comprehension of the 
navigational 
environment 

The ability of an autonomous ship to 
understand the navigation environment 
during navigation.  

✓  

Failure to provide 
crew as required 

Staffing does not meet the basic 
requirements to ensure the safety of the 
ship’s navigation. 

Ship’s collision reports ✓  

Navigational 
command 

The ship did not follow the correct course, 
resulting in overtaking with other ships. 

✓  

Emergency rescue During navigation, the steering gear and 
other functional faults of the ship were not 
eliminated and repaired in time. 

✓  

Cyber attacks 
and physical 
attack 

Cyber-attacks Hacker attacks Hackers attack the IT system of the control 
center, resulting in system paralysis, thus 
achieving the purpose of destroying 
MASS. 

(Hogg and Ghosh, 2016; Lazakis et al., 
2016; Rødseth and Burmeister, 2015;  
Wróbel et al., 2017; Zghyer et al., 
2019; Haugen et al., 2018; Chang 
et al., 2021)  

✓ 

Remote hijacking Refers to the signal interference to the 
communication system, thus hijacking the 
ship.  

✓ 

Spread of false 
information 

Sending false information to the control 
center, causing the operator to misjudge.  

✓ 

Physical attack Piracy, terrorist 
attacks 

Pirates or terrorists attack MASS by 
physical means. 

✓ ✓ 

Poor 
environment 

Harsh natural 
environment 

Low visibility For example, in foggy days, the visibility is 
less than 200m. 

(Chalmers University of Technology, 
Sweden et al., 2014), (H. Burmeister 
et al., 2014), (C. Fan et al., 2020; Utne 
et al., 2020; Rødseth and Burmeister, 
2015; Burmeister et al., 2015;  
Acanfora et al., 2018) and Ship’s 
collision accident reports 

✓ ✓ 

Bad weather Such as storms, short-term gales, short- 
term heavy rainfall and severe convective 
weather. 

✓ ✓ 

Hydrology Such as ebb tide, the flow rate is 4–5 
knots, and the tide is as high as 5 m. In 
addition, water depth similarly affects a 
vessel’s ability to maneuver and limits 
steering angles, thereby increasing the 
risk of collision. 

✓ ✓ 

Poor navigation 
environment 

Heavy traffic on the 
channel 

Ships enter and leave the anchorage 
frequently, there are many passing ships 
or the navigation density in the waters is 
high. 

✓ ✓ 

Navigation aid system 
failure 

Faults caused by abnormal signal display 
of AIS equipment on ships. 

✓ ✓ 

Existing obstacles It means that the channel is not cleaned 
and there are obstacles. 

✓ ✓  

Table 3 
Expert qualification information.  

Working field Number Education level Number Job title Number Service periods Number 

Captain or mariner 18 Junior college or below 2 Junior title 4 1~5 years 4 
Maritime Risk Research Expert 10 Junior college 15 Intermediate title 19 6~10 years 2 
shipping company 6 Bachelor 7 Senior title 8 11~15 years 14 
\ \ Master 8 High title 3 16~20 years 7 
\ \ Doctor 2 \ \ more than 20 years 7  
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between the relevant risk factors. Thirdly, it conducts a risk assessment 
by deductive reasoning layer by layer (Sakar et al., 2021). Moreover, the 
top event of FTA can be either an already occurring accident or a pre
dicted accident, which is very applicable for MASS currently little 
applied. It is more appropriate to map FTA to BN because the structure is 
similar. However, it is impossible to diagnose the key factors influencing 
MASS collisions only by establishing logical relations, so it is necessary 
to obtain the posterior probability of each node by using reverse infer
ence of BN. Furthermore, FTA does not permit bidirectional reasoning 
and cannot quantify uncertain accident data (Ding et al., 2021; Kabir, 
2017). To overcome this limitation, this paper presents BN, combining 
FTA with BN (Ding et al., 2021; Feng et al., 2020; Sakar et al., 2021) for 
the quantification of risk factors at the fourth step. Forward reasoning 
can help obtain the collision probability, and backward reasoning (fault 
diagnosis) can identify the key factors influencing MASS collisions. In 
addition, the fuzzy language of experts is converted into Fuzzy Failure 
Probability (FFP) (Lin and Wang, 1997; Yuhua and Datao, 2005) 
through fuzzy theory, which is used as the prior probability of BN nodes. 
Therefore, this paper establishes the FTA combined with the FBN model, 
namely the FTA-FBN (Ding et al., 2021; Feng et al., 2020; Sakar et al., 
2021). The flowchart of the model is shown in Fig. 1. 

3.3. FTA for modelling the relationship of the risk factors influencing 
MASS collisions 

FTA is a top-down deductive failure analysis method (Ruijters and 
Stoelinga, 2015). This method can make a comprehensive and vivid 
description of various causes and logical relations, which can be both 
qualitative and quantitative (Goodman, 1988). 

The steps for compiling an FT within the context of MASS collisions 
are as follows. 

Step1: Familiarise the working process of MASS and investigate po
tential accidents (Ruijters and Stoelinga, 2015; Yang and Wang, 
2015) 

According to the International Maritime Organization (IMO), MASS 
is divided into four levels, this paper focuses on MASS level 3 because it 
is the state where on human intervene exists onboard ships and MASS 
can entirely distinguish with manned ships from a navigation perspec
tive. The third-level MASS uses sensing technology and sensing infor
mation fusion technology to obtain navigation related information, and 
analyse and process it to provide decision-making advice on speed and 
route for safe ship navigation. It however still involves remote control 
from a shore-based control center for emergency and collision avoid
ance, which should be appropriated addressed in the risk analysis. 

Step2: Identify the top event of MASS collision FT 

After Step1, the top event is identified as the navigational risk 
leading to a MASS collision, including: collision between MASS and 
manned ships. 

Step3: Investigate the causes of MASS collisions 

In conjunction with the identified risk factors influencing MASS 
collisions in section 2.1, all causal events of the MASS collision FTA are 
formulated. They are grouped into four categories: human error, ship 

Fig. 1. The flowchart of the model.  
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equipment failure, cyber security and environmental factors. This in
cludes one top event, 13 intermediate events and 27 basic events, as 
shown in Table 4. 

Step4: Draw the MASS collision FT 

A deductive analysis is conducted to configure the relationship 
among all the events in Step 3 ranging from the MASS collisions, through 
the intermediate events to basic events. In this process, different gates 
are used to model that the logical relationship among the events at two 
neighboring levels to form a qualitative FT. 

This study classifies the intermediate events in four categories: 
human error (A), failure of the ship itself and system equipment (B), 
external attacks: cyberattacks and pirate/terrorism attacks (C), and 
harsh environment (D). Combining expert opinion, it is reckoned that in 
the MASS collision FTA, each of the basic events under a certain inter
mediate event could lead to the occurrence of that intermediate event 
independently. Therefore, each basic event is connected via an “OR” 
gate with its upper-level intermediate event. The simplified result of the 
FT is shown in Fig. 2, and the detailed development process is described 
as follows. 

For human errors in MASS, this study considers the errors of shore- 
based operators and system design and developers, and any error of 
them could lead to a MASS collision. However, improper operation of 
shore-based operators (X1), failure to take effective avoidance actions in 
time (X2), failure to perform the obligation to avoid ships (X3), insuf
ficient training of shore-based operators (X4) and inconsistent work of 
ship and shore (X5) can each lead to shore-based manipulation errors 
(A1), and therefore they are positioned under A1 with an “OR” gate 
connection. Similarly, for the system developer, the poor design of the 
system (X6) and the presence of coding errors (X7) can each lead to a 
developer error, meaning X6 and X7 are linked with A2 via an “OR” gate. 

For system equipment failure in MASS, the main considerations are 
management issues (B1), system equipment failure (B2) and poor ship 
performance (B3), with any one event from B1–B3 leading to B event, 
connected by an “OR” gate. A failure to regularly overhaul and maintain 
ship equipment (X8) or an inadequate safety management system or 
inadequate training occurs (X9) can results in the occurrence of B1. 
Similarly, if any of X8, X10, X11 and X12 occurs it will cause B2 to occur; 
X13-X17 are the events associated with MASS structural performance, 
MASS is strongly dependent on sensing devices, if any of X10 and X13- 
X17 occurs, B3 happens. 

For the MASS external attacks from cyber-attacks and piracy, 

terrorism (C), the cyber attacks (C1) and physical attacks (X21) are 
defined as the sub-events. X18-X20 are all relating to cyber attacks. if 
any of them occurs, it will lead to C1, and therefore they are connected 
with C1 by an “OR” gate. X21 means external physical attacks. 

In terms of harsh environment (D), two intermediate events are 
considered as poor natural environment (D1) and poor navigable envi
ronment (D2). Any of the basic events X22-X24 will lead to D1, while 
any of the events X25-X27 will contribute to the occurrence of D2. All 
the names of the events are shown in Table 4.Where, represents the 

top event， … represent middle events， … represent 

basic events， represents the “OR” gate. 

3.4. Calculation of FFP 

The fuzzy theory is used to model the linguistic terms used by the 
domain experts to express their judgements on the prior probabilities 
(both unconditional and conditional) of the events in the FT and aids to 
convert such judgements into probabilities. In this study, 7 linguistics 
terms are used (Lin and Wang, 1997; Yazdi and Kabir, 2017; Yuhua and 
Datao, 2005) including very small, small, slightly small, medium, 
slightly large, large, very large, and their fuzzy numbers are defined and 
shown in Table 5. According to the survey, triangular fuzzy/trapezoidal 
fuzzy has been widely used in recent years to represent expert linguistic 
terms(Miri Lavasani et al., 2011; Yazdi and Kabir, 2017). This study uses 
triangular/trapezoidal fuzzy to describe the expert linguistic terms, as 
shown in Table 5 and Fig. 3. 

The following three steps outline the transformation from fuzzy 
linguistic terms into fuzzy failure probabilities. 

Step 1: Opinions aggregation 

According to Eq. (1), aggregating expert opinions (Lin and Wang, 
1997; Yazdi and Kabir, 2017) to get the average fuzzy number, and then 
convert the average fuzzy number into FFP. 

f =
(

1
n

)

⋅[z1 ⋅ Bλ1 + z2 ⋅ Bλ2 +⋯+ zn ⋅ Bλn] (1)  

Where, f is the average fuzzy number, n is the number of experts, zi is the 
number of votes of the i th level, and Bλi is the fuzzy set of the i th lin
guistic terms (i = 1, 2, …7) (Lin and Wang, 1997; Yazdi and Kabir, 2017; 
Yuhua and Datao, 2005). 

Table 4 
Symbols and names of events.  

Symbol Name of event Symbol Name of event 

T Top event(Collision accident) X8 Failure to regularly overhaul and maintain ship equipment 
A Human error X9 Incomplete safety management system 
B Ship system equipment failure X10 Radar sensing system failure 
C Cyber-attacks and piracy, terrorism X11 Ship-Shore communication failure 
D Poor environment X12 Sensor failure 
A1 Shore-based manipulation errors X13 Overloading 
A2 Developer errors X14 Ship performance 
B1 Management issues X15 Target recognition ability 
B2 Failure of system and equipment X16 Situational judgement ability 
B3 Structure and performance X17 Comprehension of the navigational environment 
C1 Cyber-attacks X18 Hacker attacks 
D1 Harsh natural environment X19 Remote hijacking 
D2 Poor navigation environment X20 Spread of false information 
X1 Improper operation of shore-based operators X21 External physical attacks 
X2 Failure to take effective avoidance actions in time X22 Low visibility 
X3 Failure to perform the obligation to avoid ships X23 Bad weather 
X4 Insufficient training of shore-based operators X24 Hydrology (large swells) 
X5 Inconsistent work of ship and shore X25 Heavy traffic on the channel 
X6 Improper system design X26 Navigation aid system failure 
X7 Human coding errors of the system X27 Existing obstacles  
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Step 2: Defuzzification 

Defuzzification is the process of converting the fuzzy numbers from 
aggregated expert opinion into clear values. The expert-based fuzzy 
numbers are first aggregated into membership form using fuzzy addition 
operator and then defuzzified using Eq. (2) and Eq. (3). There are many 
methods of defuzzification, such as the center of gravity method, 
weighted average method, mean area method, and maximum mem
bership degree (Xing et al., 2022), Table 6 demonstrates the difference 
between the four defuzzification methods. 

The center of gravity algorithm is extensively adopted for its high 
accuracy and robust adaptability to complex fuzzy sets (Guo et al., 
2021). It captures detailed information from fuzzy sets, producing 

smooth and precise outputs. Particularly valuable in scenarios of limited 
data or intricate fuzzy set configurations, the center of gravity algorithm 
significantly enhances decision-making quality and reliability through 
its defuzzification process (Masalegooyan et al., 2022; Xing et al., 2022). 
Consequently, it is the preferred method for safety-critical applications 
and complex decision-making scenarios, extensively utilized in risk 
assessment and decision-making processes for autopilot ships and other 
advanced control systems (Miri Lavasani et al., 2011; Z. L. Yang et al., 
2009). 

X∗ =

∫
f(x)xdx

∫
f(x)dx

(2)  

Where X∗ is the clear value of the trapezoidal fuzzy number output, the 

Fig. 2. Simplified FT logic diagram.  

Table 5 
Triangular/trapezoidal fuzzy numbers for seven linguistic terms (Liu et al., 2005; Miri Lavasani et al., 2011; Yang and Wang, 2015; Guo et al., 2021).  

Rank Linguistic terms Meaning (general interpretation) Failure rate (1/year) Fuzzy memberships 

1 Very Small (VS) Failure is unlikely but possible during lifetime < 10− 6 (0,0,0.1,0.2) 
2 Small (S) Likely to happen once during lifetime 0.25 × 10− 5 (0.1,0.2,0.3) 
3 Relatively Small (RS) Between low and average 0.25 × 10− 4 (0.2,0.3,0.4,0.5) 
4 Medium (M) Occasional failure 10− 3 (0.4,0.5,0.6) 
5 Relatively Large (RL) Likely to occur from time to time 0.25 × 10− 2 (0.5,0.6,0.7,0.8) 
6 Large (L) Repeated failure 0.25 × 10− 1 (0.7,0.8,0.9) 
7 Very Large (VL) Failure is almost inevitable or likely to happen repeatedly >0.25 × 10− 1 (0.8,0.9,1,1)  

Fig. 3. Fuzzy number of fuzzy linguistic terms.  

P. Li et al.                                                                                                                                                                                                                                        



Ocean Engineering 309 (2024) 118444

9

trapezoidal fuzzy number after aggregating expert opinions is noted as 
R̃ = (a,b, c,d), then the clear value after defuzzification is Fuzzy Possi
bility Score (FPS), and the calculation process is shown in Eq. (3). 

FPS=
∫ b

a
x− a
b− a xdx +

∫ c
b xdx +

∫ d
c

d− x
d− c xdx

∫ b
a

x− a
b− a dx +

∫ c
b dx +

∫ d
c

d− x
d− c dx

=
1
3
×
(c + d)2

− cd − (a + b)2
+ ab

(c + d − a − b)
(3)   

Step 3: Fuzzy Failure Probability (FFP) 

Then the FFP can be calculated as follows (Lin and Wang, 1997; 
Yazdi and Kabir, 2017): 

FFP=

⎧
⎪⎨

⎪⎩

1
10K (FPS ∕= 0)

0 (FPS = 0)
where，

(

K=

(
1 − FPS

FPS

)1
3
×2.301

)

(4)  

Where K is an intermediate variable being only dependent on FPS. 

3.5. Collision risk analysis 

3.5.1. BN based MASS collision risk analysis 
BN, based on the Bayesian probabilistic theory, uses a directed graph 

to describe probability relations, and is often called a directed acyclic 

graph (DAG) (Jianxing et al., 2021). Nodes represent variables, while 
directed arcs represent the relationships between nodes, using proba
bilities to represent their interdependencies. The relationship between 
FTA and BN is illustrated in Fig. 1: the top event corresponds to the 
target node, intermediate events correspond to intermediate nodes, 
basic events correspond to root nodes, and the failure probability of 
basic events corresponds to the prior probability of the BN. The logic 
gates in FTA, such as the “AND” gate and “OR” gate, correspond to 
probability gates in BN. Dependencies between events can be repre
sented by combining these logic gates. Therefore, the mapped BN is 
shown in Fig. 4. 

BN has been widely used in maritime safety risk assessment. Li and 
Yang (H. Li et al., 2023) utilized historical collision data from the IMO, 
identified 23 risk factors, and applied a data-driven BN model to perform 
risk analysis. Their study successfully revealed the risks associated with 
various scenarios. Wang et al. (2013) combined BN with evidential 
reasoning to assess collisions of ships, and the model can effectively 
assess the risk of ship navigation, but it requires a large amount of his
torical data, structure learning, and parameter learning, otherwise it 
cannot establish logical relationships between risk factors. Similarly, 
Goerlandt et al. (Goerlandt and Montewka, 2014) and Zhao et al. (2021) 
used BN structural learning to establish logical relationships between 
risk factors for tanker collision risk during shipping, and inland vessel 
navigation safety, respectively. Hence, if historical accident data are 
missing, logical relationships cannot be established by structures 
learning. To solve the problem, Yu et al. (2021) proposed a rule-based 

Table 6 
Differences between Center of gravity method and Weighted average method, Mean area method, Maximum membership degree.  

Method Description Advantage Drawback Applicable scenario 

Center of 
gravity 
method 

Calculate the centroid of the 
fuzzy set, i.e., the membership- 
weighted average position. 

It reflects the entire fuzzy set’s 
information, producing 
smooth and detailed output. 

Computation becomes more complex, 
especially when the membership 
function has a complex shape. 

Suitable for handling fuzzy 
systems with continuous or 
discrete outputs. 

Weighted 
average 
method 

Calculate the weighted average 
using the product of membership 
degrees and custom weights. 

Simpler calculations, suitable for 
discrete data. 

Accuracy depends on the selection of data 
points, and it is not as smooth as the center 
of gravity method. 

Scenarios where elements in a fuzzy 
set vary in importance and require 
distinct handling. 

Mean area 
method 

Identify all points where the 
membership function reaches its 
maximum, and calculate their 
average. 

Intuitive, easy to understand and 
implement. 

Critical information might be disregarded, 
particularly when the maximum value 
appears at the edge of the membership 
function. 

Fuzzy sets exhibit one or more 
distinct regions of maximum 
membership. 

Maximum 
membership 
degree 

Choose the single point or the 
midpoint among multiple points 
with the highest membership 
degree. 

Fastest calculations, easy to 
implement. 

Outputs are coarse, lacking smooth 
transitions between values, and often 
overlook other crucial fuzzy information. 

Swift decision-making, real-time 
systems, and applications with less 
stringent precision requirements.  

Fig. 4. BN structure of MASS.  
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BN model to assess the collision risk of ships, and the BN structure was 
established by defining the logical relationships between risk factor 
nodes through the formulated causality rules. In addition, Afenyo et al. 
(2017) established a BN structure for the risk of ship collisions in Arctic 
shipping, combined with expert experience, and identified collision risk 
factors by sensitivity analysis, but the conditional probability of this BN 
model was too conservative. 

Since there is no historical failure data on MASS navigation in the 
real world, it is not possible to conduct a data-driven BN structure and 
calculate the conditional probability of BN by structure learning and 
parameter learning. Therefore, introducing the FTA-BN model and 
mapping FTA to BN allows establishing logical relationships between 
risk factors and using the Noisy-OR gate (Feng et al., 2020; Jianxing 
et al., 2021) to determine the CPT for BN, as described in Section 3.5.2. 

3.5.2. Calculation of BN conditional probability in MASS 
When using BN to assess the risk of MASS, it is a very critical step to 

determine the CPT of BN. As aforementioned, it is necessary to deter
mine the CPT of BN through expert experience because of lacking his
torical data. However, the conditional probability of a network 
involving multiple nodes brings great difficulty for expert scoring. In 
order to simplify the difficulty, this study introduces a Noisy-OR gate 
model (Feng et al., 2020; Ji et al., 2022; Jianxing et al., 2021), and 
combines the fuzzy theory to convert the fuzzy language into condi
tional probability. Using the Noisy-OR model requires two conditions to 
be met (Feng et al., 2020; Jianxing et al., 2021): 1) each event is inde
pendent of each other, and each event has only two states; 2) assuming 
that the state of one of the variables xi is occurrence and other variables 
is not occurrence, then the probability of its child node Y is Pi = P(Y =

1|x1,x2,⋯,xi,xi+1,⋯,xn), then the probability Pi is called the connection 
probability (Feng et al., 2020; Ji et al., 2022; Jianxing et al., 2021) as 
shown in Eq. (5), The connection probability is obtained by expert 
judgement, then the conditional probability can be calculated as Eq. (6). 

Pi =P(Y =1|X1 =0,⋯,Xi =1,⋯,Xn =0) (5)  

P
(
Y|Xp

)
= 1 −

∏

i:xi∈xp

(1 − Pi) (6) 

It can be known from the above Eq. (6) that when the Pi is 0, the 
conditional probability is also 0. Therefore, the probability of occur
rence can be defined as 0. 

3.6. Model validation 

3.6.1. Face validity 
Face validity refers to whether a test appears to measure the concept 

or phenomenon being measured. In layman’s terms, this means whether 
the test is intuitive (Pitchforth and Mengersen, 2013; Yu et al., 2020). 
Face validity can be assessed in a number of ways. One common method 
is to compare the results of a test with other known measurements to 
determine their correlation. Another method is to use expert assessment, 
where an expert assesses whether the items on the test are related to the 
concept or phenomenon being measured. These methods can help assess 
the facial validity of the test and determine whether the test accurately 
reflects the concept or phenomenon being measured. 

3.6.2. Validation through sensitivity analysis 
Using a new model for risk assessment requires validation of the 

reliability of the model (Pristrom et al., 2016; Zaili Yang et al., 2008). 

Firstly, the rationality of the model is judged by experts, and then 
verified by sensitivity analysis according to the three axioms that a new 
BN model needs to meet under the uncertain condition (Chang et al., 
2021; Jones et al., 2010; Yu et al., 2020; Zaili Yang et al., 2008). 

Axiom 1. A slight change in the prior probability of parent nodes 
should result in a relative change in the posterior probability of the child 
nodes. 

Axiom 2. Given the variation of subjective probability distributions of 
each parent node, its influence magnitude to child node values should 
keep consistent. 

Axiom 3. The total influence magnitudes of the combination of the 
probability variations from x attributes (evidence) on the values should 
be always greater than the one from the set of x-y (y ∈ x) attributes (sub- 
evidence). 

Furthermore, sensitivity analysis can also aid in ranking the influ
encing factors while testing the robustness of the model. Analysis using a 
prior and posterior probabilities (Feng et al., 2020; Jianxing et al., 
2021), as shown in Eq. (7). 

R(Xi)=
φ(Xi) − ψ(Xi)

ψ(Xi)
(7)  

Where R(Xi) is sensitive value, φ(Xi) is posterior probability and ψ(Xi) is 
prior probability. 

4. Result and discussion 

4.1. Calculation of FFP 

According to the FT deduced in section 4.1, this study designed and 
distributed 40 questionnaires, and 34 valid questionnaires were 
collected. But experts give specific evaluation using the 7 defined lin
guistics terms. Triangular or trapezoidal fuzzy numbers are then used to 
calculation the FFP of the involved nodes. For instance, the calculation 
process of FFP of node X3 is introduced as follows. 

Step 1: Aggregate the opinions of experts. 

From the questionnaire survey, for X3 node, the opinions of 34 ex
perts are: very small 5 votes, relatively small 6 votes, small 10 votes, 
medium 3 votes, relatively large 5 votes, large 4 votes and very large 1 
vote. It can be calculated as: 

f =
1
34

⋅[5 ⋅ (0,0, 0.1,0.2)+6 • (0.1,0.2, 0.2,0.3)+10

• (0.2,0.3,0.4, 0.5)+3 • (0.4,0.5,0.5, 0.6)+5

• (0.5,0.6,0.7, 0.8)+4 • (0.7,0.8,0.8, 0.9)+1 • (0.8,0.9,1, 1)]

= [0.2912,0.3765,0.4382,0.5353]

The fuzzy number results for the aggregation of the remaining 27 
parent nodes (i.e. 27 basic events in the FT) are shown in Table 7. 

Step 2: Transform fuzzy numbers into FPS. 

The membership function can be obtained from Eq. (2). Taking the 
X3 node as an example again, the aggregated membership function is 
obtained using Eq. (3) as shown below: 

FPS=
1
3
×
(0.4382 + 0.5353)2

− 0.4382 × 0.5353 − (0.2912 + 0.3765)2
+ 0.2912 × 0.3765

(0.5353 + 0.4382 − 0.3765 − 0.2912)
= 0.4109   
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Step 3: Transform the FPS into FFP. 

According to Eq. (4), FPS is 0.4109, so the value of K is 2.5946. 
Therefore, the FFP of node X3 is 0.0025. Similarly, the FFP of other 
nodes can be calculated, and the calculation results are shown in 
Table 8. 

In this paper, the FFP is taken as the prior probability of the BN, and 
the prior probability is the result of the expert’s initial judgement. As 
shown in Table 8, the largest FFP is “Heavy traffic on the channel” (node 
X25), followed by “Situational judgement ability” (node X16). This is 
because of the mix of MASS and conventional ships on the channel, 
when the traffic volume is too heavy, MASS has to constantly change 
routes. However, the traditional manned ships and MASS need to carry 
out constant information exchange, and in this process, collision acci
dents could likely to happen. Besides, it is evident that situational 
judgement is also an important factor leading to collision accidents. 

4.2. CPT calculation using Noisy-OR 

As the conditional probability is affected by the number and state of 
nodes, the number of CPT increases exponentially with the number of 
nodes. To simplify the calculation process and reduce the difficulty of 
experts’ scoring, this paper uses Noisy-OR to calculate the conditional 
probability of each node. Taking the A2 node as an example, the 
calculation process of conditional probability is introduced. Based on 
the questionnaire results and fuzzy theory outlined in Section 3.2, the 
possibility of each root node (X6 and X7) causing the failure of the child 
node (A2) can be converted into a specific probability, known as the 
connection probability Pi. After performing calculations, the connection 
probabilities of nodes X6 and X7 are determined to be 0.5754 and 
0.5787, respectively. The conditional probability of A2 can be calculated 
using Eq. (6): 

P(A2= yes|X6 = yes,X7 = yes)=1 − (1 − 0.5754)(1 − 0.5787)=0.8211  

P(A2= yes|X6 = yes,X7 = no)= 1 − (1 − 0.5754)= 0.5754  

P(A2= yes|X6 = no,X7 = yes)=1 − (1 − 0.5787)=0.5787  

P(A2= yes|X6 = no,X7 = no)=1 − (1 − 0)(1 − 0)=0 

Thus, according to the above calculation process, the complete CPT 
of the A2 node can be obtained. Similarly, we can obtain the conditional 
probabilities of other nodes. 

4.3. Collision probability prediction and diagnosis 

Based on the BN structure established in Section 4.1, simulation 
inference was carried out in GENIE software. Combining Section 3.4, the 
prior probability, conditional probability can be imported into GENIE. 
The results are shown in Fig. 5, collision probability is 0.0192. In BN, the 
posterior probability represents the updated probability distribution of a 
node, given observed evidence. The posterior probability is shown in 
Fig. 6. From Fig. 7, the trend of the prior and the posterior probability is 
basically the same. But the a prior probability of “Radar sensing system 
failure” (X10) has an opposite trend to the a posterior probability. Ex
perts believe that the risk of collisions caused by the failure of sensing 
systems such as radar is low, however MASS are more dependent on 
sensing systems. 

According to fault diagnosis, node X4, influenced by nodes B1 and 
A1, shows an increased posterior probability, highlighting significant 
impacts from operational errors and management issues among shore- 
based personnel and underscoring inadequate training. Similarly, node 
X8, influenced by nodes B2 and B1, also exhibits an increased proba
bility, reflecting system and equipment failures and management lapses, 
revealing the grave consequences of neglecting regular maintenance of 
ship equipment. Additionally, there is a call for stronger training of 
shore-based personnel at MASS and regular maintenance of systems and 
equipment. Lastly, node X21, serving as an indicator of external physical 
attacks, shows a significantly elevated posterior probability when faced 
with actual threats, emphasizing the need for heightened attention to 
such risks in security measures. 

This paper takes node T as the target node, and changes the occur
rence probability of the event to observe the sensitivity analysis results, 

Table 7 
Fuzzy number of basic events based on expert experience.  

Node Fuzzy memberships Node Fuzzy memberships 

X1 (0.3412,0.4235,0.4882,0.5735) X15 (0.3735,0.4618,0.5206,0.6206) 
X2 (0.3235,0.4088,0.4676,0.5647) X16 (0.4353,0.5265,0.5794,0.6706) 
X3 (0.2912,0.3765,0.4382,0.5353) X17 (0.4206,0.5118,0.5588,0.6500) 
X4 (0.3235,0.4088,0.4588,0.5588) X18 (0.3294,0.4029,0.4647,0.5500) 
X5 (0.2853,0.3735,0.4324,0.5235) X19 (0.2941,0.3618,0.4265,0.5176) 
X6 (0.3147,0.4000,0.4588,0.5471) X20 (0.2765,0.3529,0.4000,0.4971) 
X7 (0.2971,0.3794,0.4441,0.5353) X21 (0.2971,0.3735,0.4324,0.5235) 
X8 (0.3676,0.4618,0.5206,0.6147) X22 (0.4324,0.5265,0.5706,0.6676) 
X9 (0.3500,0.4441,0.4853,0.5853) X23 (0.4206,0.5147,0.5559,0.6529) 
X10 (0.3441,0.4353,0.4853,0.5824) X24 (0.3706,0.4676,0.5059,0.6029) 
X11 (0.3853,0.4706,0.5206,0.6147) X25 (0.4559,0.5529,0.5971,0.6912) 
X12 (0.3794,0.4676,0.5324,0.6176) X26 (0.4176,0.5147,0.5559,0.6500) 
X13 (0.2647,0.3500,0.3941,0.4941) X27 (0.3353,0.4324,0.4706,0.5706) 
X14 (0.2676,0.3529,0.4000,0.5000) \ \  

Table 8 
FFP of root node.  

Node FPS FFP Node FPS FFP Node FPS FFP 

X1 0.4567 0.0036 X10 0.4621 0.0038 X19 0.4011 0.0023 
X2 0.4417 0.0033 X11 0.4983 0.0049 X20 0.3827 0.0020 
X3 0.4109 0.0025 X12 0.4991 0.0050 X21 0.4073 0.0025 
X4 0.4383 0.0032 X13 0.3766 0.0019 X22 0.5494 0.0070 
X5 0.4038 0.0024 X14 0.3809 0.0020 X23 0.5362 0.0064 
X6 0.4303 0.0030 X15 0.4947 0.0048 X24 0.4868 0.0045 
X7 0.4144 0.0026 X16 0.5530 0.0072 X25 0.5741 0.0083 
X8 0.4912 0.0047 X17 0.5353 0.0064 X26 0.5344 0.0063 
X9 0.4665 0.0039 X18 0.4373 0.0031 X27 0.4524 0.0035  
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as shown in Fig. 8 and Fig. 9. In Fig. 8, the red color represents sensi
tivity, with darker shades indicating higher sensitivity. Fig. 9 provides a 
ranking of the sensitivity for each basic event. The findings show that 

bad environment (D) is the most critical factor influencing the safety of 
MASS. For one thing, severe weather conditions, including sudden 
storms, can disrupt the ship’s communication system, leading to 

Fig. 5. BN reasoning results.  

Fig. 6. Posterior probability of BN.  
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potential delays in shore-based signals and an increased risk of collision 
with other vessels. Furthermore, in high-traffic scenarios, inadequate 
interaction between MASS and manned ships can result in collisions 
(Chang et al., 2021). 

Among the secondary indicators, shore-based manipulation errors 
(A1) and management problems (B1) are the most sensitive factors. 
These issues arise from the negligent or inadequate knowledge of shore- 
based operators. In comparison to traditional manned ships, MASS are 
more dependent on equipment, and their external equipment and de
vices are vulnerable to the comprehensive impact of external forces such 
as seawater erosion, wind, and waves. If the ship’s equipment is not 
regularly inspected and maintained, it is likely to lead to equipment 
failure, leading to collision accidents. 

In the third level indicators, there are several issues that need 
attention. These include external physical attacks (X21), inadequate 

training of shore-based operators (X4), neglecting regular inspections 
and maintenance of ship equipment (X8), and failures in radar and other 
sensing systems (X10). Reducing the crew weakens the prevention and 
control of external physical attacks, thereby increasing the risk of such 
incidents. Additionally, the collision accidents are also caused by the 
lack of control skills and emergency response ability of shore operators, 
as well as their insufficient ship driving qualifications. The difference 
between MASS and traditional ships is that equipment replaces human 
operation, such as sensing equipment replacing human observation. 
Consequently, MASS are more reliant on equipment. To mitigate risks, 
shipping companies should adhere to relevant regulations and conduct 
regular inspections and maintenance of ship equipment, including 
radar, sensors, and other critical systems. 

Moreover, the spread of false information (X20), remote hijacking 
(X19), and hacking (X18) are also concerns. By attacking the control 

Fig. 7. Prior probability and posterior probability of BN.  

Fig. 8. The results of the sensitivity analysis with T as the target node.  
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center’s IT system, hackers can paralyze it or spread false information to 
the shore base. This could lead to misjudgment by operators and 
potentially result in destruction or hijacking of MASS. 

4.4. Model validation 

The FTA-FBN model was further validated based on facial validity, 
by combining expert experience with previous studies to discuss the 
rationality and reliability of the MASS collision model. The results 
demonstrate that the developed BN aligns well with the findings of 
previous studies (Chang et al., 2021; C. Fan et al., 2020; Wahlström 
et al., 2015), not only do the identified navigational risk factors cover all 
possible areas, but their relationships also align with the understanding 
of MASS navigational safety. Furthermore, individual risk factors have 
been refined and enhanced based on expert guidance. To summarize, the 
gathered data and methodologies are dependable and effectively 
incorporate insights from prior studies, aligning well with existing 
knowledge. 

To validate the model’s reliability, it can be partially confirmed using 
the three axioms outlined in Section 3.4, along with sensitivity analysis. 
Taking node D1 as an example, its parent node includes X22 (Low vis
ibility), X23 (Bad weather), and X24 (Hydrology (large swells)). During 
the sensitivity analysis, the prior probabilities of these parent nodes 
were increased by a step of 5%, observing the change in the posterior 
probability of child node D1. Table 9 shows the change in the probability 
of node D when the prior probabilities of nodes X22, X23, and X24 are 
simultaneously increased to 5%, 10%, 15%, and 20%. From Table 9, a 
slight increase in the prior probability of the parent node results in a 
corresponding increase in the posterior probability of the child node, 
thus satisfying axiom 1. When the increased amplitude of parent nodes 
X22, X23, and X24 are consistent, the posterior probability of child node 
D1 also exhibits a consistent increase, thereby satisfying axiom 2. If the 
parent nodes increase to 5% at the same time, the posterior probability 
of D1 also increases to 7.95%. This indicates that the probability of the 

parent nodes changing concurrently is greater than when it changes 
alone and it satisfies axiom 3. Overall, these findings support the reli
ability and validity of the model. 

4.5. Implications 

After conducting a literature survey and summarizing accident re
ports, the risk factors of MASS collision accidents are summarized from 
four perspectives: human, ship equipment, cyber security, and envi
ronment. Compared to prior studies, this study specifically addresses 
management risks. For instance, there is still room for enhancement in 
the safety management system of autonomous ships. MASS require more 
comprehensive safety management systems and regular maintenance of 
ship equipment. Additionally, it was found that factors such as target 
recognition ability, comprehension of the navigational environment, 
and situational judegment ability are among the potential risks that 
contribute to MASS collisions. The proposed FTA-FBN model predicts 
the probability of MASS collisions. The prediction results can serve as a 
valuable reference for researchers to conduct further studies on the risks 
associated with MASS navigation. This includes the identification, 
causal analysis, quantitative assessment, and prevention and control of 
collision risk factors. Additionally, these results can aid ship companies 
in establishing a comprehensive safety system, which can be beneficial 
for maritime safety agencies in developing effective navigational safety 
strategies. 

The FTA-FBN model is an effective tool for assessing navigation risk 
in MASS by establishing logical relationships between risk factors, even 
in the absence of data. Additionally, it enhances the system’s ability to 
diagnose faults. The model can help ship engineers quickly locate and 
troubleshoot problems by analyzing various system parts to identify 
possible failures and their causes and effects. Failure to yield to vessels 
and promptly avoid collisions are crucial. The government and maritime 
regulators can gain a deeper understanding of the sources and trans
mission paths of MASS navigational risks and improve the collision 

Fig. 9. Sensitivity analysis value.  

Table 9 
Accident rate of the change in variables.   

+5% +10% 

X22 +5% \ \ +5% +10% \ \ +10% 
X23 \ +5% \ +5% \ +10% \ +10% 
X24 \ \ +5% +5% \ \ +10% +10% 
D1 3.71% 3.59% 3.73% 8.87% 6.44% 6.21% 6.49% 16.33%  

+15% +20% 

X22 +15% \ \ +15% +20% \ \ +20% 
X23 \ +15% \ +15% \ +20% \ +20% 
X24 \ \ +15% +15% \ \ +20% +20% 
D1 9.18% 8.83% 9.24% 23.38% 11.91% 11.45% 12% 30.1%  
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avoidance rules and related policies and measures for MASS naviga
tional safety. In order to improve ship design, product quality, and 
reliability, ship manufacturers and suppliers can enhance the situational 
awareness and target recognition capabilities of ships. This will help 
meet the needs of the shipping market and increase sales and coopera
tion opportunities. 

The MASS collision risk assessment uses expert empirical judgement 
as a data source, which has implications for the safety of MASS navi
gation. Shipping companies operate in a high-risk industry, and for this 
reason, they need to perform risk assessments to ensure safe ship oper
ations. This includes developing strategies to combat piracy and terrorist 
attacks, providing training to shore-based personnel, and regularly 
inspecting and maintaining ship equipment. Insurance companies need 
to conduct a risk assessment of a ship in order to determine the appro
priate amount and rate of insurance coverage. A marine risk assessment 
can provide insurers with valuable insights regarding the ship’s risks, 
enabling them to set insurance rates and amounts accurately. Addi
tionally, a risk assessment can also help the insurers make informed risk 
control recommendations. 

Furthermore, shipbuilders and shipyards can utilize it to identify 
risks and enhance safety measures. It has been discovered that MASS has 
a high risk of malfunctioning radar and other sensing systems, spreading 
false information, remote hijacking, irrational design of ship systems, 
and human coding errors. 1) Optimal design and manufacture: improve 
ship design and manufacturing processes to enhance the safety and 
performance of ships, thereby reducing the risk of hardware failure of 
MASS. Introduce advanced design principles and measures to optimize 
the design of the sensing system and reduce the possibility of failure. 2) 
Improved technology: designers and developers should continuously 
improve their technical level and introduce advanced technologies and 
processes to improve the safety and performance of vessel systems and 
reduce risks such as irrational system design and human coding errors. 
3) Strengthened supervision and management: strengthening supervi
sion and management is the key to ensuring ship safety. Strengthen the 
cybersecurity system, establish a sound management system, and 
enhance the supervision of ship construction and operation to ensure the 
safety and quality of ships. Strengthening the monitoring and review of 
cybersecurity systems and enhancing cooperation with government and 
regulatory bodies can reduce the risk of cyberattacks. 

5. Conclusions 

This paper is dedicated to the identification and quantitative 
assessment of the risk of collisions with MASS, the conclusions are as 
follows.  

(1) As most of the current research on MASS is focused on technology 
development and system algorithm design, there is a lack of 
research on risk assessment of MASS, and the methods are mostly 
from a qualitative perspective, which cannot be quantitatively 
assessed. This paper aims to fill this gap and promote the research 
progress of MASS risk assessment.  

(2) Previous studies on traditional manned ships have found that 
human error is the most important risk factor. However, in MASS, 
shipping companies should pay more attention to preventing 
external physical attacks, enhancing training for shore-based 
controllers, and improving emergency response capabilities. 
Secondly, the ship’s equipment should be regularly overhauled 
and maintained to avoid device failure due to long-term corrosion 
and wear. Besides, cyber security management should be 
strengthened to prevent hackers from attacking and hijacking 
MASS. The results can provide some reference for shipping 
companies and relevant maritime agencies.  

(3) Method, mapping FT into BN, solves the problem that the BN 
cannot establish a DAG graph due to lack of historical data. Using 
a Noisy-OR model to calculate the CPT avoids a complex 

calculation process and reduces the difficulty of expert scoring. 
Additionally, this paper is the only study to apply the combined 
FTA-FBN approach to the collision risk assessment of MASS.  

(4) In terms of the number of participants, 34 feedbacks are reflected 
by the MASS development constrains (i.e. limited implementa
tion in practice worldwide). It thoroughly checked the published 
papers in the field and found that all the MASS risk analysis works 
had involved a limited number of domain experts (Fan et al., 
2024; Lim et al., 2024; Sezer et al., 2024). Future work could 
expand the amount of data from experts to enhance the gen
eralisability of the findings. With the MASS development and 
implementation in the real world, experimental data especially 
those relating to human factors shall be further explored. 
Furthermore, future research could employ dynamic Bayesian 
networks to analyse multiple dynamic nodes and investigate the 
probabilities of state transfer among them. This approach would 
allow for a dynamic representation of the entire change process of 
MASS collisions as time progresses. 

CRediT authorship contribution statement 

Pengchang Li: Writing – review & editing, Writing – original draft, 
Validation, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Yuhong Wang: Writing – review & editing, Super
vision, Resources, Project administration, Investigation, Formal anal
ysis. Zaili Yang: Writing – review & editing, Writing – original draft, 
Validation, Supervision, Resources, Project administration, Investiga
tion, Formal analysis, Conceptualization. 

Declaration of competing interest 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Zaili Yang reports financial support was provided by European Research 
Council. Yuhong Wang reports financial support was provided by Nat
ural Science Foundation of Ningbo. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The research is supported by a Natural Science Foundation of 
Ningbo, China (Grant No. 2021J111) and a European Research Council 
project (TRUST CoG 2019 864724). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.oceaneng.2024.118444. 

References 

Abaei, M.M., Hekkenberg, R., BahooToroody, A., 2021. A multinomial process tree for 
reliability assessment of machinery in autonomous ships. Reliab. Eng. Syst. Saf. 210, 
107484 https://doi.org/10.1016/j.ress.2021.107484. 

Abilio Ramos, M., Utne, I.B., Mosleh, A., 2019. Collision avoidance on maritime 
autonomous surface ships: operators’ tasks and human failure events. Saf. Sci. 116, 
33–44. https://doi.org/10.1016/j.ssci.2019.02.038. 

Acanfora, M., Krata, P., Montewka, J., Kujala, P., 2018. Towards a method for detecting 
large roll motions suitable for oceangoing ships. Appl. Ocean Res. 79, 49–61. 
https://doi.org/10.1016/j.apor.2018.07.005. 

Afenyo, M., Khan, F., Veitch, B., Yang, M., 2017. Arctic shipping accident scenario 
analysis using Bayesian Network approach. Ocean Eng. 133, 224–230. https://doi. 
org/10.1016/j.oceaneng.2017.02.002. 

Ahvenjärvi, S., 2016. The human element and autonomous ships. TransNav 10, 517–521. 
https://doi.org/10.12716/1001.10.03.18. 

P. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.oceaneng.2024.118444
https://doi.org/10.1016/j.oceaneng.2024.118444
https://doi.org/10.1016/j.ress.2021.107484
https://doi.org/10.1016/j.ssci.2019.02.038
https://doi.org/10.1016/j.apor.2018.07.005
https://doi.org/10.1016/j.oceaneng.2017.02.002
https://doi.org/10.1016/j.oceaneng.2017.02.002
https://doi.org/10.12716/1001.10.03.18


Ocean Engineering 309 (2024) 118444

16

Bahootoroody, A., Abaei, M.M., Banda, O.V., Kujala, P., Carlo, F.D., Abbassi, R., 2022. 
Prognostic health management of repairable ship systems through different 
autonomy degree; from current condition to fully autonomous ship. https://doi. 
org/10.1016/j.ress.2022.108355. 

Bolbot, V., Theotokatos, G., Wennersberg, L.A., 2022. A method to identify and rank 
objects and hazardous interactions affecting autonomous ships navigation. htt 
ps://doi.org/10.1017/S0373463322000121. 

Bolbot, V., Theotokatos, G., Wennersberg, L., Faivre, J., Vassalos, D., Boulougouris, E., 
Jan Rødseth, Ø., Andersen, P., Pauwelyn, A.-S., Van Coillie, A., 2023. A novel risk 
assessment process: application to an autonomous inland waterways ship. Proc. Inst. 
Mech. Eng. O J. Risk Reliab. 237, 436–458. https://doi.org/10.1177/ 
1748006X211051829. 

Seeking harmony in shore-based unmanned ship handling: from the perspective of 
human factors, what is the difference we need to focus on from being onboard to 
onshore? In: Bucchianico, G.D., Vallicelli, A., Stanton, N.A., Landry, S.J. (Eds.), 
2016. Industrial and Systems Engineering Series. CRC Press, Taylor & Francis Group, 
pp. 61–70. https://doi.org/10.1201/9781315370460-7, 6000 Broken Sound 
Parkway NW, Suite 300, Boca Raton, FL 33487-2742.  

Burmeister, H., Bruhn, W., Rødseth, Ø., 2014. Can Unmanned Ships Improve 
Navigational Safety? 10. 

Burmeister, H.-C., Bruhn, W., Rødseth, Ø.J., Porathe, T., 2014. Autonomous unmanned 
merchant vessel and its contribution towards the e-navigation implementation: the 
MUNIN perspective. Int. J. e-Navigat. Maritime Econ. 1, 1–13. https://doi.org/ 
10.1016/j.enavi.2014.12.002. 

Burmeister, H.-C., Bruhn, W., Walther, L., 2015. Interaction of harsh weather operation 
and collision avoidance in autonomous navigation. TransNav 9, 31–40. https://doi. 
org/10.12716/1001.09.01.04. 

Cem Kuzu, A., Akyuz, E., Arslan, O., 2019. Application of Fuzzy Fault Tree Analysis 
(FFTA) to maritime industry: a risk analysing of ship mooring operation. Ocean Eng. 
179, 128–134. https://doi.org/10.1016/j.oceaneng.2019.03.029. 

Chaal, M., Valdez Banda, O.A., Glomsrud, J.A., Basnet, S., Hirdaris, S., Kujala, P., 2020. 
A framework to model the STPA hierarchical control structure of an autonomous 
ship. Saf. Sci. 132, 104939 https://doi.org/10.1016/j.ssci.2020.104939. 

Chae, C.-J., Kim, M., Kim, H.-J., 2020. A study on identification of development status of 
MASS technologies and directions of improvement. Appl. Sci. 10, 4564. https://doi. 
org/10.3390/app10134564. 

Chalmers University of Technology, Sweden, 2014. Porathe, T., prison, J., chalmers 
university of technology, Sweden, man, Y., chalmers university of technology, 
Sweden. In: Situation Awareness in Remote Control Centres for Unmanned Ships, in: 
Human Factors in Ship Design & Operation. Presented at the Human Factors in Ship 
Design & Operation, RINA, pp. 105–114. https://doi.org/10.3940/rina.hf.2014.12. 

Chang, C.-H., Kontovas, C., Yu, Q., Yang, Z., 2021. Risk assessment of the operations of 
maritime autonomous surface ships. Reliab. Eng. Syst. Saf. 207, 107324 https://doi. 
org/10.1016/j.ress.2020.107324. 

Chen, Q., Lau, Y., Zhang, P., Dulebenets, M.A., Wang, N., Wang, T., 2023. From concept 
to practicality: unmanned vessel research in China. Heliyon 9, e15182. https://doi. 
org/10.1016/j.heliyon.2023.e15182. 

Choi, I.-H., Chang, D., 2016. Reliability and availability assessment of seabed storage 
tanks using fault tree analysis. Ocean Eng. 120, 1–14. https://doi.org/10.1016/j. 
oceaneng.2016.04.021. 

Ding, R., Liu, Z., Xu, J., Meng, F., Sui, Y., Men, X., 2021. A novel approach for reliability 
assessment of residual heat removal system for HPR1000 based on failure mode and 
effect analysis, fault tree analysis, and fuzzy Bayesian network methods. Reliab. Eng. 
Syst. Saf. 216, 107911 https://doi.org/10.1016/j.ress.2021.107911. 

Dobryakova, Larisa, Lemieszewski, Łukasz, Ochin, Evgeny, 2016. The vulnerability of 
unmanned vehicles to terrorist attacks such as Global Navigation Satellite System 
spoofing. 46 Scientif. J. Maritime Uni. Szczecin 118, 181–188. https://doi.org/ 
10.17402/135. 

Fan, S., Yang, Z., 2023. Towards objective human performance measurement for 
maritime safety: a new psychophysiological data-driven machine learning method. 
Reliab. Eng. Syst. Saf. 233, 109103 https://doi.org/10.1016/j.ress.2023.109103. 
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