
Improving Camera Pose Estimation for Indoor Marker-less

Augmented Reality
Sud Sudirman and Abdennour El-Rhalibi

School of Computing and Mathematical Sciences

Liverpool John Moores University, UK
{s.sudirman, a.elrhalibi}@ljmu.ac.uk

Abstract—Vision-based Augmented Reality (AR) techniques

rely heavily on Computer Vision algorithms for most of their

tasks. It is understood that these algorithms require numerous

parameters to function and their values can affect their outputs.

Oftentimes the results vary greatly when different parameters

were used and as a result, the performance of the AR technique

that utilises them varies accordingly as well. This paper aims at

improving the performance of AR techniques by employing a

novel algorithm to adjust the parameters automatically during

runtime. More specifically, the proposed technique works on

improving the camera pose estimation stage, arguably one of the

most crucial stages, of such AR systems.

Keywords—Augmented Reality, Feature Detector, Camera Pose

Estimation, Computer Vision.

I. INTRODUCTION

Augmented Reality, or AR for short, is a technology that
allows superimposing of virtual contents or information onto
real world images or videos. Augmented Reality, and its
sibling Virtual Reality (VR), are subsets of different realities in
the Reality-Virtuality continuum suggested in [1]. Whereas the
goal of Virtual Reality is to create entire virtual worlds that a
user can interact with, in an AR system virtual objects are
displayed in such a way that they appear to coexist with the
real ones.

AR has many possible applications in a wide variety of
fields including education, public health, construction,
manufacturing and entertainment [2]. It has attracted the
attention of researchers and practitioners since it was coined in
1992 by Tom Caudwell [3]. The popularity of AR has been
growing in the past 20 years thanks to a number of new
techniques and open source implementations such as
ARToolKit [4] which uses 3D graphics overlay onto a video
feed by using object detection and tracking algorithms. The use
of AR technology in computer entertainment was pioneered
with the release of ARQuake, an interactive outdoor AR
collaboration system [5] in 2002. ARQuake is an Augmented
Reality version of the popular First Person Shooter game
Quake. It uses a head-mounted display, mobile computer, head
tracker and a GPS system to provide inputs to control the
game.

With the growing popularity of smartphones, AR
technology has reached a new height. The presence of an on-
board camera and the relatively powerful processor that
smartphones possess allow videos to be captured and processed
effortlessly. The release of Wikitude [6] and the porting of

ARToolkit to Adobe Flash have further accelerated the growth
of AR popularity using smartphones.

The AR technology has somewhat reached a stage where
many commercial applications and gadgets use it as their main
selling point. For example Layar [7], a mobile phone app, uses
AR technology to embed commercial information onto videos
captured by mobile phones. It works by using a combination of
the mobile phone’s camera, compass and GPS data to identify
the user’s location and field of view, retrieve data based on
those geographical coordinates, and overlay that data over the
camera view. Microsoft’s first attempt at Augmented Reality,
dubbed Microsoft HoloLens [8], has recently attracted a large
number of interests when it was showcased in Electronic
Entertainment Expo (E3) 2015 in Los Angeles.

AR techniques can be classified into two major categories
namely vision-based AR and location-based AR. Location-
based AR uses the ability of a particular device to locate its
position in the world, e.g., by means of GPS, and then retrieve
relevant information to that location. This information is then
superimposed into the output of their device’s camera to allow
a more natural data presentation compared to just using a map
alone. This type of AR can be used to help the users’ everyday
tasks such as finding their way around a city.

On the other hand, vision-based AR relies mostly on
processing the data that is extracted from the images or video
frames taken by the device. This type of AR involves a number
of techniques that lend heavily from computer vision (CV) to
the extent where research progress in AR depends on the
progress of the latter. Research progress in computer vision is
moving rapidly with many scholars believe that major and
ground-breaking progresses are still in the development in a
foreseeable future. The same argument can be said also
regarding the AR technology with new techniques and
algorithms proposed regularly in literatures.

The objective of this paper is to look at a specific aspect of
AR process that uses computer vision algorithms, namely
feature detection and tracking, and suggest a method to
improve the subsequent process to produce a better camera
pose estimate. The paper will start by reviewing the current and
state-of-the-art AR techniques in the literature and identify a
research problem in marker-less AR. This problem is analysed
and a hypothesis is made in section 3. This paper’s solution to
the problem is presented in section 4. Experiment results and
analysis are given in section 5 together with the proof of the
hypothesis.

II. LITERATURE REVIEW AND ANALYSIS

Vision-based AR process involves a number of techniques
that borrows heavily from computer vision and image
processing. The overall process in this type of AR is illustrated
in Figure 1.

Figure 1. Steps in Vision-based Augmented Reality

To start with, an image or video frame is captured from the
camera device. If the AR is performed by a smartphone, it may
come with a software library that allows this step to be done
relatively easily. The resulting image may need pre-processing
to clean up some noise, to enhance the features of interest, or to
remove some distortions that are prevalent in camera devices.
This is then followed by the application of image features
detection and tracking algorithms. This is a very important
stage in AR as the result of this step determines the accuracy
and speed of the entire process. It is argued that good feature
detection and tracking algorithms which detect objects reliably
and quickly would make a successful AR program [9]. The
result of this step is then fed through an algorithm that
determines the pose of the camera with respect to the scenery.
This will give the view-projection matrix that can be used to
render virtual information on the image as a 3D system.

Depending on what and how image features are detected
and tracked, vision-based AR can be further classified into two
categories namely marker-based AR and marker-less AR.

Marker-based AR utilises markers that are placed in the
scene and within the field-of-view of the camera to help guide
the camera pose estimation process. The markers are often
referred to as fiducial markers because their position and
orientation relative to the scenery are fixed. The markers are
often planar markers and typically have strong (high contrast
and defined orientation) features such as long edges or corners
between black and white regions.

AR techniques that belong to this category put strong
emphasis on the marker design. The most popular type of
marker design is square marker because the square feature
would allow a precise localisation of the markers through its
four corner points. The inner region of the marker can contain
either binary code or an arbitrary binary pattern that is useful
for identification and orientation estimation. Included in this
category is ARToolkit technique [4]. The markers consist of
wide black border with an arbitrary image in the centre region.
The image is stored in a database which is then, by means of
pattern matching technique, is detected and localised. The
approach, while very popular in the academic community, has
a relatively high false positive detection error. In addition, if
multiple markers were used the technique would exhibit a
rather high inter-marker confusion rate. The technique was
further improved, and rebranded as ARToolkitPlus [10], by
incorporating automatic setting of global threshold values used
to detect the markers. The technique also utilises an error
detection and correction technique to improve the robustness of
the detection process over its predecessor.

Another notable technique in this marker-based AR
category is Aruco [11]. The technique uses a dictionary of
markers that are automatically generated using an algorithm
that maximises inter-marker classification difference. Instead
of using the markers from this dictionary individually, the
technique uses multiple markers in a rectangular, checker-
board-style panel. This would make it possible for camera pose
estimation to be carried out even when partial occlusion of the
panel occurs.

In marker-based AR algorithms, edges are the most popular
type of image features to detect [9]–[11]. This is because the
markers have typically prominent and strong regions with high
contrast boundaries which respond well to edge detectors. The
resulting output is then used to identify image segments which
in turn can be matched with the marker database. Since the
markers in the database are stored in a normal frontal view,
comparing them with image segments in the current frame
would require removal of perspective-projection
transformation. This is done by calculating the homography
matrix for each possible pair. The result of this matching
process would be a set of number that corresponds to the
confidence of an image segment belonging to a specific
marker. By taking the maximum value of each pairing and
applying a threshold to it, the algorithm finds the best matching
marker for each segment. The homography matrices of those
best match pairs are then used to estimate the overall camera
pose.

Marker-based techniques belonging to this category is by
far the most popular AR technique, as detection and tracking of
fiducial objects are relatively easy to perform and allows high
speed and precise AR. These techniques, however, have severe
limitation basically due to its strict requirement of having to
use the fiducial markers. In practice, it may not always be
possible to attach these markers onto the scenery given the
locality and distance of the object from camera. Furthermore,
even when the markers can be placed, they have to be within
view and the sensing range of the camera.

The alternative to using fiducial markers would be to
perform the camera pose estimation via detection and tracking
of features from naturally occurring objects. The features could
be corners, pattern or textures. AR technologies that detect and
track these feature belong to the second category in AR
classification, namely marker-less AR.

Marker-less AR differs from marker-based AR because it
does not rely on the use of artificial markers to help salient
features detection in the scene. Instead, marker-less AR works
by detecting features that are readily available from the natural
objects in the scene and attempt to create a model or a map
from the scenery in order to represent the world as it is viewed
by the camera. The model can be described as a hypothesis of
the layout of objects in the scenery in relation to the camera
view. This can then be matched to the real model, by means of
registration technique, to get the camera pose. If there is no
such real model of the scene exists, then a technique is needed
to approximate the initial model and subsequently update and
improve the initial model by tracking image features in scenes
viewed from different camera poses. This problem is often
referred to as Simultaneous Localization and Mapping or

SLAM. Techniques which attempt to solve this problem are
grouped into a class of techniques known, in the AR context, as
Extensible Tracking. This type of technique has garnered much
attention of many researchers, in particular those in mobile
robotics area.

SLAM is a well-known and well-researched problem in
autonomous robotics. The dominant approach to solve this
problem is introduced in a seminal paper [12] by Smith et al.
The paper proposed a concept of a stochastic map, which is a
representative for spatial information of the viewed scenery
and a method of building and incrementally update it as new
information is obtained. The approach has since been revisited
and improved a number of times with examples including
FastSLAM [13], MonoSLAM [14] and RT-SLAM [15].

A notable extension to the extensible tracking approach in
SLAM was proposed in [16]. In this approach, which is known
as Parallel Tracking and Mapping or PTAM, the tracking and
mapping processes were split and handled as parallel threads to
allow the use of computationally expensive batch optimisation
technique that makes the approach more suitable for real-time
operation. The technique was reported to have produced very
good results in implementing a marker-less AR. However, due
to the constraints in the algorithm used, the technique is only
suitable mostly for indoor or small workspace environment.

A different approach to marker-less AR by means of image
registration technique is adopted by a number of researchers
[17]–[19]. Marker-less AR with this approach has some
underlying similarity with marker-based AR. However, instead
of using pre-defined markers, a snapshot of the scenery is used
as a reference image. This reference image normally contains a
flat region on which the 2D x-y plane of the virtual axis can be
based on. Image features in this reference image and in
subsequent frames are then detected, and an image registration
technique is used to match and track these features. The
technique proposed in this paper will focus on issues affecting
this approach of marker-less AR to improve its performance.

III. MARKER-LESS AR AND PROBLEM DEFINITION

A. Problem definition

As can be seen from the review of the current state-of-the-
art AR in the previous section, marker-less AR provides the
most potential and better use of AR in day-to-day life. On the
other hand, the technique is less reliable and more prone to
external factors, hence the need to further improve the
technique’s reliability and robustness is always present.

As is also the case with the rest of vision-based AR
techniques, marker-less AR techniques rely heavily on the
computer vision algorithms used to pre-process, detect and
track features, and estimate the camera’s pose. Computer
vision algorithms often use a number of parameters when
producing their outputs, with typical examples include
threshold values, width of Gaussian function, and range of
resolutions etc. The result of the feature detection process
depends largely on the values of these parameters.
Furthermore, a good set of parameter values is variable as it
often depends on many real-time and run-time conditions such
as lighting, surface textures, and even poses. As such there is a
need to estimate these best or optimal values before the camera

pose estimation process can be done. With that argument in
mind, we are going to test the following supposition:

Hypothesis 1.

The reliability and robustness of an AR technique to external
real-time and run-time conditions can be improved by using an
algorithm to dynamically set the parameters used by the
employed computer vision algorithms.

 To put that argument into perspective and to help us
formulate a solution, we will look deeper into what these
techniques are. We will start by looking at the different feature
detection algorithms, followed by feature tracking algorithms
and camera pose estimation algorithms.

B. Feature Detection

Image features are essentially a set of important
information that can be used to describe the image or a subset
of the image. They are immensely important in the area of
computer vision because they can be used to mark interest
areas in the image and can be used to compare one image to
another. There are two types of image features namely global
and local features.

Local features are computed at different locations in the
image using only small support area of around the location
point. As such, local features describe only the image in the
context of that small subset and nothing else. That means even
when the other parts of the image undergo changes, as long as
the support area remains the same, local features would more
likely not be affected. This is one of the strong points of local
features over global features because they are robust to
occlusion, or changes in camera pose, etc. Examples of local
features are corners, edges, and texture descriptors.

Global features, on the other hand, are derived from the
entire image. They have the ability to generalise the entire
image into one single feature vector. An example of global
features is image code. Image code is a compressed form of the
image using an appropriate coding technique that preserves the
high level information of the image contents. It is also not
uncommon to have a global feature which is a collection of
many local features such as shape descriptors, contours
descriptors, texture descriptors, etc.

Comparatively, local features are more widely used than
global feature in AR application. Many marker-based AR uses
edges whereas many marker-less AR prefers use corners. One
of the first corner detectors is Harris detector [20] in 1988 and
since there are numerous more developed including GFTT
[21], FAST [22], ORB [23], MSER [24], SIFT [25] and SURF
[26]. Every feature detection algorithm uses parameters to
adjust its output with the most common ones are threshold
values, support area width, and Gaussian/Laplacian function
width.

C. Feature Matching and Tracking

Tracking of features is performed by means of detecting the
features in one frame (often referred to as reference frame) and
the subsequent frames and perform feature matching between

them. The best matched pairs of features from both the
reference frame and a subsequent frame are likely to
correspond to the same object in both frames hence feature
matching process is essential in identifying parts of an image
which correspond to those in a reference image. This process is
considered as one of the most computationally expensive part
of many computer vision algorithms. This is because it
involves searches for closest matches between pairs of high-
dimensional vectors.

When comparing two sets of features, the simplest solution
is to use a brute force approach that compares every feature in
one set to every feature in the other and keeping track of the
"best so far" match. This approach, sometimes also referred to
in literature as the naive approach, results in an O(N

2
)

computational complexity where N is the number of feature in
each frame (assuming the same number in each). There are a
number of proposed algorithms that aim at improving the
computational efficiency of feature matching process. One of
the most popular and more traditional technique is kd-tree [27].
This technique uses exact nearest neighbour search and works
very well for low dimensional data but quickly loses its
effectiveness as dimensionality increases. The popularity of the
kd-tree technique has seen a number of proposals to further
improve the algorithm including [28], [29]. A more recent
matching technique that gains popularity amongst computer
vision researchers is proposed by Muja and Lowe in [30]. It is
based on nearest neighbour matching algorithm using priority
search and adaptive partitioning of the kd-tree. Feature
matching algorithms also use parameters to adjust their output
with the most common ones are threshold values, search width,
initial partition and neighbour size.

D. Camera Pose Estimation

There are two major approaches to camera pose estimation
techniques, namely Relative Orientation and Planar
Homography. Relative Orientation is a technique that
calculates the position and orientation of a camera relative to
another from correspondences among five or more ray pairs. A
ray pair is defined as the vectors that originate from a fixed and
visible point in the scenery to the centre of the camera
positions. If the sceneries were taken by the same camera
which was moved and re-orientated then the technique can be
used to calculate the transform matrix of the camera
movement. It is an active research area as the problem is a very
important one in photogrammetry [31]–[35]

While Relative Orientation approach generally takes any
feature points in the image without many constraints over their
placement, the algorithm is very complex and is very sensitive
to feature detection errors. While Planar Homography works in
a similar fashion as Relative Orientation approach, it requires
the features to be tracked to be on the same 2D plane. Planar
Homography is defined as a projective mapping from one 2D
plane to another (typically image plane). This constraint
simplifies the problem and allows more straightforward
calculations to be made. Details on this topic is outside the
scope of this paper but interested readers are advised to look up
the relevant textbook [36] and survey paper [37].

At its core, camera pose estimation is a parameter
estimation problem. The algorithm would have to find a model

or a set of parameters that best fits the transform from the
reference pose to the new pose. To do this, an efficient
matching technique such as RANSAC or RANdom SAmple
Consensus [38] can be used. This technique works by selecting
random number of features to match initially to fit an initial
matching parametric model. When the parameters of the model
had been calculated the algorithm then works out how many
features from the entire set would with this model within a pre-
defined tolerance. If the result exceeds a pre-defined threshold,
then that model is used, otherwise the process is repeated for a
set number of time. This technique produces better matching
result when there are outliers in the feature sets compare to a
naïve or brute force approach.

E. Summary

As can be seen from the analysis given in the previous sub
section, there are many parameters used that can affect the
overall outcome of an AR system. There is a need to study how
these parameters can affect the final outcome. This further
justifies the necessity to test and prove the hypothesis stated
earlier. The design of the solution to test this hypothesis is
described in the next section.

IV. SOLUTION DESIGN

A. Solution Design

The solution to prove the hypothesis has the following
requirement. First, it has to employ a suitable feature detection
algorithm that allows direct control over the number of
detected features. This is important since a set of features that
contains too many outliers could worsen the process of feature
matching and consequently the camera pose estimation. Having
a means to control this would allow us to directly measure the
quality of the AR output at different situations.

Secondly, it has to have quantifiable means to measure the
confidence of the camera’s pose estimation process. A high
confidence value would mean that the resulted pose has a high
degree of accuracy and can be used for updating the system
knowledge or model of the camera system in addition to using
the pose for the next steps in AR. A low confidence means that
the current estimated pose should not be used to update the
model.

This has led to a constraint to be imposed on the solution
which requires the scenery to be of static environment and it
should have significant planar area for reference (Z=0) X-Y
plane such as table top or floor space.

The computer vision algorithms to be used are as follow:

 SIFT will be used as the chosen feature detection algorithm
due to its ability to directly control the number of features
to be detected. In addition, SIFT features can be described
very expressively to allow more natural and faster matching
process that is more suitable for AR applications.

 RANSAC algorithm is to be used for feature matching and
tracking due to its speed and robustness to outliers.

 Planar Homography algorithm is to be used to exploit the
existence of planar region in assisting the camera pose
estimation.

The solution would make use of a standard inexpensive
webcam to acquire the images. The inner working of this type
of camera can be described by the pinhole camera model [36].
It generally accepted that the model introduces significant
distortion in the image due to cheap lenses and camera
production errors. These issues however can be easily solved
by calibrating the camera to find out its intrinsic parameters
and use them to correct the image frame.

The solution consists of two stages. The first one is the
semi-automatic parameter adjustment. This stage will search in
the parameter space a value that maximise a given criteria. It
requires the user to manually identify planar convex region in
the reference frame by marking the region’s corners. It then
proceeds to the feature detection process. Once they have been
detected, any features whose locations are inside the planar
region are marked and their numbers are counted. The
algorithm used to check if a point is inside a polygon is given
in Algorithm 1.

Algorithm 1. Feature location check

Input: point p2, vertices V2.

Output: status o  {0, 1} # 0: outside, 1: inside

1. previous  -1

2. current  -1

3. for each ViV

4. j  (i+1) % |V| # % denotes remainder operation

5. e  Vj – Vi

6. q  p – Vi

7. s  e × q # vector cross product
8. if s < 0

9. current  0
10. else if s > 0

11. current  1
12. else

13. current  -1
14. end if
15. if current = -1

16. o  0
17. end algorithm

18. else if previous  current

19. o  0
20. end algorithm
21. else if previous=0

22. previous  current
23. end if
24. end for

25. o  1
26. end algorithm

Once they are known, a ratio between that number and the
total number of features is calculated and compared to a
desired ratio R0. The general idea is to have as many features
inside the marked region as possible while keeping those
outside as few as possible. Features that lie outside the region
would likely serve as outliers in the feature matching and
planar homography processes and reduce the accuracy of
camera pose estimate. The detailed step of this stage of the
solution is illustrated by the flowchart shown in Figure 2.

When the calculated ratio exceeds the desired ratio, the
parameter value and the locations of the features inside the
region are recorded. These will be used in subsequent stages

and to be referred to as q and P0 respectively.

Capture the reference frame

Apply image correction

Identify planar convex region by
marking its corners

Calculate R

R > RD

Adjust feature
detection’s

parameter values

Set feature detection’s initial
parameter values

Set desired number of feature
ratio RD

Identify features that are within
the planar region
(see Algorithm 1)

Record the parameter

values (q)

YES

NO

1

Record locations of all
the features in the

planar region {P0}

Figure 2. Stage 1 - steps to obtain the feature detection parameter values.

In stage 2, the algorithm will use subsequent frames to

build a camera pose model H0 which is essentially a view-

projection matrix. Its value will be updated as more knowledge

of the scenery is known. The stage begins by setting H0 to

identity – which signifies the absence of changes in camera
pose relative to the reference image.

In the next step, a new frame or image of the scenery is
taken and feature detection algorithm is applied to this image

using the same parameter value q obtained in the previous

stage. The locations of the resulting features are stored and

would be referred to as P1. Subsequently, feature matching and

camera pose estimation processes are performed to produce a

hypothesis H of the new camera pose. This is then combined

with the previous model to calculate the cumulative model Hn.

To get a measure of confidence on the accuracy of this

hypothesis, a distance measure D is calculated between the real

feature location P1 and the transform of the reference feature

location, denoted as P0
T
 using the cumulative hypothesis Hn.


n

dydx
n

nn)( 

D      

Where dxn and dyn are the normalised horizontal and
vertical difference respectively and are calculated as:

w

.x.x
dx nn

T

n

P1P0 


h

.y.y
dy nn

T

n

P1P0 


P0.HnP0 T

In the above equations, w and h denote the width and height

of the images respectively. Eq. 1 which is used to calculate D,

uses L1 or Manhattan distance to avoid the more expensive
calculation associated with the higher order distance such as

Euclidian. The value of D is a measure of confidence of the

calculated camera pose hypothesis H. A small D value ( 0)

means that transform points and actual points match well hence
high confidence in the camera pose estimation, whereas a large

D value (1) would mean that the transform points and actual

points match poorly, hence low confidence in the camera pose
estimation. The detailed step of the solution is described in the
flowchart shown in Figure 2.

1

Get the next frame

Apply image
correction

Detect features using q
as parameter

Store the resulting

features’ location in {P1}

Apply feature matching

Estimate new camera

pose H

Transforms {P0} to the
new camera pose to get

{P0t}

Calculate average

normalised distance D
(see Algorithm 2)

Set the starting camera

pose H0 to identity

Transform H with H0 to

get Hn

D ≤ τ

Use Hn to transform and project
virtual objects to the frame space

Update model

Hn  H0
{P1}  {P0}

NO

YES

Figure 3. Stage 2 - Steps to updating camera pose model

B. Experiment setup and evaluation methodology

The experiment uses ten unique sceneries with each
consisting up to twenty different frames taken from different
camera poses and views and taken at three varying lighting
conditions. The algorithm is implemented using OpenCV on
Windows platform.

To evaluate the results visual comparisons between with
and without applying the algorithm will be shown. The initial
values for the feature detection parameter are chosen manually
to get the best pose estimation result in one lighting condition.
The test then varies the lighting condition and run the first
experiment without adjusting the parameter values using the
proposed algorithm. The experiment is then repeated under the
same lighting condition using the proposed algorithm.

V. EXPERIMENT RESULTS AND CONCLUSION

The experiment yields results that show the proposed
algorithm can produce more stable camera pose estimation
compared to when it is not applied. Using this algorithm, the
planar region is detected correctly in all the frames in the ten
sceneries taken in all three lighting conditions compared to just

on average of only about 58% without. The average value of D

is 0.27 and 0.002 for without and with the algorithm applied
respectively. Visual evidence of this can be seen on the sample
images shown in Figure 4 to Figure 9.

The increase in the average correct pose estimation rate
when the algorithm is applied proves the previous hypothesis
that the reliability and robustness of an AR technique to
external real-time and run-time conditions can be improved by
using an algorithm to dynamically set the parameters used by
the employed computer vision algorithms.

REFERENCES

[1] P. Milgram and F. Kishino, “Taxonomy of mixed reality visual
displays,” IEICE Trans. Inf. Syst., vol. E77-D, no. 12, pp. 1321–1329,

1994.

[2] D. Van Krevelen and R. Poelman, “A Survey of augmented reality
technologies,” Int. J. Virtual Real., vol. 9, no. 2, p. 1, 2010.

[3] T. P. Caudell and D. W. Mizell, “Augmented reality: an application of

heads-up display technology to manual manufacturing processes,” in
Proceedings of the 25th Hawaii International Conference on System

Sciences, 1992, vol. ii, pp. 659–669.

[4] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration
for a video-based augmented reality conferencing system,” in

Proceeding of the 2nd IEEE and ACM International Workshop on

Augmented Reality, 1999, pp. 85–94.
[5] W. Piekarski and B. H. Thomas, “ARQuake: The outdoor augmented

reality gaming system,” Commun. ACM, vol. 1, no. 45, pp. 36–38,

2002.
[6] Wikitude GmbH., “Wikitude,” 2015. [Online]. Available:

http://www.wikitude.com/. [Accessed: 25-Jun-2015].

[7] Blippar, “Layar,” 2015. [Online]. Available: https://www.layar.com/.
[Accessed: 25-Jun-2015].

[8] Microsoft, “Microsoft HoloLens,” 2015. [Online]. Available:

https://www.microsoft.com/microsoft-hololens/en-us. [Accessed: 25-
Jun-2015].

[9] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D.

Schmalstieg, “Real-time detection and tracking for augmented reality
on mobile phones,” IEEE Trans. Vis. Comput. Graph., vol. 16, no. 3,

pp. 355–368, 2010.

[10] D. Wagner and D. Schmalstieg, “ARToolKitPlus for pose tracking on
mobile devices,” in Proceedings of 12th Computer Vision Winter

Workshop CVWW07, 2007, pp. 139–146.

[11] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marín-Jiménez, “Automatic generation and detection of highly reliable

fiducial markers under occlusion,” Pattern Recognit., vol. 47, no. 6, pp.

2280–2292, 2014.
[12] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial

relationships in robotics,” in Autonomous robot vehicles, vol. 4,

Springer New York, 1990, pp. 167–193.
[13] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E.

Nebot, “Fastslam: An efficient solution to the simultaneous localization

and mapping problem with unknown data association,” J. Mach. Learn.

Res., vol. 4, no. 3, pp. 380–407, 2004.
[14] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:

Real-time single camera SLAM,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 29, no. 6, pp. 1052–1067, 2007.
[15] B. Williams, G. Klein, and I. Reid, “Real-time SLAM relocalisation,”

in Proceedings of the IEEE International Conference on Computer

Vision, 2007, pp. 1–8.
[16] G. Klein and D. Murray, “Parallel tracking and mapping for small AR

workspaces,” in Proceeding of the 6th IEEE and ACM International

Symposium on Mixed and Augmented Reality, 2007, pp. 225–234.
[17] H. Li, M. Qi, and Y. Wu, “A real-time registration method of

augmented reality based on SURF and optical flow,” J. Theor. Appl.

Inf. Technol., vol. 42, no. 2, pp. 281–286, 2012.
[18] Y. Uematsu and H. Saito, “Vision-based registration for augmented

reality with integration of arbitrary multiple planes,” in Image Analysis

and Processing - ICIAP 2005, Springer, 2005, pp. 155–162.
[19] T. Guan and C. Wang, “Registration based on scene recognition and

natural features tracking techniques for wide-area augmented reality

systems,” IEEE Trans. Multimed., vol. 11, no. 8, pp. 1393–1406, 2009.
[20] C. Harris and M. Stephens, “A combined corner and edge detector,” in

Procedings of the Alvey Vision Conference, 1988, pp. 50–55.

[21] J. Shi and C. Tomasi, “Good features to track,” in Proceeding of IEEE
Conference on Computer Vision and Pattern Recognition, 1994, pp.

593 – 600.

[22] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 3951 LNCS, 2006, pp. 430–443.

[23] E. Rublee and G. Bradski, “ORB: an efficient alternative to SIFT or

SURF,” in Proceeding of IEEE International Conference on Computer
Vision, 2011, pp. 2564–2571.

[24] M. Donoser and H. Bischof, “Efficient maximally stable extremal

region (MSER) tracking,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,

2006, pp. 553–560.

[25] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[26] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust

features,” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359,
2008.

[27] J. H. Freidman, J. L. Bentley, and R. A. Finkel, “An algorithm for

finding best matches in logarithmic expected time,” ACM Trans. Math.
Softw., vol. 3, no. 3, pp. 209–226, 1977.

[28] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,

“An optimal algorithm for approximate nearest neighbor searching in
fixed dimensions,” in Proceedings of the 5th ACM-SIAM Sympos.

Discrete Algorithms, 1994, pp. 573–582.

[29] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition, 1997, pp. 1000–1006.
[30] M. Muja, “Scalable nearest neighbour methods for high dimensional

data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. April, pp.

1–14, 2014.
[31] B. K. P. Horn, “Relative orientation,” Int. J. Comput. Vis., vol. 4, no. 1,

pp. 59–78, 1990.

[32] S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, and T. H. € Ollerer,
“Model estimation and selection towards unconstrained real-time

tracking and mapping,” IEEE Trans. Vis. Comput. Graph., vol. 20, no.

6, pp. 825–838, 2014.
[33] H. Stewénius, C. Engels, and D. Nistér, “Recent developments on

direct relative orientation,” in ISPRS Journal of Photogrammetry and

Remote Sensing, Elsevier, 2006, pp. 284–294.
[34] P. Sturm and T. Bonfort, “How to Compute the Pose of an Object

without a Direct View?”
[35] V. Rodehorst, M. Heinrichs, and O. Hellwich, “Evaluation of relative

pose estimation methods for multi-camera setups,” Int. Arch.

Photogramm. Remote Sens., pp. 135–140, 2008.
[36] R. Hartley and A. Zisserman, Multiple view geometry in computer

vision, 2nd ed. Cambridge University Press, 2004.

[37] A. Agarwal, C. V. Jawahar, and P. J. Narayanan, “A survey of planar
homography estimation techniques,” 2005.

[38] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A

paradigm for model fitting with applicatlons to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381 – 395,

1981.

Figure 4. One of the reference images (left) and one of its corresponding scene image (right)

Figure 5. Detected features on the reference image without (left) and with (right) using the algorithm

Figure 6. Detected features on the scene image without (left) and with (right) using the algorithm

Figure 7. Matched features without the algorithm applied

Figure 8. Matched features with the algorithm applied

Figure 9. Approximated 2D plane on the scene image without (left) and with (right) using the algorithm. Note the small white line on the right edge of the desk in
the left image where the incorrectly estimated plane is.

