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Abstract—Vision-based Augmented Reality (AR) techniques 

rely heavily on Computer Vision algorithms for most of their 

tasks. It is understood that these algorithms require numerous 

parameters to function and their values can affect their outputs. 

Oftentimes the results vary greatly when different parameters 

were used and as a result, the performance of the AR technique 

that utilises them varies accordingly as well. This paper aims at 

improving the performance of AR techniques by employing a 

novel algorithm to adjust the parameters automatically during 

runtime. More specifically, the proposed technique works on 

improving the camera pose estimation stage, arguably one of the 

most crucial stages, of such AR systems. 

Keywords—Augmented Reality, Feature Detector, Camera Pose 

Estimation, Computer Vision. 

I.  INTRODUCTION 

Augmented Reality, or AR for short, is a technology that 
allows superimposing of virtual contents or information onto 
real world images or videos. Augmented Reality, and its 
sibling Virtual Reality (VR), are subsets of different realities in 
the Reality-Virtuality continuum suggested in [1]. Whereas the 
goal of Virtual Reality is to create entire virtual worlds that a 
user can interact with, in an AR system virtual objects are 
displayed in such a way that they appear to coexist with the 
real ones. 

AR has many possible applications in a wide variety of 
fields including education, public health, construction, 
manufacturing and entertainment [2]. It has attracted the 
attention of researchers and practitioners since it was coined in 
1992 by Tom Caudwell [3]. The popularity of AR has been 
growing in the past 20 years thanks to a number of new 
techniques and open source implementations such as  
ARToolKit [4] which uses 3D graphics overlay onto a video 
feed by using object detection and tracking algorithms. The use 
of AR technology in computer entertainment was pioneered 
with the release of ARQuake, an interactive outdoor AR 
collaboration system [5] in 2002. ARQuake is an Augmented 
Reality version of the popular First Person Shooter game 
Quake. It uses a head-mounted display, mobile computer, head 
tracker and a GPS system to provide inputs to control the 
game. 

With the growing popularity of smartphones, AR 
technology has reached a new height. The presence of an on-
board camera and the relatively powerful processor that 
smartphones possess allow videos to be captured and processed 
effortlessly. The release of Wikitude [6] and the porting of 

ARToolkit to Adobe Flash have further accelerated the growth 
of AR popularity using smartphones. 

The AR technology has somewhat reached a stage where 
many commercial applications and gadgets use it as their main 
selling point. For example Layar [7], a mobile phone app, uses 
AR technology to embed commercial information onto videos 
captured by mobile phones. It works by using a combination of 
the mobile phone’s camera, compass and GPS data to identify 
the user’s location and field of view, retrieve data based on 
those geographical coordinates, and overlay that data over the 
camera view. Microsoft’s first attempt at Augmented Reality, 
dubbed Microsoft HoloLens [8], has recently attracted a large 
number of interests when it was showcased in Electronic 
Entertainment Expo (E3) 2015 in Los Angeles. 

AR techniques can be classified into two major categories 
namely vision-based AR and location-based AR. Location-
based AR uses the ability of a particular device to locate its 
position in the world, e.g., by means of GPS, and then retrieve 
relevant information to that location. This information is then 
superimposed into the output of their device’s camera to allow 
a more natural data presentation compared to just using a map 
alone. This type of AR can be used to help the users’ everyday 
tasks such as finding their way around a city. 

On the other hand, vision-based AR relies mostly on 
processing the data that is extracted from the images or video 
frames taken by the device. This type of AR involves a number 
of techniques that lend heavily from computer vision (CV) to 
the extent where research progress in AR depends on the 
progress of the latter. Research progress in computer vision is 
moving rapidly with many scholars believe that major and 
ground-breaking progresses are still in the development in a 
foreseeable future. The same argument can be said also 
regarding the AR technology with new techniques and 
algorithms proposed regularly in literatures. 

The objective of this paper is to look at a specific aspect of 
AR process that uses computer vision algorithms, namely 
feature detection and tracking, and suggest a method to 
improve the subsequent process to produce a better camera 
pose estimate. The paper will start by reviewing the current and 
state-of-the-art AR techniques in the literature and identify a 
research problem in marker-less AR. This problem is analysed 
and a hypothesis is made in section 3. This paper’s solution to 
the problem is presented in section 4. Experiment results and 
analysis are given in section 5 together with the proof of the 
hypothesis. 



II. LITERATURE REVIEW AND ANALYSIS 

Vision-based AR process involves a number of techniques 
that borrows heavily from computer vision and image 
processing. The overall process in this type of AR is illustrated 
in Figure 1. 

 

Figure 1. Steps in Vision-based Augmented Reality 

To start with, an image or video frame is captured from the 
camera device. If the AR is performed by a smartphone, it may 
come with a software library that allows this step to be done 
relatively easily. The resulting image may need pre-processing 
to clean up some noise, to enhance the features of interest, or to 
remove some distortions that are prevalent in camera devices. 
This is then followed by the application of image features 
detection and tracking algorithms. This is a very important 
stage in AR as the result of this step determines the accuracy 
and speed of the entire process. It is argued that good feature 
detection and tracking algorithms which detect objects reliably 
and quickly would make a successful AR program [9]. The 
result of this step is then fed through an algorithm that 
determines the pose of the camera with respect to the scenery. 
This will give the view-projection matrix that can be used to 
render virtual information on the image as a 3D system. 

Depending on what and how image features are detected 
and tracked, vision-based AR can be further classified into two 
categories namely marker-based AR and marker-less AR. 

Marker-based AR utilises markers that are placed in the 
scene and within the field-of-view of the camera to help guide 
the camera pose estimation process. The markers are often 
referred to as fiducial markers because their position and 
orientation relative to the scenery are fixed. The markers are 
often planar markers and typically have strong (high contrast 
and defined orientation) features such as long edges or corners 
between black and white regions.  

AR techniques that belong to this category put strong 
emphasis on the marker design. The most popular type of 
marker design is square marker because the square feature 
would allow a precise localisation of the markers through its 
four corner points. The inner region of the marker can contain 
either binary code or an arbitrary binary pattern that is useful 
for identification and orientation estimation. Included in this 
category is ARToolkit technique [4]. The markers consist of 
wide black border with an arbitrary image in the centre region. 
The image is stored in a database which is then, by means of 
pattern matching technique, is detected and localised. The 
approach, while very popular in the academic community, has 
a relatively high false positive detection error. In addition, if 
multiple markers were used the technique would exhibit a 
rather high inter-marker confusion rate. The technique was 
further improved, and rebranded as ARToolkitPlus [10], by 
incorporating automatic setting of global threshold values used 
to detect the markers. The technique also utilises an error 
detection and correction technique to improve the robustness of 
the detection process over its predecessor. 

Another notable technique in this marker-based AR 
category is Aruco [11]. The technique uses a dictionary of 
markers that are automatically generated using an algorithm 
that maximises inter-marker classification difference. Instead 
of using the markers from this dictionary individually, the 
technique uses multiple markers in a rectangular, checker-
board-style panel. This would make it possible for camera pose 
estimation to be carried out even when partial occlusion of the 
panel occurs. 

In marker-based AR algorithms, edges are the most popular 
type of image features to detect [9]–[11]. This is because the 
markers have typically prominent and strong regions with high 
contrast boundaries which respond well to edge detectors. The 
resulting output is then used to identify image segments which 
in turn can be matched with the marker database. Since the 
markers in the database are stored in a normal frontal view, 
comparing them with image segments in the current frame 
would require removal of perspective-projection 
transformation. This is done by calculating the homography 
matrix for each possible pair. The result of this matching 
process would be a set of number that corresponds to the 
confidence of an image segment belonging to a specific 
marker. By taking the maximum value of each pairing and 
applying a threshold to it, the algorithm finds the best matching 
marker for each segment. The homography matrices of those 
best match pairs are then used to estimate the overall camera 
pose.  

Marker-based techniques belonging to this category is by 
far the most popular AR technique, as detection and tracking of 
fiducial objects are relatively easy to perform and allows high 
speed and precise AR. These techniques, however, have severe 
limitation basically due to its strict requirement of having to 
use the fiducial markers. In practice, it may not always be 
possible to attach these markers onto the scenery given the 
locality and distance of the object from camera. Furthermore, 
even when the markers can be placed, they have to be within 
view and the sensing range of the camera. 

The alternative to using fiducial markers would be to 
perform the camera pose estimation via detection and tracking 
of features from naturally occurring objects. The features could 
be corners, pattern or textures. AR technologies that detect and 
track these feature belong to the second category in AR 
classification, namely marker-less AR. 

Marker-less AR differs from marker-based AR because it 
does not rely on the use of artificial markers to help salient 
features detection in the scene. Instead, marker-less AR works 
by detecting features that are readily available from the natural 
objects in the scene and attempt to create a model or a map 
from the scenery in order to represent the world as it is viewed 
by the camera. The model can be described as a hypothesis of 
the layout of objects in the scenery in relation to the camera 
view. This can then be matched to the real model, by means of 
registration technique, to get the camera pose. If there is no 
such real model of the scene exists, then a technique is needed 
to approximate the initial model and subsequently update and 
improve the initial model by tracking image features in scenes 
viewed from different camera poses. This problem is often 
referred to as Simultaneous Localization and Mapping or 



SLAM. Techniques which attempt to solve this problem are 
grouped into a class of techniques known, in the AR context, as 
Extensible Tracking. This type of technique has garnered much 
attention of many researchers, in particular those in mobile 
robotics area. 

SLAM is a well-known and well-researched problem in 
autonomous robotics. The dominant approach to solve this 
problem is introduced in a seminal paper [12] by Smith et al. 
The paper proposed a concept of a stochastic map, which is a 
representative for spatial information of the viewed scenery 
and a method of building and incrementally update it as new 
information is obtained. The approach has since been revisited 
and improved a number of times with examples including 
FastSLAM [13], MonoSLAM [14] and RT-SLAM [15].    

A notable extension to the extensible tracking approach in 
SLAM was proposed in [16]. In this approach, which is known 
as Parallel Tracking and Mapping or PTAM, the tracking and 
mapping processes were split and handled as parallel threads to 
allow the use of computationally expensive batch optimisation 
technique that makes the approach more suitable for real-time 
operation. The technique was reported to have produced very 
good results in implementing a marker-less AR. However, due 
to the constraints in the algorithm used, the technique is only 
suitable mostly for indoor or small workspace environment. 

A different approach to marker-less AR by means of image 
registration technique is adopted by a number of researchers 
[17]–[19]. Marker-less AR with this approach has some 
underlying similarity with marker-based AR. However, instead 
of using pre-defined markers, a snapshot of the scenery is used 
as a reference image. This reference image normally contains a 
flat region on which the 2D x-y plane of the virtual axis can be 
based on. Image features in this reference image and in 
subsequent frames are then detected, and an image registration 
technique is used to match and track these features. The 
technique proposed in this paper will focus on issues affecting 
this approach of marker-less AR to improve its performance. 

III. MARKER-LESS AR AND PROBLEM DEFINITION  

A. Problem definition 

As can be seen from the review of the current state-of-the-
art AR in the previous section, marker-less AR provides the 
most potential and better use of AR in day-to-day life. On the 
other hand, the technique is less reliable and more prone to 
external factors, hence the need to further improve the 
technique’s reliability and robustness is always present. 

As is also the case with the rest of vision-based AR 
techniques, marker-less AR techniques rely heavily on the 
computer vision algorithms used to pre-process, detect and 
track features, and estimate the camera’s pose. Computer 
vision algorithms often use a number of parameters when 
producing their outputs, with typical examples include 
threshold values, width of Gaussian function, and range of 
resolutions etc. The result of the feature detection process 
depends largely on the values of these parameters. 
Furthermore, a good set of parameter values is variable as it 
often depends on many real-time and run-time conditions such 
as lighting, surface textures, and even poses. As such there is a 
need to estimate these best or optimal values before the camera 

pose estimation process can be done. With that argument in 
mind, we are going to test the following supposition: 

Hypothesis 1. 

The reliability and robustness of an AR technique to external 
real-time and run-time conditions can be improved by using an 
algorithm to dynamically set the parameters used by the 
employed computer vision algorithms. 

 

 To put that argument into perspective and to help us 
formulate a solution, we will look deeper into what these 
techniques are. We will start by looking at the different feature 
detection algorithms, followed by feature tracking algorithms 
and camera pose estimation algorithms. 

B. Feature Detection 

Image features are essentially a set of important 
information that can be used to describe the image or a subset 
of the image. They are immensely important in the area of 
computer vision because they can be used to mark interest 
areas in the image and can be used to compare one image to 
another. There are two types of image features namely global 
and local features. 

Local features are computed at different locations in the 
image using only small support area of around the location 
point. As such, local features describe only the image in the 
context of that small subset and nothing else. That means even 
when the other parts of the image undergo changes, as long as 
the support area remains the same, local features would more 
likely not be affected. This is one of the strong points of local 
features over global features because they are robust to 
occlusion, or changes in camera pose, etc. Examples of local 
features are corners, edges, and texture descriptors. 

Global features, on the other hand, are derived from the 
entire image. They have the ability to generalise the entire 
image into one single feature vector. An example of global 
features is image code. Image code is a compressed form of the 
image using an appropriate coding technique that preserves the 
high level information of the image contents. It is also not 
uncommon to have a global feature which is a collection of 
many local features such as shape descriptors, contours 
descriptors, texture descriptors, etc. 

Comparatively, local features are more widely used than 
global feature in AR application. Many marker-based AR uses 
edges whereas many marker-less AR prefers use corners. One 
of the first corner detectors is Harris detector [20] in 1988 and 
since  there are numerous more developed including GFTT 
[21], FAST [22], ORB [23], MSER [24], SIFT [25] and SURF 
[26]. Every feature detection algorithm uses parameters to 
adjust its output with the most common ones are threshold 
values, support area width, and Gaussian/Laplacian function 
width.  

C. Feature Matching and Tracking 

Tracking of features is performed by means of detecting the 
features in one frame (often referred to as reference frame) and 
the subsequent frames and perform feature matching between 



them. The best matched pairs of features from both the 
reference frame and a subsequent frame are likely to 
correspond to the same object in both frames hence feature 
matching process is essential in identifying parts of an image 
which correspond to those in a reference image. This process is 
considered as one of the most computationally expensive part 
of many computer vision algorithms. This is because it 
involves searches for closest matches between pairs of high-
dimensional vectors.    

When comparing two sets of features, the simplest solution 
is to use a brute force approach that compares every feature in 
one set to every feature in the other and keeping track of the 
"best so far" match. This approach, sometimes also referred to 
in literature as the naive approach, results in an O(N

2
) 

computational complexity where N is the number of feature in 
each frame (assuming the same number in each). There are a 
number of proposed algorithms that aim at improving the 
computational efficiency of feature matching process. One of 
the most popular and more traditional technique is kd-tree [27]. 
This technique uses exact nearest neighbour search and works 
very well for low dimensional data but quickly loses its 
effectiveness as dimensionality increases. The popularity of the 
kd-tree technique has seen a number of proposals to further 
improve the algorithm including [28], [29]. A more recent 
matching technique that gains popularity amongst computer 
vision researchers is proposed by Muja and Lowe in [30]. It is 
based on nearest neighbour matching algorithm using priority 
search and adaptive partitioning of the kd-tree. Feature 
matching algorithms also use parameters to adjust their output 
with the most common ones are threshold values, search width, 
initial partition and neighbour size. 

D. Camera Pose Estimation 

There are two major approaches to camera pose estimation 
techniques, namely Relative Orientation and Planar 
Homography. Relative Orientation is a technique that 
calculates the position and orientation of a camera relative to 
another from correspondences among five or more ray pairs. A 
ray pair is defined as the vectors that originate from a fixed and 
visible point in the scenery to the centre of the camera 
positions. If the sceneries were taken by the same camera 
which was moved and re-orientated then the technique can be 
used to calculate the transform matrix of the camera 
movement. It is an active research area as the problem is a very 
important one in photogrammetry [31]–[35] 

While Relative Orientation approach generally takes any 
feature points in the image without many constraints over their 
placement, the algorithm is very complex and is very sensitive 
to feature detection errors. While Planar Homography works in 
a similar fashion as Relative Orientation approach, it requires 
the features to be tracked to be on the same 2D plane. Planar 
Homography is defined as a projective mapping from one 2D 
plane to another (typically image plane). This constraint 
simplifies the problem and allows more straightforward 
calculations to be made. Details on this topic is outside the 
scope of this paper but interested readers are advised to look up 
the relevant textbook [36] and survey paper [37]. 

At its core, camera pose estimation is a parameter 
estimation problem. The algorithm would have to find a model 

or a set of parameters that best fits the transform from the 
reference pose to the new pose. To do this, an efficient 
matching technique such as RANSAC  or RANdom SAmple 
Consensus [38] can be used. This technique works by selecting 
random number of features to match initially to fit an initial 
matching parametric model. When the parameters of the model 
had been calculated the algorithm then works out how many 
features from the entire set would with this model within a pre-
defined tolerance. If the result exceeds a pre-defined threshold, 
then that model is used, otherwise the process is repeated for a 
set number of time. This technique produces better matching 
result when there are outliers in the feature sets compare to a 
naïve or brute force approach. 

E. Summary 

As can be seen from the analysis given in the previous sub 
section, there are many parameters used that can affect the 
overall outcome of an AR system. There is a need to study how 
these parameters can affect the final outcome. This further 
justifies the necessity to test and prove the hypothesis stated 
earlier. The design of the solution to test this hypothesis is 
described in the next section. 

IV. SOLUTION DESIGN 

A. Solution Design 

The solution to prove the hypothesis has the following 
requirement. First, it has to employ a suitable feature detection 
algorithm that allows direct control over the number of 
detected features. This is important since a set of features that 
contains too many outliers could worsen the process of feature 
matching and consequently the camera pose estimation. Having 
a means to control this would allow us to directly measure the 
quality of the AR output at different situations. 

Secondly, it has to have quantifiable means to measure the 
confidence of the camera’s pose estimation process. A high 
confidence value would mean that the resulted pose has a high 
degree of accuracy and can be used for updating the system 
knowledge or model of the camera system in addition to using 
the pose for the next steps in AR. A low confidence means that 
the current estimated pose should not be used to update the 
model. 

This has led to a constraint to be imposed on the solution 
which requires the scenery to be of static environment and it 
should have significant planar area for reference (Z=0) X-Y 
plane such as table top or floor space. 

The computer vision algorithms to be used are as follow: 

 SIFT will be used as the chosen feature detection algorithm 
due to its ability to directly control the number of features 
to be detected. In addition, SIFT features can be described 
very expressively to allow more natural and faster matching 
process that is more suitable for AR applications. 

 RANSAC algorithm is to be used for feature matching and 
tracking due to its speed and robustness to outliers. 

 Planar Homography algorithm is to be used to exploit the 
existence of planar region in assisting the camera pose 
estimation. 



The solution would make use of a standard inexpensive 
webcam to acquire the images. The inner working of this type 
of camera can be described by the pinhole camera model [36]. 
It generally accepted that the model introduces significant 
distortion in the image due to cheap lenses and camera 
production errors. These issues however can be easily solved 
by calibrating the camera to find out its intrinsic parameters 
and use them to correct the image frame. 

The solution consists of two stages. The first one is the 
semi-automatic parameter adjustment. This stage will search in 
the parameter space a value that maximise a given criteria. It 
requires the user to manually identify planar convex region in 
the reference frame by marking the region’s corners. It then 
proceeds to the feature detection process. Once they have been 
detected, any features whose locations are inside the planar 
region are marked and their numbers are counted. The 
algorithm used to check if a point is inside a polygon is given 
in Algorithm 1. 

Algorithm 1. Feature location check 

Input: point p2, vertices V2. 

Output: status o  {0, 1} # 0: outside, 1: inside  

1. previous  -1 

2. current  -1 

3. for each ViV 

4.     j  (i+1) % |V| # % denotes remainder operation 

5.     e  Vj – Vi 

6.     q  p – Vi 

7.     s  e × q  # vector cross product 
8.     if s < 0 

9.         current  0 
10.     else if s > 0 

11.         current  1 
12.     else 

13.         current  -1 
14.     end if 
15.     if current = -1 

16.         o  0 
17.         end algorithm 

18.     else if previous  current 

19.         o  0 
20.         end algorithm 
21.     else if previous=0 

22.         previous  current 
23.     end if 
24. end for 

25. o  1 
26. end algorithm 

 

Once they are known, a ratio between that number and the 
total number of features is calculated and compared to a 
desired ratio R0. The general idea is to have as many features 
inside the marked region as possible while keeping those 
outside as few as possible. Features that lie outside the region 
would likely serve as outliers in the feature matching and 
planar homography processes and reduce the accuracy of 
camera pose estimate. The detailed step of this stage of the 
solution is illustrated by the flowchart shown in Figure 2. 

When the calculated ratio exceeds the desired ratio, the 
parameter value and the locations of the features inside the 
region are recorded. These will be used in subsequent stages 

and to be referred to as q and P0 respectively. 

Capture the reference frame

Apply image correction

Identify planar convex region by 
marking its corners

Calculate R 

R > RD

Adjust feature 
detection’s 

parameter values

Set feature detection’s initial 
parameter values

Set desired number of feature 
ratio RD

Identify features that are within 
the planar region
(see Algorithm 1)

Record the parameter 

values (q)

YES

NO

1

Record locations of all 
the features in the 

planar region {P0}

 

Figure 2. Stage 1 - steps to obtain the feature detection parameter values. 

In stage 2, the algorithm will use subsequent frames to 

build a camera pose model H0 which is essentially a view-

projection matrix. Its value will be updated as more knowledge 

of the scenery is known. The stage begins by setting H0 to 

identity – which signifies the absence of changes in camera 
pose relative to the reference image. 

In the next step, a new frame or image of the scenery is 
taken and feature detection algorithm is applied to this image 

using the same parameter value q obtained in the previous 

stage. The locations of the resulting features are stored and 

would be referred to as P1. Subsequently, feature matching and 

camera pose estimation processes are performed to produce a 

hypothesis H of the new camera pose. This is then combined 

with the previous model to calculate the cumulative model Hn.  

To get a measure of confidence on the accuracy of this 

hypothesis, a distance measure D is calculated between the real 

feature location P1 and the transform of the reference feature 

location, denoted as P0
T
 using the cumulative hypothesis Hn. 


n

dydx
n

nn )( 

D      

Where dxn and dyn are the normalised horizontal and 
vertical difference respectively and are calculated as: 

w

.x.x
dx nn

T

n

P1P0 
  



h

.y.y
dy nn

T

n

P1P0 
  

P0.HnP0 T  

In the above equations, w and h denote the width and height 

of the images respectively. Eq. 1 which is used to calculate D, 

uses L1 or Manhattan distance to avoid the more expensive 
calculation associated with the higher order distance such as 

Euclidian. The value of D is a measure of confidence of the 

calculated camera pose hypothesis H. A small D value ( 0) 

means that transform points and actual points match well hence 
high confidence in the camera pose estimation, whereas a large 

D value (1) would mean that the transform points and actual 

points match poorly, hence low confidence in the camera pose 
estimation. The detailed step of the solution is described in the 
flowchart shown in Figure 2. 

1

Get the next frame

Apply image 
correction

Detect features using q 
as parameter

Store the resulting 

features’ location in {P1}

Apply feature matching

Estimate new camera 

pose H

Transforms {P0} to the 
new camera pose to get 

{P0t}

Calculate average 

normalised distance D
(see Algorithm 2)

Set the starting camera 

pose H0 to identity

Transform H with H0 to 

get Hn

D ≤  τ 

Use Hn to transform and project 
virtual objects to the frame space

Update model

Hn  H0
{P1}  {P0}

NO

YES

 

Figure 3. Stage 2 - Steps to updating camera pose model 

B. Experiment setup and evaluation methodology 

The experiment uses ten unique sceneries with each 
consisting up to twenty different frames taken from different 
camera poses and views and taken at three varying lighting 
conditions. The algorithm is implemented using OpenCV on 
Windows platform.  

To evaluate the results visual comparisons between with 
and without applying the algorithm will be shown. The initial 
values for the feature detection parameter are chosen manually 
to get the best pose estimation result in one lighting condition. 
The test then varies the lighting condition and run the first 
experiment without adjusting the parameter values using the 
proposed algorithm. The experiment is then repeated under the 
same lighting condition using the proposed algorithm. 

V. EXPERIMENT RESULTS AND CONCLUSION 

The experiment yields results that show the proposed 
algorithm can produce more stable camera pose estimation 
compared to when it is not applied. Using this algorithm, the 
planar region is detected correctly in all the frames in the ten 
sceneries taken in all three lighting conditions compared to just 

on average of only about 58% without. The average value of D 

is 0.27 and 0.002 for without and with the algorithm applied 
respectively. Visual evidence of this can be seen on the sample 
images shown in Figure 4 to Figure 9. 

The increase in the average correct pose estimation rate 
when the algorithm is applied proves the previous hypothesis 
that the reliability and robustness of an AR technique to 
external real-time and run-time conditions can be improved by 
using an algorithm to dynamically set the parameters used by 
the employed computer vision algorithms. 
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Figure 4. One of the reference images (left) and one of its corresponding scene image (right) 

 

Figure 5. Detected features on the reference image without (left) and with (right) using the algorithm 



 

Figure 6. Detected features on the scene image without (left) and with (right) using the algorithm 

 

Figure 7. Matched features without the algorithm applied 

 

Figure 8. Matched features with the algorithm applied 

 

Figure 9. Approximated 2D plane on the scene image without (left) and with (right) using the algorithm. Note the small white line on the right edge of the desk in 
the left image where the incorrectly estimated plane is. 

 

 


