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ABSTRACT Along with day-to-day communication, receiving medical care is quite challenging for the
hearing impaired and mute population, especially in developing countries where medical facilities are not as
modernized as in the West. A word-level sign language interpretation system that is aimed toward detecting
medically relevant signs can allow smooth communication between doctors and hearing impaired patients,
ensuring seamless medical care. To that end, a dataset from twenty distinct signers of diverse backgrounds
performing 30 frequently used words in patient-doctor interaction was created. The proposed system has
been built employing MobileNetV2 in conjunction with an attention-based Bidirectional LSTM network
to achieve robust classification, where the validation accuracy and f1- scores were 95.83% and 93%,
respectively. Notably, the accuracy of the proposed model surpasses the recent word-level sign language
classification method in a medical context by 5%. Furthermore, the comparison of evaluation metrics
with contemporary word-level sign language recognition models in American, Arabic, and German Sign
Language further affirmed the capability of the proposed architecture.

INDEX TERMS Attention, BiLSTM, MobileNetV?2, patient-doctor interaction, sign language.

I. INTRODUCTION
Disabilities have crippled more than 15% population in

speak with those who do not understand sign language, this
method of communication is ineffective.

the world, and a major portion of them have an auditory
disability, rendering them unable to interpret sound and
vibration. The number is pushing towards 70 million living
and breathing human beings who cannot communicate using
speech or hear the words persons without disability utter.
In most cases, sign language serves as the hearing and
speech-impaired population’s sole means of communication.
However, when people with speech and hearing impairments
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Along with day-to-day communication, receiving medical
care is quite challenging for the hearing impaired and mute
population, especially in developing countries. A capable
individual needs to accompany them when they go to
medical centers and explain their symptoms to the medical
professionals. The hearing impaired person who is facing
health challenges may not be able to properly explain his
symptoms if the human interpreter is not well-versed in the
sign language or is uncooperative. Research has indicated
that the presence of inadequate communication between
healthcare providers and patients who are hearing impaired
or hard of hearing (HOH) remains a significant obstacle in
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the provision of patient-centered care and the establishment
of trust. Despite legal requirements for American Sign
Language (ASL) medical interpreters in the United States [1],
many clinicians still rely on inadequate communication
methods, such as writing notes or assuming patients can
lip-read [2].

This can lead to misunderstandings, misdiagnoses, and
inadequate treatment, which can have serious consequences
for the patient’s health and well-being. Automatic sign
language interpretation in healthcare settings can help
address this issue by facilitating a dependable mode of
interaction between healthcare professionals and individuals
have hearing impairments. Automatic sign language inter-
pretation can be provided through various technologies such
as video remote interpreting (VRI), where an interpreter
is connected to the healthcare provider and patient via
video conferencing [3], or through the use of artificial
intelligence (AI) powered avatars that can interpret sign
language in real-time [4]. These technologies can facilitate
accurate and efficient communication between healthcare
providers and patients, ensuring that patients receive the
appropriate care and treatment they need. Additionally,
automatic sign language interpretation can also help reduce
the stigma associated with being hearing impaired, promoting
inclusivity and equality in healthcare access.

Signs used in patient-doctor interactions consist of contin-
uous gestures or finger-spelling in any sign language dialect.
Therefore, an interpretation system made for such purposes
will focus more on Dynamic Sign Language Recognition
(DSLR). The rapid progress of deep learning theory [5] has
led to 2 remarkable accomplishments in object detection [6]
and gesture recognition [7], as seen by the impressive results
obtained using data-driven approaches. The utilization of
video sequences in sign language identification allows for
the comprehensive utilization of temporal information, which
is a vital component in the process of recognizing gestures.
This approach differs from the method that relies solely
on hand forms and the motion trajectory of hand gestures.
Because hands are very small in comparison to the entire
environment, backgrounds may overshadow the effective
spatial characteristics of gestures. Learning spatiotemporal
features concurrently will, therefore, be more crucial for
dynamic sign language recognition.

Specific American Sign Language (ASL) or Bangladeshi
Sign Language (BSL) datasets for signs related to med-
ical communication were not found during this analysis;
therefore, a dataset containing 3596 videos of 30 medical
ASL signs used in patient-doctor interaction in different
environments, performed by 20 sign language learners of
different age, height, skin orientation was created. The size
of the dataset pertains to literature based on various sign
languages, for instance, [8], [9].

Therefore, the prominent contributions of this work are:

o Formation of a new dataset containing 3596 videos

of 30 ASL signs used globally in everyday patient-
doctor interactions.
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« An attention-boosted deep learning method with a
pre-trained CNN (MobileNetV2) model as a feature
extractor and a bi-directional LSTM model to detect
temporal information and classify the signs.

o A method that is familiar with multiple backgrounds,
illumination, skin tone, and gender of subjects and is not
affected by it without using segmentation algorithms.

The paper continues as follows. Section II reviews relevant

literature, including datasets, models, and results. Section III
describes the methodology, covering data preparation, model
specifications, experiments, and evaluation metrics. Sec-
tion IV presents results with comparative analyses and
limitations. Finally, Section V concludes the study.

Il. RELATED WORKS

Kim et al. [10] conducted an investigation on the matter
of finger-spelling identification utilizing hand-shape features
through deep neural networks. The investigation included
3684-word instances with accuracies of 92% and 83%
for signer-dependent and multi-signer settings, respectively.
Literature [11] and [12] also discussed the recognition of
finger-spelling in sign language. With a dataset containing
4200 signs in total, Aly et al. [12] produced an average
accuracy of 99.5%. Regarding the method based on hand
shapes, it was able to convey the meaning of relatively
straightforward hand gestures, such as the 31 alphabets and
numbers; however, the system’s functionality was limited
by intricate motion gestures as a result of its inadequate
incorporation of hand shape in conjunction with consistent
hand movement. In contrast, certain researchers focused
solely on examining the motion trajectories of particular
hand movements. With long short-term memory, Mohan-
des et al. [13] only detected hand motions based on hand
motion trajectory. The classification of hand motions was
accomplished with the aid of sensor technology, including
the jump motion controller [14], digital glove data, surface
electromyography accelerometer, and gyroscope. In this
work [14], using 432 signs, support vector machine (SVM)
and deep neural network (DNN) recognition rates were
80.30% and 93.81%, respectively, for 26 letters in the
experimental results. The rates for a combination of 26 letters
and 10 digits were somewhat lower, at roughly 72.79% and
88.79%, respectively. However, these methods are limited
to a specific set of manual motions, such as gesticulation
and waving of the hand. The identification of the attributes
of hand configurations and the trajectory of movement
associated with each hand gesture serves as the foundation
for numerous studies. Numerous relevant studies have been
carried out with success. For instance, Kumar et al. [15]
provided a multimodal framework for the recognition of
separate sign language by testing on a dataset of 7500 Indian
Sign Language (ISL) movements, encompassing single-
and double-handed gestures, reaching overall accuracies of
97.85% and 94.55% for single and double-handed signs,
respectively using Kinect [16] sensor devices. The system
focuses on distinguishing between one-hand and dual-hand
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signs by utilizing a track model. Using RGB-D data and a
Sparse Observation description, Wang et al. [17] were able
to discern sign language through the analysis of movements
of the hands as well as postures. In their study, Savur and
Sahin [18] employed Surface Electromyography (sEMG)
signals in conjunction with a Support Vector Machine (SVM)
classifier for the purpose of recognizing American sign
language. The surface electromyography (EMG) signals are
acquired by means of external sensors placed on the hand.
However, these sensor-based systems have drawbacks in
terms of user comfort and practicality.

An RCNN for continuous sign language recognition that
is entirely reliant on video sequence, which achieved a
Word Error Rate of 38.7%, was created by Cui et al. [19].
The method was evaluated on RWTH-PHOENIX-Weather
multi-signer 2014, which is a publicly available benchmark
dataset for continuous sign language recognition containing
6841 instances/sequences. A framework for a Hierarchical
Attention Network (HAN) incorporating a latent space was
put forth by Huang et al. [20] to facilitate the development
of global and regional video representations of attributes.
Two open-source continuous SLR datasets are used in these
experiments, one for CSL and the other is the German
sign language dataset RWTH-PHOENIX-Weather (Koller,
Forster, and Ney 2015), each consisting of 25,000 and
6841 instances, respectively. The proposed model has an
accuracy of 82.7%. Motion information was included in
static photographs by Kopiikli et al. [21]. Tested using
the Jester, ChaLearn LAP IsoGD, and NVIDIA Dynamic
Hand Gesture Datasets, the model produces competitive
classification accuracies of 96.28%, 57.4%, and state-of-the-
art 84.7%, for a total of 148,092 gesture videos. Nevertheless,
the use of this technology proved challenging on a universal
scale due to the inability to convert certain hand motion
information into a static image. In the study conducted by the
authors in [22], they presented a novel spotting-recognition
architecture designed specifically for the purpose of exten-
sive, persistent gesture recognition. For a total of 22,535
video samples, the architecture yielded a Jaccard Index of
0.6103. The sequence-to-sequence method was utilized by
Camgoz et al. [23] to learn the sign language recognition
issues, producing a Word Error Rate of 43.1% in a database
of 69,832 signs. The process of categorizing continuous sign
language clips is enhanced by employing elements such
as movement and shapes, which enable a more nuanced
and precise classification. Kishore et al. [24] were able to
understand continuous sign language. The dataset comprised
500 signs, and the model reached an average matching
score of 92.5%. An artificial neural network classification
method was employed to perform continuous sign language
identification on a dataset of 180 selfie images, resulting
in an average Word Matching Score of almost 90% by
Gondu et al. [25]. Deep learning technology is predominantly
employed in the implementation of dynamic sign language
recognition methods, such as the methods described in [26]
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and [27] to employ convolutional neural networks (CNNs) for
the purpose of retrieving selective features from hand gestures
in a dataset of 1.4 million images [26] which resulted in
top-1 and top-5 error rates of 37.5% and 17.0%, respectively.
Donahue et al. [27] introduced their model through the use
of the TACoS multilevel dataset, which has 44,762 videos.
In [28], to learn video sequences using recurrent neural
networks (RNNs), the model employs decoder LSTMs and
encoder LSTMs for input sequence mapping on the UCF-101
and HMDB-51 datasets which respectively contain 13,320
and 5100 videos. For learning spatiotemporal sequential
features integrating CNNs and RNNs, [29] makes use of the
KTH dataset and obtains an accuracy of 94.39%. The KTH
dataset is divided into two parts: KTH-1 containing 599 long
sequences, where each contains multiple iterations of the
same action, and KTH-2 containing 2391 sequences, where
each sequence contains a single action. Furthermore, Yue-
Hei Ng et al. [30] introduced multiple models throughout
two distinct databases: UCF-101, containing 13,320 videos,
and Sports 1 Million datasets consisting of 1.2 million
YouTube sports videos. The highest recorded accuracy of
88.6% was achieved using the LSTM with 30 Frame Unroll
(Optical Flow + Image Frames) method in the UCF-101
dataset. The aforementioned methods exhibited superior
performance compared to the method that relied on hand
shapes and motion trajectories in the context of dynamic sign
language recognition utilizing a video sequence. Hu et al. [31]
introduce a correlation module (CorrNet) to compute corre-
lation maps between the current frame and adjacent frames,
identifying trajectories of all spatial patches. The architecture
is tested on four separate datasets: PHOENIX14 (6841
videos), PHOENIX14-T (8247 videos), CSL-Daily (20,654
videos), and CSL (25,000 videos). A novel attention-based
approach called SLGTformer for Sign Language Recognition
was proposed by Song and Xiang [32], which utilizes
decoupled graph and temporal self-attention to learn the
spatiotemporal dynamics of skeleton key points. It achieves
Top-1 and Top-5 recognition rates of 47.42% and 79.58% on
the World-Level American Sign Language (WLASL) dataset,
which contains 21,083 samples. Furthermore, Li et al. [33]
proposed a novel pose-based temporal graph convolution
network (Pose-TGCN) that models spatial and temporal
dependencies in human pose trajectories simultaneously.
The approach is tested using the WLASL dataset and
reaches 62.63% at top-10 accuracy. Using the PHOENIX14
and PHOENIX14-T datasets, Hao et al. [34] introduced a
method called Self-Mutual Knowledge Distillation (SMKD)
to enhance the discriminative power of both the visual
and contextual modules in Continuous Sign Language
Recognition (CSLR) by focusing on short-term and long-
term information simultaneously. The visual and contextual
modules share the weights of their corresponding classifiers
and are trained with the Connectionist Temporal Classifi-
cation (CTC) loss. A system for word-level sign language
recognition using the Transformer model, with a focus on low
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computational cost and potential usage on hand-held devices,
was presented by Bohacek and Hruz [35]. With 63.18% and
43.78% recognition rates on the WLASL100 (2038 videos)
and WLASL300 (5117 videos) datasets, respectively, and
100% test recognition accuracy on LSA64 (3200 videos),
it achieves state-of-the-art performance on all the datasets.
Kun Xia et al. [36] presented a MobileNet-YOLOV3- based
model with a hand-held device for 12 medical signs through
the use of a dataset comprising 4000 samples and attained
an identification accuracy of 90.77%. Da Silva et al. [37]
applied I3D and LSTM to train a dataset with 5000 videos
for recognition of Brazilian sign language (Libras). the model
was applied to datasets comprising Brazilian Sign Language
(Libras) and Argentinian Sign Language (LSA), achieving
high accuracy rates of 99.80% and 100%, respectively.
A model consisting of a CNN and LSTM integrated
model referred to as the Long-term Recurrent Convolutional
Network (LRCN) model was applied by Das et al. [38] for
Indian Sign Language recognition in a medical context from
a dataset of 288 videos, yielding an accuracy of 67.53%. The
overall related works are summarized in Table 1.

lil. METHODOLOGY

The study’s primary focus is the analysis of sign language
words within patient-doctor interactions, achieved through
the collection and processing of video data. A dataset
comprising 30 distinct signs performed by 20 subjects was
gathered, reflecting medical terminology used in healthcare
settings. The videos are then preprocessed to contain a fixed
number of frames in optimum dimensions, which are later
used to train and evaluate the proposed deep-learning model.

A. DATASET OVERVIEW

The selection of signs used in the collection was carefully
vetted to encompass a wide array of medical terminology
and phrases that are essential inside healthcare environments.
These 30 distinct signs encapsulate a diverse spectrum of
medical concepts, from common ailments like “Cold” and
“Headache” to critical terms such as ‘“Emergency” and
“Hospital.” In order to comprehensively depict the intricate
and multifaceted nature of sign language communication,
the dataset incorporates contributions from a diverse group
of 20 individuals. The deliberate inclusion of individuals
from many genders, age groups, and skin tones in sign
language communication aims to accurately reflect the wide
range of variances observed in real-world contexts, and it
also allows the model to learn the physiological differences
of different signers and be robust to such changes. It is
worth noting that the videos were recorded using personal
smartphones and tripods, ensuring that the data collection
process was practical and accessible while still upholding
the necessary technical standards. Furthermore, videos were
captured at different times of the day to account for potential
variations in lighting conditions, thereby enhancing the
dataset’s robustness. Table 2 and 3 display the 10th frame of
the signs under investigation in this work.
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B. PREPROCESSING

Thirty frames were extracted from each video, ensuring that
this subset effectively captured the essence of sign language
expression. This is because the dataset comprises sign words
that are gesture-based, not finger-spelled. As a result, even
with the first 30 frames, the uniqueness of a given gesture in
the dataset can be encapsulated. These frames were uniformly
resized to a standardized dimension of 100 x 100 pixels,
striking a balance between retaining essential information
and managing computational resources.

The rationale behind this approach was twofold. Firstly,
it ensured that we preserved the critical temporal aspects
of sign language communication by maintaining a fixed
sequence of frames from each video. Secondly, the resizing
to a consistent dimension not only reduced the computational
burden but also ensured uniformity across the dataset. This
uniformity was crucial for training and deploying deep
learning models, as it allowed us to focus on the essence of the
signs without being overwhelmed by extraneous visual data.

C. PROPOSED MODEL

Fig.1 contains the end-to-end approach from frame extraction
to classification, where a fixed number of frames is taken as
the input. CNN backbone for this operation has been chosen
to be MobileNetV2, and to capture the temporal pattern,
Bidirectional LSTM layers backed by attention mechanism
were used. Then, fully connected dense layers were used to
classify the videos.

D. FEATURE EXTRACTION

During this phase, transfer learning with a pre-trained
CNN, which is MobileNetV2 [36] in this case, is used to
extract features from the video frames. MobileNetV2 can
achieve similar accuracy with significantly lower resource
demand and fewer number of layers (53). A study conducted
by Podder et al. [39] reported superior accuracy results
for MobileNetV2 compared to other pre-trained CNNs in
deep learning applications. The extracted frames from the
preprocessing pipeline are traversed through 53 layers of
MobileNetV2 and fed into a BiLSTM system with an
attention mechanism to extract temporal information.

E. ATTENTION-BOOSTED BIDIRECTIONAL LSTM
Conventional LSTMs, while adept at retaining past infor-
mation, lack the ability to comprehend all the necessary
context of time-based data, like videos, which necessitates the
consideration of both future and previous information. This
study adopted an LSTM configuration that is bidirectional
to mitigate this limitation, enabling the extraction of infor-
mation according to context from videos in both temporal
directions.

The illustrated BiLSTM architecture in Figure 2 consists
of two distinct LSTMs, a forward and a backward unit.
These independently traverse the input sequence in opposite
directions, each maintaining its own cell along with a hidden
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TABLE 1. Synopsis of literature review.

Authors  Language Dataset Model Results
Kimetal. American Sign Locally made dataset with 3684-word Tandem Hidden Markov Model Accuracy 92% (signer-dependent set-
[10] Language (ASL) instances (HMM) with DNN classifiers ting) and 83% (multi-signer settings)
Kang et al. American Sign 31,000 depth maps using a depth sen- CNN Accuracy 99.99% (observed signers)
[11] Language (ASL) sor, Creative Senz3D camera and 83.58% to 85.49% (new signers)
Alyetal. Arabic Sign Language Dataset using Softkinect sensor 4200 PCANet Accuracy 99.5%
[12] (ArSL) signs
Chong et  American Sign 432 signs using Leap Motion Con- SVM and DNN Accuracy 72.79% (SVM) and 88.79%
al. [14] Language (ASL) troller (LMC) (DNN)
Kumaret Indian Sign Language 7500 signs using Microsoft Kinect Hidden Markov Model (HMM) and Accuracy 97.85% (single handed
al. [15] (ISL) and LMC Bidirectional Long Short-Term Mem- signs) and 94.55% (double handed
ory Neural Network (BLSTM-NN) signs)
Wang et Chinese Sign Dataset A with 1850 signs and Dataset Sparse Observation (SO) based model Top 1, Top 5, and Top 10 values of
al. [17] Language B with 3000 signs using Kinect sensor 0.744, 0.891, and 0.926 respectively
Savur et American Sign SEMG signal collected using eight- SVM Accuracy 91% (offline system) and
al. [18] Language (ASL) channel Bio Radio 150 CleveMed de- 82.3% (real-time system)
vice (2080 samples)
Cuietal. German Sign RWTH-PHOENIX-Weather multi- Recurrent Convolutional Neural Net- Word Error Rate 38.7%
[19] Language signer 2014 containing 6841 instances works (RCNN)
Huanget Chinese and German  Locally made (25,000 signs) and Hierarchical Attention Network with Accuracy 82.7%
al. [20] Sign Language RWTH-PHOENIX-Weather (6841 Latent Space (LS-HAN)
signs)
Kopuklu Distinct Gestures Jester, ChalLearn LAP IsoGD, and CNN with Motion Fused Frames Accuracies 96.28%, 57.4%, and
etal. [21] NVIDIA Dynamic Hand Gesture (MFF) 84.7% respectively
Datasets (148,092 gesture videos)
Liuetal.  Chinese Sign ChaLearn LAP ConGD Dataset Two streams Faster R-CNN, C3D Jaccard Index 0.6103
[22] Language (22,535 video samples) model, and a linear SVM
Camgoz et Danish, New Zealand  One-Million Hands dataset (69,832 SubUNets ‘Word Error Rate 43.1%
al. [23] and German Sign signs)
Language
Kishore et American Sign Locally made dataset with 500 signs  Fuzzy Inference Engine (FIS) Average matching score 92.5%
al. [24] Language (ASL)
Gondu et  Indian Sign Language 180 selfie images ANN ‘Word Matching Score nearly 90%
al. [25] (ISL)
Krizhevsky Distinctive Objects ImageNet (1.4 million images) CNN Top 1 error rate 37.5%, and Top 5,
et al. [26] error rate 17%
Donahue  Distinctive Human TACoS multilevel dataset (44,762 Recurrent Convolutional Neural Net- BLEU-4 score 28.8%
etal. [27] Actions videos) works (RCNN) with LSTM
Srivastava  Distinctive Human UCF-101 dataset (13,320 videos) and RNN with LSTM Accuracy 75.8% (UCF-101 dataset)
etal. [28] Actions HMDB-51 dataset (5100 videos) and 44.1% (HMDB-51 dataset)
Baccouche Distinctive Human KTH  datasets: KTH-1 (599 3D-CNN and RNN Accuracy 94.39%
etal. [29] Actions sequences) and KTH-2 (2391
sequences)
Yue-Hei Distinctive Human UCF-101 dataset (13,320 videos) and CNN and LSTM Highest Accuracy 88.6% (using
Ngetal.  Actions Sports 1 million dataset (1.2 million LSTM)
[30] videos)
Hu et al. German and Chinese PHOENIX14 (6841 videos), Correlation Network (CorrNet) Word Error Rate (WER):
[31] Sign Language PHOENIX14-T (8247  videos), 19.4%  (PHOENIX14), 20.5%
CSL-Daily (20,654 videos), and CSL (PHOENIX14-T), 30.1% (CSL-
(25,000 videos) Daily), and 0.8% (CSL)
Song et al. American Sign WLASL2000 (21,083 samples) SLGTformer Top-1 and Top-5 recognition rates
[32] Language (ASL) 47.42% and 79.58%
Lietal. American Sign WLASL2000 (21,083 samples) Holistic visual appearance-based ap- Top-10 Accuracy 62.63%
[33] Language (ASL) proach, 2D human pose-based ap-
proach, and a novel pose-based tempo-
ral graph convolution network (Pose-
TGCN)
Haoetal. German Sign PHOENIX14 (6841 sentences), and Self-Mutual Knowledge Distillation Word Error Rate (WER) 21% (), and
[34] Language PHOENIX14-T (8247 sentences) (SMKD) 22.45% ().
Bohacek  American and WLASL100 (2038 videos — ASL). Sign Pose-based Transformer Recognition Rates: 63.18%
etal. [35] Argentinian Sign WLASL300 (5117 videos — ASL), (WLASL100), 43.78%
Language and LSA64 dataset (3200 videos — (WLASL300), and 100% (LSA64)
Argentinian SL)
Xiaetal. Chinese Sign Locally made dataset with 4000 sam- MobileNet-YOLOvV3 Accuracy 90.77%
[36] Language ples
da Silvaet Brazilian Sign Locally made dataset with 5000 I3D and LSTM Accuracy 99.80% (Libras), and 100%
al. [37] Language (Libras) and videos (LSA)
Argentinian Sign
Language (LSA)
Dasetal. Indian Sign Language Locally made dataset with 288 videos Long-term Recurrent Convolutional Accuracy 67.53%
[38] (ISL) Network (LRCN)
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TABLE 2. 10th frame extracted from each signs for Subject 7.

Blood Pressure

Constipate

Depressed
| B RGN PP

Disease Emergency

Hospital
1

Nauseous
| N YA e

Infection

M

state. The forward LSTM’s hidden state (h': ) ingests input the backward LSTM’s hidden state (hb) encounters input
vectors (x;) in chronological order (+ = 1,2,...,7T), vectors in reverse order (t = T,T — , 1), allowing
accumulating information from the past. On the contrary, it to incorporate future context. The ultlmate result () of
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TABLE 3. 10th frame extracted from each signs for subject 7 (contd).

Patient

Sore Throat
T R

Urgent C_are (UC)

Input CNN Backbone (MobileNetV2) Bidirectional LSTM - Attention Dense Classification
Input Forward Backward
Attention .
Layer LSTM LSTM ‘.f y
4
Add Conv 1x1, Linear =
Py
¥ a5
A L3 , A T A w_\ 1/\
= o —> L™ — =
Conv 1x1, Linear \ )
7y Dwise 3x3, . & N
stride = 2, Relus ~—»| 1sH |} 90006 — =j
7 L4
N
Dwise 3x3, Relu 4 _v ot R‘
i A | " — m — O T =
1 \ &
c Conv 1x1, Relus. \ \ = 7
| | | — B :
Conv 1x1, Relu A . FYY Yy L) :
| d —>f sm P> @& :
£ — T P 2
il =ls _ ¥ © Y
= > B N =j
Input Input T L™ — *-*\ =
Stride = 1 block Stride = 2 block ~__ e 0000 -
|| R [ ]
¥ A o/

FIGURE 1. Proposed medical sign classification model.

the BiLSTM is formed by encapsulating the information
captured by hi’ and hﬁ’ , as defined by the provided equations.

#y = tanh (Whx, + Wil +b}) )
= tanh (Wi + Wit +b]) 2)
yi = Wi H, + Whh? + by 3)

Building upon the equations presented above, where h;_|
and h;41 represent the preceding and subsequent hidden
states, and W and b represent weight and bias vectors,
respectively. The proposed model integrates an attention layer
with the BILSTM configuration, as suggested by [40]. This
system allows the network to focus in a selective manner
on crucial points by giving them greater weight, thereby

VOLUME 12, 2024

enhancing its capability to encapsulate pertinent information.
Essentially, the model based on attention aims to break down
complicated problems into simpler, sequentially processed
focus areas. For long input sequences, attention provides a
weighting scheme to extract important features and not get
bogged down in noise. Furthermore, attention regularization
has been shown to improve gradient flow during training,
allowing the BiLSTM models to be trained better for some
problems. At time ¢, considering the i — th BILSTM, the final
hidden state, A;(), is calculated this way:

hiy = [h'; : h?] )

Therefore, at time ¢, the calculation of attention modality
is as follows:

ej(r) = tanh (Wahi(t) + ba) 5)
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FIGURE 2. The architecture of a bidirectional LSTM model with an integrated attention mechanism [40].

exp (e
aiy = T(—’(’)) (6)
> exp (ej)
T
vi = ainhiy) (N
j=1

The relevance of h;() is evaluated by passing it through
a fully-connected layer, generating an attention energy
score ;). Subsequently, a softmax layer transforms e;()
into a probability distribution a;(, representing the relative
importance of each BiLSTM output vector. Ultimately,
the attention vector (v;) is formed by combining the
i — th BiLSTM output vectors at time ¢, weighted by their
corresponding attention probabilities (a;s)).

F. FULLY CONNECTED DENSE LAYER
At the end of our model, we add a fully connected network
to act as a classifier. This layer generates a probability
distribution across thirty categories by utilizing the softmax
activation (for example, fever, patient, cold, etc.). This
probability distribution tells us how likely the input belongs
to each category. The model uses an activation function called
‘softmax,” represented by o, which is expressed as:

o (@)= =@ @®)

Zc:l exp (ZC)

Equation 8 employs the element-wise exponential function
of the input vector (z;) represented by exp (z;). This indicates
that each element of z; is raised to the power of e. Notably,
N denotes the number of potential classes (30 in this context),
signifying that the calculation applies to each component
of the vector. Likewise, exp (z.) denotes the element-wise
exponentiation of the output vector (z.).
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G. OVERVIEW OF EXPERIMENT

Fusing MobileNetV2 architecture with attention-integrated
Bidirectional LSTM is a result of various experimental
assessments. Initially, it was observed that the effectiveness
of two concurrent layers of BiLSTMs surpassed that of
a single one. Subsequent evaluations involved exploring
different quantities of hidden units, ranging from 64 to 512.
An equivalent number of hidden units were employed in both
layers to maintain consistency. The optimization process of
the loss function was done using the Adam method [41],
while additional hyperparameters such as the batch size,
dropout, and learning rates were determined by systemic
experimentation using different values. The specific values
of hyperparameters are detailed in Table 4 and the overall
algorithm has been summarized in Fig. 3.

TABLE 4. List of tuned hyperparameters of the proposed attention
mechanism-based CNN-BiLSTM mode.

Parameters Value

Input frames 30

Input frame dimensions 100x100x3
Number of BILSTM layers (Attention- 2

based)

BiLSTM (number of hidden units) 256

Dropout rate 0.25

Optimizer Adam

Learning rate 0.001

Loss function Categorical Cross-entropy
Training epochs 100

Batch Size 16

H. HARDWARE AND SOFTWARE CONFIGURATION
Tensorflow [42] and Keras [43], which are open-source
libraries, were used to conduct this experiment. The entire
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Input:

Total dataset D = {(Ay,Y,), k = 1,2,3, ..., N}, where A, = input video clip assigned with label ¥ .
Training dataset T = {T,,V T, = (ap,y,,) € D}, wherei=1,2,3,..,npandp = 1,2,3, ..., Np.
Validation dataset V = [Vj,v V= (aq,yq) € D], wherej =1,2,3,..,nyandq = 1,2,3, ..., Ny.
Here, TNV =0

Number of epochs = ep_num

Feature set of total dataset = f),

Feature set of training dataset = fr [fr € fp]

Feature set of validation dataset = fy [fy < fp]

Output:
Trained model modelepoch, ACCuracy accuracyepocn, and Fl-score f1_scoreqpocn
forallA, €D (k=1,2,3,..,N)

2 Extract frames (fy, f2, ..., f30) of video clip Ay

3 Resize frames to 100 x 100 pixels

4 end for

5

6 forep=0,epnum do

7 forallA, €D (k=1,2,3,..,N)

8 Extract video frame features f¢, using MobileNetV2

9 Append the feature set fp with video frame features fy,

10 end for

11 Train CNN — BiLSTM _with_attention model for T : model,y. fit(fr,yr )
12 Validate the model for epoch : resultepocn < model,,. evaluate(fy, yy )
13 end for

14 Generate confusion matrix : conf_matrixe, <
Confusion,Matrix(resultc,,.predicted,result,,,.actual)

15 Calculate precision,,, recallopoch, accuracy, and f1_score,, using conf_matrixe,

16 returnmodel,,, accuracy,, f1_score,,

FIGURE 3. Proposed algorithm.

process took place in a local setup on Visual Studio Code with
the help of 64 GB RAM, Intel Core i5-11400 processor, and
NVIDIA RTX 3050 GPU. Furthermore, the dataset was split
into 80% for training and 20% for validation ratio.

I. EVALUATION METRICS

In the evaluation of deep learning models, metrics like
Precision, Recall, and F1 Score are essential for assessing per-
formance, particularly in classification tasks. These metrics
rely on four fundamental elements: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives
(FN), which are defined as follows:

True Positive (TP): A true positive occurs when the model
correctly predicts a positive instance as positive. In other
words, it is a correct prediction of a positive outcome.

True Negative (TN): A true negative occurs when the
model correctly predicts a negative instance as negative.
In other words, it is a correct prediction of a negative outcome.

False Positive (FP): A false positive occurs when the
model incorrectly predicts a negative instance as positive.
In other words, it is an incorrect prediction of a positive
outcome.

False Negative (FN): A false negative occurs when the
model incorrectly predicts a positive instance as negative.
In other words, it is an incorrect prediction of a negative
outcome.

Precision: Precision is a metric that quantifies the accuracy
of positive predictions made by the model. It is calculated as
the ratio of True Positives to the sum of True Positives and
False Positives, expressed as

. TP
Precision = ——— ®
TP + FP

Precision is a metric that evaluates the model’s capacity to

decrease the occurrence of false positive estimations.
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Recall: The metric of recall, alternatively referred to as
Sensitivity or True Positive Rate, quantifies the model’s
capacity to accurately detect all positive cases. The calcu-
lation involves determining the proportion of True Positives
in relation to the combined total of True Positives and False
Negatives, expressed as:

TP
Recall = —— (10)
TP + FN
Recall assesses the model’s capacity to minimize false

negatives.

F1 Score: The F1 Score is a statistic that integrates
Precision and Recall, offering a harmonious mean between
the two measures to achieve balance. It is calculated as:

Precision x Recall
F1— Score =2 x — (1
Precision + Recall

The F1 Score is often employed when there is a
need to consider both false positives and false negatives
simultaneously.

J. INFORMED CONSENT OF HUMAN SUBJECTS
In adherence to ethical standards, informed consent was
obtained from all participants in this study through compre-
hensive consent forms, ensuring a transparent and voluntary
commitment to their involvement in the research.

IV. RESULTS AND ANALYSIS
A. RESULTS
After starting with a baseline CNN-LSTM model with
good validation accuracy (85.39%), the focus was given to
finding suitable pre-trained CNN architecture for feature
extraction. With insight from literature and experience
from experimentation with a number of pre-trained models,
MobileNetV2 with BiLSTM layers with 64 units each
provided an approximately 7% increase in accuracy (92.87%)
from the baseline model. It was also observed that the
validation accuracy increased with the number of units used
in LSTM layers, as with 128 units, the reported accuracy
reached 93.18%. Furthermore, by introducing an attention
mechanism with BiLSTM [40] and increasing the number
of units to 256, the model became capable of being 95.83%
accurate while working with unseen data (validation set). This
gradual improvement in performance is described in Table 5,
and a visual representation is shown in Figure 4.
Furthermore, Table 6 provides a deeper look at the detailed
performance evaluation for 30 signs for attention based
MobileNetV2-BiLSTM model.

B. PERFORMANCE COMPARISON WITH SEGMENTATION
ALGORITHMS

Mediapipe library [44] has recently gained popularity due to
being a lightweight and fast framework. Google launched a
Kaggle competition called “Google - Isolated Sign Language
Recognition” on March 8, 2023 [45]. The goal of the
competition was to develop an automatic sign language
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TABLE 5. Gradual improvement in evaluation metrics in the
experiemental models.

Model Validation ~ Precision ~ Recall F1 Score

Accuracy
CNN BiLSTM Baseline 85.39% 82% 82% 81%
(LSTM Unit=64)
MobileNetV2 BiLSTM 92.87% 91% 91% 91%
(LSTM Unit=64)
MobileNetV2 BiLSTM 93.18% 92% 92% 92%
with Attention (LSTM
Unit=128)
MobileNetV2 BiLSTM 95.83% 93% 93% 93%
with Attention (LSTM
Unit=256)

ACCURACY

(LSTM Unit=256) 05183%
MobileNetV2 BiLSTM with Attention — 93.18%
(LSTM Unit=128)
MobileNetV2 BiLSTM (LSTM Unit=64) — 9287%
CNN BiLSTM Baseline (LSTM Unit=64) - 85.39%

80.00% 84.00% 88.00% 92.00% 96.00%

FIGURE 4. Gradual performance improvement in experimental models.

TABLE 6. Performance evaluation for 30 medical signs for the proposed
model.

Sign Precision Recall F1-Score
Anxiety 1.00 0.96 0.98
Asthma 1.00 1.00 1.00
Bandage 0.93 0.97 0.95
Blood 1.00 1.00 1.00
Blood Pressure 0.88 0.79 0.83
Broke 0.87 0.90 0.89
Burn 0.85 0.94 0.89
Cold 1.00 1.00 1.00
Constipated 0.95 0.88 0.91
Cut 0.83 0.95 0.89
Depressed 0.87 0.95 0.91
Diarrhea 1.00 0.85 0.92
Disease 0.87 0.95 0.91
Doctor 1.00 0.92 0.96
Emergency 0.97 1.00 0.98
Fever 0.90 1.00 0.95
Headache 0.95 0.88 0.91
Hospital 0.90 1.00 0.95
Infection 1.00 0.86 0.92
Itch 0.86 0.90 0.88
Nauseous 0.95 0.95 0.95
Pain 0.87 0.91 0.89
Patient 1.00 1.00 1.00
Redness 091 0.95 0.93
Sore Throat 0.90 0.86 0.88
Sprain 0.88 0.94 0.91
Swallow 0.96 0.93 0.95
Treatment 0.95 0.88 0.91
Urgent Care 1.00 0.96 0.98
Vomit 0.91 0.95 0.93

recognition (ASLR) system that can accurately recognize
American Sign Language (ASL) signs from videos. During
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experimentation, Mediapipe was used to extract landmarks
of key points in the face, hands, and pose, where a ResNet50-
LSTM model was used to classify the signs with a validation
accuracy of 85.43%, which is slightly better than the
baseline CNN-BIiLSTM model (85.39%). However, after
taking a deeper look, it became evident that segmenting using
Mediapipe provides good performance in classifying signs
with distinct gestures; nevertheless, when it comes to similar
gestures, for example, ‘‘Patient”” and "Hospital,” as shown in
Figure 3, accuracy drops to 75% for both, which is a result of
segmentation error [46], [47], [48].

On the contrary, attention-based MobileNetV2-BiLSTM
can classify “Hospital” at 0.95 F1-Score and ‘““Patient” with
1.0 F1-Score, mitigating the effects of gesture similarity.

FIGURE 5. Gesture similarity of hospital and patient.

C. COMPARATIVE ANALYSIS WITH CONTEMPORARY
METHODS

A sign language dataset specifically catering to words that
are used in patient-doctor interactions was not available at
the time of this work. Although Xia et al. [36] created a
private dataset for this purpose, it only consists of 15 words.
Das et al. [38] created another one for 6 words with only
288 videos. As a result, for comparison, contemporary
word-level sign language classification methods with datasets
with similar proportions were used in Table 7 to assess the
performance of the proposed model.

It is evident that the proposed attention-based
MobileNetV2-BiLSTM method outperforms the Hierarchi-
cal Attention Network [20] and CNN-Attention network [49]
with similar dataset sizes. Moreover, the dataset for this
experiment may be smaller than that of Xia et al. [36],
who made use of MobileNet with YOLOv3, but it has
30 words, which is 15 words higher. Moreover, the proposed
architecture has a validation accuracy that is 5% higher.
Podder et al. [39] used Mediapipe and aimed toward
making a signer-independent method with MobileNetV2-
LSTM-SelfMLP, where SelfMLP was introduced to
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TABLE 7. Juxtaposing proposed model with contemporary work.

Author Year of Technique Dataset Dataset Validation
Reference  Study Language Size Accuracy
Huang et 2018 Latent Space German 6841 82.70%
al. [20] Hierarchical  (General)

Attention

Network
Parelli et al 2020 CNN- English 3553 91.38%
[49] Attention (General)
Xia et al. 2022 MobileNet-  English 4000 90.77%
[36] YOLOV3 (Medical)
Podderetal 2023 MobileNetV2- Arabic 6667 87.69%
[39] LSTM- (General)

SelfMLP
Proposed 2023 MobileNetV2 English 3593 95.83%
Model BILSTM (Medical)

with

Attention

decrease overfitting; nevertheless, using MobilenetV2 with
attention-fused Bidirection LSTM provided better perfor-
mance without using Mediapipe, proving the superiority of
the proposed model over a wide range of methodologies.

D. CURRENT LIMITATIONS

While promising, the current results are limited by the
small dataset size of only 30 medical signs. Future work
should construct a larger and more comprehensive dataset
covering over 100 words and sentences reflecting real
patient-doctor interactions. This will enable robust validation
across a diverse semantic range. Additionally, this study
extracted just the first 30 frames due to hardware constraints.
We are actively optimizing our software and upgrading our
equipment to process full, unbounded sequences for complete
analysis. The larger dataset will also facilitate leveraging
recent vision transformer networks, which can potentially
boost classification accuracy but require sufficient training
data.

V. CONCLUSION

In this paper, a word-level sign language detection method
was presented, which is an attention-based MobileNetV2-
BiLSTM model for a dataset that is related to sign words
frequently used in patient-doctor interactions. Although the
proposed model outperforms many contemporary sign lan-
guage recognition mechanisms proposed in recent literature
with similar dataset sizes, there are still limitations that
must be overcome. Currently, the research team is actively
working with the hearing impaired population to understand
the challenges during patient-doctor interactions and create
a larger dataset with words and sentences that will be used
to further develop the model and deploy it within a web app
or a mobile application so that it can become mainstream.
Furthermore, with a large dataset, state-of-the-art vision
transformers can come into play in this context, which was
outside the scope of this paper due to having a dataset that
is not suitable for implementing this technique. As the model
becomes more efficient, along with a diversified dataset for
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medical communication, we will move one step further to
make the world more comfortable for the hard-of-hearing
community.
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