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Forecasting urban water demand 
using different hybrid-based 
metaheuristic algorithms’ inspire 
for extracting artificial neural 
network hyperparameters
Salah L. Zubaidi1,2, Hussein Al-Bugharbee3, Ali W. Alattabi1, Hussein Mohammed Ridha4,5, 
Khalid Hashim6,7, Nadhir Al-Ansari8 & Zaher Mundher Yaseen9

This research offers a novel methodology for quantifying water needs by assessing weather variables, 
applying a combination of data preprocessing approaches, and an artificial neural network (ANN) 
that integrates using a genetic algorithm enabled particle swarm optimisation (PSOGA) algorithm. 
The PSOGA performance was compared with different hybrid-based metaheuristic algorithms’ 
behaviour, modified PSO, and PSO as benchmarking techniques. Based on the findings, it is possible 
to enhance the standard of initial data and select optimal predictions that drive urban water demand 
through effective data processing. Each model performed adequately in simulating the fundamental 
dynamics of monthly urban water demand as it relates to meteorological variables, proving that they 
were all successful. Statistical fitness measures showed that PSOGA-ANN outperformed competing 
algorithms.

Keywords  Urban water management, ANN, PSOGA, Metaheuristic algorithms, Water demand prediction

Freshwater resources are extremely important and play a vital role in developing cities. The logical design 
and active management of the municipal water supply framework are of great importance to guarantee social 
and economic development1. Urban water demand is rising in many nations worldwide due to the escalating 
severity of climate change, population expansion, and economic development2,3. Water shortage has been well 
documented in developed and developing countries, leading to an imbalance between supply and requests for 
water4,5.

To properly manage modern freshwater resources, sound estimates and predictions of water demands in a 
certain area are essential to overcome the issue of water scarcity. This should be achieved because various cities 
in the United States (US), particularly those in arid regions such as the state of Texas in the southwest of the 
US, encounter problems of water scarcity. As such, authorities and engineers are continually trying to keep up 
with the rising demand resulting from the growing impact of socio-economic, political, and weather factors6. 
DeMaagd and Roberts7 stated that shifting patterns of rainfall are anticipated to influence surface water and 
aquifers worldwide, some of which, such as the Southwestern US, are already increasingly strained. Reliable 
estimates of water requests that account for factors driving consumption are essential to understanding future 
municipal water demands6.

Additionally, short-term water demand forecasting aids in administering and operating water supply systems. 
As an illustration, forecasts of short-term demand help water managers balance the needs of water supply to make 
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better-informed decisions regarding water management. Reliable urban water demand forecasting models must 
be established in order to help ensure reliable water availability and reduce peak water use. These forecasting 
models help water utilities make tactical and strategic decisions, enhancing water security and the sustainability 
of water use8.

Water demand datasets typically exhibit non-stationary and non-linear behaviour at various spatial and 
temporal dimensions9. With the development of machine learning (ML) models, different versions of ML models 
were adopted to solve the associated non-linear nature of water demand variability. Some examples of these 
models are artificial neural networks (ANNs)10, support vector machines11, random forests12, gene expression 
programming13, long short-term memory neural networks14, and fuzzy logic15.

An analysis of different methods for predicting urban water demand over the last several decades16–20 
detected that the ANN model was used effectively for different scenarios. ANN techniques have revealed 
optimistic progress in estimating short-, medium-, and long-term municipal water requests. Also, among 
several ML models, ANN showed a predominant model applied for various hydrology fields21,22. However, the 
capacity of individual ML methods to understand intricate data patterns and relationships is typically restricted, 
especially when dealing with non-linear and high-dimensional data23. This may lead to less efficient and accurate 
results when contrasted with more advanced ML models24. To tackle these limitations, an optimising method 
was developed.

Metaheuristic algorithms (MHAs) show promise in solving a variety of challenging non-linear issues across 
hydrological disciplines when comparing hybrid models to single ML models, such as25–28. These combined 
techniques are preferable to solving complicated real-world problems29. This is why these methods have shown 
improvement in identifying new regions that could lead to a broader set of solutions30. Not only that, but the 
ability to exploit is boosted so that local minima are avoided. Finally, when dealing with complex, multi-variable, 
and non-linear problems, these methods perform better31. Regardless, optimisation is still necessary, especially 
in forecasting hydrological factors due to their stochastic, data noise, and non-stationary nature32.

Exploration and exploitation are the two main parts of MHAs. In computer science, “exploration” refers to 
the steps used to identify the boundaries of a search space for an algorithm, while “exploitation” delineates the 
process of picking the best option out of a multitude of generated possibilities33. Finding the optimal balance 
between exploring and exploiting is essential for a search algorithm’s performance34. The relationship between 
exploration and exploitation, however, is inversely proportional35. MHAs can be classified based on their 
inspired technique into physics (P), such as gravitational search algorithm (GSA), evolutionary algorithms (EA) 
like genetic algorithm (GA), and swarm intelligence (SI), for example, particle swarm optimisation (PSO) and 
grey wolf optimiser (GWO)36. The effectiveness of improving algorithms to increase their efficiency in tackling 
optimising issues, either by altering existing algorithms (single-based) or combining different algorithms into 
hybrid ones (hybrid-based)25.

The framework of the suggested research methodology depends on data preprocessing techniques (i.e., 
normalisation, cleaning, and selecting best predictors) and prediction models37. Data preprocessing techniques 
are crucial steps that help to reduce the multicollinearity between predictors, improve data quality, and remove 
redundant variables, resulting in an improved forecasting model performance38. However, previous research 
studies of hydrological hybrid models have suffered from notable methodological weaknesses, leading to 
decreased prediction range and increased uncertainty. Considering data preprocessing techniques, previous 
studies have not dealt with one or more steps of data preprocessing methods, such as normalisation data39,40, 
cleaning data41,42, and selecting the best predictors43,44 or unimplemented all these steps45,46. Also, along with 
this growth in hydrological hybrid models, however, there are certain drawbacks associated with using hybrid 
models of prediction in multiple previous studies. One major drawback of these studies is that they hybridised 
the ML model with one MHA47,48. Hybridised the ML model with MHAs, which have the same inspiration49,50, 
is another (potential) limitation. Another problem with these studies is that they hybridised the ML model with 
only single-based MHAs51,52. Additionally, these studies, however, suffer from the fact that they were applying 
each swarm of MHA with few iterations32,53. Finally, applying each swarm of MHA one time54,55 is another 
potential concern.

Considering all of that, this study will compare the performance of the different hybrid MHAs based on their 
inspiration, and no literature has compared these MHAs before in this sector. It includes PSOGA (SI combined 
with EA), CPSOCSA (SI combined with P), PSOGWO (SI combined with SI), the modified PSO (MPSO), and 
PSO algorithm (as a benchmarking model) to forecast urban water demand. The above MHAs were applied 
effectively in different hydrology fields, such as PSOGA56,57, CPSOCSA58,59, PSOGWO60, MPSO54,61, and PSO62.

Water demand forecasts have lately become a very active area of research, as they lead to considerable 
environmental and economic benefits. A precise water demand forecast ensures a dependable water distribution 
system that is capable of providing users with potable water in sufficient volumes and adequate pressure63. 
The field of water demand estimation has become more critical, resulting from water resource shortages and 
a growth in water usage. Consequently, real doubts persist among water utility decision-makers regarding the 
present urban water system’s capacity to handle the exponential increase in water demands64. Therefore, the 
present study aims to address the following research objectives in light of the limitations highlighted in the 
literature review:

	1.	� The capacity of the wavelet transformation (with various mother wavelets and orders) was adopted for data 
pre-processing as an advanced stage for the prediction process.

	2.	� A new combined ANN-PSOGA model was developed based on the combination of the ANN model and 
hybrid nature-inspired algorithms for water demand prediction using ten years dataset belonging to College 
Station City, USA.
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	3.	� The proposed combined model ANN-PSOGA was validated against several other combined models 
(ANN-CPSOCGSA, ANN-PSOGWO, ANN-MPSO, and ANN-PSO) for validation and benchmarking pur-
poses.

	4.	� For each population size, the forecasting range was increased, and the uncertainty was decreased by repeat-
ing the process five times.

The remainder of this paper has been divided as follows. In “Study area and data set” section deals with the study 
area and data set. In “Methodology” section explains the methodology. Results are covered in “Results” section. 
In “Discussion” section considers the discussion. In “Conclusion” section presents the conclusion.

Study area and data set
The present research adopted a catchment area in the USA located in College Station, TX, to build and evaluate 
the water demand model. The water services for the approximately 150,000 residents of this area are provided 
by the city’s municipal government. The region that is serviced is around 140 km2, with a residential service 
population of more than 95,000 customers and around 55,000 for commercial and industrial purposes. Water 
is supplied by the City’s nine groundwater wells and conveyed to the Dowling Road Pump Station by the Sandy 
Point Pump Station and transmission lines. Table 1 provides the statistical indicators of the dependent and 
independents data, including the urban water usage (megalitre, ML), maximum temperature (Tmax) (oC), 
minimum temperature (Tmin) (oC), mean temperature (Tmean) (oC), rainfall (Rain) (mm), solar radiation 
(Srad) (MJ/m2), maximum relative humidity (RHmax) (%), and wind (m/s) from January 2005 to July 2014.

Methodology
This research suggests a novel methodology focused on understanding the forecast monthly consumption of 
urban water based on weather variables (see Fig. 1). The framework of the suggested research methodology 
started with data acquisition from College Station, USA, (“Study area and data set” section). This is followed by 
data preprocessing techniques that include three steps responsible for enhancing raw data quality and selecting 
the best set of predictors. The data was then divided into three sets (i.e., data dividing): training, validation, and 
testing. Afterwards, five MHAs were combined with ANN to determine the optimal hyperparameters for the 
ANN model (i.e., model configuration stage). Next, the performance evaluation was conducted. In this stage, all 
the models are conducted. Finally, all the models are compared based on different statistical and graphical tests 
to select the best prediction models. The methodology will be described in the subsequent sections (i.e., from 
3.1 to 3.6).

Fig. 1.  Framework of the suggested research methodology.

 

Variable Maximum Minimum Mean

Water consumption (ML) 715,798,498 207,601,706 366,849,231

Tmax (oC) 41.2 11.4 26.8

Tmin (oC) 26.3 2.6 14.8

Tmean (oC) 33.8 7.1 20.8

Rain (mm) 326.8 2.1 75.1

Srad (MJ/m2) 28.3 17.1 6.7

RHmax (%) 0.83 0.35 0.64

Wind (m/s) 4.7 2.1 3.1

Table 1.  Statistical indicators of the collected data.
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Data preprocessing
It is a valuable technique for the prediction model, and it is categorised into normalisation data, cleaning data, 
and determining the optimum predictors28. Time series normalisation is best accomplished using the natural 
logarithm since it mitigates the impact of outliers and eliminates collinearity across predictors37,65. The cleaning 
of data can be implemented by applying the box and whisker method to determine and treat the outliers’ data. 
Then, denoising the time series after that by wavelet transform (WT) technique.

WT is a popular time–frequency analysis method. The principles of WT contain shifting and scaling the so-
called mother wavelet along with the original time series to obtain a time–frequency representation. This WT 
can also be utilised to denoise the original time series. The principles of wavelet denoising contain localising 
time series information at different scales. Then, the important information (i.e., large-magnitude wavelet 
coefficients) is preserved while the noise (i.e., small-magnitude wavelet coefficients) can be shrunk or removed 
using thresholding. The denoised time series can be reconstructed using inverse wavelet transform66,67. Various 
mother wavelets are utilised and investigated in this study, and the most effective one in terms of providing a 
higher correlation between dependent and independent parameters is selected. The process of denoising and 
reconstructing can be conducted using the MATLAB toolbox.

The final step is to locate the optimum scenario of predictors, and for this reason, seven independent variables 
(weather variables) were determined as potential predictors of monthly urban water demand. The covariates 
were screened for inclusion in the prediction models utilising the tolerance technique to account for a high level 
of collinearity within the potential independent variables. Covariates with a tolerance coefficient of less than 0.2 
were removed because they make little to no enhancement in forecast quality65.

Genetic algorithm enabled particle swarm optimisation
The property of intensification provided by the genetic algorithm (GA) and diversification of PSO are combined 
to provide a better solution68.

The first step in PSO is to propose an initial population representing the potential solution. The individuals 
(i.e. particles) of this population are represented by the Eq. (1)

	 Xi = (Xi1, Xi2, Xi3, . . . . . . , XiD)� (1)

where i is the particle number, and D is the dimension. As in birds swarm, which look for their food, these 
particles are proposed to keep moving with a velocity v in the search space, looking for the best solution. The 
initial swarm velocity is represented in Eq. (2)

	 Vi = (Vi1, Vi2, Vi3, . . . . . . , ViD)� (2)

Using the initial particle positions and velocities to calculate the fitness value according to a predetermined 
fitness function.

The genetic algorithm (GA) is inspired by the principles of Genetics and Natural Selection and is popularly 
used for finding optimum solutions to various problems. The first step in the GA technique is to propose a set 
of random populations where each individual is called a chromosome, and each chromosome consists of a fixed 
length of strings, where a string is called a gene69,70. Then, the chromosomes of the first generation (1st set of 
population) follow several steps, including selection, cross-over and mutation to create a new population. In the 
selection step, a number of chromosomes of best fitness values are selected to create the next generation through 
mating and cross-over process. In the crossover operation, parts of two parent chromosomes are swapped as 
described in the Eqs. (4, 5) below:

	

Xt+1
i = α×Xt

j + (1− α)×Xt
i

Xt+1
j = α×Xt

i + (1− α)×Xn
j

� (3)

where Xt+1
i , Xt+1

j  are two new chromosomes created at time t + 1,α refers to the crossover variable, and i ≠ j. 
After that, the new chromosomes are subjected to a mutation process where some gene values are changed, and 
it is given as follows:

	 Xt+1
j = Xt

i +m ∗ rand (size (D)) ,� (4)

where m is the mutate factor and its computed as follows:

	 m = 0.1 ∗ (H − L) ;� (5)

where H  and L are the lower and upper boundaries. According to the PSO algorithm, the particles update their 
locations at every iteration based on the local and global best position according to Eq. (6).

	 Xt+1
i = Xt

i + V t
i � (6)

where t is the iteration number. The velocity is also updated at every iteration according to the Eq. (7).

	 V t+1
i = w ∗ V t

i + C1 ∗ r1 ∗
(
pBestti −Xt

i

)
+ C2 ∗ r2 ∗

(
gBestti −Xt

i

)
� (7)
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where w is inertia weight, C1 and C2 are none-negative constants controlling how the global and local best 
position affect the particle velocity, and r1, r2 are random constants belonging to the range [0, 1]. The fitness 
value is calculated at every iteration until the termination condition is reached and the best solution is found.

The fitness values are evaluated for the new generation. The process of creation of new generation and evaluation 
of fitness is repeated till the termination condition is met71.

As it was mentioned earlier that the present methodology combines their merits of PSO social thinking and 
GA local search ability which helps in obtaining better solution. In this methodology, the PSO performs the 
building solution while the GA plays as local search optimiser.

The first step in this hybrid is to propose an initial random population as in PSO and the pBest and gBest 
values are calculated in the first iteration. Next, the new position and velocity vectors of the PSO particles are 
updated and fitness values are also evaluated. Then, the new position sets are subjected to GA to represent the 
chromosomes sets and follow the same processes explained in the previous section (i.e. selection, crossover and 
mutation) to infer the best solution. The chromosomes associated with the optimum solution in GA are then 
sent back to PSO as an updated population. The process above is repeated until the meeting of the target fitness. 
One way to calculate the PSOGA fitness function is to use the root mean square error (RMSE) to determine the 
best and worst fits for each iteration.

Constriction coefficient-based particle swarm optimisation with chaotic gravitational search 
algorithm
The Constriction Coefficient-based Particle Swarm Optimisation with Chaotic Gravitational Search Algorithm 
(CPSOCGSA) can be categorised as a stochastic hybrid optimisation methodology. The suggested methodology 
combines Particle Swarm Optimisation (PSO), which is influenced by bird flocking behaviour, with the 
Gravitational Search Algorithm (GSA), a technique, which is inspired by Newton’s law of universal gravity. 
The proposed methodology utilises the exploration and exploitation capabilities of PSO and GSA to attain the 
optimal result72.

The CPSOCGSA has been proposed to enhance the exploratory outcoms inherent in the GSA, in conjunction 
with the convergence possibility of the Constriction Coefficient-Based PSO. To tackle the problem of being 
trapped in local minima, which is usualy occurs in the classic GSA, chaotic maps are proposed as a means to 
address the issue. The equation that merges both aforementioned techniques is presented in Eq. (8)72.

	 vdi (t + 1) = (2/
(
φ− 2 + sqrt

(
φ2 − 4φ

))
vdi (t) +Kφ1ri1

(
adi (t)− xdi (t)

)
+Kφ2ri2

(
gbest− xdi (t)

)
� (8)

In this context, the variable vdi  represents the velocity of the particles in the swarm, (φ, φ1, φ2) are control 
parameters, K is the Constriction Coefficient. adi  refers to the acceleration of the particles, and gbest refers to the 
particle system’s social capability component.

The spatial coordinates of the particles are presented by Eq. (9)72.

	 xdi (t + 1) = xdi (t) + vdi (t + 1)� (9)

The usefulness of optimisation algorithms in addressing continuous benchmark test functions is evident due to 
the inherent simplicity that allows agents to traverse the search space and identify feasible potential solutions 
within this specific category of functions. However, the accurate assessment of intelligent algorithms resides in 
their capacity to effectively address complex non-linear test operations, such as those encountered in engineering 
standards. In the aforementioned situations, algorithms are required to efficiently address complex restrictions 
and rigorous inequalities72. To calculate the CPSOCGSA fitness function, a RMSE can be used to choose the best 
and the worst fit for each iteration.

Particle swarm optimisation with grey wolf optimiser
Grey Wolf Optimiser (GWO), based on their creators, is driven by the leadership sequence and hunting 
technique of grey wolves in nature73. The grey wolves can be considered as the top food chain’s consumers since 
they are the tertiary consumers. Regardless of gender, grey wolves are split into four groups within the leadership 
sequence: alpha, beta, delta, and omega74. After Alpha wolves, beta wolves are the best solutions, according to 
the GWO algorithm, followed by the delta wolves. Omega wolves are the supporters of the abovementioned 
wolf groups and serve as the scapegoats for the submissive wolves74. The top wolves are thought to be the ones 
doing the hunting. According to Muro et al.75, the procedure is carried out in three phases: the chasing phase, 
the pursuit phase, and the attacking phase. A mathematical model based on the abovementioned hunting phases 
is built. The following Eqs. (10, 11) can be adapted to model the GWO mathematically:

	 D = |C ∗Xp (t)−X (t)| ,� (10)

	 X (t + 1) = Xp (t)− A ∗D� (11)

In this context, the variable t represents the count of instantaneous iterations. D represents encircling the prey. Xp 
indicates the position of the prey, whereas X represents the location of grey wolves. The coefficients A and C are 
utilised for the vectors. The coefficients A and C are computed according to the following Eqs. (12, 13):

	 A = ax(2 ∗ r1 − 1),� (12)

	 C = 2 ∗ r1� (13)
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The number of a is a linear reduction from 2 to 0 as the number of iterations decreases. The variables r1 and r2 
indicate random numbers selected between (0, 1).

According to the literature, PSO provides promising results in several engineering challenges. One of the 
most recent projects utilising PSO featured microgrid energy scheduling76, and the outcomes were impressive. 
The exploration ability of GWO, as indicated by Şenel et al.77, was introduced to reduce the likelihood of swarms 
being drawn to a local minima. It may be deduced that the hybrid PSO-GWO is efficient in terms of its capacity 
for exploration as well as congregation78. For each iteration, to calculate the PSOGWO fitness function, a RMSE 
can be used to determine the best and the worst fit.

ANN model
Most current ML applications in hydrology involve ANNs, particularly feedforward back-propagation (FFBP) 
learning. Accurate simulations of municipal water needs across several spatial and temporal dimensions were 
generated by mapping the non-linear behaviour of water data using the FFBP79,80.

It has been proven that with two hidden layers, ANNs can accurately simulate the non-linear relationship 
between predictors and targets, and this method has been effectively used by a wide range of researchers across 
a broad variety of applications, such as Sadeghifar et al.81, Shah et al.82, and Nunes Carvalho et al.83. Based on 
this, an ANN was constructed with four layers (Fig. 2): one for the predictors (i.e., climate factors), two hidden 
layers for data processing, and one for the target (i.e., urban water usage). Each of both hidden layers employs 
a tansigmoidal activation function, while using a linear activation function in the output layer. The dataset 
was divided into a training set (containing 70% of the data), a validation set (15%), and a testing set (15%), 
as per prior studies Zubaidi et al.5 and Mohammed et al.84. A perfect fit for ANN training is the procedure 
for calculating the ANN coefficients, which are the interlayer biases and weights. Consequently, optimisation 
approach algorithms (bayesian regularisation) are executed to improve precision85.

Four MHAs (i.e., PSOGA, PSOGWO, CPSOCGSA, MPSO, and PSO) were utilised separately to develop the 
ANN technique by finding optimum values for the ANN’s hyper-parameters (i.e., the learning rate coefficient 
(Lr) and the number of neurons in the first and second hidden layers (N1 and N2)).

Validation of the model
This research used different performance criteria to assess the model performance. Due to the lack of a universally 
applicable performance metric, it is essential to choose the appropriate criteria for a certain application. 
Additionally, it is usual to utilise multiple performance criteria due to the pros and cons that exist in each 
criterion86. Also, conduct different statistical tests help to ensure the superiority of the proposed approach87. 
Several types of performance criteria used in this research include root mean squared error (RMSE, Eq. 14), 
mean absolute error (MAE, Eq. 15), mean absolute relative error (MARE, Eq. 16), nash sutcliffe coefficient (NSC, 
Eq. 17), normalised mean square error (NMSE, Eq. 18), and coefficient of determination (R2, Eq. 19). For a perfect 
model, RMSE and MAE would be zero, and NMSE, NSC, R2, and correlation coefficient (R) would be one21,88,89. 
Moreover, different graphical tests were used to assess the methodology, such as the Taylor diagram and Violin 

Fig. 2.  ANN model architecture.
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plot. Furthermore, four tests, including the Kolmogorov–Smirnov, Shapiro–Wilk, Augmented Dickey-Fuller 
(ADF), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, were used to evaluate the residual data.

	
RMSE =

√∑N
i=1 (Oi − Fi)
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∑N
i=1 |Oi − Fi|

N
� (15)

	
MARE =

1

N

N∑
i=1

|Oi − Fi|
Oi

� (16)

	
NSC = 1−

∑N
i=1 (Oi − Fi)

2

∑N
i=1

(
Oi − Oi

)2 � (17)
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
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Oi −Oi

2�
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2



2

� (19)

where Oi: observed water consumption, Fi: forecast water demand, Oi: mean of observed water consumption, 
F i: mean of forecast water demand, N: number of data points.

Results
Data preprocessing techniques
Data should be preprocessed before being used to build the prediction model (as mentioned in “Data 
preprocessing” section). Accordingly, firstly, dependent and independents time series were normalised. Then, 
outliers were detected and treated.

Afterwards, the WT technique was employed for denoising all the time series. Initially, sym, db, and coif 
wavelets were examined independently in various orders to determine the optimum order for each type. The 
outcomes reveal that the optimum order is 5 for sym, db, and coif wavelets. The five kinds of mother wavelets 
(sym5, Haar, dmey, db5, and coif5) were applied separately for denoising all-the time series, as shown in Fig. 3A, 
and for more details, Fig. 3B provides a clear view. The most interesting aspect of this figure is that all the types 
increase the model’s accuracy, and coif5 is the best.

The tolerance technique was used with different scenarios to locate the optimum predictors (weather 
variables) to simulate water consumption. Table 2 presents the optimum scenario of the predictors (i.e., Tmax, 
Rain, wind, and Rhmax). It can be seen that the tolerance constants for all the predictors are more than 0.2, which 
means that there is no violation of the multicollinearity assumption.

Models configuration
It is important to methodically design the prediction model in order to accurately estimate water demand after 
data has been divided into training, validation, and testing stages. For the ANN model, it is combined with a 
metaheuristic algorithm (PSOGA-ANN) to find the optimum hyperparameters (i.e., N1, N2, and Lr). Other 
metaheuristic algorithms (i.e., PSOGWO-ANN, CPSOCGSA-ANN, and MPSO-ANN) are used to confirm the 
validation of the PSOGA-ANN’s results. Further, the performance of all the above hybrid models was compared 
with a benchmarking model (i.e., PSO-ANN) to examine to what extent the performance of the PSO algorithm 
was enhanced by modification or hybridised with another MHA to forecast water demand based on several 
weather factors.

For each algorithm, five population sizes (10, 20, 30, 40, and 50) were employed to implement the combined 
technique. For each population size, the forecasting range was increased, and the uncertainty was decreased 
by repeating the process five times (e.g., see Fig. 4 for the PSOGA-ANN algorithm). The best implementation 
that resulted in the lowest error (best fitness function, RMSE) was chosen for each population size (e.g., 
implementation two for the 10 population size of PSOGA-ANN is the best) and combined with the best 
implementation for the remaining population sizes (see Fig. 5 for all MHAs). Figure 5 demonstrates that the 
optimal population size across all methods is 50. So, the 50 population size of each hybrid model offered Lr, 
N1, and N2 values for their ANN model, with the exception of the PSO-ANN model, which provides the ANN 
model’s hyperparameters via a population size of 40.

Therefore, the ANN method for water demand simulation has been fine-tuned using the output of each 
MHA. Consequently, the optimal ANN hyperparameters for the best population size for each case are tabulated 
in Table 3.
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Evaluation of the prediction models performance
After configuring the ANN models of prediction by locating the optimum hyperparameters for the ANN as 
presented in Table 3, all the models run multiple times to select the best ANN model architecture (i.e., interlayer 
biases and weights) to simulate the monthly water consumption. During the testing stage, various statistical 
criteria were applied to evaluate the methods’ capability to extrapolate urban water requests from meteorological 
factors.

Firstly, absolute error criteria (RMSE and MAE), maximum error criterion (Max.(error)), relative error 
(MARE), and dimensionless error criterion (NSC, NMSE, and R2) were applied for assessing and comparing 
technique performances. The performance assessment outcomes for the testing stage are tabulated in Table 4. 
The table reveals that the performance of all the proposed models is good in generalisation water demand data in 
accordance with Dawson et al.88. However, the PSOGA-ANN technique yielded lower RMSE, MAE, MARE, and 
Max.(error) and higher NSC, NMSE, and R2 than the rest of the models. These denoted that the PSOGA-ANN 
model represented the greatest overall performance in comparison to the other techniques.

Additional testing was conducted on the proposed models to confirm their ability to forecast College Station 
City’s water use. As illustrated in Fig. 6, the correlation coefficient (R) was calculated to compare the simulated 
and actual water consumption. The target (i.e., measured water consumption) on the x-axis is plotted versus 
output (i.e., forecast water request) on the y-axis. All the models offer R of more than 0.9 at the testing stage. 
It is equal to 0.97301, 0.961, 0.96078, 0.92379, and 0.92562 for PSOGA-ANN, PSOGWO-ANN, CPSOCGSA-
ANN, MPSO-ANN, and PSO-ANN, respectively. This test confirms the capability of the PSOGA-ANN model to 
forecast water needs according to the criteria limitation mentioned in the section "Validation of the model." Also, 
it is clear that the measured and forecasted data for the PSOGA-ANN model reveal a high degree of consistency 
compared with other hybrid models.

Additionally, Fig.  7 presents the Taylor diagrams that are used for preparing a visual comprehension 
among observed patterns (Reference) and five simulated patterns performed by PSOGA-ANN, PSOGWO-

Predictors Tolerance constants

Tmax 0.294

Rain 0.392

wind 0.454

RHmax 0.272

Table 2.  Collinearity statistics.

 

Fig. 3.  Correlation coefficients between dependent and independent factors (both raw and denoised using five 
distinct wavelets).
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ANN, CPSOCGSA-ANN, MPSO-ANN, and PSO-ANN models. The diagram considers the root-mean-square 
difference (RMSD, green contour line), the standard deviation (SD, grey arc), and the correlation coefficient (R, 
blue azimuthal line). The diagram shows that compared to the other models (i.e. PSOGWO-ANN, CPSOCGSA-
ANN, MPSO-ANN, and MPSO-ANN), the PSOGA-ANN model provided the highest R, the lowest SD and 
RMSD, and the nearest one from the observed pattern (Reference point).

Fig. 5.  The best trial for each population size of PSOGA-ANN, PSOGWO-ANN, MPSO-ANN, CPSOCGSA-
ANN, and PSO-ANN algorithms is presented.

 

Fig. 4.  Evaluation of the PSOGA-ANN algorithm with five independent trials for different population sizes.
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Fig. 6.  Correlation coefficient test for all proposed hybrid models.

 

Model

Statistical criteria

RMSE (ML) MAE (ML) MARE Max. (error) (ML) NSC NMSE R2

PSOGA-ANN 0.06745 0.04771 0.00243 0.15245 0.929 0.939 0.947

PSOGWO-ANN 0.07492 0.05597 0.00286 0.17003 0.913 0.899 0.924

CPSOCGSA-
ANN 0.07479 0.05285 0.00269 0.17936 0.913 0.904 0.923

MPSO-ANN 0.10206 0.10206 0.00438 0.21568 0.838 0.808 0.853

PSO-ANN 0.09701 0.07217 0.00367 0.19026 0.854 0.828 0.857

Table 4.  Performance assessment of four machine learning models for testing stage.

 

Parameter

Hybrid ANN-metaheuristic models

PSOGA PSOGWO CPSOCGSA MPSO PSO

N1 6 1 8 1 4

N2 3 20 19 20 4

Lr 0.8194 0.9531 0.1511 1 0.2680

Table 3.  ANN-designed parameters.
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While both violin plots and box plots are similar, the former provides more useful information. A single 
visualisation that integrates the box plot and density trace (or smoothed histogram) to show datasets in a 
complementary manner is the violin plot. Violin plots, which highlight data clusters, give a clearer picture of the 
distribution’s form. At each point, the violin plot indicates the amount of data that has been acquired; the top tip 
represents the highest data value, and the bottom tip represents the lowest data value90. This section utilises the 
violin plot diagram to compare the distribution of the measured and forecast water demand datasets during the 
testing period (Fig. 8). Based on the box plot limitations and violin plot distribution, the ANN-PSOGA model is 
more in line with the observed urban water demand than that of the other ANN-based techniques.

Fig. 8.  Violin plot of observed and forecasted urban water demand related to the testing stage of all suggested 
hybrid models.

 

Fig. 7.  Taylor diagram for PSOGA-ANN, PSOGWO-ANN, CPSOCGSA-ANN, and MPSO-ANN techniques.
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Figure  9 also shows the testing stage results for the predictions of the PSOGA-ANN, PSOGWO-ANN, 
CPSOCGSA-ANN, MPSO-ANN and PSO-ANN models. Figure 9A presents the observed and predicted urban 
water time series data. In terms of pattern (trend + periodicity), the simulated time series from the PSOGA-
ANN and PSOGWO-ANN models closely match the observed data. However, PSOGA-ANN performs the best, 
while MPSO-ANN and PSO-ANN fare the worst regarding the error scale. An error analysis was accomplished 
in the testing phase to examine the goodness of fit of the five hybrid models. The error scatter plots versus the 
sample counts for the testing phase are offered in Fig. 9B. It can be seen that relative to the other models, the 
PSOGA-ANN model’s error was much closer to zero (ranging from − 0.0746 to 0.1525) ML, while the rest of the 
error ranges are (− 0.0766 to 0.1700), (− 0.0751 to 0.1794), (− 0.1239 to 0.2157), and (− 0.1829 to 0.1903) ML for 
PSOGWO-ANN, CPSOCGSA-ANN, MPSO-ANN, and PSO-ANN models, respectively. The distribution also 
exhibited no discernible trend. According to the results shown above, PSOGA-ANN outperformed other hybrid 
models in terms of accuracy.

Accordingly, the PSOGA-ANN model outperformed PSOGWO-ANN, CPSOCGSA-ANN, MPSO-ANN, 
and PSO-ANN models over the entire range of testing data, and the MPSO-ANN model yielded the lowest 
performance. Finally, to increase the testing of the PSOGA-ANN model, the results of the ADF and KPSS tests 
indicate that the residual data points are stationary, and the normal distribution of the residuals was confirmed 
by the Kolmogorov–Smirnov and Shapiro–Wilk tests. Consequently, the distribution of the pattern and values 
of the residual data endorse the PSOGA-ANN technique’s capacity.

Fig. 9.  (A) Observed and forecasted urban water time series comparison and (B) Residual scatterplots for the 
PSOGA-ANN, PSOGWO-ANN, CPSOCGSA-ANN, MPSO-ANN, and PSO-ANN approaches in the testing 
phase.
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Discussion
The prediction power of ML models in several branches of hydrology—including streamflow28, water quality27, 
and water level26—has been shown to be enhanced by data preprocessing and hyperparameter optimisation. 
Considering the limitations of data preprocessing techniques that are reported in “Intorduction” section, this 
paper has examined all the data preprocessing steps. The predictors and target time series underwent three 
preprocessing methods—normalisation (natural logarithm), a cleaning approach (WT), and choice of the 
optimum independents’ scenario (tolerance approach)— to maximise forecast accuracy. The WT method aids 
in removing random noise from the data series. Improved data quality led to higher correlation coefficients 
between model inputs and output, as seen in Fig. 3. A possible explanation for this result may be that particular 
attention is paid to normalisation and cleaning data techniques, especially the WT method, which was applied 
with different mother wavelets and multiple orders, resulting in better improved raw data quality.

We have also considered the consequences of selecting predictors. Accordingly, carefully choosing the 
predictors will also make use of all the choices in the design space that can improve the performance of the 
predictions and shed light on which metrological factors have the biggest impact on the output response. Thus, 
in order to reduce the likelihood of multicollinearity among predictors, only four of the seven climatic factors 
were chosen using the tolerance technique. These factors (i.e., Tmax, Rain, wind, and RHmax) have tolerance 
coefficients between 0.272 and 0.454, as tabulated in Table 2. These findings are in keeping with those of earlier 
research82,91, which demonstrated that reducing computation time and increasing ML model accuracy by 
choosing predictors using a systematic technique rather than a trial-and-error procedure.

The author´s attention was focused not only on data preprocessing but also on hybrid models of prediction. 
One big issue with ML techniques is their slow convergence. Another is how difficult it is to avoid local minima. 
Enhanced ML, thanks to recent advancements in hybrid modelling, has paved the ground for more accuracy in 
standalone models to be developed in the future28. This paper has presented several solutions to the drawbacks 
of hybrid models in previous studies mentioned in “Intorduction” section. This study compares the single 
ML model with five MHAs instead of one. Also, these MHAs are related to three inspirations instead of one. 
Additionally, these MHAs are three hybrid-based and two single-based algorithms. Moreover, each MHA was 
applied with an iteration equal to 200. Furthermore, each swarm for each MHA was implemented five times.

Since the MHAs utilised follow various strategies depending on their behaviour during the optimisation 
phase, the hybridisation process results in a wide range of hyperparameter values, creating multiple model 
scenarios. In this research, three different hybrid-based MHAs (i.e., different combinations based on their 
behaviour) PSOGA (SI combined with EA), CPSOCGSA (SI combined with P), and PSOGWO (SI combined 
with SI) were applied to locate the optimum ANN model’s hyperparameters. The performance of hybrid-based 
MHAs is compared with that of single-based MHA (MPSO and PSO).

According to the findings of the various statistical and graphical tests utilised to evaluate the models during 
the testing stage (detailed in “Results” section), it is generally accepted that both MHAs (i.e., the single-based 
and hybrid-based) simulated urban water demand data with good accuracy according to Dawson et al.88. It is 
probable that the improved quality of data made possible by the data preparation technique is responsible for this 
superiority. Additionally, the optimum solution was likely found due to running the swarm of each algorithm 
five times, resulting in a more robust prediction range and less uncertainty. Moreover, hybrid-based MHAs 
(PSOGA, PSOGWO, and CPSOCGSA) outperformed the single-based MHA (MPSO and PSO). These results 
confirm the findings of prior studies92,93 that MHAs that use a hybrid-based approach outperform those that 
rely on a single-based approach. However, the PSOGA-ANN algorithm is superior to generalise water demand 
data compared with other MHAs in the testing stage. Evidence for this can be seen in Table 4, which displays the 
outcomes of RMSE, MAE, MARE, NSC, NSME, and R2 after only a few iterations throughout the optimisation 
procedure (Fig. 5). Another important finding, as shown in Fig. 7, was that the hybrid-based MHAs (PSOGWO 
and CPSOCGSA) function similarly. Similarly, the single-based MHAs (MPSO and PSO) performance is rather 
close.

These results lend credence to the claim made in the previous studies25,94 that avoidance of local minima is 
possible with hybrid-based algorithms, leading to improved accuracy, stability, and reliability in solving real-
world issues. In terms of future research, it would be useful to extend the current findings by examining different 
kinds of data preprocessing techniques. Much work remains to be done before fully understanding the extent 
of hybrid-based MHAs’ performance with other ML techniques is established. Also, there is a need for research 
studies that explore the hybrid-based MHAs’ performance with long-term datasets.

Moreover, an urban water company might theoretically utilise short-term weather forecast data to optimise 
the schedule of water production if they calibrate this model with their data. A water company, for instance, 
could lower its energy use by shifting more production to shoulder and off-peak hours if short-term weather 
projections called for cooler temperatures.

Conclusion
In the last few decades, as water supplies have become scarcer and human consumption of water has rapidly 
grown, water utilities have focused heavily on developing more accurate methods of predicting future water 
needs. Motivated by data collected for College Station City, USA, over a decade, this study aimed to find a novel 
methodology to improve the prediction of urban water demand based on meteorological variables. This paper 
compared the performance of five MHAs, three of which were hybrid-based and two of which were single-
based MHAs for urban water demand forecasting. The hybrid-based MHAs are PSOGA (SI combined with 
EA), CPSOCGSA (SI combined with P), and PSOGWO (SI combined with SI), and the single-based MHA are 
MPSO and PSO. These MHAs’ performance have not been compared before in terms of urban water demand. 
The methodology contains three combined techniques, including data preprocessing (WT and tolerance) and a 

Scientific Reports |        (2024) 14:24042 13| https://doi.org/10.1038/s41598-024-73002-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


prediction model (ANN that is integrated by PSOGA). The results of PSOGA-ANN were compared with those 
of the CPSOCGSA-ANN, PSOGWO, MPSO, and PSO algorithms.

In light of the findings, it was concluded that data pre-processing is an appropriate strategy for enhancing 
data quality (denoising) via the use of WT and for identifying the optimal set of predictors using tolerance. 
The optimum scenario of the predictors in which the multicollinearity condition is not violated was provided 
by Tmax, Rain, wind, and Rhmax. The performance of the PSOGA-ANN outperformed all other suggested 
models over the entire range of testing data stages, and the single-based models yielded the lowest performance. 
The PSOGA-ANN algorithm yielded R2, NSC, NMSE, RMSE, and MAE, of 0.947, 0.929, 0.939, 0.06745 and 
0.04771 megalitres, respectively. These results indicate that the proposed methodology offers a guide to choosing 
appropriate predictors controlling water demand.

These conclusions have significant implications for policymakers and managers as they plan for, evaluate, 
and compare the accessibility of potable water supplies and growing water needs. Lastly, this research filled a 
gap in the literature by examining the quality and uncertainty of data analytic machine learning techniques for 
predicting monthly urban water demand considering weather variables. More research is needed to determine 
how various meteorological variables impact water demand prediction at different scales.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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