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Abstract: To address the trajectory tracking issue of unmanned tracked vehicles, the majority of
studies employ the Model Predictive Control (MPC). The MPC imposes high demands on model
accuracy. Due to factors such as environmental interference, actuator constraints, and the nonlinearity
of vehicles under high-speed conditions, dynamic and kinematic models fail to accurately delineate
the motion process of tracked vehicles. Aiming at the problem of insufficient trajectory tracking
precision of unmanned tracked vehicles, a trajectory tracking controller jointly controlled by the Twin
Delayed Deep Deterministic policy gradient (TD3) algorithm and the MPC algorithm is developed.
During offline training, the agent acquires the discrepancies between the model and the environment
under various working conditions and optimizes its own network; during online reasoning, the
agent adaptively compensates the output of the MPC based on the vehicle state. The experimental
results indicate that, compared with the pure MPC algorithm, the MPC algorithm compensated based
on the TD3 algorithm reduces the lateral errors by 41.67% and 22.55%, respectively, in circular and
double-lane-change trajectory conditions.

Keywords: unmanned tracked vehicles; model predictive control; reinforcement learning; TD3;
trajectory tracking control

1. Introduction

In recent years, with the application of electric drive technology for tracked vehicles,
high-speed tracked vehicles have been evolving toward intelligence and unmanned opera-
tion. Electric drive tracked vehicles exhibit numerous advantages in control, such as precise
torque control, rapid response speed, braking energy recovery, etc. [1,2]. For the control
system, the motor serves as a precise actuator. This establishes the foundation for the
unmanned operation of tracked vehicles. Regarding manned tracked vehicles, the driver
achieves the vehicle’s tracking of the target road or trajectory by manipulating the steering
wheel angle. The objective of the controller is to guarantee safety while precisely imple-
menting the control quantity. The majority of studies have concentrated on vehicle stability
control [3-6]. For unmanned tracked vehicles, the key technologies can be generalized as
environmental perception, positioning and navigation, and decision making and planning,
as well as trajectory tracking [7]. Whereas trajectory tracking, as the ultimate safeguard
of the maneuverability and driving safety of unmanned tracked vehicles, demands high
tracking precision.

The traditional approaches to trajectory tracking can be classified into three categories:
geometry-based methods, model-free methods, and model-based methods. Pure pursuit
(PP) and Stanley methods are geometry-based approaches. These two methods determine
the front wheel steering angle command based on the geometric relationship between the
vehicle and the desired trajectory. Ahn J et al. [8] and AbdElmoniem A et al. [9] verified
the effectiveness of these two methods through experiments. Nevertheless, the control
accuracy of geometry-based methods is not satisfactory under high-speed and off-road
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conditions. Among the model-free control methods, the PID algorithm is widely employed
due to its simplicity and extensive application scope [10,11]. However, since its parameter
tuning methods largely rely on experience, in trajectory tracking control, inappropriate
parameters can lead to vehicle instability, entailing high test costs and time consumption.
LQR and MPC algorithms are typical representatives of model-based methods. The quality
of their control effects hinges on the accuracy of the model. Zhao Z et al. [12] enhanced
the trajectory tracking accuracy of the vehicle by employing the method of optimizing
the model. Through observing the slip and skid amounts of the tracks on both sides of
the tracked vehicle via the extended Kalman filter, they were utilized as parameters to
compensate for the model of the MPC controller.

In recent years, reinforcement learning has gradually been applied in the trajectory
tracking control of vehicles. Srikonda S et al. [13] utilized the Deep Deterministic Policy
Gradient (DDPG) algorithm in place of the traditional controller to realize vehicle trajectory
tracking. Liu M et al. [14], in an attempt to enhance the training speed, initially employed
data for the agent to undertake imitation learning, and subsequently conducted reinforce-
ment learning to increase exploration, achieving trajectory tracking on urban roads in
wheeled vehicles. However, for scenarios not encountered during the reinforcement learn-
ing training, the output actions of the agent can readily cause the vehicle to lose control.
Hence, some scholars endeavor to combine reinforcement learning with traditional control
algorithms. Shan Y et al. [15] employed the Proximal Policy Optimization (PPO) algorithm
to regulate the output proportion of the PID algorithm and the PP algorithm, dynamically
integrating the advantages of the two algorithms. Nevertheless, this method remains
confined within the framework of traditional control methods. Wang S et al. [16] utilized
Q-learning to compensate for the output of the PID algorithm, but the Q-learning method
is suitable for control in discrete state spaces and would give rise to the dimension curse for
continuous state spaces. Chen I M et al. [17] employed the PPO algorithm to compensate
for the output of the PP algorithm, demonstrating excellent real-time performance.

In the domain of trajectory tracking of unmanned tracked vehicles, the majority
of studies still adopt traditional control methods [18-20]. Nevertheless, there exist the
following challenges in the control of high-speed tracked vehicles: On the one hand, the
slip and skid between the tracks of high-speed tracked vehicles and the ground significantly
increase, resulting in intensified nonlinear characteristics of the tracked vehicles. On the
other hand, compared to the steering of wheeled vehicles, the differential steering response
speed of tracked vehicles is slower. In response to the aforementioned challenges, this
paper proposes the MPC-TD3 control method. Herein, the MPC controller provides the
control quantity based on the simplified kinematic model of the tracked vehicle. For the
portion where the kinematic model inaccurately describes the tracked vehicle model, the
TD3 algorithm is employed to compensate for the output of the MPC controller.

2. Tracked Vehicle Model Construction
2.1. Kinematic Model of Tracked Vehicle

The global coordinate system XOY and the vehicle body coordinate system xoy are
established as shown in Figure 1:

The position and attitude of the vehicle in the global coordinate system is (X, Y, 6),
where 0 is the heading angle of the tracked vehicle. In the local vehicle body coordinate
system, vy, vy, w, are the longitudinal velocity, lateral velocity, and yaw rate of the vehicle,
respectively; o, is the steering center of the tracked vehicle, o; is the instantaneous steering
center of the left track of the tracked vehicle, and o, is the instantaneous steering center of
the right track of the tracked vehicle. (x¢,yc), (x1, 1), (x;,y,) are the coordinates of these
three points, respectively. These three points are on the same straight line, and this straight
line intersects the left track and the right track at points M and N, respectively. v, v, are the
winding speeds of the left and right tracks, respectively; and v Mg, ONg are the entrainment
velocities of the vehicle body at points M and N, respectively.
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Figure 1. Kinematic model of tracked vehicle.
Then the kinematic model of the tracked vehicle is:
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2.2. Dynamic Model of the Tracked Vehicle

The force diagram of the tracked vehicle is shown in Figure 2 as follows:
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Figure 2. Dynamic model of the tracked vehicle.
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The normal pressures imposed on the track plates on both sides of a tracked vehicle
during steering can be represented as:

N; = %mg — B (h(vy + vxwz) — cyg)

Ny = 3mg + % (h(0, + viw:) — cyg)

py=" - O (cag + M0y — vyws))xy; (2)
P = % — Ez—mn(cxg—l— h(vx — vywz)) %y

where Nj, N, are the normal pressures exerted on the two sides of the tracks, respectively,

Pyj;, P,; are the pressures exerted on each track plate on the two sides, respectively, and m

is the mass of the tracked vehicle. L is the grounding length of the track, B is the center

distance between the two sides of the tracks, n is the number of track plates on the single

side of the track, cx, ¢, are the offsets of the center of mass of the tracked vehicle, respectively,

and xy;, x,; is the abscissa of each track plate in the vehicle coordinate system, respectively.
In the vehicle coordinate system, the coordinates of each track plate are:

L bk
Xgi = = — [, vsrdt
g 3)
Yi = F>5
where o is the winding speed of the kth side track, and tyi is the moment when this track
plate begins to contact the ground.
The absolute velocities of each track plate are:

Vi = U8 — (vx w2 (5 —¢y))
Ujyki = Uy — Wz (xg; — cx)

Then, the shear displacement of each track plate is:

. t
Juki = Jiyi Vjehi(T)AE

Jyki = ftﬁ,i Vjyki(T)dt (5)

Jii = \fTegi T Tk

Then, the driving forces received by the two sides of the tracks in the longitudinal and
lateral directions are, respectively:

Fux = L #Pu(1 — exp(—jxi/K)) sind
o ©)

n
Fyr = ¥ uPii(1—exp(—jii/K))cosd

i=0

where y is the friction coefficient between the track and the ground, K is the ground shear
modulus, and 7 is the vehicle sideslip angle, expressed as:

Ox

—— )
\/ 03 —i—vﬁ

The resistances received by the two sides of the tracks respectively are:

5:

Ry = fNg 8)

where f is the rolling resistance.
The driving torque and resistant torque exerted on the tracked vehicle are:
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n B . . n B . .
To =~ £ jPu(5 — e0) (1~ exp(—ju/K)) sind + L uPy(’5 )1~ exp(—j/K)) sind
1= 1=

n n )
Tf = ‘ZO x1ipP;i(1 — exp(—jii/K)) cos d + 'ZO XriptPyi(1 — exp(—jyi/ K)) cos
1= 1=

Based on the above formulas, the dynamic equilibrium equation of the tracked vehicle

is obtained: .
Fx,l + Frr — (Rf,l + Rf,r) = T’I/l(’l)x — vywz)

Fy,l + Fy,r - m(vy - waZ) (10)
Tp — Tf — (Rf,l + Rf/)g = Izwz

The dynamics simulation model of the tracked vehicle is shown in Figure 3:

Fx2 Fx2
VX
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Slip calculation Force and moment calculation module Kinetic equation

Figure 3. The dynamics simulation model of the tracked vehicle.

2.3. Verification of the Dynamics Model of Tracked Vehicles

Figures 4 and 5 respectively present the comparison diagrams of the actual and
simulation results of the driving trajectory and vehicle speed of a certain type of crawler
vehicle on the dirt road. The vehicle weighs 24 tons, with L being 4.4 m and B being 2.71 m.
In the simulation environment, y is 0.8, K is 0.015, and f is 0.06. It is observable from the
simulation results that this dynamic model can relatively accurately describe the state of
the vehicle.

700 T T T T T T T T
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600 Actual trajectory |
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Figure 4. Vehicle trajectory comparison diagram.
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Figure 5. Vehicle speed comparison diagram.

3. Construction of the MPC Controller
3.1. Construction of the Controller

The MPC controller utilizes the kinematic model to predict the vehicle’s position and
posture within a future period, solves the optimal control sequence through quadratic
programming, and outputs the first set of control quantities. During the process of quadratic
programming solution, constraint conditions such as control increment limitations and
control quantity magnitude limitations can be added, thereby considering the response
capabilities of the actuators. The kinematic model of the tracked vehicle is a nonlinear
equation and can be expressed as:

X = f(X,u) (11)

where the state quantities are X = [X, Y, 0] 7, and the control quantities are u = [0}, v}] .
Linearize and discretize Equation (4). Perform the Taylor expansion of the kinematic
equation at the reference trajectory point and discretize it through the forward Euler method
as follows: _
X(k+1) = AX(k) + Bii(k) (12)
where T; is the sampling time, vé 4 U5z and are the reference values of the rotational speeds

of the left and right driving wheels, and 0 is the reference value of the heading angle.

!

Y10y =Yy s _ vy~
1 0 T = sin 6, e cosby)

— o ol I r
A=190 1 TS(%COSGd—%szinGd)
0 0 1

Ts(—yly_’yr cosby — yzjicyy sin6,) TS(yly—ly, cos by + ]/l)ic]/r sin6)

. __Yr : Xc Y : X
B= | T yioy; Sinfg + 725 cos 64) Ts(yz—yy sin 6y — 72 cos6,)

— S s
Yi—Yyr Yi—yr

Z(k) = [ X (k) ] (13)
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The new state-space expression is:

&k +1) = AZ(k) + BAU(k)

8 (14)
n(k) = CZ(k+1)

A B
Om Xn Im
dimension of the control quantity.

Through iterative derivation, the predicted output expression of the system can be

where ;1 = [ } ;1_?3 = LB } ; n is the dimension of the state quantity; and m is the
m

obtained:
Y(k) = p&(k) + OAU(k) (15)
The objective function of the model predictive controller is as follows:
Np 2 Nt 2
J) = L[tk +ilt) = mek+il)| + X JaUG+il)| +p2 16)
i=1 Q i=1 R

where N, is the prediction horizon; N, is the control horizon; p is the weighting coefficient;
and ¢ is the relaxation factor.
Transform it into the form of a quadratic form:

J=[AUr €] [@T(?@ 2] {Aﬂ + [2ErQO 0] [Asu] (17)

The interior point method is adopted to solve it to obtain the control sequence, and
the first group of control quantities is taken as the output of the controller.

3.2. Constraint Conditions

Considering the limited response capability of the motor and to prevent the vehicle
from rollover, the increment of the rotational speed of the driving wheels is restricted, as
well as the maximum value and the rotational speed difference between the left and right
driving wheels.

The resistance received by the motor can be observed through the Luenberger observer.
At the same time, according to the external characteristic curve of the motor, the maximum
torque that the motor can output at the current rotational speed can be obtained, and the
maximum rotational speed increment of the motors on both sides can be obtained:

Aty = 1)
<T’ CfTV) (18)
AWmax = ot

Cc

where I, is the moment of inertia of the entire vehicle mass equivalent to the rotation of
the motor

The maximum rotational speed increment of the driving wheel is obtained through
the coupling mechanism and the reducer:

24k k
AZ]émax _ T 2(0+k) 2014k AWinax (19)
Ao’ i 2+k Aw!

smax b |30k 2(04+R) max

where k is the planetary row parameter of the coupling mechanism, iy, is the total reduction
ratio, and r is the radius of the driving wheel.
Bring it into the following formula as a constraint condition:

Attin (t + k) < Au(t + k) < Aumax(t + k),

k=01,---,N.—1 (20)
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The maximum rotational speed and the rotational speed difference of the driving
wheel are restricted; that is, it is ensured that in the model prediction process, the control
quantity of each prediction solution is within the constraint conditions. The maximum
rotational speed can be obtained through the following formula:

Prax
Wmax ( T é Tg) (21)

Similarly, through the coupling mechanism, bring it into the following constraint
conditions:

Ay 0 A Uax — Uy
—At 0 0 S —Umax + ut (22)
Awt 0 AU meax - uwt
_Awt 0 0 —uwmax + th
where:
1 -0
1 1 -0
At = . & Im
: 0
11 1 1 N.x N,

Uy =1y, ®u(k—1)

1(k—=1) —up(k—1)

u
Ui = Inoa © L{l(k — 1) —up(k—1)

This constraint condition can simultaneously constrain the rotational speed value and
the rotational speed difference on the left and right sides. Among them, m is the dimension
of the control quantity, and ® represents the Kronecker product. u(k — 1) is the control
quantity at the previous moment, and uj(k — 1)uy(k — 1) represent the first and second
elements in the control quantity, namely the rotational speeds of the left and right wheels.
Uyax, Uwmax are the maximum rotational speed of the driving wheel and the maximum
rotational speed difference between the left and right driving wheels, respectively.

4. Construction of the TD3 Agent Compensation Module
4.1. Design of State Space and Action Space

In this paper, the TD3 agent is adopted to compensate for the deviations in vehicle
position and attitude caused by the inaccuracy of the MPC controller model. Firstly, the
lateral deviation, longitudinal deviation, and heading angle deviation of the vehicle in
the global coordinate system need to be observed, which are ey, ey, ey, respectively. At
the same time, the situation where the input states are the same but the expected actions
are different should be avoided as much as possible to avoid the non-convergence of the
model. The change rates of yaw rate, lateral deviation, longitudinal deviation, and heading
angle deviation of the vehicle need to be introduced, which are w;, ex, ey, €, respectively.
Finally, considering the deviation between the trajectory predicted by the model and the
actual trajectory, the deviations of the vehicle state at the current moment predicted by the
vehicle state at the previous moment and the actual vehicle state at the current moment are
introduced, which are ex,, éyp, égp, respectively.

To sum up, the state space is designed as s = [ex, ey, eg, w2, €x, €y, €y, éXp, éyp, égp], and
the action space is designed as the compensation amount a = v,, for the speed difference
of the left and right driving wheels.
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4.2. Reward Function Design

The smaller the deviation of the vehicle’s position and attitude, the greater the reward
value should be. In order to unify the magnitude of lateral deviation, longitudinal deviation,
and yaw angle deviation, and to accelerate the convergence speed of the neural network,
we set the deviation as an exponential function:

2 2
Fyy = 3¢—0.05¢%—0.05¢

23
rg = 0.3¢ 40 ®3)
In order to keep the output compensation rotational speed increment of the agent
within the constraint range and prevent the instability of the tracked vehicle caused by
the sudden change in its output, when the variation in the neural network output is too
large, a certain penalty should be given. The penalty is designed as a continuous value to
avoid the problem of non-convergence of training caused by giving different rewards for
the same state:
r, = —0.5a(k) —a(k —1)| (24)

The final reward function is designed as
r=rxy +rg+rty
2 2
rxy = 38—0.0585(—04058},

rg = 0.3¢—40¢5
r, = —05a(k) —a(k —1)]

(25)

4.3. Design of the TD3 Agent

The TD3 algorithm improves the DDPG algorithm in three aspects. Introducing dual
Critic networks to alleviate the overestimation problem; adding random noise to the target
action; delaying the update of the Actor network.

First of all, the TD3 algorithm introduces dual Critic networks to alleviate the over-
estimation problem. The DDPG algorithm adopts the Actor—Critic structure, in which
the Critic network uses the Double Q-learning (DQN) algorithm. Therefore, the DDPG
algorithm will have the same overestimation problem as the DQN algorithm. The neural
network update process of DON can be expressed as:

y=r+7 -maxQ(s’,a’;w)
g 9Q(s,a;w) (26)

Jw

w—w—uo-y—Q(s,aw) -

In the formula, y represents the target Q-value, r is the reward of the environment, y
is the discount factor that determines the priority of short-term rewards, « is the learning
rate, Q(s,a;w) represents the Q-value estimated by the Critic network at the current
moment, s/, a’ represent the state space and action space at the next moment, and Q(s’,a’; w)
represents the Q-value estimated by the Critic network at the next moment.

The maximization of Q-values and bootstrapping lead to the overestimation problem
of Q-values. The training process is based on the method of experience replay, randomly
extracting quadruples for update. In this process, the originally low Q-values may be
overestimated, resulting in incorrect policies and reducing the training efficiency. The
Target Network algorithm and the Double DQN algorithm alleviate the overestimation
problem of Q-values to a certain extent, but the overestimation problem of Q-values in
the DQN algorithm and DDPG still exists. The TD3 algorithm uses dual Critic networks.
When calculating the Q-value estimated for the future at the next moment, it outputs the
smaller output value among the two Target Critic networks:

s o ) @
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In the formula, 3//(- - - ; ¢) represents the Target Actor network, Q' ( . ;le> repre-

sents the Target Critic network, u'(s’; ¢) represents the output action at the next moment,

Qi

and Q’; (s’, a;w:!
Critic network.

Secondly, the TD3 algorithm adds random noise to the target action. Using a determin-

istic policy network as the Actor network, when the Critic network is updated, the learning

goal using the deterministic policy is easily affected by the error of function approximation,

thereby increasing the variance of the target. This induced variance can be reduced through

regularization. Therefore, the TD3 algorithm adds random noise to the target action:

) represents the Q-value estimated at the next moment using the Target

y=r+9Q (s, 1(s59) +sw?) (28)
e ~ clip(N(0,0), —¢,c)

Finally, TD3 adopts the method of delayed update of the Actor network, and updates
the Actor network after the update of the Critic network is stable. This improves the
stability of the Actor network update.

The complete control algorithm structure is shown in Figure 6. The parameter settings
of the training process are shown in Table 1:

Table 1. Training parameters.

Hyperparameter Value
The number of layers of the Actor network 2
The number of neurons in each layer of the 256
Actor
The learning rate of the Critic network 0.001
The learning rate of the Actor network 0.0001
discount factor 0.99
The size of the experience replay buffer 128
The update interval of the target network 2

During the training process, the TD3 agent randomly samples a quadruple from the
experience replay pool, which contains the current moment’s tracked vehicle’s position
and other state information s, the action output by the Actor network a, the reward given
by the environment 7, and the next moment’s state information s’. The agent inputs (s, 4)
into the Critic network to calculate the estimated Q-value at the current moment Q1, Q5.
At the same time, it inputs the next moment’s state s’ and action value y/(s’; ¢) + ¢ into
the Target Critic network to calculate the estimated Q-value at the next moment Q';, Q'.
Then, it takes the smaller of the two and adds it to the reward value to obtain the actual
Q-value at the current moment. It separately calculates the TD error for each of the two
Critic networks. Finally, it uses gradient descent to update the Critic network, and updates
the Actor network using gradient ascent after the Critic network has been updated several
times. The target network is updated using a soft update method.

During the online reasoning process, only the Actor network participates in the
calculation. The agent calculates the compensation value in real time based on the current
state information of the tracked vehicle.
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Figure 6. Schematic diagram of the MPC-TD3 control algorithm.
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5. Simulation and Analysis
5.1. Simulation Experiment

This article uses the dynamics model of a tracked vehicle built by MATLAB Simulink
as the environment. The RL Agent module in the Simulink toolbox can be used for the
training of agents, but the models trained thereby are difficult to deploy on the Huawei
Atlas 200 DK controller. In this article, the Python language is used to write the MPC
algorithm and train and infer the agent. Regarding the interaction problem between the
agent and the environment, C code is generated by Simulink and then encapsulated as a
DLL file to achieve the interaction between the agent and the controller in Python and the

environment. As shown in Figure 7:

/ MPC controller. -

Python

TD3 agent

Python

data A

interaction

A\ 4
Environment
Simulink dynamic model Code C/C++ code DLL file
o] | generation CIC++ D LL

Figure 7. Simulation Experiment Data Interaction Diagram.
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We validate the control effect using three trajectory conditions: straight-line, circular,
and double-lane-change trajectory. The straight-line and circular trajectories can verify
the vehicle’s track-following control effect under a constant desired turning radius. The
double-lane-change trajectory is a variable-curvature trajectory, similar to actual driving
scenarios such as overtaking and evading obstacles. It can verify the track-following control
effect under this condition.

5.1.1. Straight-Line and Circular Trajectory Conditions in Simulation

Under this trajectory condition, the expected vehicle speed is set to 30 km/h. After
driving in a straight line for 50 s, it tracks a circular path with a radius of 100 m. The
simulation results are shown in Figure 8.
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Figure 8. Simulation diagrams of straight-line and circular trajectory conditions.

From the simulation results, it can be concluded that under the trajectory conditions
of straight lines and circular trajectories, compared with the MPC controller, the mean
values of the lateral deviation and the heading angle deviation of the MPC-TD3 controller
proposed in this paper have decreased by 58.18% and 10.27% respectively. Moreover, it
can be seen that the penalty for the output deviation value in the reward function has
achieved a very good effect. The output value of the agent has no sudden change and has
better stability.

5.1.2. Double-Lane-Change Trajectory Conditions

Under this trajectory condition, the expected vehicle speed is set at 30 km/h. After a
period of linear acceleration, it enters the double-lane-change path. The simulation results
are shown in Figure 9.

It can be obtained from the simulation results that under the double-lane-change
trajectory condition, the maximum lateral deviation has decreased from 0.91 m to 0.29
m, reducing by 68.13%. The mean values of the lateral deviation and the heading angle
deviation have decreased by 34.10% and 0.18%, respectively.
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Figure 9. Simulation diagrams of double-lane-change trajectory conditions.

5.2. Hardware-in-the-Loop Experiment and Analysis

The hardware-in-the-loop simulation experiment is shown in Figure 10. The MPC-TD3
algorithm is deployed on the Atlas 200 DK development board produced by Huawei in
Shenzhen, China, which adopts the CANN architecture. It is necessary to convert the agent
saved by Pytorch into the OM model and deploy it on the development board, and conduct
online reasoning using the AscendCL toolchain. The simulation environment runs in
dSPACE, and the CAN bus is used for communication between the controller and dSPACE.

|

Model Program
loading debugging
Ethernet N\ Ml Ethernet
— '

.\

Huawei
A200 DK

Figure 10. Hardware-in-the-Loop Experimental System.
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5.2.1. Straight-Line and Circular Trajectory Conditions in Hardware-in-the-Loop
Experiment

It can be seen from Figure 11 that under this working condition with the vehicle
speed of 30 km/h, when comparing the MPC-TD3 controller with the MPC controller,
the mean values of the lateral deviation and the heading angle deviation have decreased
by 41.67% and 37.51%, respectively. The output of the agent, due to communication
interference and noise, fluctuates more than that in the simulation case, but it is still within
the controllable range.
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Figure 11. Hardware-in-the-Loop simulation diagrams of straight-line and circular trajectory condi-

tions.

5.2.2. Double-Lane-Change Trajectory Conditions in Hardware-in-the-Loop Experiment

It can be seen from Figure 12 that under this trajectory condition with the vehicle
speed of 30 km/h, when comparing the MPC-TD3 controller with the MPC controller, the
maximum lateral deviation has decreased from 0.82 m to 0.36 m, a reduction of 56.10%.
The mean value of the lateral deviation has decreased by 22.55%. It can be seen that the
average calculation time of the MPC algorithm is 0.0448 s, and the average calculation time
of the TD3 algorithm is 0.0008 s. The addition of the TD3 algorithm has almost no impact
on the solution time.
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Figure 12. Hardware-in-the-Loop simulation diagrams of double-lane-change trajectory conditions.

6. Future Research Directions

The safety of tracked vehicle trajectory tracking control is of great importance. In this
paper, the intelligent agent is constrained by using a penalty surrogate variable method,
thus achieving vehicle stability. However, it is inevitable that the intelligent agent will
output abrupt changes during the initial training. How to increase the exploratory nature
of the intelligent agent’s training while ensuring safety is a very worthy research direction.
In future research, we will try to combine human experience with the training of intelligent
agents, and at the same time, impose safety constraints during training to enhance the
safety of the training.

7. Results

In this paper, aiming at the problem of insufficient trajectory tracking accuracy of
tracked vehicles under different trajectory conditions, an MPC-TD3 controller is proposed
by combining the model-based and data-based methods, achieving an improvement in
trajectory tracking accuracy. The following conclusions are obtained through simulation
experiments and hardware-in-the-loop experiments: (1) The TD3 algorithm is used to adap-
tively compensate the output of the MPC controller, making up for the insufficient trajectory
tracking accuracy caused by inaccurate vehicle models and environmental interferences,
and achieving an improvement in trajectory tracking accuracy. (2) The designed reward
function not only improves the control accuracy but also suppresses the problems of vehi-
cle instability caused by the output mutation of the TD3 agent and the non-convergence
of training. (3) The experimental verification under circular trajectory conditions and
double-lane-change trajectory conditions is completed. Compared with the traditional
MPC algorithm, the algorithm proposed in this paper reduces the lateral error by 41.67%
and 22.55%, respectively, verifying the effectiveness of the algorithm.
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