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Functional network topology in drug resistant
and well-controlled idiopathic generalized
epilepsy: a resting state functional MRI study

Emily J. Pegg,1,2 Andrea McKavanagh,3 R. Martyn Bracewell,4 Yachin Chen,3 Kumar Das,4

Christine Denby,4 Barbara A. K. Kreilkamp,3,5 Petroula Laiou,6 Anthony Marson,3

Rajiv Mohanraj,1,2 Jason R. Taylor2,7 and Simon S. Keller3

Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains

a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cel-

lular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing

body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hy-

pothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state func-

tional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three par-

ticipants with IGE (10 with WC-IGE and 23 with DR-IGE ) and 34 controls were included. Resting state functional MRI networks

were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node

strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteris-

tic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were

constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and between-

ness centrality were also measured and ‘hub nodes’ were compared between groups. Outcome measures were assessed across the three

groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic

path length and average betweenness centrality. There were no clear differences between groups according to seizure control.

Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no

clear differences in the location of ‘hub nodes’ between groups. The results suggest that, irrespective of seizure control, IGE interictal

network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node loca-

tions. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible

that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is

also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodo-

logical work is warranted to account for anticorrelations in graph theoretic studies.
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Introduction
Epilepsy affects around 70 million people worldwide,1 of

whom 15–20% are estimated to have idiopathic general-

ized epilepsy (IGE).2 IGEs comprise a group of syn-

dromes characterized by the occurrence of generalized

seizures in the absence of neurodevelopmental abnormal-

ities or structural brain lesions.3 Approximately 18% of

people with IGE do not become seizure-free despite an

adequate trial of at least two appropriate and tolerated

antiepileptic drugs (AEDs).4,5 Subsequent changes to drug

regimens have a low chance of resulting in seizure free-

dom6 and, therefore, such patients are considered to have

drug resistant epilepsy.7 In addition to a high seizure bur-

den, people with drug resistant epilepsy have a higher

rate of injury,8 sudden unexplained death in epilepsy,9

and social difficulties,10 compared with those with con-

trolled seizures.

Traditionally, drug resistance in epilepsy has been

examined from a cellular or genetic perspective.

However, such approaches have failed to fully explain

the underlying mechanisms of drug resistance.11 Since epi-

lepsy is now understood to be a network disorder, in

which seizures emerge from the dynamic resting state of

the brain,12 investigating epilepsy drug resistance from a

resting state network perspective may facilitate greater

understanding of this important issue.

Resting state brain networks may be examined using

functional MRI (fMRI), whereby blood oxygen level de-

pendent (BOLD) signal is statistically analysed to
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establish the extent of connectivity between regions.

Graph theory provides a robust mathematical method to

subsequently delineate and analyse network topology

(structure). Within this framework, each brain area is

termed a ‘node’ and the connections between nodes are

termed ‘edges’. Edges may be weighted according to the

strength of correlation of BOLD signal between nodes.

Information regarding the presence and strength of pairs

of connections within a network is contained within a

connectivity matrix and from this, a range of network

metrics and features can be determined (Table 1).13,14

Overall evidence from graph theoretical studies derived

from electroencephalography (EEG), magnetoencephalog-

raphy (MEG) and MRI suggests that networks of people

with focal epilepsy and IGE have a more regular top-

ology compared with controls.15,16 It has been proposed

that this regularity may render the network more likely

to synchronize than a network that has a more random

structure.17 However, there are inconsistencies within the

literature, with some studies consistent with a more

random network structure in epilepsy and others not

identifying any differences in network regularity.18–20

To our knowledge, analysing fMRI-derived functional

connectivity from a global network perspective in IGE

according to seizure control has not previously been con-

sidered. However, reduced connectivity in specific net-

works (cerebellar and default mode networks) in drug

resistant IGE (DR-IGE) compared with well-controlled

IGE (WC-IGE) has been described.21,22 In an EEG top-

ology study by our group, in a different patient cohort,

differences were found between controls and WC-IGE in

the 10–12 Hz frequency band (compared with controls,

mean degree and degree distribution variance was lower

in WC-IGE and small world index was higher).23 This

perhaps suggests that in people who respond to medica-

tion, drug-induced alterations to the network render the

network less susceptible to seizures.

Considering that network topology may play a role in

seizure control in IGE, and that diverging findings in the

literature of IGE network topology may be influenced by

Table 1 Commonly used graph theoretical terms and measures applied to epilepsy research

Node (vertex) (n) The unit which forms a graph and represents an underlying brain

region

Edge Connection between two nodes

Directed edge Information flows in one direction only

Undirected edge Information flows in either direction

Weighted edge A value given to an edge according to the strength of the connection

Degree distribution variance/node strength distribution variance The variance of the node degree/node strength distribution

Degree (k) Number of connections of a node

Node strength The summed strength of connections of a node in a fully connected net-

work. This is an equivalent measure to the node degree.

Nodes with a high number of connections or a high connectivity strength

may be regarded as ‘hub nodes’

The mean value of the node strength values of all network nodes

Average node strength

Clustering coefficient (C) The probability that the neighbouring nodes of a given node are them-

selves connected

C is averaged to calculate the clustering coefficient of the whole graph. (A

measure of network segregation)

Mean clustering coefficient (Ci)

Path length (d) Minimum (or shortest) number of edges connecting 2 nodes

Mean of the shortest path length between all pairs of network nodes (a

measure of network integration)

Characteristic path length (L)

Small-worldness Ratio of average clustering coefficient of the graph to the mean clustering

coefficient of a similar size random graph as a proportion of the ratio of

the characteristic path length of the graph compared with the path

length of a random graph

[C/C random]

[P/P random]

Small-world networks have higher than expected clustering coefficient

with a characteristic path length of equal or lower value than a random

graph

Betweenness centrality A measure of to what extent a node lies on all shortest paths between

each pair of network nodes.

A measure of the importance of a node within the network. Nodes with

high betweenness centrality may be regarding as ‘hub nodes’

The mean value of the betweenness centrality values of all network nodes

Average betweenness centrality
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a lack of evaluation according to seizure control,16 the

aim of this study was to compare resting state global net-

work topology in people with DR-IGE, WC-IGE and

controls, using fMRI. Consistent with the intrinsic sever-

ity hypothesis of drug resistant epilepsy, where the inher-

ent severity of epilepsy determines medication response,24

we hypothesize that network aberrations in epilepsy lie

on a spectrum according to seizure control, with altera-

tions in WC-IGE lying between those of DR-IGE and

controls. We also tested the hypothesis that specific nodes

which play a prominent role in network integration (so-

called ‘hub nodes’), differ between people with IGE and

controls.18,25 The potential importance of hub nodes in

seizure susceptibility in focal epilepsy is well

described,26,27 but hub nodes have been seldom explored

in IGE.

Materials and methods

Recruitment

Thirty-five participants with IGE were recruited from the

Walton Centre NHS Foundation Trust and from Salford

Royal NHS Foundation Trust. All participants with IGE

had been diagnosed by an experienced epileptologist accord-

ing to current International League Against Epilepsy (ILAE)

criteria 3 based on patient history, seizure semiology and

EEG. Two participants were subsequently excluded. This

was due to the re-classification of epilepsy type in one case

and in the other, there was an MRI finding of focal cortical

dysplasia (this was an incidental finding, the syndromic

classification of IGE remains following review of diagnosis).

Twenty-three participants had DR-IGE (persistent seizures

despite AED treatment) and 10 were seizure-free for at least

one year and therefore were classified as having WC-IGE.

Thirty-four healthy controls were recruited locally from the

University of Liverpool and the general public. None of the

participants was familiar with the scanning environment.

Informed, written consent was obtained for all partici-

pants according to the Declaration of Helsinki and this

study was approved by the local ethics committee (UK

Research Ethical Committee reference 14/NW/0332).

Data collection and pre-processing

3D T1-weighted and resting state fMRI (RS-fMRI) images

were obtained for each participant using a 3T GE

Discovery MR 750 MR system. Scanning was performed

supine in the head-first orientation. Participants were

instructed to stay awake and to look at a white fixation

cross on a black background. T1-weighted data were

acquired using the following parameters: Pulse sequence ¼
BRAVO; echo time (TE) ¼ 3.22 ms; repetition time (TR) ¼
8.2 ms; field of view (FOV) ¼ 24, TI ¼ 450 ms; slice thick-

ness ¼ 1 mm; voxel size ¼ 1 mm � 1 mm � 1 mm; 140

slices; flip angle ¼ 12. RS-fMRI was obtained with a 6-

min3 T2-weighted sequence with the following parameters:

Pulse sequence ¼ gradient echo; TE ¼ 25 ms; TR ¼
2000 ms; FOV ¼ 24; slice thickness ¼ 2.4 mm; voxel size

¼ 3 mm � 3 mm � 3 mm; 180 volumes; 38 slices; flip

angle ¼ 75.

Spatial pre-processing was implemented in SPM12

using the standard SPM pipeline. Slice timing correction

of the fMRI time series was performed using the first

slice as the reference. Head motion and EPI distortion

were corrected to the first functional volume. The esti-

mated movement parameters (3 translation; 3 rotation)

were saved and later included as covariates for each sub-

ject in the first level analysis to produce the connectivity

matrix. Data were normalized into MNI (Montreal

Neurological Institute) space using the ICBM 152 tem-

plate of European brains28; the mean functional image

was registered to the template image via a direct affine

and interpolated into 2 � 2 � 2 mm voxel space using

4th-degree B-Spline method. The resulting warp param-

eter was then applied to all volumes. Gaussian kernel

smoothing with an 8 mm full width half-maximum

Gaussian kernel was employed at each data point and

neighbourhood voxel. Tissue segmentation was performed

using the SPM add-on CAT12 toolbox (http://www.

neuro.uni-jena.de/cat/. Last accessed 18/05/21). This spa-

tially normalizes the T1-weighted image into the MNI

space then segments it into skull-stripped brain.

Following this, adaptive maximum a posteriori segmenta-

tion29 was performed to quantify estimates of grey mat-

ter, white matter and cerebrospinal fluid present at each

element. An exclusion threshold for motion >3 mm trans-

lation and >1� rotation was set.30

Spatially pre-processed data were next temporally pre-

processed using the Functional Connectivity Toolbox

(CONN).31 Component-based noise correction using the

CompCor method32 was performed to reduce voxel spe-

cific noise, including noise arising from cardiac pulsations

and respiratory modulations. Potential confounds from

white matter and cerebrospinal fluid (based on principal

component analysis of the multivariate BOLD signal

within masks produced from T1-weighted tissue segmen-

tation for each subject) were added as covariates in

CONN. Head motion effects that were detected in spatial

pre-processing (6 estimated movement parameters per vol-

ume) were used as covariates to further reduce noise.

These steps are reported to increase the sensitivity of

results of both correlated and anticorrelated networks.31

Furthermore, white matter and cerebrospinal fluid com-

partments were entered as covariates to reduce partial

volume effects. Bandpass filtering was also implemented

to further remove physiological noise and to limit BOLD

to between 0.01 and 0.08 Hz. Networks within this fre-

quency range are widely reported to represent the resting

state of the brain.31,33–35
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Network construction

Weighted functional connectivity matrices were con-

structed using the CONN functional connectivity toolbox

(Fig. 1). Data were parcellated using AICHA (Atlas of

Intrinsic Connectivity of Homotopic Areas).36 This func-

tional resting state connectivity atlas segregates data into

384 regions comprising 244 gyral regions, 100 sulcal

regions and 40 grey matter nuclei. Network edges were

defined using a weighted least squares linear model,

where Pearson’s correlation of average BOLD signal was

determined between each pair of regions, with the

strength of correlation forming the weight. This was

Fisher transformed to provide normally distributed scores,

producing Z, representing the weighted matrix of Fisher

transformed correlation coefficients.

Weighted, undirected, graphs were subsequently con-

structed using a custom script implemented in Matlab.37

Thresholding was performed in order to improve sensitivity

to physiologically relevant connections versus noise,13 with

connections with weights between �0.25 and þ 0.25

excluded. There is no universally agreed threshold value,

with variations from r¼ 0.1 to r¼ 0.8 seen in the litera-

ture.38 A threshold of r¼ 0.25 was selected as it is a com-

monly used threshold.39 A post hoc analysis explored the

effects of altering the threshold by performing the analysis

with thresholds of zero, r¼ 0.125, and r¼ 0.375. There is

no optimal solution to handle negative values in graph the-

oretical analysis40; typically either positively correlated val-

ues or absolute values are used.41 The rationale for

discarding negatively correlated edges comes from studies

demonstrating that anticorrelated networks reflect artefact

generated in pre-processing.42,43 However, there is also evi-

dence to suggest that anticorrelated networks have an im-

portant role in brain functioning44,45 and as such, relevant

connectivity information may be overlooked if negative cor-

relations are ignored.40 In view of this debate, and the fact

that graph theoretic measures cannot account for signed

weights, two separate analyses were performed for global

metrics; one based on networks created from only positive

correlations, and the other using absolute correlations.

Figure 1 Schematic overview of study methodology. After data were collected and pre-processed, parcellation into network nodes

was performed. Connectivity matrices were constructed for each participant. Graphs were created for each participant in each group,

followed by group-level statistical analysis.
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Graph analysis

Global measures of average node strength, node strength

distribution variance, average clustering coefficient, char-

acteristic path length, small-world index and average

betweenness centrality were calculated. These metrics

were chosen to provide a broad overview of network

topology. Because clustering coefficient and characteristic

path length are sensitive to degree, normalized metrics

were calculated for each by dividing average clustering

coefficient and characteristic path length by the mean of

the clustering coefficient and characteristic path length

distributions of 500 surrogate random networks

respectively.46,47

As a post hoc analysis, strength and betweenness cen-

trality were also calculated for each node individually

using an edge threshold of 0.25. Subsequently, ‘hub

nodes’ were identified for each participant. Nodes were

considered as hubs if both strength and betweenness cen-

trality were greater than one standard deviation above

the corresponding mean network value.48–50 The nodal

metric analysis was carried out using absolute values

only, and compared IGE with controls, in view of the

results of the global network analysis.

Statistical analysis

Demographic and outcome metric results were firstly

assessed for normality (by reviewing kurtosis, skewness,

histograms and Q–Q plots). Next, potential differences in

demographics and outcome metrics between the three

groups were evaluated using Kruskal–Wallis tests or one-

way analysis of covariance, as appropriate. Age and epi-

lepsy duration were included as co-variates. Where differ-

ences were found, pairwise comparisons were evaluated

using a Mann–Whitney U- or Tukey test. This was

Bonferroni corrected for multiple comparisons using a

factor of six. In addition, both groups with epilepsy were

combined into one cohort and global outcome metrics

were compared with controls using an independent t-test,

controlled for participant age.

Potential differences in connectivity between individual

nodes in IGE compared with controls were evaluated by

comparing the strength and betweenness centrality of

each node, using a Mann–Whitney U-test. Correction for

multiple comparisons was implemented using the false

discovery rate (FDR)51 with a q-value of 0.1. Following

the identification of hub nodes, the total number of times

a node was considered a hub in each group was calcu-

lated and displayed visually. The number of hub nodes in

each group was compared using a Kruskal–Wallis test.

An analysis to compare motion parameters between the

participants with IGE and controls was performed.

Normality of the data was tested first using a Lilliefors

test and when significant (P< 0.05) a Mann–Whitney U-

test was performed.

Data availability statement

The data that support the findings of this study are avail-

able on request from the corresponding author. The ori-

ginal data are not publicly available due to ethical

restrictions.

Results

Participant demographics

Median age significantly differed between groups (DR-

IGE ¼ 31 years; WC-IGE ¼ 22.5 years; Controls ¼
32 years (Table 2). Kruskal–Wallis H¼ 8.02,

P¼ 0.018). Pairwise comparisons found a difference in

age between WC-IGE and controls (P¼ 0.014), with no

significant differences between WC-IGE and DR-IGE

(P¼ 0.094), DR-IGE and controls (P¼ 1.00), or be-

tween both IGE groups (combined) and controls

(P¼ 0.066). Females comprised 59.7% of participants,

with no significant difference across groups (Pearson

Chi-square ¼ 0.84, P¼ 0.656). Median duration of epi-

lepsy was 14.5 years in DR-IGE and 6.5 years in WC-

IGE. This difference was not statistically significant

(Kruskal–Wallis H¼ 2.715, P¼ 0.099). The mean num-

ber of AEDs taken in the group with WC-IGE was

1.14 (range 1–2) and in the DR-IGE group was 1.9

(range 1–4). This difference was not statistically signifi-

cant (Mann–Whitney U¼ 1.937, P¼ 0.524).

There was no significant difference in average root

mean square motion values between groups (Mann–

Whitney U¼ 1197, mean controls ¼ 0.27, mean IGE ¼
0.33, P¼ 0.48).

Global outcome metrics

In the graphs constructed using absolute values at a

threshold of 0.25 (Supplementary Tables 1–3), there was

a difference between the three groups in average between-

ness centrality (one-way ANOVA F¼ 4.657, P¼ 0.013).

Pairwise comparisons identified a significantly higher

average betweenness centrality in WC-IGE compared

with controls (P¼ 0.048) and a possible trend towards a

significantly higher average betweenness centrality in DR-

IGE compared with controls (P¼ 0.057), with no differ-

ence between WC-IGE and DR-IGE (P¼ 1). There were

no other differences in global metrics at the three-group

level. When both IGE groups (WC-IGE and DR-IGE

combined) were compared with controls, a higher average

node strength (Fig. 2a) and average betweenness central-

ity (Fig. 2f) were found in the group with IGE (respect-

ively; t¼ 5.956, P¼ 0.017; t¼ 8.963, P¼ 0.004). A trend

toward a significantly higher characteristic path length

(Fig. 2d) and lower small-world index (Fig. 2e) was seen

in IGE (respectively; t¼ 3.864, P¼ 0.054; t¼ 3.787,

P¼ 0.056). There were no differences in node strength
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distribution variance (Fig. 2b) or clustering coefficient

(Fig. 2c) between the two groups.

In the graphs constructed using positively correlated

edges only, using a threshold of 0.25, there were no

significant results at the three-group level. A higher

average node strength (Fig. 2g) and greater characteris-

tic path length (Fig. 2j) was identified in IGE (WC-IGE

and DR-IGE combined) compared with controls (re-

spectively; t¼ 6.200, P¼ 0.015; t¼ 4.717 P¼ 0.034).

The remaining outcome metrics did not significantly

differ between the two groups (Fig. 2h, j–l).

There was no correlation between age or epilepsy dur-

ation with any outcome metric (Pearson’s correlation

P> 0.05 in all comparisons).

When edge thresholds of zero, 0.125, and 0.375 were

tested, the finding of a statistically higher average node

strength in the IGE group (WC-IGE and DR-IGE com-

bined) compared with controls was robust across all

thresholds and for networks constructed with both abso-

lute edge values (respectively; P¼ 0.08, P¼ 0.02,

P¼ 0.015) and positive edge values (respectively;

P¼ 0.019, P¼ 0.018, P¼ 0.011). As with the threshold

level of 0.25, higher characteristic path length and greater

average betweenness centrality were also found in net-

works constructed with an edge threshold of 0.375 (re-

spectively; P¼ 0.039, P¼ 0.041). Additionally, small

world index was lower in IGE than controls using a

threshold of 0.375 (using absolute edge values,

P¼ 0.034) and with positive edges without a threshold

(P¼ 0.035). Clustering coefficient was higher in IGE com-

pared with controls with a threshold of 0.375 (using

positive edge values, P¼ 0.011). No other significant

Table 2 Clinical details of participants with IGE

ID Group Age

(years)

Gender Onset age

(years)

Seizure

types

Antiepileptic

medication

EEG

findings

4 WC-IGE 25 M 19 MJ Levetiracetam 1500 mg, valproate 1600 mg Typical

18 WC-IGE 24 F 16 Abs, GTC Valproate 1000 mg, lamotrigine 200 mg, levetirace-

tam 4000 mg

Typical

23 WC-IGE 23 M 16 Abs, GTC Valproate 2100 mg, levetiracetam 500 mg Typical

24 WC-IGE 19 F 13 GTC Levetiracetam 3000 mg NA

26 WC-IGE 18 F 15 Abs, eyelid myoclonus Levetiracetam 2000 mg Typical

27 WC-IGE 22 M 2 Abs, MJ Valproate 1400 mg NA

29 WC-IGE 56 F 3 Abs Valproate 1500 mg NA

31 WC-IGE 33 M 7 Abs Valproate 1800 mg Typical

32 WC-IGE 19 F 14 Abs, MJ Levetiracetam 1000 mg NA

34 WC-IGE 20 M 16 Abs, MJ, GTC valproate 1700 mg, ethosuxamide 500 mg Typical

1 DR-IGE 23 F 14 Abs, MJ Levetiracetam 3000 mg, topiramate 300 mg, cloba-

zam 10 mg

Typical

2 DR-IGE 19 M 16 IGE Valproate 1000 mg Typical

3 DR-IGE 19 F 8 GTC, Abs Lamotrigine 200 mg Normal

5 DR-IGE 60 F 13 GTC, Abs Valproate 2500 mg Typical

6 DR-IGE 24 M 15 GTC, MJ, abs Levetiracetam 3000 mg, valproate 2500 mg, carba-

mazepine 1000 mg

Typical

7 DR-IGE 21 F 15 GTC, MJ, abs Levetiracetam 4000 mg, valproate 2000 mg Typical

8 DR-IGE 32 F 23 GTC, MJ Levetiracetam 3500 mg, clobazam 15 mg Normal

9 DR-IGE 38 M 18 GTC, MJ Valproate 600 mg, lamotrigine 50 mg Typical

10 DR-IGE 67 M 29 GTC, Abs Valproate 2000 mg, lamotrigine 200 mg, clobazam

10 mg, phenobarbital 150 mg

NA

11 DR-IGE 46 F 7 Abs Valproate 1200 mg, lamotrigine 200 mg, levetirace-

tam 2500 mg

Normal

13 DR-IGE 20 M 8 GTC, Abs Valproate 2000 mg Typical

14 DR-IGE 24 F 13 GTC, MJ Topiramate 100 mg NA

15 DR-IGE 35 M 6 GTC Levetiracetam 2000 mg, valproate 2000 mg Typical

16 DR-IGE 18 M 14 GTC, Abs Valproate 1500 mg, zonisamide 350 mg Typical

17 DR-IGE 39 M 17 GTC Lamotrigine 75 mg Typical

19 DR-IGE 21 M 16 GTC, abs, MJ Valproate 2400 mg NA

20 DR-IGE 36 F 17 GTC Levetiracetam 1250 mg, lamotrigine 75 mg Typical

21 DR-IGE 31 F 15 GTC Levetiracetam 2000 mg, lamotrigine 400 mg Normal

22 DR-IGE 31 F 16 GTC, MJ, Abs Valproate 1500 mg, levetiracetam 3500 mg Typical

25 DR-IGE 58 F 15 GTC, Abs Valproate 1000 mg, zonisamide 400 mg, clonazepam

1.5 mg

Typical

28 DR-IGE 24 M 13 MJ, abs Valproate 1700 mg Typical

30 DR-IGE 57 F 7 GTC, abs Valproate 1200 mg, carbamazepine 600 mg Typical

33 DR-IGE 57 F 7 GTC, abs Valproate 2000 mg, lamotrigine 75 mg Typical

abs, absence; F, female; GTC, generalized tonic-clonic; M, male; MJ, myoclonic jerk; NA, not available; normal, normal interictal EEG; typical, interictal EEG findings consistent with

IGE.
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differences were found in other group comparisons. Full

details of results across various thresholds can be found

in Supplementary Table 3.

Nodal outcome metrics

Neither betweenness centrality nor node strength sur-

vived correction for multiple comparisons

(Supplementary Tables 4 and 5). This was an explora-

tory study with 384 comparisons and therefore, results

of uncorrected significant results, which may suggest a

trend towards significance, are presented together with

effect sizes.52 Uncorrected significant differences in

betweenness centrality and node strength at the level of

individual nodes between the IGE group and controls

were found in 37 and 35 nodes respectively. Node

strength was higher in IGE in each of the 35 nodes

(Fig. 3A), whereas there was a greater betweenness cen-

trality at some of the 37 nodes in IGE and a lower

value in others (Fig. 3B).

The median number of hub nodes in each group was

38 and there was no significant difference in the total

number of hub nodes between each group, in either the

three group or two group comparison (respectively;

Kruskal–Wallis U¼ 0.593, P¼ 0.743; Mann–Whitney

U¼ 617, P¼ 0.671). On inspection of plots of the fre-

quency of hub nodes at each location, there were no

clear group differences between the location of hub

nodes (Supplementary Table 6, Figs. 1–5).

Discussion
This study investigated global RS-fMRI network features

in people with DR-IGE, WC-IGE and healthy controls.

Figure 2 Global outcome metrics. (A) Networks constructed using absolute values of edges. (B) Networks constructed using positively

correlated edges. Data are plotted for IGE (WC-IGE and DR-IGE combined) and controls. *Statistically significant difference between groups

(P< 0.05).

Figure 3 Nodal differences between IGE and controls. This

illustrates the location of nodes that have significantly different

uncorrected outcome metrics. (A) Node strength and (B)

betweenness centrality. Red dots indicate a higher value in IGE,

blue dots represent a lower value in IGE. L ¼ left side of brain; R ¼
right side of brain. This figure was created using BrainNet Viewer.53
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The results suggest that compared with controls, network

topology in IGE is less integrated and more regular (as

evidenced by a higher path length) and has generally

greater connectivity across the network nodes (demon-

strated by a higher average node strength and average

betweenness centrality), without a clear difference in the

location of hub nodes. Network topology did not vary

according to seizure control.

A higher characteristic path length results in a more

regular network topology.54 It has been suggested that a

regular configuration may render a network more vul-

nerable to synchronization.15 The finding of a higher

characteristic path length in IGE, is consistent with the

findings from a meta-analysis of functional connectivity

studies in focal epilepsy using fMRI and EEG,15 and in

structural studies in IGE.19,55,56 However, in the two

fMRI-derived functional connectivity studies18,57 identi-

fied in our systematic review,16 there was no difference

in characteristic path length between people with IGE

and controls. However, in both previous studies, net-

works were constructed using absolute correlations

whereas the finding of altered characteristic path length

in the present study was in positively correlated net-

works. In these same studies, also in contrast to the pre-

sent study, one reported a lower clustering coefficient

and small-world index in IGE,18 and the other reported

a higher small-world index in IGE.57 Average between-

ness centrality and average node strength were not con-

sidered in these two studies. An important difference in

our study compared with both of these studies is the

method by which data were parcellated into nodes; in

our study, a functional connectivity atlas was used,

whereas the others used an anatomical atlas. It is known

that the technique of data parcellation may affect con-

nectivity measures58 and as such this is an important

methodological decision. In functionally derived data

parcellation schemes, nodes comprise components with

similar temporal activation patterns. As such, it is sug-

gested that such atlases are particularly suitable for

functional connectivity analysis as the nodes reflect func-

tionally coherent areas.59–61

The average node strength of a network reflects the

strength of connections of each node across the network.

Therefore, networks that have a higher average node

strength perhaps reflect networks with generally greater

connectivity. Similarly, networks with higher average

betweenness centrality (a measure of the extent of ‘infor-

mation flow’ within a network), may also reflect a

greater resting state hyperexcitability of the epileptic

brain.62 There are limited studies within the IGE litera-

ture that have considered these metrics. Increased average

betweenness centrality, average node strength, or mean

degree have been reported in at least two EEG/MEG

studies.63,64 However, other studies have reported no dif-

ference between groups,65 or a decreased value55 It

should be noted that the comparison between fMRI and

EEG/MEG is challenging owing to their different

sensitivities to temporal and spatial resolution, which

may account for diverging findings.16

Post hoc analysis of global metrics using a range of

edge thresholds showed that the results were robust for

average node strength and for betweenness centrality at

higher threshold values. The additional significant find-

ings of increased clustering coefficient in IGE and lower

small world index were also in support of a more regular

network topology in IGE.

When the results using different thresholds of edges are

compared, it is evident that the choice of threshold can

alter the results. There appears to be a relationship be-

tween higher threshold values and the detection of a

greater number of statistically significant results.

Thresholds are applied to edges with the aim of decreas-

ing sensitivity to spurious connections, but the optimal

method to achieve this aim is not known. It is important

to note that networks with lower summed synchroniza-

tion values will become relatively less dense than net-

works with higher overall synchronization values after

thresholding.41 This is a potential limitation since it is

known that network density may affect some network

metrics (particularly clustering coefficient and characteris-

tic path length).66 This issue could potentially be over-

come by constructing matrices that have the same

number of connections in each network. However, this

approach may result in networks with overall low con-

nectivity producing fewer significant connections whilst

potentially important connections in higher density net-

works may be disregarded.66

The additional findings depending on whether negative-

ly correlated edges were discarded highlight that network

topology is sensitive to the sign of the edge. As discussed

above, the significance of anticorrelated networks and the

extent to which they are influenced by pre-processing

techniques are not fully elucidated. We suggest that by

using absolute values, correlation values may be regarded

as a reflection of the strength of neural connectivity, irre-

spective of the nature of the relationship. The similarity

of results of both analyses suggests that the results are

not confounded by taking into account negative correla-

tions and in fact, their inclusion may improve sensitivity

to the detection of network differences. How negative

correlations may be mathematically accounted for in

graph theoretic analysis is an important consideration for

future graph theoretical studies.

Previous fMRI connectivity studies have reported wide-

spread locations of specific nodes that display altered

connectivity in IGE, with a similar location of hub nodes

in IGE and controls.18,57 Both studies corrected for mul-

tiple comparisons using the FDR, but the threshold used

is unclear. In Liao et al.’s study, significance levels did

not survive this correction. Notwithstanding the fact that

the individual nodal comparisons did not survive correc-

tion for multiple comparisons in our study, there is no

suggestion from our study or from these previous studies,

that there are specific regions of altered resting state
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connectivity in IGE. Whilst corticothalamic regions have

been implicated in seizure genesis, it is possible that in

generalized seizure disorders, the precise area of network

aberration from where a seizure is initiated may vary be-

tween, or within, individuals.67

It is possible that differences in network features in the

group with IGE compared with controls represent medi-

cation effects. Previous studies have described alterations

in global efficiency (inverse of characteristic path length)

with topiramate, but not with valproate, lamotrigine or

levetiracetam.68 Another study reported altered between-

ness centrality (but not other network metrics) with

carbamazepine, but not with other commonly used

AEDs.69 Therefore, overall, there is no strong evidence

that medication effects directly explain the results. The in-

clusion of a group with epilepsy not taking an AED

would help clarify this, but this would be practically dif-

ficult since AEDs are typically started at diagnosis.

This study did not find any differences in network top-

ology dependent upon seizure control. One limitation of

this interpretation is the small sample size, particularly in

the WC-IGE group, which may have been underpowered

to detect a possible difference. The low number of partici-

pants recruited with WC-IGE reflects the fact that they are

less likely to remain under long-term follow up. In addition

to potential underpowering, a small sample size may also

result in a type 1 error.70 Normal values of network met-

rics in healthy controls have not been established, thus per-

forming a power calculation is limited by the lack of a

meaningful parameter to include in such a calculation. The

reliability of our findings would be strengthened by repro-

ducing the results in an independent dataset.

A larger study may have also permitted the comparison

of IGE subtypes. Although there is strong evidence to

support that IGE syndromes share pathophysiological and

genetic relationships,71 it is possible that connectivity fea-

tures vary between subtypes.72 Further studies with larger

sample numbers are needed to explore whether IGE sub-

types have different network features. Larger collabora-

tions between institutions could help increase sample

numbers 73,74 and clarify these areas of uncertainty.

These study groups also differed in terms of age and epi-

lepsy duration (although the latter was not statistically

significant). The inclusion of these factors as covariates in

the statistical analysis guards against confounding, how-

ever, it remains possible that the results were influenced

by these differences.75,76 Though the number of AEDs

taken by each of the IGE groups did not differ statistical-

ly, it is likely that the drug burden is higher in the DR-

IGE group due to generally higher doses and a tendency

towards polypharmacy. As such, this may also confound

potential differences between the groups.

A further potential limitation relates to the difficulties

in classifying response to AEDs; Patients may not be con-

cordant with their antiepileptic medication and therefore

may be inaccurately categorized as drug resistant.

Alternatively, they may have unrecognized co-existent

non-epileptic attacks, which could result in a seemingly

higher seizure frequency. Conversely, there is evidence

that some patients under-report seizures,77 which could

potentially result in an incorrect classification of well-con-

trolled epilepsy. In addition, it is known that a propor-

tion of patients follow a fluctuating course, shifting in

and out of seizure control.5 A larger study may enable

the inclusion of this subgroup as a third category.

Although people who fulfil the ILAE definition of seizure

freedom have a lower risk of seizure recurrence within

the next 12 months 78 and improved quality of life,79 it

should be noted that there are potential issues with

dichotomization of variables such as seizure frequency.80

In future studies, it may be of value to examine network

metrics in relation to time since the last seizure.

A further limitation of this study is that interictal epi-

leptiform discharges (IEDs) in the group with IGE may

have confounded the results. IEDs are associated with co-

localized BOLD activation, in addition to BOLD activa-

tion in distant areas.81 A combined EEG-fMRI study

could overcome this limitation but would considerably

add time, complexity and cost.

Conclusions
In summary, this study demonstrates that the network

topology in IGE is more regular and has higher global

connectivity, with no evidence of systematic alteration in

the location of nodes with high connectivity. This was

found to be the case irrespective of seizure control. We

suggest that examining drug resistance from a network

perspective warrants further exploration in a larger, lon-

gitudinal, multimodal study.
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