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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• The study uses YOLOv7 and mask R- 
CNN to detect microplastic fibres.

• Accuracies were 71.4 % (YOLOv7) and 
49.9 % (mask R-CNN) for environmental 
samples.

• Both offer rapid quantification of 
microfibres (0.4-0.6 fibres per second).

• Both models are open source, and usable 
with limited knowledge of coding.

• Speed and accuracy highlight use in 
environmental microplastic fibre 
detection.
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A B S T R A C T

Microplastics, particularly microfibres (< 5 mm), are a significant environmental pollutant. Detecting and 
quantifying them in complex matrices is challenging and time-consuming. This study presents two open-source 
visual recognition models, YOLOv7 and Mask R-CNN, trained on extensive datasets for efficient microfibre 
identification in environmental samples. The YOLOv7 model is a new introduction to the microplastic quanti
fication research, while Mask R-CNN has been previously used in similar studies. YOLOv7, with 71.4 % accuracy, 
and Mask R-CNN, with 49.9 % accuracy, demonstrate effective detection capabilities. Tested on aquatic samples 
from Seyðisfjörður, Iceland, YOLOv7 rapidly identifies microfibres, outperforming manual methods in speed. 
These models are user-friendly and widely accessible, making them valuable tools for microplastic contamination 
assessment. Their rapid processing offers results in seconds, enhancing research efficiency in microplastic 
pollution studies. By providing these models openly, we aim to support and advance microplastic quantification 
research. The integration of these advanced technologies with environmental science represents a significant step 
forward in addressing the global issue of microplastic pollution and its ecological and health impacts.
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1. Introduction

Plastics are ubiquitous in everyday life due to their widespread 
manufacture; from 1950 to 2020 their worldwide production increased 
from 1.5 to 367 million tonnes per year [1,2]. There is now a global 
consensus that their production and subsequent inappropriate disposal 
are a source of severe contamination of the environment [3,4]. Plastics 
degrade very slowly [5] and the length of time they remain in the 
environment remains unknown. Around 79 % of plastic waste has been 
discarded in landfills or directly in the environment [6] due to poor 
waste management and natural processes. Researchers have demon
strated that up to 90 % of marine litter found in different marine bodies 
is plastic [7]. Due to their persistence in the environment, many plastics 
degrade into smaller shapes and sizes, which are classified as macro
plastics, mesoplastics, microplastics and nanoplastics.

Microplastics have generated huge interest from research, media and 
the public [8]. No official size definition has been universally agreed for 
microplastics, even though it is commonly held that they are defined as 
plastic particles < 5 mm [9-16]. The first evidence of microplastics in the 
environment was recorded by Carpenter and Smith [17], who recovered 
an average of 3500 plastic particles equating to an abundance of 290 
g/km2 from surface water in the western Sargasso Sea [17]. Microplastic 
particles, primarily consisting of fibres, find their way into our 
ecosystem through multiple pathways, including the discharge of do
mestic and industrial wastewater, runoff from landfills, and even 
deposition from the atmosphere [18]. Since the early 1970s when plastic 
particles were first acknowledged to exist in the aquatic environment, 
there has been a growing body of evidence documenting the ingestion of 
microplastics by animals, particularly seabirds. Over time, an increasing 
number of reports have highlighted this phenomenon [19-21].

Many studies have investigated microplastic abundance in the 
environment. In the majority of these surveys, the quantification of 
microplastics (MPs) is conducted using the traditional technique of 
plastic particle counting under an optical microscope. This method is 
labour intensive and prone to human error, and research has demon
strated that human bias can have an impact on the measurement of 
microplastics [22,23]. For example, blue fragments have the highest 
detection rate, while white fragments have the lowest [24]. In addition, 
preparation, extraction, and identification procedures vary across sam
ples from different water bodies and/or sediments, as they do not adhere 
to a uniform protocol. For example, processing samples from bottled 
water [25] is simpler than samples from beach sediments [26] due to the 
absence of complex particulate matter, organic debris, and variable 
mineral compositions present in sediments. This variability in sample 
complexity can lead to inconsistencies in analytical results, potentially 
impacting the accuracy and comparability of microplastic quantification 
across different environments.

Analysing environmental samples from various sources, such as 
saltmarshes, soil, or water bodies like rivers, lakes, and oceans, is indeed 
challenging for several reasons. One significant challenge lies in the 
preparation process of these samples. The collection, handling, and 
processing of environmental samples often requires specialized equip
ment and trained personnel, making it time-consuming and expensive 
[27]. The preparation process involves sample collection, trans
portation, storage, and extraction of target analytes (substances of in
terest, microplastics) from the samples. Each of these steps can introduce 
potential errors, contaminations, or losses of the target analytes, leading 
to inaccuracies in analysis. Moreover, the diverse and dynamic nature of 
environmental samples can make it difficult to standardize the prepa
ration process, further adding to the complexity and potential variability 
of results [28,29].

In the last decade, there has been an increasing interest in using 
computer vision techniques in the microplastics field [30-32]. Deep 
learning models and automated image techniques have been imple
mented to detect, quantify, and classify microplastics [33-37,32]. 
Numerous deep neural networks have been developed, such as ResNet 

(Residual Neural Network) [38], U-Net (U-shaped encoder-decoder 
Neural Network) [39] or R-CNN (Region-based Convolutional Neural 
Network) [40]. Previously, studies have described an effort to apply 
deep learning-based object detection methods to identify plastic marine 
litter using autonomous underwater vehicles and remotely operated 
vehicles [41-43]. The automation of these measurements not only in
creases efficiency but also potentially reduces the likelihood of human 
error.

Building on these advancements, the field has adopted a more so
phisticated application of these methodologies. Specifically, the inte
gration of deep learning imaging techniques and analytical tools has 
refined the analysis of microplastics by focusing on key attributes such 
as size, shape, and colour of microplastics, enabling researchers to 
differentiate these particles from other materials in environmental 
samples. The table below provides a concise summary of these tech
niques, highlighting their accuracy, user-friendliness, and whether 
explicit coding knowledge is required (Table 1).

Through the development of various models, as detailed in the 
accompanying table (see Table 1), a clear common limitation emerges; 
the absence of an open-source machine learning model capable of 
directly analysing environmental samples without the prerequisite of 
pre-treatment.

This a significant limitation, considering the diverse environments 
from which samples are collected, and the varying requirements for 
sample pre-treatment. For instance, while the MATLAB Algorithm and 
SMACC require pre-treatment for beach sediment analysis, U-Net and 
VGG16, as well as Holographic Imaging, do not necessitate such prep
aration for laboratory samples. However, the accessibility of these 
technologies is constrained; models like the MATLAB Algorithm are not 
publicly available without licence, and others, such as DCNN and Mask 
R-CNN, require specific requests for access.

However, despite their high accuracies and advanced capabilities, 
many of these models remain inaccessible to a significant portion of 
potential users. Addressing this challenge necessitates identifying 
methods that eliminate the need for pretreatment, offer free access, and 
require minimal specialised knowledge. Although certain techniques 
fulfil the pretreatment criterion, they remain limited by issues of 
accessibility, complexity, and cost. Consequently, open-source solutions 
emerge as the optimal response, underscoring a clear distinction be
tween open-source and proprietary models in terms of accessibility and 
ease of use. Open-source tools like YOLOv7 (“You Only Look Once” 
version 7) are free and user-friendly, and only require a low level of 
coding knowledge, offering a balance that makes them suitable for a 
broader audience. In contrast, proprietary tools, although potentially 
offering advanced features, often come with higher costs and a steeper 
learning curve.

Thus, the YOLOv7 model, despite the high accuracy achieved by 
existing models, such as ResNet, U-Net, and R-CNN. While these models 
are highly accurate, they often require specialised expertise and sub
stantial computational resources, which can limit their broader appli
cation. YOLOv7 addresses these limitations by offering a more accessible 
and resource-efficient alternative that can be deployed on conventional 
GPUs.

In addition, existing models are typically trained on controlled 
datasets, which may not fully capture the complexity and variability of 
real-world environmental samples. YOLOv7, in contrast, has been tested 
on diverse environmental samples, demonstrating its robustness in 
detecting microplastic fibres under challenging conditions. The model is 
specifically designed to handle the varied shapes and interactions of 
microplastic fibres, making it particularly effective for this purpose.

Finally, the open-access nature of YOLOv7 promotes transparency 
and collaboration within the scientific community, allowing continuous 
improvement and adaptation of the model to meet evolving research 
needs. The manuscript has been updated to highlight these advantages 
and to explain the broader benefits of using YOLOv7 in this study.

In light of these considerations, this research investigates YOLOv7 
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and Mask R-CNN models for the detection of microplastic fibres. These 
models stand out in their ability to handle the diversity of microplastic 
forms and shapes, particularly in challenging environments. This 
approach addresses the limitations of both open-source and proprietary 
models by offering an optimal balance of accessibility, accuracy, and 
ease of use.

Microplastic fibres are an underestimated threat to the environment 
[50] and humans [51], and present a high risk of contamination during 
sampling and analysis [52,53]. Analysis of images taken by a microscope 
is a tedious task, as it requires a lot of time to detect and focus, and the 
photos are not always perfect; they may need further image processing. 
In addition, different microscopes, lighting conditions, magnifications, 
quantity of samples can make the work even harder for the human eye. 
Hence, the automation of image-based identification emerges as a 
promising solution for particle counting and classification. However, 
this endeavour is not without its challenges, owing to the variability in 
architectural designs, algorithms, and training methodologies. The 
success of any neural network hinges upon the availability of a 
well-curated training dataset, tailored to address the intricacies of 
real-world classification and identification challenges [54].

This study focuses on utilising computer vision to automatically 
detect the presence of microplastic fibre in images, employing two su
pervised learning models: YOLOv7 and Mask R-CNN. These models were 
specifically trained for the detection of fibres, which are the most 
abundant and challenging type of microplastic in the environment [55]. 
The complexity in detecting these fibres arises from the diverse forms 
and shapes, and their tendency to become entangled or attracted to 
other particles.

YOLOv7 is an algorithm that detects and recognises various objects 
in a picture. YOLO is built on the concept of achieving the best possible 
combination of speed, accuracy, and parallel computation, and the 
method is one of the most widely used deep learning-based object 
detection techniques. YOLO is used across many commercial fields, such 
as face detection [56], traffic detection [57] and tiger detection [58]. 
The goal of object detection is to detect objects in an image or a video 
and classify them. In the last few decades, deep learning algorithms have 
achieved improved performance in terms of robustness, accuracy, and 
speed for multi-classification tasks [59,60]. YOLOv7 stands out due to 
the optimised architecture, allowing for faster processing of images and 
videos, making it particularly suitable for real-time applications. 
Although newer versions, such as YOLOv8 and YOLOv9, are now 
available, YOLOv7 was selected for this study because its proven reli
ability and robustness at the time of the research. Notably, YOLOv8 was 
developed by different team (Ultralytics) than the initial YOLO model 
lineage, with no official documentation. While YOLOv9 developed by 

the same team as YOLOv7, is a very recent release (February 2024) [61].
Mask R-CNN (Regional Convolutional Neural Network) will be 

examined as the second potential candidate model to quantify micro
plastics. A model that already have been used for microplastic quanti
fication [48,49]. CNN (Convolutional Neural Network) models offer 
improved accuracy, efficiency and flexibility in the processing of im
ages, videos and audios [37]. The Mask R-CNN creates a binary mask 
around the detected object separating it from its background. This 
pixel-level instance segmentation model has been applied in various 
projects; including medicine [62,63], agriculture [64], and engineering 
[65] (Fig. 1).

YOLOv7 and Mask R-CNN were selected because they are freely 
available to anyone who uses a conventional GPU (Graphics Processing 
Unit), to train and test images. Advanced accessible models allow a 
broader range of researchers and practitioners, including those with 
limited resources, to contribute to and benefit from the advancements in 
the field [66,67]. In both cases, a training dataset requires the human 
operator to label the features (fibres) in the data, which is then used to 
train the computer vision algorithm. The algorithms offer the advantage 
of speed and high accuracy with minimal background errors. In addi
tion, they have excellent learning capabilities, enabling them to learn 

Table 1 
Comparative Summary of Microplastic Detection Methodologies using photographic data collection: This table presents a quick comparison of techniques for iden
tifying microplastics, emphasising key aspects such as accuracy, ease of use, technical requirements, and access.

Model/ Technique Used Accuracy Sampling Environment Pre- Treatment 
required?

Open- 
Source?

Authors

Automated Microplastic Detection and 
Characterisation Algorithm in MATLAB (Matrix 
Laboratory)

66.63 % Beach sediment Yes License 
required

Gauci et al. Gauci et al.,
[44]

U-Net and VGG16 (Visual Geometry Group 16) 98.82 %, 
98.11 %

Laboratory (manufactured 
microplastics)

No No Lorenzo-Navarro et al. 
Lorenzo-Navarro et al.,
[35]

SMACC (System for Microplastics Automatic 
Counting and Classification)

91.1 % Beach sediment Yes Yes Lorenzo-Navarro et al. 
Lorenzo-Navarro et al.,
[45]

MP-VAT (Microplastics Visual Analysis Tool) Not specified Laboratory (manufactured 
microplastics)

Yes Open-Source Prata et al. Prata et al.,
[46]

Holographic Imaging 99 % Laboratory (manufactured 
microplastics)

No Open-source 
dataset

Bianco et al. Bianco 
et al.,[47]

DCNN (Deep Convolutional Neural Networks) 
and Mask R-CNN

Not specified Beach sediments, water, animal tissue 
and meta-analysis of published data

No On request Huang et al. Huang et al.,
[48]
Sundar et al. Sundar[48, 
49]

Fig. 1. Mask R-CNN used in various projects: a. Detection of oral diseases [62], 
b. Detection of multiple organs [63], c. Detection for monitoring cattle [64], d. 
Inshore Detection Mask R-CNN and author’s model [65].
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the representations of objects and apply them in object detection. Thus, 
YOLOv7 and Mask R-CNN are proposed as a simple and free-of-charge 
method. This new approach will be applied to real-world environ
mental samples.

The study intends to compare the effectiveness of YOLOv7 (a new use 
of the model for microplastic quantification) against Mask-RCNN (a 
model previously used for microplastic quantification). The YOLOv7 
model is primarily focused on speed and efficiency, offering rapid 
detection of microplastic fibres with accuracy, making it particularly 
suitable for large scale environmental monitoring where quick results 
are essential. Its design emphasises accessibility and ease of use, 
allowing it to be implemented on conventional GPUs without requiring 
extensive computational resources. On the other hand, the Mask R-CNN 
model is designed for detailed segmentation, providing pixel-level ac
curacy in distinguishing microplastic fibres from other materials in 
complex environmental samples.

YOLOv7, known for its high speed and accuracy in object detection 
tasks, and Mask R-CNN, renowned for its pixel level instance segmen
tation and an already utilised microplastic visual recognition machine 
model, have been evaluated to determine their relative performance in 
detecting microplastic fibres. Through this comparison, the strengths 
and limitations of each model have been highlighted, providing valuable 
insights. The goal is to establish a robust and user-friendly methodology 
for rapid and accurate detection of microplastic fibres.

Thus, this work aims to apply a state-of-art method for automating 
the detection of microplastic particles using non-specific and/ or 
expensive laboratory equipment and minimally treated samples. This 
open-source machine learning approach has significant potential bene
fits over visual methods of microplastic identification by reducing 
human error which is known to be significant [68]. It also offers some 
practical advantages over other machine learning approaches which 
require a greater amount of pre-analysis such as addition of dyes [46], or 
application of complex microscopy techniques [69].

This study will provide an: 

• Evaluation of YOLOv7 and Mask R-CNN algorithms on a unique 
dataset of varying- quality microplastic images to enable cost- 
effective, accessible pollution monitoring without the need for 
high-end laboratory equipment. The automated quantification of 
MPs particles by implementing object detection algorithms to eval
uate environmental samples.

• Application of the trained YOLOv7 model to analyse environmental 
water samples from Iceland for microplastic pollution assessment.

• Comparison of the effectiveness of YOLOv7 (new to microplastic 
quantification) against Mask R-CNN (used before for microplastic 
quantification) on environmental samples.

• Introduction of user-friendly and cost-effective models for the 
detection of microplastics.

2. Materials and methods

i. Dataset production: Collect images or videos of microplastics in 
coastal area, particularly focusing on the regions where micro
plastics are likely to accumulate, such as shorelines, tidal zones, 
or areas near human activities. It’s essential to note that the 
samples were pre-treated before image capture, ensuring an ac
curate representation of the microplastic presence in the envi
ronment. The images undergo a common pre-processing regimen, 
including resizing, noise reduction, and contrast enhancement. 
Further details on the methodologies and techniques used for 
sample pre-treatment and image pre-processing are comprehen
sively in Section 2.1.1 of the study.

ii. Annotation and Training: Annotate the images to provide the 
ground truth information about the location and size of micro
plastics in the training dataset. This annotated dataset is then 
used to train the object detection model to identify microplastics 

accurately. The detailed methodologies and techniques employed 
for the annotation process are thoroughly discussed in Section 
2.1.4. Subsequently, Section 2.2 delves into how this training 
enables the model to effectively detect microplastic fibres.

iii. Object Detection and Model Evaluation: Use object detection al
gorithms to identify potential microplastics within the images. 
Deep learning-based object detection models, such as YOLO or 
Mask R-CNN, can be trained to recognize and localize micro
plastics. This evaluation, detailed in Section 4, involves using 
specific metrics to ensure it can reliably detect microplastics 
under various conditions.

iv. Deployment and Monitoring: In a practical application, the 
models, refined through a case study in Seyðisfjörður, are 
deployed to process and analyse new images or videos (testing 
dataset) collected from this coastal region. Regularly monitor the 
system’s performance and fine-tune the model as needed to 
improve its accuracy. The ongoing process of monitoring the 
system’s performance and fine-tuning the model to enhance its 
accuracy is crucial. This continuous improvement and adaptation 
strategy, which is essential for maintaining the efficacy of the 
models in dynamic environmental conditions, is further elabo
rated in Section 3.2.

2.1. Training and validation dataset production

The machine learning models selected for this study (YOLOv7 and 
Mask R-CNN require the preparation or specific training and test data 
sets to aid in the training and evaluation of the models. Human operators 
can quantify microplastics in different states (flat, round, long) and 
under various conditions using optical microscopes. If one of these pa
rameters, like lighting or shape, is changed, then the human eye may 
miss the microplastic particles. So, visual recognition techniques try to 
imitate the human operator, but delivering results in shorter time and 
with less errors. Therefore, it is important that the training dataset im
ages capture all potential states and characteristics of fibres to train the 
model. A large amount of diverse data, which reflect real-world condi
tions, is necessary to lead to accurate results. The validation or test 
dataset is a dataset on which the model has not been trained but has 
been produced to evaluate the accuracy of the model on ‘real world’ 
deployment.

2.1.1. Sample preparation
For the training and validation datasets, rather than seed samples 

with microplastics to produce images, images from a variety of filtered 
bottled water as well as environmental samples (n.= 15) were used. 
Bottled spring water was chosen as it presented a known source of 
microplastics in clean, natural, untreated water. No brands were 
focussed on, with availability and cost largely driving choice. The use of 
bottled water allowed the efficient generation of images for training 
without the need to produce seeded sample. The bottled water samples 
were filtered into a glass beaker and through a GF/F (Glass fibre F grade) 
filter (nominal pore size 0.7 µm; 47 mm diameter). The environmental 
samples in the datasets consisted of water samples collected from 
different environmental locations (e.g. rivers, estuaries and the ocean) 
Due to the presence of biological material in environmental samples 
they were treated in a different way from the bottled samples. The fjord 
water was filtered into a glass beaker and particles were concentrated on 
GF/F filter (nominal pore size 0.7 µm; 47 mm diameter). 25 mL of 30 % 
hydrogen peroxide was added to the filter paper, which was left at room 
temperature for 24 h. Following this, the sample was placed in a non-fan 
oven at 40 ◦C covered with foil [70,71]. The samples from bottled water 
did not undergo any hydrogen peroxide pre-treatment process.

Sample contamination from the laboratory is a constant challenge in 
microplastic research. To mitigate sample contamination, the lab pro
cedures were carried out under a flow hood. Glassware was washed with 
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Decon 90 and muffled at 400 ◦C for 4 h before each use. All the equip
ment was rinsed with 3x filtered purified deionised water. Samples and 
equipment were covered with foil during the procedures to minimise 
exposure as much as possible. Filter blanks were placed parallel to the 
experiments to verify any air fall contamination. Particles detected on 
the filter blanks were analysed and compared to the filters from the 
environmental samples to assess laboratory contamination levels.

Microfibre detection was carried out visually and inspected with an 
an inverted microscope Nikon SMZ1270 (objective: Nikon Plan Apo 
0.75x) microscope. The microfibres were characterised based on their 
colour (transparent, black, brown, red, pink/purple, blue, green, yellow, 
and orange) and based on the roughness of their surfaces [72-74]. To 
make sure identification of the MP fibres was correct, identified fibres 
were analysed using micro Fourier-transform infrared spectroscopy 
(μFTIR), performed using a Thermo Fisher Scientific Nicolet iN10 
Infrared Microscope. The cooled detector was set up at an aperture of 
25 × 25 µm, and the sampling mode employed was reflection. Using this 
technique, particles were classified as microplastics or natural which 
provided the basis for the generation of the images required for the 
training and validation datasets.

2.1.2. Training dataset image collection
The training dataset is a crucial role in the accuracy and the per

formance of deep learning models. In the context of detecting micro
plastic fibres in environmental matrices, the number of images per class 
can significantly impact and classify these objects accurately. However, 
the exact number of images required for an accurate detection remains 
elusive and varies across studies and models [75,76]. Research into 
image sample size for a wildlife based training dataset demonstrated 
that after 150 images per class the improvement in model’s performance 
was negligible, with incremental improvement after 500 images [77]. 
Therefore, for the specific study, it was considered that, a dataset of 200 
images with varying fibre positions and orientations against a white 
and/or brown background are sufficient to achieve reasonable classifi
cation accuracy. To train the model, 80 % of these images were used, 
while 15 % were reserved for unbiased validation, and the remaining 
5 % for final model evaluation. This dataset, enriched with annotated 
and labelled images, serves as the foundation for the model to learn and 
recognise microplastic fibres. A model trained well on a diverse dataset 
with different fibre positions and orientations holds the potential to 
outperform its initial training environment and demonstrate its utility 
across a spectrum of environmental settings. To further ensure the 
robustness of the YOLOv7, the training dataset also included a variety of 
water samples, ranged from with no microplastics to others with densely 
packed microplastics. The model ability will be explored later during 
model testing on environmental samples from Iceland. It becomes ver
satile across various environmental matrices, enabling a diverse range of 
users, researchers and practitioners, to leverage the model’s capabilities 
effectively.

To capture all potential states and characteristics of fibres within the 
samples and to train the models adequately, several methods of image 
collection were employed. 100 images from bottled and Icelandic water 
samples were taken with an inverted microscope Nikon SMZ1270 
(objective: Nikon Plan Apo 0.75x) equipped with a 16.25-megapixel 
Nikon DS-Ri2 camera and 20 images with an iPhone XR 7-megapixel 
camera over a microscope. As an additional step to test the method’s 
performance with alternate microscope types of images of 100 filters 
from environmental samples from Iceland were captured with a TOM
LOV DM9 (12 megapixel) microscope. 50 were taken against a white 
background, and 50 against a brown background, in order to evaluate 
the effect of background colours on image recognition., Together, this 
approach reinforced the validity of the dataset across multiple sample 
types, with multiple image collection methods, similar to what might be 
expected during model deployments.

2.1.3. Image pre-processing
Size, orientation, light levels, and general image quality can affect 

identification of microplastic fibres. It was therefore considered essen
tial to conduct multiple experiments to train the model to possible image 
invariances. Therefore, 30 % of images were further processed to cap
ture fibres in different angles and colours, such as grayscale, smooth 
deformation, denoising, mirroring, saturation, and exposure. The im
ages were pre-processed via Python programming as follows: 

• Image rotation (90◦, 180◦, 270◦) on 15 % of the images
• Image resizing in some images with dimensions (1366 ×768 pixels to 

608 ×403 pixels)
• Gaussian blurring on the 5 % of the images
• Gray scaling on the 10 % of the images

These transformations are considered essential to avoid overfitting 
and improve the robustness of the predictive model. To perform these 
transformations, a script was created, which can edit batches of images 
automatically.

2.1.4. Annotation
YOLOv7 has been trained using image annotation to evaluate fibre 

detection. The image annotation tool is used to create boxes around the 
desired object and give it a label. Image annotation is a vital part of the 
model, as the model uses these annotations and labels to detect the same 
type of object in an unknown dataset. For this task, all the photos were 
labelled using LabelImg (Windows_v1.8.0) by tzutalin (GitHub). Label
Img is a graphical image annotation tool, where the labeller draws a box 
around the object. The annotations are saved as XML (Extensible 
Markup Language) files in Pascal or YOLO format. The model is trained 
based on these boxes. At this stage, it is important that the resolution of 
the images is high enough to maintain the details of small objects, so 
they are not blurry when downsized during the training.

The training dataset for R-CNN has been carried out using image 
segmentation through the freely available photo-labelling tool, Labelme. 
The masks for each image were drawn manually and saved into json 
(JavaScript Object Notation) format. These were then converted into a 
machine learning readable (binary) format and combined into one under 
the name “annotations” (the correspondent code is given in the Ap
pendix) or using the online labelling tool, makesense.ai.

Using bounding boxes is difficult when annotated objects overlap. 
Image segmentation is the process of breaking an image in multiple 
segments. Every pixel within the segment represents a semantic label. It 
helps to recognise an object’s attribute easier, thus it can provide more 
accurate results.

However, the drawback in using image segmentation is that it is 
time-consuming, and it is prone to human errors, especially taking into 
consideration the exhaustion of the annotator after labelling multiple 
images.

The datasets for both models are divided into three folders: training, 
validation and test. The main emphasis in developing the microplastic 
dataset was given to obtaining images with different backgrounds and 
different resolutions. The purpose was to train the models under real- 
world terrestrial and aquatic sample images, where MPs can be found.

2.2. Model training

2.2.1. YOLOv7 model
YOLOv7 is an accurate and fast updated version of the YOLO family 

of models, released in 2022 [78]. YOLO employs convolutional neural 
networks (CNN), with the algorithm requiring a single forward propa
gation through a neural network to detect objects. The CNN is used to 
predict various class probabilities and bounding boxes simultaneously. 
Essentially, YOLO applies a single neural network to the full image, 
which is divided into regions and predicts bounding boxes and proba
bilities for each region. The model defines semantic classes (in this case, 
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categories of microplastics, such as fibres over a dataset of relevant 
images, which are annotated with bounding boxes identifying objects of 
those classes.

The efficiency of the model relies on: 

• Extended Efficient Layer Aggregation (E-ELAN): The final layer 
aggregation is a modification of the Efficient Layer Aggregation 
(ELAN), which uses group convolution to expand the channels and 
cardinality of the computational block. The E-ELAN applies the same 
channel multiplier and group parameter to all computational blocks 
in a computational layer without destroying the original gradient 
path. So, the feature map from each block will be shuffled into group 
size and concatenated together.

• Model Scaling: The previous YOLO models required adjustments to 
model attributes and scales to meet the inference speed re
quirements. In YOLOv7, scale the network depth and width in con
cert while concatenating layers together. Using this method, the 
model can keep to the optimal while scaling different sizes.

YOLOv7 manages to use optimal amalgamation of techniques from 
Bag of Freebies [79] and Bag of Specials [80] along with its architecture 
design, which provides reliable results from a conventional GPU. 
YOLOv7 employs a planned re-parameterised convolution technique 
within the model ensemble enabling the training of various identical 
models with different training data. The model training is broken up into 
multiple modules and the outputs are ensembled to obtain the final 
model. Finally, the authors of YOLOv7 added in the head an auxiliary 
head before the lead head. The head is responsible for the final predic
tion and with the assistance of the auxiliary head, the model learns 
better.

For this study, YOLOv7 model was trained using Google Colabor
atory (Colab) with a Tesla T4 GPU. For the model, 8 workers were used, 
which are the number of subprocesses to parallelise during the training. 
The training was run for 200 epochs, which is the number times that the 
learning algorithm will pass through the training dataset. The number of 
epochs is normally high, to allow the algorithm to run until the error 
from the model has been minimised. The dataset size requires the use of 
batches, which determine the number of samples processed before the 
model updates. This was set as 16. The whole training process took less 
than 3 h to complete.

2.2.2. Mask R-CNN model
The Mask R-CNN model was deployed in 2017 and is the extended 

version of the Faster R-CNN model. R-CNN (Region-Based Convolutional 
Neural Network) uses bounding boxes across object regions. It evaluates 
convolutional networks independently on all the Regions of Interest 
Pooling (RoIPool). This is an operation for extracting small regions for 
detection and segmentation task, to classify multiple image regions into 
the proposed class and bounding box regression. RoIPool is an operation 
for extracting a small feature map from a Region of Interest (RoI).

In this study, Mask R-CNN with a ResNet-101 pyramid network as 
backbone [81] was utilised because it is based on image segmentation, a 
process of partitioning of a digital image into multiple segments, a set of 
pixels. The advantages of Mask R-CNN are the simplicity to train and the 
efficiency, as it adds a small computational head, enabling a fast system 
and rapid experimentation.

The implementation of the model is based on the existing open- 
source code by Matterport Inc released under an MIT license. The 
code works with the open-source libraries Keras and Tensorflow, which 
were used in Google Colab in this project. In 2020 Google released the 
new version of Tensorflow and Mask R-CNN needed major changes to be 
able to be implemented. Mask R-CNN was not compatible with the new 
version of Tensorflow, thus parts of the code needed changes to be able 
to work.

The model uses the weights from pre-training on the MS COCO 
(Microsoft Common Objects in Context) dataset. In total, the model was 

trained in 200 epochs and with a batch size of 16 for the specific dataset.
On Mask R-CNN, several changes were considered essential to 

improve the performance of the model and ensure its suitability for 
microscopic photos. Based on the study on cell instance segmentation 
[82], the RPN (Regional Proposal Network) anchor sizes were reduced 
and the number of anchors was increased, since fibres are small particles 
and they can be found in any part of the images.

2.3. Model validation and evaluation

The model was validated on images which were not part of the 
training dataset. This data set consisted of 35 images from different 
cameras (microscopes and mobile phone) and environments (bottled 
and environmental water);. 

1.1. 10 were acquired with a Nikon microscope from bottled water 
samples with a white background.

1.2. 10 were acquired with a TOMLOV DM9 microscope from envi
ronmental water samples with a white background.

1.3. 10 were from environmental samples obtained with a TOMLOV 
DM9 microscope and a brown background.

1.4. 5 were taken with the mobile phone’s camera (iPhone XR, 7- 
megapixel) from environmental samples and bottled water.

To evaluate the model’s ability to handle new data, images that were 
previously unknown to the model (unseen during training) were used for 
testing. These unknown images were treated in a manner consistent with 
the training set to ensure a precise and fair comparison (Section 2.1.1). 
Specifically, the evaluation included images of treated environmental 
water samples from different environments (rivers, estuaries, and 
oceans) alongside untreated bottled water samples. Images from un
treated bottled water samples provided a different matrix for model 
evaluation. By including these images, the models were tested across a 
variety of environmental matrices, thereby assessing their robustness 
(Fig. 2).

The accuracy of the model was evaluated against the number of 
microplastic fibres the models correctly detected based on the μFTIR 
identification detailed in 2.1.1.

2.4. Model deployment

To test the application of the model to environmental water samples, 
sea water (n = 11) samples were collected during May 2022 from lo
cations in Seyðisfjörður (65.292449, − 13.896733), and Loðmun
darfjörður (65.356993, − 13.819430) in eastern Iceland. Sampling sites 
were selected strategically along the coastline to cover various geogra
phies (including, river mouths, sandy beaches, and rocky shores), and 
varying proximity to human activities which were likely to produce a 
varied range of sample qualities and microplastic concentration ranges 
allowing the models to be applied to and tested on data collected and 
processed for standard research purposes. Additionally, the dataset was 
also used to evaluate the accuracy and efficiency of the human eye 
alongside the two machine learning models.

Surface water was sampled using a silicone tube and peristaltic pump 
connected to a filter setup which included a GF/F filter (with a nominal 
pore size of 0.7 µm and a diameter of 47 mm). The setup was chosen to 
minimize potential contamination through contact with the air. To 
further reduce contamination, the system was purged with water from 
the sample site prior to insertion of the filter. A total of 4 litres of water 
was collected at each site, with the filter immediately wrapped in tin foil 
for subsequent analysis. The laboratory analysis was conducted as 
described in Section 2.1.1, with total microplastic count divided by the 
number of litres (4) to provide a concentration.
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3. Results

3.1. Model evaluation

The original model of YOLOv7 is trained and evaluated with images 
where the objects are much bigger than microplastics (< 5 mm). Thus, 
the original model achieved low performance (40 %) in detecting small 
particles.

However, in this study, the modified YOLOv7 model with the new 
training dataset performed better. For YOLOv7, mean Average Precision 
(mAP) was used as a primary metric. The mAP reflects the model’s 
precision with Intersection over Union (IoU) threshold (IoU=0.50), 
which measures how closely the predicted bounding boxes correspond 
to the ground truth. An IoU of 0.50 indicates that the detected object 
overlaps 50 % with the ground truth object, considered a match, while 
0.95 IoU denotes almost perfect overlap. However, for Mask R-CNN, 

which also provides instance segmentation, we not only considered mAP 
but also the mean IoU (mIoU) for the segmented masks, providing a 
pixel-wise accuracy assessment. The use of mAP alone for Mask R-CNN 
would not fully capture its segmentation performance, hence the in
clusion of mIoU as an additional, crucial evaluation metric.

The mAP in YOLOv7, which depicts the overall accuracy by 
comparing the ground-truth bounding box to the detected box, reached 
71.4 % (Fig. 2a, and Fig. 3). The model’s precision was 69.8 %, which 
shows how reliable the model is at detecting objects without any mis
takes. The model calculates the ratio between the number of correctly 
detected samples (True Positive) to the total number of samples. It 
classifies them as True Positive, if the fibre is correctly classified or False 
Positive, if the model recognises incorrectly an object as fibre. The recall 
was calculated 74.1 %, which is the ratio between the number of posi
tive samples (True and False Positives) to the total number of positive 
samples. The model has a slightly higher percentage of recall than 

Fig. 2. a) Ground truth box in green colour and Detected box in red colour; b) Predicted results on various test images using YOLOv7 model for photograph taken 
with a Nikon 16.25 megapixel camera on white background, true positive, (c) and (d) photos taken with a TOMLOV microscope on brown and green background, 
true positives and (e) photo taken with a TOMLOV microscope. F and g show false positive, f. and g. predictions for images taken using a mobile phone (iPhone XR).
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precision, thus the model classifies the majority of the positive samples 
correctly.

When detecting fibres on images from the mobile phone, the confi
dence level (the number that shows how confident the model is of a 
result) was less than 25 %. The low confidence level can be due to either 
blurred images taken by the operator or lack of training of similar 
images.

The Mask R-CNN model obtains an average mask intersection over 
union (mIoU) of 49.09 % (Fig. 3 and Fig. 4). The main limitation of this 
approach is the scarce variety of images. Visual recognition models can 
exhibit biases towards the training dataset they are trained on. These 
biases arise due to several factors, including quality of the training data 
and composition. For example if facial recognition system is trained 
mainly on data from one demographic group, it may perform poorly on 

other groups [83]. To mitigate biases in the model, it is necessary to 
collect diverse training data; the training dataset needs to encompass a 
broad range of variations, such as different environmental backgrounds, 
and/or lighting conditions. Furthermore, reviewing image data 
augmentation strategies could assist to improve and add more images. 
Detection errors appeared in some tested images, which were likely due 
to different backgrounds and lower image quality. Overall, addressing 
biases in visual recognition models requires a holistic approach that 
encompasses diverse and representative training data to ensure fairness.

In addition, the incompatibility of Mask R-CNN model with the 
current version of TensorFlow and the dataset of the images were the 
principal issues of the low performance. Mask R-CNN is not easy and 
flexible to use with the new version of TensorFlow. To perform some 
tasks, it needs TensorFlow 1.14.0 which is not compatible with Google 

Fig. 3. a) Image with the predicted microplastic fibre using Mask R-CNN vs image with actual microplastic fibres using Mask R-CNN model (b).

Fig. 4. Accuracy of the YOLOv7 and Mask R-CNN on identification of fibres in the test dataset.
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Colab and Jupyter Notebook. Overall, the code was adjusted, and the 
Mask R-CNN model underperformed without and with the pre- 
processing of images resulting in the mIoU of 49.9 %.

The low accuracy regarding the fibre detection can be due to various 
factors concerning the training dataset. These factors may include the 
limited diversity of fibre types and shapes in the dataset, potential im
balances in the number of images per class, and variations in image 
resolution, all of which could contribute to the model’s difficulty in 
accurately detecting certain fibres. It is vital that the data for each class 
of microplastics (fibre, fragment, pellet, rod) is balanced – the number of 
labelled images should be similar [84]. The quality, quantity and di
versity of the training data determines the performance of the models.

3.2. Deployment: monitoring of natural waters in Seyðisfjörður, Iceland

YOLOv7 identified microplastic fibres in all but one environmental 
water sample from Seyðisfjörður. Microplastic concentrations ranged 
from 0 to 2 MP/l, with the lowest identified concentrations found in the 
water samples taken further from the shore (Fig. 5).

Deploying the models on environmental water samples provided the 
opportunity to evaluate both the efficiency and accuracy of microplastic 
fibre detection method using the models, but also using the human eye. 
The accuracy, in this case, refers to the proportion of true positives 
(correctly identified microplastics) out of the total number predictions 
made by the model or human observer versus fibres identified as plastic 
using a μFTIR. For YOLOv7, accuracy was quantitatively evaluated using 
mAP 0.50, providing a measure of the model’s detection precision with 
IoU threshold of 0.50. In comparing human detection observations with 
YOLOv7, the study primarily focused on the success rate of correctly 
identified fibres and the time efficiency of each method. While the 
metrics used for human detection and YOLOv7 differ due to the quali
tative nature of human analysis, both assessments aim to highlight the 
comparative effectiveness and efficiency of automated detection 
methods in microplastic research.

The human eye, despite its rapid analysis speed of 14.53 s per fibre, 
has a limited detection success rate of 60.5 %, with and without pre- 
treatment. On the other hand, the YOLOv7 algorithm proves to be 

efficient in terms of time, needing only 0.40 s per fibre. Alongside this, 
its accuracy is higher at 71.4 %, while Mask R-CNN’s accuracy is 49.9 %, 
detecting 0.60 s per fibre (Fig. 6 and Fig. 7a). However, there is decrease 
in accuracy on the detection of non-treated samples to 66 % and 45 %, 
respectively (Fig. 7b).

In terms of total detection counts for all Icelandic test samples, 
YOLOv7 detects the highest number of fibres (123), followed by Mask R- 
CNN (110), and human eye (109) (Fig. 8). Nonetheless, YOLOv7, Mask 
R-CNN and human eye are subject to certain limitations, such as the 
possibility of counting the same fibre more than once or misidentifying a 
natural fibre as a plastic one. Erroneous counting has potential to impact 
microplastic estimation through all methods. Identification with the 
human eye is prone to multiplication in counts or missing particles 
altogether [68]. Additionally, it is known that due to the tedious nature 
and time required, error rates typically increase with time. Automated 
methods such as those highlighted in this stud are more likely to double 
count due to the quality of the image or in cases where particles are 
obscured by non-plastic debris. E.g. Fig. 3b shows a fibre where ~50 % 
is in focus. There is potential, that should this occur mid fibre with a 
subsequent return to focus, the algorithm may identify this as 2. This 
however was not seen in this study. Overall, the errors introduced this 
way are likely smaller than those through sampling and sample treat
ment [85,86].

Building on this, the next analytical step following microplastic 
identification, is the application of micro Fourier-transform infrared 
spectroscopy (μFTIR) to verify and ascertain the composition of the 
detected microplastic fibres. This method is vital for accurately differ
entiating among various plastic types. In this process, μFTIR has 
confirmed that out of the fibres detected by the human eye, Mask R-CNN 
and YOLOv7, 66 are plastic. The incorporation of μFTIR is expected to 
refine the veracity and reliability of the findings, providing a more 
nuanced understanding of the types of microplastic pollution in Ice
landic aquatic environments.

4. Discussion

Currently, the assessment of microplastics in the environment 

Fig. 5. Locations of surface sea water samples within Seyðisfjörður, Iceland. Symbol size reflects MP concentrations (World Imagery;
Source: Esri).
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consists of a series of time consuming, resource demanding and error 
prone processes, consisting of; sampling, extraction, visual detection, 
quantification, and spectrometric identification. Despite attempts to 
automate these processes with the view to reducing the costs, effort, and 
errors, microplastic detection and identification still requires time, and 
specialised expertise and equipment. This hinders their regular moni
toring and underscores the ongoing challenges in addressing this envi
ronmental concern comprehensively.

There is therefore a clear requirement for a tool which will provide 
fast, accurate results. Thus, this paper evaluates two deep learning 
models, YOLOv7 and Mask R-CNN, which may provide an effective so
lution for the investigation of MPs in environmental samples. YOLOv7 
and Mask R-CNN models were trained to detect fibres, which are the 
most abundant type of microplastic in the environment and the most 
challenging, as they can be in diverse forms and shapes, tangled or 
attached with other particles.

Experimental results demonstrate that the performance of YOLOv7 
was high. Deploying YOLOv7 in a custom dataset was relatively easy and 
did not require many changes to adapt the original code. In addition, the 
training dataset in this study was limited (200 images) in comparison to 
other models, but YOLOv7 and Mask R-CNN performed efficiently 
regardless. In contrast, Mask R-CNN, although having been previously 
used successfully for microplastic quantification [48,49], proved to be 
more challenging in this task. It requires a high level of programming 
knowledge and is not as user-friendly, which can be a significant barrier 
for many potential users.

Mask R-CNN underperformed in this task compared with YOLOv7. 
An accuracy of 49.9 % for Mask R-CNN is lower than other Mask R-CNN 
models uses [63,87], indicating that the model does not perform well for 
this dataset. Due to the recent incompatibility issues with the updated 
version of TensorFlow, a temporary solution involved reverting to a 
previous, stable version, while actively monitoring TensorFlow’s 
development for future updates that resolve these technical challenges 
mentioned in Section 4.

Overall, the use of object detection models for detecting micro
plastics from low resolution images gives promising results compared to 

the traditional, time-consuming techniques. These models, especially 
YOLOv7, can process images in seconds with no requirement for high 
performance computing, and can be deployed easily on local worksta
tions or cloud computing platforms, with little coding knowledge. The 
models are accessible and user-friendly for every level of computer user. 
These models have potential uses across industries that heavily rely on 
visual data, (e.g. environmental companies), and in academia.

The use of these models can assist in quantifying microplastic fibres 
rapidly, and also has a place in exploration of microplastic extraction 
techniques and during development of methods to degrade micro
plastics. Additionally, combining vision recognition with environmental 
data analysis can provide a more comprehensive understanding of 
microplastic pollution. However, although vision recognition is a valu
able tool, it should be used as part of a broader approach to tackling the 
issue of microplastic pollution. In the future, the main goal should be the 
updating of the dataset of images with different categories of micro
plastics, so that the models can classify any type of microplastics. Testing 
the model on environmental samples from Iceland emphasises the 
ability of the model to maintain accurate detection regardless of varia
tions in lighting conditions or resolution, and cements its potential for 
real-world applications, where environmental conditions can be un
predictable and diverse. Overall, the application of YOLOv7 in envi
ronmental sample analysis offers the potential to enhance the efficiency, 
accuracy, and cost-effectiveness of the process. By automating tasks, 
reducing human intervention, and improving data analysis, it can help 
researchers better understand environmental dynamics and support 
informed decision-making for environmental conservation and 
management.

The results obtained from Seyðisfjörður, Iceland, demonstrate the 
utility of advanced automated systems such as YOLOv7 in improving the 
efficiency of microplastic monitoring efforts and similar results can be 
achieved in other regions with complex water samples. The model’s 
architecture is designed to handle variability in sample characteristics, 
which are common across different environmental contexts, such as 
variations in background noise and/or presence of other materials (e.g. 
organic matter or sediments) The comparative analysis revealed that 

Fig. 6. Time required per fibre for two different microplastic detection methods: Human Eye and YOLOv7 with a significant difference in processing speed (chi.test: 
p-value= 0.0002553).
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YOLOv7’s rapid detection rate could significantly improve methodo
logical efficiencies. However, the study also underscores the relevance 
of human analysis as a baseline, which, despite its lower success rate, is 
crucial for validating automated detection methods and ensuring their 
accuracy. Incorporating μFTIR spectroscopy as a key step in the analysis 
underscores the necessity of precise methods in the complex task of 
assessing microplastic pollution. The variance in microplastic quantities 
among the different sites in Iceland highlights the influence of local 

environmental factors, emphasizing the necessity for a nuanced 
approach to environmental monitoring. This approach requires 
advanced detection methods that are not only time-efficient but also 
precise. By streamlining analysis through automation, reducing the need 
for human intervention, and refining data interpretation, this model 
facilitates a deeper understanding of environmental microplastic 
pollution.

The primary limitations identified in this study include the reduced 

Fig. 7. a) General accuracy (%) for three different microplastic detection methods: Human Eye, Mask R-CNN andYOLOv7; b) Accuracy (%) for three different 
microplastic detection methods: Human Eye, Mask R-CNN, and YOLOv7 but for only sampled without pre-treatment.
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accuracy of the YOLOv7 model compared to more complex models, the 
potential for misclassification in varied environmental conditions, and 
the challenges of generalising results across different sample types due 
to the controlled nature of the training datasets. These limitations imply 
that while YOLOv7 offers speed and efficiency, it may yield a higher rate 
of false positives or negatives in complex environments. To counter 
these issues, future work could involve enhancing model training with 
more diverse datasets, implementing post-processing techniques for 
refined detection. Continuous validation and retraining of the models 
with new data are crucial to maintain their effectiveness as new chal
lenges in microplastic detection arise.

This study leverages YOLOv7 and Mask R-CNN models for the 
detection of microplastic fibres, distinguishing itself from existing 
methods in both technological advancement and user accessibility. 
While recent studies employ Raman spectroscopy and deep learning for 
microplastic classification and demonstrate the growing use of sophis
ticated techniques, they required more time, specialised knowledge, 
increased sample processing, and equipment and thus, have limited 
broader application [48,88-90].

While high-accuracy models for microplastic detection exist, their 
practical application is hindered by a critical limitation: a lack of user- 
friendliness and the high costs associated with their deployment. 
Despite their technological sophistication, many of these deep learning 
models, including microplastic detection, demand specialised knowl
edge, rendering them inaccessible to a wider research community 
[91-93].

In contrast, our approach achieves a balance between accuracy and 
accessibility. This study’s models attain competitive accuracies, espe
cially YOLOv7 with 71.4 %, comparable to high-accuracy methods, like 
U-Net and VGG16 neural networks [94,95]. However, our models stand 
out in their ease of use and the level of programming needed is minimal. 
The access to cutting-edge research tools allows to a wide range of re
searchers and practitioners to contribute to the field of microplastic 
pollution.

In the rapid advancing field of machine learning, new models and 
updates emerge regularly, offering enhanced capabilities and 

performance. While this study employed YOLOv7 due to its cutting-edge 
accuracy and reliability at the onset of this research, it is important to 
note that subsequent iterations, such as YOLOv8 [96] and YOLOv9 [97], 
have released. Nevertheless, the selection of YOLOv7 was deliberate, 
allowing for the use of well-established and validated model to ensure 
the robustness of the results within the time frame of this study. Future 
studies could explore the use of more recent YOLO versions to poten
tially enhance detection methodologies further [96,98].

This research seeks to build upon the foundational work established 
by previous studies, including those employing advanced methodologies 
such as MATLAB for image analysis40 and holographic imaging tech
niques43. While these approaches have significantly contributed to the 
understanding and capabilities in detecting microplastic pollution, there 
exists a parallel need for methodologies that are not only cost-effective 
but also user-friendly, without substantially compromising on analytical 
performance.

The introduction of models such as YOLOv7 constitutes a significant 
progression in the field, merging high analytical performance with 
enhanced user accessibility and cost efficiency. These models represent a 
crucial development for efficient and rapid processing, which is essential 
for real-time analysis in the context of global microplastic pollution 
challenges. Consequently, they serve as a vital tool, broadening the 
accessibility of advanced research methodologies to researchers with 
varying levels of computational skills, from the minimum programming 
knowledge to the highest one. The merge of user accessibility with 
robust analytical capabilities marks an advancement in enhancing 
environmental monitoring approaches.

5. Conclusions

Addressing microplastics in the environment involves multiple steps 
(sampling, extraction, visual detection, quantification, chemical iden
tification) requiring expensive equipment and time, hindering large- 
scale analysis. Recent advancements aim to increase efficiency and 
reduce costs, yet challenges persist due to the need for specialised 
expertise and equipment. This paper proposes a deep learning model, 

Fig. 8. Total count of fibres detected using three different microplastic detection methods: Human Eye and YOLOv7.
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YOLOv7 to address these issues. YOLOv7, a new addition to microplastic 
quantification research, was compared and performed better than the 
previously used Mask R-CNN.

Both models were trained to detect microplastic fibres, which are 
abundant and challenging due to their diverse forms. YOLOv7 achieved 
high performance, was easy to deploy, and worked well with a limited 
dataset (200 images), while Mask R-CNN underperformed with 49.9 % 
accuracy due to TensorFlow incompatibilities.

Object detection models such as YOLOv7 show promising results 
compared to traditional techniques, by processing images quickly 
without needing high-performance computing. They are accessible and 
user-friendly, suitable for both industrial and academic applications. In 
industry, this model can quantify microplastic fibres, while academic 
can explore extraction techniques, etc.

Future efforts should focus on updating image datasets to classify 
various microplastics. Testing on Icelandic environmental samples 
demonstrated the YOLOv7 model’s robustness in diverse conditions, 
cementing its potential for real-world applications. Overall, YOLOv7 
enhances the efficiency, and cost-effectiveness of environmental sample 
analysis, supporting better understanding and informed decision- 
making for environmental conservation and mitigation.

Environmental implication

Microplastic pollution poses significant environmental threats, 
including contamination of aquatic ecosystems, ingestion by marine 
organisms, and potential entry into the human food chain. Advanced 
detection methods like YOLOv7 offer rapid and accurate quantification 
of microplastics, enhancing monitoring efficiency. These models facili
tate better understanding of microplastic distribution and impacts, 
aiding in targeted mitigation strategies and informed decision-making 
for environmental conservation.
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[19] Navarro, A., Luzardo, O.P., Gómez, M., Acosta-Dacal, A., Martínez, I., Felipe De La 
Rosa, J., et al., 2023. Microplastics ingestion and chemical pollutants in seabirds of 
Gran Canaria (Canary Islands, Spain). Mar Pollut Bull 186, 114434.

[20] Susanti, N., Mardiastuti, A., Wardiatno, Y., 2020. Microplastics and the impact of 
plastic on wildlife: a literature review. IOP Conference Series: Earth and 
Environmental Science. IOP Publishing,, 012013.

[21] Taurozzi, D., Scalici, M., 2024. Seabirds from the poles: microplastics pollution 
sentinels. Front Mar Sci 11, 1343617.

[22] Dekiff, J.H., Remy, D., Klasmeier, J., Fries, E., 2014. Occurrence and spatial 
distribution of microplastics in sediments from Norderney. Environ Pollut 186, 
248–256.

[23] Lavers, J.L., Bond, A.L., 2017. Exceptional and rapid accumulation of 
anthropogenic debris on one of the world’s most remote and pristine islands. Proc 
Natl Acad Sci 114, 6052–6055.

[24] Hanvey, J.S., Lewis, P.J., Lavers, J.L., Crosbie, N.D., Pozo, K., Clarke, B.O., 2017. 
A review of analytical techniques for quantifying microplastics in sediments. Anal 
Methods 9, 1369–1383.

[25] Mason, S.A., Welch, V.G., Neratko, J., 2018. Synthetic polymer contamination in 
bottled water. Front Chem 6.

[26] Wessel, C.C., Lockridge, G.R., Battiste, D., Cebrian, J., 2016. Abundance and 
characteristics of microplastics in beach sediments: insights into microplastic 
accumulation in northern Gulf of Mexico estuaries. Mar Pollut Bull 109, 178–183.
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