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Hamiltonian conserved Crank-Nicolson schemes for a semi-linear wave
equation based on the exponential scalar auxiliary variables approach
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* Correspondence: Email: xbluol @gzu.edu.cn.

Abstract: The keys to constructing numerical schemes for nonlinear partial differential equations are
accuracy, handling of the nonlinear terms, and physical properties (energy dissipation or conservation).
In this paper, we employ the exponential scalar auxiliary variable (E-SAV) method to solve a semi-
linear wave equation. By defining two different variables and combining the Crank—Nicolson scheme,
two semi-discrete schemes are proposed, both of which are second-order and maintain Hamiltonian
conservation. Two numerical experiments are presented to verify the reliability of the theory.

Keywords: semi-linear wave equation; exponential scalar auxiliary variable; error analysis;
Crank—Nicolson scheme

1. Introduction

Nonlinear partial differential equations (PDEs) are often used to describe some significant problems
in natural science and engineering technology. The analysis of nonlinear waves has garnered increas-
ing attention in the fields of shallow water, plasma, nonlinear optics, Bose—Einstein condensates, and
fluids. The nonlinear PDEs in these fields can be solved using lump solutions. The lump solution and
interaction hybrid solutions were first discovered by Zakharov in [1] and Craik in [2], respectively.
These special solutions are of great significance for the study of nonlinear integrable equations [3-5].
To obtain these analytical solutions, the scholars have proposed a variety of methods, including Ansatz
technique [6], Hirota’s bilinear method (HBM) [7], and the inverse scattering transform (IST) [8]. The
HBM proposed by Hirota, has been widely used as an effective approach to study the nonlinear dy-
namics wave equation, resulting in numerous richer solutions, such as solitons solutions, novel breather
waves, lump solutions, two-wave solutions, and rogue wave solutions ( [9—14]). These solutions are
visualized in three-dimensional graphics via numerical simulations, making it easier to understand the
propagation of nonlinear waves.

The study of the stability of integrable equations, such as the KPI equation, the Ishimori equa-
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tion, the nonlinear Schrodinger (NLS) equation and the KdV equation have further enriched the theory
of nonlinear wave equations. Spectral methods can effectively solve the problem of linear stability.
In [15], Degasperis et al. proposed the construction of the eigenmodes of the linearized equation using
the associated Lax pair and provided the computation of both analytical and numerical solutions with
the example of two coupled NLS equations. In [16], Ablowitz provided a comprehensive review of
research methods for integrability and nonlinear waves, including Bicklund transformations, Darboux
transformations, direct integral equations or Riemann—Hilbert or Dbar methods, and HBM. By com-
bining the KdV and NLS equations, the author further elaborated on the ideas and background of the
IST method.

The computation of nonlinear PDEs has become a very active research topic. With advancements in
traditional methods like finite element ( [17, 18]), finite difference ( [19-24]), finite volume ( [25-27]),
and spectral methods ( [28—-30]), numerous outstanding research results have been achieved in the nu-
merical approximations of nonlinear PDEs. In [31], the authors developed a time-two-grid difference
scheme for nonlinear Burgers equations. In [32], a method combining the barycentre Lagrange inter-
polation collocation technique with a second-order operator splitting approach was proposed for the
purpose of solving the NLS equation. Based on novel shifted Delannoy functions, Ansari et al. [33]
employed a matrix collocation technique to numerically approximate the singularly perturbed parabolic
convection—diffusion—reaction problems.

In recent years, for the treatment of nonlinear terms, there have been a lot of unconditionally energy
dissipative numerical schemes for Allen—Cahn and Cahn—Hilliard gradient flows models, such as:
(1) CSS (convex splitting) scheme [34-36];
(i1) IMEX (stabilized semi-implicit) scheme [37,38];
(iii) ETD (exponential time differencing) scheme [39,40];
(iv) IEQ (invariant energy quadratization) scheme [41];
(v) SAV (scalar auxiliary variable) scheme [42,43];
(vi) E-SAV (exponential scalar auxiliary variable) scheme [44].

The idea of (i) is to decompose the energy function into convex and concave parts, handling the
convex part implicitly and the concave part explicitly. The advantage is that it can achieve second-order
unconditional stability. However, the drawback is that it still requires solving nonlinear equations. The
method of (ii) yields extra error, which makes it difficult to construct a higher-order scheme. The
(iv) and (v) approaches make it easier to handle nonlinear terms by defining auxiliary variables that
transform the nonlinear potential function into a simple quadratic form. Nevertheless, an inner product
must be calculated before obtaining the next time value. Compared with (iv) and (v), the variable
defined in (vi) does not require any assumptions. And the E-SAV method can easily construct an
explicit scheme that can preserve energy stability. But this physical property can not be satisfied with
the explicit SAV scheme.

In addition, Huang et al. [45] studied a new SAV method to approximate the gradient flows, which
is an improvement of the SAV method. By defining an auxiliary variable in the new SAV method as
a shifted total energy function, instead of focusing on the nonlinear parts of the classic SAV method,
we replace the dynamic equation for that variable with the energy balance equation of the gradient
flow. This facilitates the construction of high-order and energy-stable discrete schemes. In [46], Liu
et al. further developed an exponential semi-implicit scalar auxiliary variable (ESI-SAV) method for
the phase field equation. The ESI-SAV method can preserve the advantages of both the new SAV and
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E-SAV methods and be applied more effectively to other dissipative systems.

On the basis of the above methods, researchers began to apply the above nonlinear processing
techniques to approximate semi-linear wave equations. Jiang et al. [47] proposed an IEQ approach and
established an energy-preserving linear implicit scheme for the sine-Gordon equation. In [48], based
on the SAV method with a combination of the Gauss technique and the extrapolation method, Li et al.
provided a high-order energy-conserving and linearly implicit scheme. Wang et al. [49] developed a
second-order SAV Fourier spectral method to solve a nonlinear fractional generalized wave equation.

The primary objective of this paper is to develop second-order and Hamiltonian conserved semi-
discrete schemes for semi-linear wave equations. Following the superiorities of the E-SAV and ESI-
SAV methods, two different numerical schemes are given by utilizing the Crank—Nicolson scheme for
temporal approximation. Furthermore, the convergence order and the evolution curve of the Hamilto-
nian function are validated through numerical experiments.

The paper is organized as follows: In Section 2, by introducing scalar auxiliary variables, we obtain
two equivalent forms for the semi-linear wave equation in the continuous case. In Sections 3 and 4, by
using the Crank—Nicolson scheme, we propose two semi-discrete schemes corresponding to the equiv-
alent forms and provide proof of the convergence order. Two numerical examples are implemented to
test the effectiveness of the theoretical analysis in Section 5.

2. Preliminary results

We consider the following semi-linear wave equation:

ytt_Ay_f(y)ZO’ xEQ’tE(OaT)a
y(x, ) =0, x€0Q,te(0,T), 2.1
y(x,0) = yo(x), y(x,0) = g(x), x€Q,

where Q ¢ R%d = 2,3) is a bounded convex domain, 7 > 0 is a fixed number, f(y) = —F’(y) is a
nonlinear term, and F(y) satisfies F(y) € C*(R). The Hamiltonian function is defined as

1 1
H(y) = Ellyfll2 + EIIVyII2 + fF(y)dx- (2.2)
Q

Proposition 2.1. The system (2.1) holds the following Hamiltonian conservation law:

dH(y) _

o 0. (2.3)
Proof. Multiplying the first equation of the system (2.1) by y, yields
YuYe = Ayye — f()y: = 0. (2.4)
By using the continuous Leibniz rule, we obtain
1
yaye = 5 (00%),. = FOe = FO)) 2.5)

and
Ayy, :(y)qxl + yX2X2)yt
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:(yxlyt))q + (ynyt)xz — Yx (yt)xl —Vx (yt)xz

1
:()’xl%)xl + (yxzyt)xz - E(yjzcl + y)zcz)f‘

Inserting (2.5) and (2.6) into (2.4), we obtain

[5(007),+ 5 0% +32), + EO] = [0 + 0] =0

Integrating (2.7) over the spatial domain € and combining the boundary conditions leads to

1 1
fQ [5 (00), + 507, +30) + (F(y))t] dx =0,

From (2.8) and (2.2), we can deduce that

dH(y) _
dr

1 I
fg[z (G02), + 30% + 30 + (F(y)),] dx = 0.

The proof is complete.

We introduce two scalar auxiliary variables as

w =y, 1) = f FO)dx = Hh().

Q

Then the system (2.1) can be equivalently rewritten as

W=y, xeQre(0,7),
w;— Ay —q""f(y) =0, xeQ,re(0,7),
re==q""(f(y), w), xeQ,te(0,7),
y(x,1) =0, wkx,1) =0, x€oQ,te(0,T),
¥(x,0) = yo(x), w(x,0)=g(x), r(0)=H(yo(x)), xe€Q,
where
y,r — eXp{r}
exp{H(»)}’

For the system (2.10)—(2.14), we have the following lemma:

Lemma 2.1. ( Hamiltonian conservation) The above system (2.10)—(2.14) satisfies

dH(@y)
dr 0,

where the modified Hamiltonian function

~ 1 1
H() = Ellwll2 + EIIVyII2 +r.

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
2.11)
(2.12)
(2.13)
(2.14)

(2.15)

(2.16)
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Proof. Taking the inner product of (2.11) by w, then combining (2.10) and (2.12), we obtain
(W, w) + (Vy,Vy) +r, = 0.

Obviously, we can deduce

d (1 1
7 (Ellwll2 + EIIVyII2 + r) =0.

The proof is complete.

Next, introducing a new variable

R() = H(y),
which satisfies the dissipation law
dR dH(y)
i =0, 2.17
dt dt 17)

and defining ¢ = ef;(p,(@)), we can know that £ = 1 in the continuous case. Replacing the factor ¢° in

(2.11) by Q(¢), where Q(¢) is a polynomial function of &, the system (2.1) can be transformed into the
following equivalent form:

w =Yy, xeQre(0,7), (2.18)
w - Ay — Q@) fy) =0, xeQte(0,7), (2.19)
_ exp(R)
£ = exp(H(y)) xeQ,te(0,7T), (2.20)
Q&) =R -¢) xeQ,re(0,7), 2.21)
% =0, xeQ,te(0,T), (2.22)
y(x,0) =0, wkx,1) =0, x€dQ,te(0,7), (2.23)
y(x,0) = yo(x), w(x,0)=g(x), RO)=H(yp), x€Q. (2.24)

Furthermore, (2.17) and (2.22) imply that the system (2.18)—(2.24) is Hamiltonian conserved.
3. CN-E-SAYV scheme

Let0 =1 <t <..<ty =T beauniform partition of the time interval [0, 7] with the time steps
At = T/N and " = nAt. Then, utilizing the Crank—Nicolson scheme to discretize the system (2.10)—
(2.14), a second-order Carnk—Nicolson E-SAV (CN-E-SAV) scheme can be formulated as follows:

1

wn+% — E(yn+l _yn), (31)
1

E(U)rﬁl _ wn) _ Ayn+% _ én+%f@n+%) — 0’ (32)
1 1 1

L0 = = @ W, (3.3)
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where
1
wn+% — (wn+1 + wn)’ yn+% — 5(yn+1 +yn),
sl P SR T . . . Ar
and ¢""2 > 0 with (32, 7"*2) being generated by the first-order scheme with the time step size bR ie.,
An+l |
7= 2 3.4
1 +1
n+>5 AAn+2 n ny — 0’ 35
A @ W) = AT g ) (3.5)
1 o +1
— (7" " 3.6
Y ([0, & (3.6)

In order to better understand this scheme, by plugging (3.1) into (3.2) and (3.4) into (3.5), respec-
tively, we can get

2 1 2,02
Ay P Wt =AY+ GG, 3.7
4 an+l anti n 2 n n n
A_ﬂy+2_Ay+2:A_t2y Y +4"fO"). (3.8)
So we can implement the CN-E-SAV scheme as follows:
(i). Compute " from q" = L{r}; (it). Compute 57"+% from (3.8);
exp{H(y")}
(iii). Compute " from (3.4); (iv). Compute s from (3.6);
pres
(v). Compute q”+2 from §** 1 = e){(;){{—@i}l)}; (vi). Compute y™*' from (3.7);
exp{H, ("2
(vii). Compute "' from (3.1); (viii). Compute """ from (3.3).

3.1. Hamiltonian conservation

We show the conservation of the CN-E-SAV scheme by the following theorem:
Theorem 3.1. The CN-E-SAV scheme (3.1)—(3.3) is Hamiltonian conserved:

1
H™ = H" with H" == ||a) > + ||Vy”|| + . 3.9
Proof. Taking the inner product with (3.1) and (3 2) by y"*i, w"2, we have
1 1 1
n+y \Nt+5\ — n+1 I | TV 310
(W"2,y"72) = ||y I” - 2At”y %, (3.10)
and
1
§||(1)H+1||2 ”wn”2+At(Vyn+2 an+2) n+2(f(yn+2) (,()n+2)At_0. (311)

Substituting (3.10) into (3.1 1) and combining (3.3), we obtain
1 1 1 1
(illw”“ll2 + EIIVy"“II2 + ) - (Ellw"ll2 + EIIVy"II2 +r") =0

The proof is complete.
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3.2. The error of the CN-E-SAV scheme

We will follow the next two steps to complete the error estimation of the CN-E-SAV scheme:
step (i): complete the error between (2.10)—(2.14) and (3.4)—(3.6);
step (ii): with the help of the results of step (i), the error of (2.10)—(2.14) and (3.1)—(3.3) is further
estimated.

For simplicity, we define

1
Alt+S

2 = wity,) - "

8=

€, = w(ty) — W',

N Aan+ L

&yt =Yty 1) =9, ey = y(ta) =",
1 1

&' =, )~ P, =) -1

It follows from (2.10)—(2.14) that the exact solution (w, y, r) satisfies

Wty 1) = %/2@(%;) — (1)) — f/z’f;ﬁ, (3.12)
W(ty 1) = w(ty) -

A M) a0 = T = AL = () (3.13)
F(t,y) = rt) = ~(@(t) fO0) Y(t,) = y(1) = T ) + T, (3.14)

where the truncation functions are defined as

! {1
n+§ 2 n+§
(].Z)l = f (tn_'_% - t)(,()[tdt, ‘7.';11 = f (tn - t))’ttdt’
tn In

! f ]

~ n+s nt3

R A N A AN 2
tn In

and satisfy

T L « !
1721 < C(At)? f lwdllPde,  IT7IP < C(ALY f “lyallPdt, (3.15)
I tn
e L . los
17217 < C(Ar f yalPde, TP < C(An? f "l (3.16)
t)l tn

For the purposes of theorem proving, we present the following assumptions and lemmas:
Assumption 3.1. There exist constants Q*, Q,, O*, and Q. independent of At such that Q, < q" <
0, 0. < Q’“% < O for all n.

Lemma 3.1. Denote
A= qt)f @) — 4" fO),
B =" ") = 4l ) (L0,
then the following holds:
Al < CAIVE] + lexD),
Il < CAvey™ | +12) ).
where the constant C > 0 depends on Q*, Q., 0", O.,|Ql, yo, and fllct gy
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Proof. Similar to the proof of Lemma 4 of [51], the results can be proved by applying Poincaré’s
1
inequality to ||e;’||, ||é'y1Jr2 || once more.

Lemma 3.2. Assume At is sufficiently small and satisfies
y, € L0, T; L>) N L*(0,T; H*), y, € L*(0, T; L*) N L*(0, T; H"), y, € L*(0,T; L?).
Then, we have
16521 + IV + 1
sC(Aﬂ3~[‘ 7ﬂkudf-+HVb%H2+lnA2+|b%H2+IWM§qQst
+émdﬂ5+HV4W44dF) (3.17)

Proof. Subtracting (3.4)—(3.6) from (3.12)—(3.14), we have the error equations as

1 1 1
Alt5 Alt5 n
o (@ - L4 , 3.18
A YT A (3.18)
An+d
bo € — AT = (1) f Ot M= AY(ty1) = Y(t)) + —=T 2, 3.19
A2 ) FOE)) = 4" FG") = AG () = ¥(0) + - /2% (3.19)
n L n n n Al ) n n n
&7t = e == (¢ 078" = )+ (607 = ) f0 ) ¥t ) = (1)
+ (q(t) fO), T + T (3.20)
Taking the inner product of (3.19) with éf% and combining (3.18), we have
n+i NG n
1521 = flet P + 18 — et
Ve - —IVelI® + vl - NP
—A(A, 87 - AL A (1,41) = Y(t)), &)
+2F0 8~ 2T, L
=AL+ A+ A3+ Ay (3.21)

For the first term on the right-hand side of (3.21), according to Lemma 3.1, we obtain

Ay <CAD|\AIP + 4||A”*2||2
~ | .
<Ci(AN(IVELP + lef) + Znaﬁnz. (3.22)

Then for Ay, Az, A4, using Young’s inequality and (3.15), one has
|-~
m<cmnf‘|mw®w+||“w (3.23)
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tn+l 1 n 1
As < C(At)3f " Nlwdldr + leélelz,

In

Ay < C(AYY f IVyull*ds + —||Vén+2||
Combining (3.22)—(3.25) with (3.21), we can have

antdio At ) antdio At )

18 *1I” + 4lle, * — el +11Vey, 2" + 4lIV(e, * — DI
~ 2 2 2 2 2
<4C, (A (IIVeyll” + le1) + 4dlleg|I” + Vel

s L
+C(Ary’ f “(wall® + IVYallP + il 0)ds.
In

1
Multiplying (3.20) by "%, we can obtain

1 el
e P e + e - e
=~ 2 fO"), & eney” P oA, Y1) = Wt

£ 2qU) fOe)), Ter™ + 27 e
=¥, +¥, + \P3 + W,

(3.24)

(3.25)

(3.26)

(3.27)

According to ¢" < Q*, F € C3(R), and Poincaré’s inequality, we can derive the following estimate for

\Pll

n N st
Vi <llg"fOMINe, * —eyllle, |

1 1
At 2 NEE )
< CV(Ee, 2 — el + Zler i

The estimate for W, is similar to (3.22), so we obtain

(th41) = Y(10)

y 2 An+%
¥, < AtllﬂllllA—tlller |

~ | |
< Co(A(IVEI? +lep?) + Zle’+2|2'
For the last two terms of (3.27), by utilizing (3.16), we have that

n+2|

|
Wi+ Wy < C(At)3f “(ral + lyulPds + Iér
tn
Therefore, injecting (3.28)—(3.30) into (3.27) leads to

B + el — e

o}
<4CH(A*(IVEIP + lef?) + C(At)3f “(Iral? + lyalP)d

In

1
+4CHV(Ey " — eDI” + 4l

(3.28)

(3.29)

(3.30)

(3.31)
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Multiplying (3.26) by C* and adding it to (3.31) implies
1 ek ek
CHlle 2 1P + C Ve 2|12 + (o) "2

<4(C,C* + C)AN’(IVEIP + lef?) +4C"(llel > + IVeyl) + 4lerl?

!l
3 [ ™2 2 2 2 2 2
+ C(Ar) f (lwull” + IVyull™ + |rul”™ + llyull” + ||}’t||H2(Q))dS-
In

The proof is completed when C* > 1 and (A7)’ < & < =

Next, we will derive the convergence order of the CN-E-SAV scheme (3.1)—(3.3). Clearly, the exact
solution (w, y, r) satisfies

w(tn+l) + w(tn) _ 1 n 1 n
— 5 = Ol =y + R, - T (3.32)

1 n+ n
() - (1) - p2Yet) * ¥

1 n n
> — 4t )f O ) = =T — ARy, (3.33)

) = r6) = = (700 ), L) g )y Lo (3.34)
where the truncation functions are defined by

T o = w(tn1) = W(ty) = Atwi(t,,, 1), Ty = Y(tner) = y(tn) = Atyi(t,, 1),

T = Htet) = 1(t) = Atrty.) R, = A OW) oy

R, = Lo 20 R = o) 1)

The truncation functions satisfy the following lemma:

Lemma 3.3. ( [50]) The following estimates hold
tnt1 In+1
1Tl < C(Al)sf lwwl*ds, T3> < C(At)sf 1yl Pdls,
th In
ot 1 Tn+1
T, < C(At)sf rul’ds, IR < C(Af)3f lwall*ds,
" Int1 t::rl
IR < C(At)3f yallPds, 1R < C(Al)3f |rul*ds.
th In

Theorem 3.2. Let (w(t,), y(t,), r(t,)) and (", y", ") be the solutions of (2.10)—(2.14) and CN-E-SAV
scheme (3.1)—(3.3), respectively. Suppose that the assumptions in Lemma 3.2 hold and assume further

yu € L*(0,T; L) N L*(0,T5 H*), yur € L*(0,T; L) N L*(0, T H'), yyore € L*(0, T L?).
Then, we have

2 2 2 4
llegll” + IVeyll™ + lex]” <C(An)”.
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Proof. Subtracting (3.1)—(3.3) from (3.32)—(3.34), we derive the following error equations:

1 1 1
nty _ =/ n+l n n
e,’ = At( —e )+R At‘ry,

1
— (M =€) — Aey —q(tn+1)f(y(tn+1)) g f(9"+z)+—T" AR,

At
1 n+l ny _ An+2 n+2 _ M
e = e = (#4767 - 00, 2
1
— @™ fE), €l 2) +(q(t, ) f((1,,1)), R,) + A—‘Tr"

1
Taking the inner product of (3.36) with eZ+2 and combining (3.35), we have

1 1 1 1
illeﬁ,”ll2 - —IIe"Z,II2 + EIIVe;’”II2 - EIIVe;’II2

= ANB, Y+ (T, M) — AHARY, &)
- At(Ve)+2 VR) — At(Vey+2 V7))
=T+ T+ V3 + Ty + s,

According to Lemma 3.1, we obtain
Ty <CAH(E 2P + VS 2P + e 2 R).

For the last four terms of (3.38), it follows from Lemma 3.3 that

In+1
T, <C(A1) f el Pdt + CAlel |1,
In+1 +7
T3 <C(A1) f Ay, IPdt + CAtller, |,
In+1
Ty <C(A1 f IVeolPdt + CAHIVE |2,
Tn+1 e+
Ts <C(At)* f Iyl Pt + CAAIVEL |,
Substituting (3.39)—(3.43) into (3.38), we can obtain
1 1 1
§||ez+1||2—2|| 2P + ||V P = SIVer
<CAr(2!" P + ||Vé”*2|| )+ CAK(lel P + Vel 1)
In+1
+ C(AD* f (lwrall® + 19y1all> + A4l + Ve, ) dt
th
Multiplying (3.3) by €', we obtain

1
S(le el —lef)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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=Atef+% (B, M) - Atel:%(@“%f@n%)’ e:z)+%)
1 el
+ AI(CI(I,H%)f(y(t“%))’ R:lu)e’:*'z + 7-;ner+2
Z:CDl + ®2 + (D3 + (D4. (345)

Next, we estimate the right-hand side of (3.45). Applying Lemma 3.1, Lemma 3.3, and Young’s
inequality, we deduce that

w(tn+l ) + w(tn)

ned

D, SCAtler“IIIBIIIIfII

1 n+d n+d
<CAt(1) 2 + |IVey |1 + ler ™), (3.46)
@, <CAt(le) | + |lei 2|17, (3.47)

In+1 n+l
®; + Oy <C(AD* f (lwulP + |rH)dt + CAtle) 2. (3.48)
t)l

Combining the above estimates of (3.46)—(3.48) together, one has

1 1
|en+1|2 _ - n|2

2 20
At n+d

2 A3 12 nty2 R
<CAw(le, *|” +|IVey °1I7) + CAt(lle, *1I” + le *[7)
In+1

+ C(At)4 (llwn”z + |rm|2)dt- (3.49)

1

By adding (3.44) and (3.49) and summing the index k from O to n — 1, we obtain

el > + IVESI + llef|?
scmni(neﬁnz VIR + 1P + cm”iué’i*éﬁ VSR
k=0 k=0
A
+ C(An)* fo (lwll® + 17al® + 1Vl
+ llwull® + lyull® + ral® + AVl + IV, lP)dt.

Applying Lemma 3.2 and the discrete Gronwall’s inequality, we can complete the proof.
4. New-CN-E-SAV scheme

For the system (2.18)—(2.24), we obtain the semi-discrete new Crank—Nicolson E-SAV ( New-CN-
E-SAV) scheme by adopting the Crank—Nicolson scheme as

wn+1 + " 1

= E(y"“ ) (4.1)
1 n+1 n .
IR Ay% — Q™) =0, 4.2)
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o SRR 43)
exp(H(J"*2))
Q@) =&l -, (4.4)
1
—(R" =R =0, 4.5
A ) (4.5)
where )A;"*% is obtained by solving the following equation:
~ A 1 an+d n
2= —F"2 =)"), 4.6
1 + 1 1
— (D" =W =AY - fO") = 0. 4.7
» /2(w w") — Ay JOY (4.7)

From (4.5), we can find that the New-CN-E-SAV scheme (4.1)—(4.5) also enjoys the same conser-
vation as the CN-E-SAV scheme (3.1)—(3.3).

Theorem 4.1. The New-CN-E-SAV scheme (4.1)—(4.5) is Hamiltonian conserved in the sense that
ﬂn+1 :ﬂn:_._:ﬂo.
Further, according to Theorem 4.1, the Eq (4.3) can be simplified as

n+1 — CXp(RO)
exp(H($" 1))

In order to better illustrate the calculation process of the New-CN-E-SAV scheme (4.1)—(4.5), plugging
(4.1) and (4.6) into (4.2) and (4.7), respectively, we obtain

(4.8)

2 1 2 2 1 I
—ZA n+l _ n ny AV n+1 an+s 4.9
(At2 7y a2 T Ay + OO, (4.9)
4 1 4 2
— A = T ) m. 4.10
(F7 ~ A% a2 e + 0" (4.10)

So the New-CN-E-SAV scheme can be implemented as follows:

(i). solve §"** from (4.10); (ii). solve &7 from (4.6);
(iii). compute "' from (4.8); (iv). compute Q&™) from (4.4);
(v). solve y"% from (4.9); (vi). solve W'z from (4.1).

For the convergence order of the New-CN-E-SAV scheme, from (4.6) and (4.7), we can obtain
P = 312 + O(AP), 4.11)
O = W) + O(AP). (4.12)
Referring to [46] and combining (4.11) and (4.12), we obtain

n+l _ CXP(RO)

= —————— = &)+ CAr=1+CAr.
exp(H(§"7))
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Then, we derive that
Q™) =12 -1 = (") + CANQ2 - &™) — CA)
=+ CAn(1 - CAy)
=1-C?AP,

which means that the New-CN-E-SAV scheme can achieve second-order approximation.
5. Numerical experiments

In this section, two examples are presented to test the validity of the theory. We set
Q=[0,L*, L=2,T=1,
yo = 0.005 sin rx; sin 7x,,
wp = 0.005 sin 7wx; sinwx,,

and consider different nonlinear functions F(y) to simulate the order of convergence and the Hamil-
tonian conservation. Discretize the physical space by the Fourier spectral method with a spatial step
h = L/2°. Since we do not have the exact solution, we thus select the sufficiently small time step
At = 1/1024 as the reference solution.

Example 5.1. In this example, we choose the nonlinear function F(y) and initial values ry, Ry as
follows:

F(y)=1-cosy, ry= f F(yo)dx, Ro= H(y).
Q

Example 5.2. In this example, we select

1
F(y) = Z(Yz -2 ry= LF(YO)dx, Ro = H(yo).

For the CN-E-SAV and New-CN-E-SAV schemes, the error between the numerical solution and
the exact solution in the sense of L?-norm is listed in Tables 1-6, where Tables 1-3 and 4—6 show the
numerical results for Examples 5.1 and 5.2, respectively.

The evolution of the Hamiltonian function with respect to the CN-E-SAV and New-CN-E-SAV
schemes in Examples 5.1 and 5.2 is depicted in Figure 1.

%104

+  CN-E-SAV + CNESAV
27179 +  New-CN-E-SAV 18 +  New-CN-E-SAV

Hamiltonian

2717 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

t t

Figure 1. Evolutions of the Hamiltonian for the CN-E-SAV and New-CN-E-SAV schemes
with the time step Ar = 21—6 in Example 5.1 (left) and in Example 5.2 (right) .
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Table 1. Error results and convergence rate of ||e’;|| for the CN-E-SAV and New-CN-E-SAV

schemes in Example 5.1.

At 4l Rate
1/2% 0.0368001884426225 -
1/2° 0.00932236109731148  1.98129864079567
eNESV 1726 0.00233174733113645  1.99928392995304
1/2  0.000576576259379840 2.01582812615784
1/2°  0.000137310038533674 2.07007433221585
€l Rate
1/2* 0.0368091815051726 -
1/2° 0.00932235922830067  1.98129865813145
NewoNESW 126 (,00233174685298024  1.99928393655572
1/27  0.000576576140697115 2.01582812727880
1/2° 0.000137310011085410 2.07007432364543

Table 2. Error results and convergence rate of |le/ || for the CN-E-SAV and New-CN-E-SAV

schemes in Example 5.1.

At [l Rate
1/2* 0.0689301039227398 -
1/25  0.0168861504409056  2.02929371796555
oNESV [/26 0.00418704131563571  2.01183741338057
1/27 0.00103299161999948  2.01910260335564
1/28 0.000245854829212462  2.07094995184852
el Rate
1/2% 0.0689300760782284 -
1/25 0.0168861432622035  2.02929374850860
NewCN-ESSY [ /26 0.00418703950543584  2.01183742378274
1/27 0.0010329911717826  2.01910260561751
1/28  0.000245854724513483  2.07094994024234

Table 3. Error results and convergence rate of |e”| for the CN-E-SAV scheme in Example 5.1.

At

el

Rate

CN-E-SAV

1/2%
1/2
1/26
1/27
1/28

2.86566749793482¢-07
6.97595495640488e-08
1.72124441615129e-08
4.23455884358817e-09
1.00635793461970e-09

2.03840859427113
2.01893875053861
2.02316839164966
2.07306815290817
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Table 4. Error results and convergence rate of ||e’;|| for the CN-E-SAV and New-CN-E-SAV

schemes in Example 5.2.

At 4l Rate
1/2% 0.0371725171404962 -
1/2°  0.00943514340320470  1.97812003334643
eNESV 1720 0.00236120638866597  1.99852029490610
1/2  0.000583930678977017 2.01565513477143
1/2° 0.000139064798763014 2.07003983134903
€l Rate
1/2* 0.0371725163498753 -
1/2°  0.00943514322606903  1.97812002974700
NewoNESYV 126 0,00236120634599168  1.99852029389485
1/27  0.000583930668215755 2.01565513528492
1/2°  0.000139064795893768  2.07003983452791

Table S. Error results and convergence rate of |le] || for the CN-E-SAV and New-CN-E-SAV

schemes in Example 5.2.

At el Rate
1/2* 0.0818241862777186 -
1/25 0.0201549897717315  2.02139029902935
oNESS 1726 0.00500392653834192  2.01000453619864
1/27  0.00123483574539119  2.01874145867249
1/28  0.000293902813805396 2.07090807463406
lle”| Rate
1/2* 0.0818241821912869 -
1/25 0.0201549887134675  2.02139030272942
New-CNESAY 1726 0.00500392626767036  2.01000453848608
1/27  0.00123483567363466  2.01874146446974
1/28 0.000293902792746018  2.07090809417398

Table 6. Error results and convergence rate of |e”| for the CN-E-SAV scheme in Example 5.2.

At

ey

Rate

CN-E-SAV

1/2%
1/25
1/26
1/27
1/28

3.36996122007882e-07
8.30406444718435e-08
2.05944534759084e-08
5.07805131277905e-09
1.20806775694149¢-09

2.02084244415644
2.01156179910102
2.01990896293877
2.07157359980540

From the analysis of the data presented in Tables 1-6, it is evident that the error decreases as the
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time step At decreases. And the numerical results for the convergence order of the variables w,y, r
in Examples 5.1 and 5.2 are consistent with the theoretical results. This thereby further illustrates the
effectiveness of the CN-E-SAV and New-CN-E-SAV schemes.

Figure 1 clearly shows that, regardless of the different nonlinear functions selected in the two ex-
amples, the CN-E-SAV and New-CN-E-SAV schemes successfully maintain the conservation property
of the Hamiltonian function.

6. Conclusions

In this work, we develop the CN-E-SAV and New-CN-E-SAV schemes to approximate a semi-
linear wave equation with the following advantages: (i) it preserves Hamiltonian conservation; (i) it is
efficient; and (iv) it is easy to implement. The further topic can also involve designing the high-order
BDFk-E-SAV schemes or applying them to other nonlinear problems. It is also meaningful to consider
the construction of numerical schemes for the nonlinear localized wave equations.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgments

This work is supported by the National Natural Science Foundation of China (Granted
No. 11961008) and Guizhou University Doctoral Foundation (Granted NO. 15 (2022)).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. V. E. Zakharov, Exact solutions to the problem of the parametric interaction of three-dimensional
wave packets, Sov. Phys. Dokl., 21 (1976).

2. A. D. D. Craik, J. A. Adam, Evolution in space and time of resonant wave triads-I.
The’pump-wave approximation’, Proc. R. Soc. Lond. A. Math. Phys. Sci., 363 (1978), 243-255.
https://doi.org/10.1098/rspa.1978.0166

3. 1. Ahmed, A. R. Seadawy, D. Lu, Mixed lump-solitons, periodic lump and breather soliton solu-
tions for (2+ 1)-dimensional extended Kadomtsev-Petviashvili dynamical equation, Int. J. Mod.
Phys. B, 33 (2019), 1950019. https://doi.org/10.1142/S021797921950019X

4. Y. L. Ma, B. Q. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional gener-
alized breaking soliton system: hidden rogue wave and hidden soliton, Comput. Math. Appl., 78
(2019), 827-839. https://doi.org/10.1016/j.camwa.2019.03.002

Electronic Research Archive Volume 32, Issue 7, 4433-4453.


https://dx.doi.org/https://doi.org/10.1098/rspa.1978.0166
https://dx.doi.org/https://doi.org/10.1142/S021797921950019X
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2019.03.002

4450

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Yusuf, T. A. Sulaiman, M. Inc, M. Bayram, Breather wave, lump-periodic solutions and
some other interaction phenomena to the Caudrey-Dodd-Gibbon equation, Eur. Phys. J. Plus, 135
(2020), 1-8. https://doi.org/10.1140/epjp/s13360-020-00566-7

K. Hosseini, M. Samavat, M. Mirzazadeh, S. Salahshour, D. Baleanu, A new (4+1)-dimensional
burgers equation: its backlund transformation and real and complex N-Kink solitons, Int. J. Appl.
Comput. Math., 8 (2022), 172. https://doi.org/10.1007/s40819-022-01359-5

B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-
Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204-214.
https://doi.org/10.1016/j.camwa.2018.04.015

W. X. Ma, Riemann-Hilbert problems and soliton solutions of type (-4, ) reduced nonlocal inte-
grable mKdV hierarchies, Mathematics, 10 (2022), 870. https://doi.org/10.3390/math10060870

Z. Zhao, L. He, M-lump, high-order breather solutions and interaction dynamics of a gener-
alized (2+1)-dimensional nonlinear wave equation, Nonlinear Dyn., 100 (2020), 2753-2765.
https://doi.org/10.1007/s11071-020-05611-9

J. G. Liu, M. S. Osman, Nonlinear dynamics for different nonautonomous wave structures so-
lutions of a 3D variable-coefficient generalized shallow water wave equation, Chin. J. Phys.,
77 (2022), 1618-1624. https://doi.org/10.1016/j.cjph.2021.10.026

U. Younas, T. A. Sulaiman, J. Ren, A. Yusuf, Lump interaction phenomena to the non-
linear ill-posed Boussinesq dynamical wave equation, J. Geom. Phys., 178 (2022), 104586.
https://doi.org/10.1016/j.geomphys.2022.104586

H. E. Ismael, H. Bulut, M. S. Osman, The N-soliton, fusion, rational and breather solutions of
two extensions of the (2+1)-dimensional Bogoyavlenskii-Schieff equation, Nonlinear Dyn., 107
(2022), 3791-3803. https://doi.org/10.1007/s11071-021-07154-z

S. Saifullah, S. Ahmad, M. A. Alyami, M. Inc, Analysis of interaction of lump solutions with
kink-soliton solutions of the generalized perturbed KdV equation using Hirota bilinear approach,
Phys. Lett. A, 454 (2022), 128503. https://doi.org/10.1016/j.physleta.2022.128503

Q. J. Feng, G. Q. Zhang, Lump solution, lump-stripe solution, rogue wave solution and peri-
odic solution of the (2+1)-dimensional Fokas system, Nonlinear Dyn., 112 (2024), 4775-4792.
https://doi.org/10.1007/s11071-023-09243-7

A. Degasperis, S. Lombardo, M. Sommacal, Integrability and linear stability of nonlinear waves,
J. Nonlinear Sci., 28 (2018), 1251-1291. https://doi.org/10.1007/s00332-018-9450-5

M. J. Ablowitz, Integrability and nonlinear waves, FEmerging Front. Nonlinear Sci.,
32 (2020), 161-184. https://doi.org/10.1007/978-3-030-44992-6_7

M. He, P. Sun, Energy-preserving finite element methods for a class of nonlinear wave equations,
Appl. Numer. Math., 157 (2020), 446—469. https://doi.org/10.1016/j.apnum.2020.06.016

M. He, J. Tian, P. Sun, Z. Zhang, An energy-conserving finite element method
for nonlinear fourth-order wave equations, Appl. Numer. Math., 183 (2023), 333-354.
https://doi.org/10.1016/j.apnum.2022.09.011

Electronic Research Archive Volume 32, Issue 7, 4433-4453.


https://dx.doi.org/https://doi.org/10.1140/epjp/s13360-020-00566-7
https://dx.doi.org/https://doi.org/10.1007/s40819-022-01359-5
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2018.04.015
https://dx.doi.org/https://doi.org/10.3390/math10060870
https://dx.doi.org/https://doi.org/10.1007/s11071-020-05611-9
https://dx.doi.org/https://doi.org/10.1016/j.cjph.2021.10.026
https://dx.doi.org/https://doi.org/10.1016/j.geomphys.2022.104586
https://dx.doi.org/https://doi.org/10.1007/s11071-021-07154-z
https://dx.doi.org/https://doi.org/10.1016/j.physleta.2022.128503
https://dx.doi.org/https://doi.org/10.1007/s11071-023-09243-7
https://dx.doi.org/https://doi.org/10.1007/s00332-018-9450-5
https://dx.doi.org/ https://doi.org/10.1007/978-3-030-44992-6_7
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2020.06.016
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2022.09.011

4451

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

. Y. Shi, X. Yang, Pointwise error estimate of conservative difference scheme for su-
pergeneralized viscous Burgers equation, Electron. Res. Arch., 32 (2024), 1471-1497.
https://doi.org/10.3934/era.2024068

D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy con-
servation property, J. Comput. Appl. Math., 134 (2001), 37-57. https://doi.org/10.1016/S0377-
0427(00)00527-6

Y. Liao, L. B. Liu, L. Ye, T. Liu, Uniform convergence analysis of the BDF2 scheme on Bakhvalov-
type meshes for a singularly perturbed Volterra integro-differential equation, Appl. Math. Lett.,
145 (2023), 108755. https://doi.org/10.1016/j.aml1.2023.108755

Z. Zhou, H. Zhang, X. Yang, CN ADI fast algorithm on non-uniform meshes for the three-
dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics,
Appl. Math. Comput., 474 (2024), 128680. https://doi.org/10.1016/j.amc.2024.128680

Y. O. Tijani A. R. Appadu, Unconditionally positive NSFD and classical finite difference schemes
for biofilm formation on medical implant using Allen-Cahn equation, Demonstratio Math., 55
(2022), 40-60. https://doi.org/10.1515/dema-2022-0006

H. Zhang, X. Yang, Y. Liu, Y Liu, An extrapolated CN-WSGD OSC method for a non-
linear time fractional reaction-diffusion equation, Appl. Numer. Math., 157 (2020), 619-633.
https://doi.org/10.1016/j.apnum.2020.07.017

X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-
dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80.
https://doi.org/10.1007/s10915-024-02511-7

S. F. Bradford, B. F. Sanders, Finite-volume models for unidirectional, nonlinear, disper-
sive waves, J. Waterw. Port. Coast., 128 (2002), 173—182. https://doi.org/10.1061/(ASCE)0733-
950X(2002)128:4(173)

X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on
distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett.,
150 (2024), 108972. https://doi.org/10.1016/j.aml1.2023.108972

J. Shen, T. Tang, L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer
Science Business Media, 2011.

M. Dehghan, A. Taleei, Numerical solution of nonlinear Schrodinger equation by using time-
space-pseudo-spectral method, Numer. Meth. Part. Differ. Equations: Int. J., 26 (2010), 979-992.
https://doi.org/10.1002/num.20468

T. Lu, W. Cai, A Fourier spectral-discontinuous Galerkin method for time-dependent 3-
D Schrodinger-Poisson equations with discontinuous potentials, J. Comput. Appl. Math.,
220 (2008), 588—-614. https://doi.org/10.1016/j.cam.2007.09.025

Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers
equation, J. Math. Chem., 62 (2024), 1323—1356. https://doi.org/10.1007/s10910-024-01592-x

M. Yao, Z. Weng, A numerical method based on operator splitting collocation
scheme for nonlinear Schrodinger equation, Math. Comput. Appl., 29 (2024), 6.
https://doi.org/10.3390/mca29010006

Electronic Research Archive Volume 32, Issue 7, 4433-4453.


https://dx.doi.org/https://doi.org/10.3934/era.2024068
https://dx.doi.org/https://doi.org/10.1016/S0377-0427(00)00527-6
https://dx.doi.org/https://doi.org/10.1016/S0377-0427(00)00527-6
https://dx.doi.org/https://doi.org/10.1016/j.aml.2023.108755
https://dx.doi.org/https://doi.org/10.1016/j.amc.2024.128680
https://dx.doi.org/https://doi.org/10.1515/dema-2022-0006
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2020.07.017
https://dx.doi.org/https://doi.org/10.1007/s10915-024-02511-7
https://dx.doi.org/https://doi.org/10.1061/(ASCE)0733-950X(2002)128:4(173)
https://dx.doi.org/https://doi.org/10.1061/(ASCE)0733-950X(2002)128:4(173)
https://dx.doi.org/https://doi.org/10.1016/j.aml.2023.108972
https://dx.doi.org/ https://doi.org/10.1002/num.20468
https://dx.doi.org/ https://doi.org/10.1002/num.20468
https://dx.doi.org/https://doi.org/10.1016/j.cam.2007.09.025
https://dx.doi.org/https://doi.org/10.1007/s10910-024-01592-x
https://dx.doi.org/https://doi.org/10.3390/mca29010006

4452

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

. K. J. Ansari, M. Izadi, S. Noeiaghdam, Enhancing the accuracy and efficiency of two uni-
formly convergent numerical solvers for singularly perturbed parabolic convection- diffusion-
reaction problems with two small parameters, Demonstratio Math., 57 (2024), 20230144.
https://doi.org/10.1515/dema-2023-0144

Z. Guan, C. Wang, S. M. Wise, A convergent convex splitting scheme for the periodic nonlocal
Cahn-Hilliard equation, Numer. Math., 128 (2014), 377—406. https://doi.org/10.1007/s00211-014-
0608-2

Z. Guan, J. S. Lowengrub, C. Wang, S. M. Wise, Second order convex splitting schemes for
periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48-71.
https://doi.org/10.1016/j.jcp.2014.08.001

J. Shen, C. Wang, X. Wang, S. M. Wise, Second-order convex splitting schemes for gradient flows
with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50
(2012), 105-125. https://doi.org/10.1137/110822839

X.  Feng, T.  Tang, J. Yang, Stabilized = Crank-Nicolson/Adams-Bashforth
schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59-80.
https://doi.org/10.4208/eajam.200113.220213a

J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete
Contin. Dyn. Syst., 28 (2010), 1669—1691. https://doi.org/10.3934/dcds.2010.28.1669

L. Ju, X. Li, Z. Qiao, H. Zhang, Energy stability and error estimates of exponential time
differencing schemes for the epitaxial growth model without slope selection, Math. Comput.,
87 (2018), 1859-1885. https://doi.org/10.1090/mcom/3262

L. Ju, J. Zhang, Q. Du, Fast and accurate algorithms for simulating coarsening
dynamics of Cahn-Hilliard equations, Comput. Mater. Sci., 108 (2015), 272-282.
https://doi.org/10.1016/j.commatsci.2015.04.046

J. Zhao, Q. Wang, X. Yang, Numerical approximations for a phase field dendritic crystal
growth model based on the invariant energy quadratization approach, Int. J. Numer. Meth. Eng.,
110 (2017), 279-300. https://doi.org/10.1002/nme.5372

J. Shen, J. Xu, Convergence and error analysis for the scalar auxiliary variable
(SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56 (2018), 2895-2912.
https://doi.org/10.1137/17M 1159968

J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient
flows, SIAM Rev., 61 (2019), 474-506. https://doi.org/10.1137/17M1150153

Z. Liu, X. Li, The exponential scalar auxiliary variable (E-SAV) approach for phase
field models and its explicit computing, SIAM J. Sci. Comput., 42 (2020), B630-B655.
https://doi.org/10.1137/19M 1305914

F. Huang, J. Shen, Z. Yang, A highly eflicient and accurate new scalar auxiliary vari-
able approach for gradient flows, SIAM J. Sci. Comput., 42 (2020), A2514-A2536.
https://doi.org/10.1137/19M 1298627

Electronic Research Archive Volume 32, Issue 7, 4433-4453.


https://dx.doi.org/ https://doi.org/10.1515/dema-2023-0144
https://dx.doi.org/ https://doi.org/10.1515/dema-2023-0144
https://dx.doi.org/https://doi.org/10.1007/s00211-014-0608-2
https://dx.doi.org/https://doi.org/10.1007/s00211-014-0608-2
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.08.001
https://dx.doi.org/https://doi.org/10.1137/110822839
https://dx.doi.org/https://doi.org/10.4208/eajam.200113.220213a
https://dx.doi.org/https://doi.org/10.3934/dcds.2010.28.1669
https://dx.doi.org/https://doi.org/10.1090/mcom/3262
https://dx.doi.org/https://doi.org/10.1016/j.commatsci.2015.04.046 
https://dx.doi.org/ https://doi.org/10.1002/nme.5372
https://dx.doi.org/https://doi.org/10.1137/17M1159968
https://dx.doi.org/https://doi.org/10.1137/17M1150153
https://dx.doi.org/https://doi.org/10.1137/19M1305914
https://dx.doi.org/https://doi.org/10.1137/19M1298627

4453

46

47.

48.

49.

50.

. Z. Liu, X. Li, A highly efficient and accurate exponential semi-implicit scalar auxiliary vari-
able (ESI-SAV) approach for dissipative system, J. Comput. Phys., 447 (2021), 110703.
https://doi.org/10.1016/j.jcp.2021.110703

C. Jiang, W. Cai, Y. Wang, A linearly implicit and local energy-preserving scheme for the
sine-Gordon equation based on the invariant energy quadratization approach, J. Sci. Comput.,
80 (2019), 1629-1655. https://doi.org/10.1007/s10915-019-01001-5

D. Li, W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave
equations, J. Sci. Comput., 83 (2020), 1-17. https://doi.org/10.1007/s10915-020-01245-6

N. Wang, M. Li, C. Huang, Unconditional energy dissipation and error estimates of the SAV
Fourier Spectral Method for nonlinear fractional generalized wave equation, J. Sci. Comput.,
88 (2021), 19. https://doi.org/10.1007/s10915-021-01534-8

F. Yu, M. Chen, Error analysis of the Crank-Nicolson SAV method for the Allen-Cahn equation on
variable grids, Appl. Math. Lett., 125 (2022), 107768. https://doi.org/10.1016/j.aml1.2021.107768

51. L. Ju, X. Li, Z. Qiao, Stabilized exponential-SAV schemes preserving energy dissipation law and
maximum bound principle for the Allen-Cahn type equations, J. Sci. Comput., 92 (2022), 66.
https://doi.org/10.1007/s10915-022-01921-9
; ©2024 the Author(s), licensee AIMS Press. This

is an open access article distributed under the

@ AIMS Press terms of the Creative Commons Attribution License

o (https://creativecommons.org/licenses/by/4.0)
Electronic Research Archive Volume 32, Issue 7, 4433-4453.


https://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110703
https://dx.doi.org/https://doi.org/10.1007/s10915-019-01001-5
https://dx.doi.org/https://doi.org/10.1007/s10915-020-01245-6
https://dx.doi.org/https://doi.org/10.1007/s10915-021-01534-8
https://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107768
https://dx.doi.org/https://doi.org/10.1007/s10915-022-01921-9
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary results
	CN-E-SAV scheme
	Hamiltonian conservation
	The error of the CN-E-SAV scheme

	New-CN-E-SAV scheme
	Numerical experiments
	Conclusions

