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A B S T R A C T   

To manage and control ship collision risk, this paper aims to develop a quantitative risk analysis approach based 
on complex networks and Decision-making Trial and Evaluation Laboratory (DEMATEL), to study the evolution 
of ship collision accidents. Firstly, through the search, selection and analysis of accident investigation reports of 
ship collisions in the world, 46 Risk Influential Factors (RIFs) were identified, and a network model for the 
evolution of ship collision was established. Secondly, a risk analysis of the evolution model for ship collision 
accidents was conducted by utilizing the topology characteristics of the complex network theory. Thirdly, a 
robustness analysis was used to identify 10 key RIFs involved in ship collisions from a global network 
perspective, and the grey relation analysis technique was employed to verify the key RIFs. Finally, the DEMATEL 
method was utilized to identify 11 key RIFs from a perspective of causality, and corresponding risk control 
measures were proposed to mitigate those key RIFs. The research results provide theoretical support for iden
tifying the key RIFs and controlling the risk transmission of ship collision, and have practical significance for 
preventing the occurrence of ship collision accidents and ensuring the safe navigation of ships.   

1. Introduction 

Due to rapid economic and trade globalization, maritime transport 
has become the primary method for international freight transportation 
(Shu et al., 2023a; Wang et al., 2021). According to the 2019 data report 
by the United Nations Conference on Trade and Development, the total 
volume of global maritime trade in 2018 alone exceeded 11 billion tons 
(UNCTAD, 2019). Furthermore, it is anticipated that the global maritime 
trade growth rate will maintain at 3.4% from 2019 to 2024, highlighting 
the importance of waterborne transportation for the swift progress of the 
worldwide economy (Cao et al., 2023b). Nevertheless, the increased 
prosperity in maritime transportation has resulted in more incidents 
(Huang et al., 2023). According to the statistics, the count of marine 
accidents and fatalities in 2021 rose significantly as compared to that of 

2020 (Wang et al., 2023b). Globally, the International Maritime Orga
nization (IMO) statistics indicate an increase in deaths from 109 to 132 
in 2021, which represents an increase of more than 20%. Additionally, 
the number of accidents is expected to increase from 244 to 280, rep
resenting nearly a 15% increase (UNCTAD, 2019). The frequency of 
marine accidents not only leads to significant loss of life and property, 
but also presents a grave danger to the marine ecology and environment 
because of the diverse range of accidents (Liu et al., 2023a). Ship col
lisions represent the leading component of marine accidents (Liu et al., 
2023b). Between 1978 and 2008, collisions constituted 46.23% of all 
marine accidents worldwide (Marino et al., 2023). Reducing the risk of 
collisions in shipping is highly valuable and holds practical significance 
(Shu et al., 2023b). 

Ship navigation is a complex and dynamic process, requiring 
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collaboration between humans and machines (Animah and Shafiee, 
2021). To fully understand the potential risks and hazards that accom
pany sea navigation, a meticulous examination of the factors influencing 
ship safety is necessary (Fang et al., 2024). These factors encompass 
human, vessel, and environmental elements. Precise analyses of these 
components can help develop targeted strategies for preventing and 
controlling marine accidents in an integrated manner (Callesen et al., 
2021). Various safety issues that affect ship navigation can only be 
resolved effectively by adhering to strict standards (Valcalda et al., 
2022). 

Research into ship collision accidents has advanced the analysis of 
their Risk Influential Factors (RIFs) from the simple domino theory to 
complex linear models. However, most studies on cause and effect still 
rely on chain structures (Özaydın et al., 2022). In real life, very few 
accidents follow a completely chain structure, and the various factors 
that lead to an accident interaction and contribute to each other. 
Therefore, the network structure of the analysis model for the accident 
has a stronger adaptability. The complex network theory utilises a graph 
theory and other models to represent complex systems, providing new 
insights into analysing the internal connections and causal relationships 
between accident RIFs (Sui et al., 2022). Complex networks are useful 
quantitative tools for describing vast, complex systems, enabling the 
analysis of risks and investigation of evolutionary mechanisms (Zhang 
et al., 2023). Nowadays, there is extensive research in areas such as 
aerospace (Zheng and He, 2021), energy systems (Geng et al., 2021), 
and rail transport (Ilalokhoin et al., 2023) in terms of the use of complex 
networks to assess safety issues. However, there is no empirical research 
or reviews regarding the analysis of marine accidents, specifically 
collision accidents, requiring a new study to fill the gap. 

The primary aim of this study is to utilize the complex network 
theory and the Decision-making Trial and Evaluation Laboratory 
(DEMATEL) technique to investigate the relationships between the RIFs 
of ship collisions, and use the Grey Relation Analysis (GRA) to verify the 
validity the proposed method. Through a combination of these ap
proaches, the weaknesses of these approaches can be addressed, and it 
will be possible to propose customized measures to reduce the frequency 
of collision accidents at sea. 

The study is organised into several sections. Section 2 provides an 
overview of different research methods related to ship collisions and 
complex network studies. In Section 3, the RIFs of ship collision acci
dents are described, and a complex network model of the ship collision 
RIFs is developed. In addition, the methods used to analyse the networks 
of ship collision RIFs are proposed in this section. Section 4 presents a 
detailed account of the establishment and analysis of the network model 
for ship collision RIFs. Section 5 gives a summary of the key findings. 

2. Literature review 

2.1. Research methods for ship collision accident analysis 

Ship collision accidents pose a significant harm to the maritime in
dustry, therefore, numerous researchers have undertaken extensive 
research on this type of marine accident. Diverse research methods have 
been employed, including but not limited to Bayesian networks (Cao 
et al., 2023b; Özaydın et al., 2022), Fault trees (Sarıalioğlu et al., 2020; 
Zhao et al., 2022), and the Analytic Hierarchy Process (AHP) (Wang 
et al., 2023b; Yildiz et al., 2022). Among them, Bayesian networks have 
the capacity to forecast and assess the trend of risk changes, and can 
attain a more precise judgement by consolidating information from the 
overall evaluation, previous information, and sample information (Cao 
et al., 2023b). Obeng et al. (2022) introduced an object-oriented 
Bayesian network model for appraising the likelihood of small fishing 
vessels capsizing, evaluating important RIFs, and identifying crucial 
measures to diminish risks. Cao et al. (2023b) employed a Bayesian 
network model to examine the links between the severity of marine 
accidents and the RIFs. The accident tree enabled the identification of 

diverse pathways to the final event and the quantification of event 
probability. Zhao et al. (2022) used fuzzy fault tree analysis and 
Bayesian networks to assess the probability of marine casualties. Ugurlu 
and Cicek (2022) used fault tree analysis to qualitatively and quantita
tively analyse RIFs in ship collision accidents, providing the probability 
and importance of RIFs while defining the minimum segmentation set. 
The AHP deals with decision-making by treating objects as systems. It 
uses decomposition, comparative judgement and comprehensive 
thinking approaches (Shafiee and Animah, 2022). By combining quali
tative and quantitative analysis, it is able to address many practical 
problems that cannot be solved by conventional optimization ap
proaches. Hu and Park (2020) employed the AHP to identify a set of 
fundamental risk influential factors and vulnerabilities pertaining to 
ship collisions. They then introduced a novel algorithm for assessing 
risks associated with ship navigation. Sahin and Senol (2015) facilitated 
the evaluation process of maritime accidents by utilizing expert 
consultation and the fuzzy AHP. Chen et al. (2019) proposed a classifi
cation system through frequency estimation, causal analysis, etc., 
described and discussed representative methods, and emphasized the 
need for improvement of these methods in identifying collision candi
dates, which can help to develop better risk analysis models. Marino 
et al. (2023) presented recent advances in ship collision risk assessment, 
highlighting emerging technologies and revealing the diversity of ap
proaches to analysing collision risk. To evaluate the relationship be
tween maritime traffic flow complexity and the likelihood of collision 
accidents, a predictive analytics method is proposed to evaluate the 
complexity of maritime traffic flow from a microscopic perspective 
(Zhang et al., 2022). 

While traditional risk assessment methods have led to advancements 
in accident analysis, they possess certain constraints in their applications 
(Zhang et al., 2021b). For example, if a Bayesian network model in
volves too many RIFs as its nodes, it will be cumbersome and chal
lenging to configure the relevant conditional probabilities of the nodes 
with many parents. While the accident tree views accidents as a linear 
process, there is limited research on the analysis of the correlation be
tween sub-RIFs and overlooking such correlation could easily result in 
an error-prone result. If there are numerous indicators in the AHP, the 
data statistics can be extensive, and the determination of weights can be 
difficult to obtain (Zhang et al., 2021a). 

As aforementioned, ship collision accidents are characterized by 
complex, non-linear interactions among various RIFs, including human, 
ship, environmental, and management factors (Cao et al., 2023a). Such 
interactions make them typical examples of complex systems. The link 
between different factors within the system, especially the nature of 
human-machine integration, heightens the likelihood of collisions and 
their correlation, thereby increasing the complexity of constructing ac
cident models. 

2.2. Application of complex network models in accident analysis 

Complex networks play a crucial role in the field of complexity sci
ence and can be employed to study any intricate system. They offer 
insight into the structure, topological features, and regulations govern
ing the elements present in complex systems, thereby facilitating a 
deeper comprehension and appreciation of the internal structural dy
namics of such systems. 

Complex networks have introduced novel approaches to investi
gating intricate systems from innovative perspectives, such as those 
found in society, management, engineering, medicine and beyond 
(Wang et al., 2023a). This has facilitated the formation of an emerging 
discipline that intersects multiple fields and combines various method
ologies. This theory has been developed based on graph theory research, 
with the capability to analyse the relationships between causal factors 
within complex systems and uncover the topological features of complex 
systems. Recently, this theory has been adopted in the analysis of risk 
issues in industries. The complex network model uncovers universal 
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principles in intricate systems using network analysis techniques. Key 
analysis metrics comprise network density, average path length, node 
degree and degree distribution, and clustering coefficients. Complex 
networks are brief representations of intricate systems. They abstract 
constituent units of the system as nodes and the interrelationships be
tween each unit as edges, studying network topology and dynamic 
behaviour. This approach has been extensively applied in researching 
transportation networks. 

Currently, complex networks are widely used in analysing traffic 
accidents (Liu et al., 2023a). Li et al. (2020) proposed a method for 
analysing key nodes and links based on the minimum connected domi
nating set in the field of aerospace. Their method employed an immune 
particle swarm optimization algorithm to find the minimum connected 
dominating set of the network, simultaneously processing key nodes and 
links in complex networks. In the realm of subway accidents, Li et al. 
(2017) developed a subway accident network model based on the 
complex network theory, which disclosed the structural attributes and 
principles of the subway operation network. Wang et al. (2020) con
structed a national railway powerless topological network using railway 
stations as nodes and inter-city railway traffic services as edges. Then the 
new network was constructed by taking the inter-city train service as the 
edges, and the topological properties of the two networks and the dif
ferences between the important nodes and edges were analysed. Zhou 
et al. (2014) examined the topological traits and patterns of subway 
construction accident networks based on the complex network theory. 
Instead of analysing a single accident, they used the network theory to 
explore the complexity of the subway construction accident network 
(SCAN), and demonstrated that SCAN is resilience to random attacks. 
For rail transport, Cao et al. (2023b) created a Chinese high-speed rail 
topology network which consists of 499 nodes and 32,607 edges. They 
combined all stations within a city to form one node, and the network 
was built based on train frequency between cities. The topological 
properties of the network were analysed and revealed small-world and 
scale-free characteristics. Liu et al. (2019) enhanced and supplemented 
the established complex network theory by outlining network topology 
indicators that were merged with railway operation features, thus 
assisting railway operators in establishing more specific strategies and 
methods for preventing accidents. As an illustration, Zhou et al. (2015) 
applied an event-chain-based network technique to form a causal 
network of railway accidents, exemplified through UK railway data. 
Through an analysis of the network topology parameters, they identified 
the primary causal factors and event chains. 

The aforementioned studies show that complex networks technique 
are effective in investigating the evolutionary features of accidents in 
complex systems. Although it can make analysis from the impact of RIFs 
on accident consequences, as well as the interactions between RIFs 
during the accident process, it can’t analyse the RIFs from a causal 
perspective. In recent years, the DEMATEL technique has attracted 
substantial attention for analysing the causality of intricate structural 
systems. Therefore, another method that can be analysed to show the 
causal relationship between RIFs, i.e., DEMATEL, is introduced. The 
DEMATEL method is suitable for scrutinizing the correlation between 
RIFs that influence accidents, particularly causal relationships. It re
quires less on data collection than common probabilistic methods, and 
the method uses the graph theory supplemented by matrix theory for 
analysis, which can complement the results obtained from the analysis 
of complex network methods. In addition, DEMATEL also provides the 
contextual relationship between the considered factors and is repre
sented by matrices and graphs (Khatun et al., 2023). Mentes et al. (2014) 
combined GRA and the DEMATEL methods to prioritize the causes of 
ship failures. Mentes et al. (2015) further optimized the risk analysis 
method for cargo ship damage, based on Formal Safety Assessment 
(FSA), which combined fuzzy set theory (FST), Ordered Weighted 
Geometric Average operator (OWGA), and DEMATEL, and the most 
common causes of unintentional damages on cargo ships at coastal and 
open seas of Turkey were identified. Özdemir and Güneroglu (2015) 

proposed the use of DEMATEL and Analytical Network Process (ANP) 
methods for quantitative assessment of human error in offshore opera
tions. Celik and Akyuz (2016) proposed an analytical method that 
combined the DEMATEL method with Interval type-2 fuzzy sets (IT2FSs) 
to analyse important accident causal factors and their effects based on 
causal diagrams. 

Despite the fact that these two approaches are more attractive than 
the classical risk analysis approach and that each of them has been 
applied in the maritime domain, few studies used these two approaches 
in a complementary combination. This results in a new research ques
tion as to if the Complex Network and DEMATEL could be used in a 
synergised manner to generate new insights for better maritime risk 
control and accident prevention. Aiming to examine the cause-and- 
effect connection among RIFs thoroughly, this study conducts marine 
accident analysis by incorporating topology characteristics of complex 
network with a DEMATEL structural modelling method, to propose 
rational measures to mitigate accident risks and prevent further risk 
evolution. 

2.3. New contributions 

The successful implementation of complex network models in public 
transportation fields, including railways, aviation, and subways, in
dicates the method’s universality. To overcome the challenges of 
studying collisions using conventional approaches, this study for the 
first time, advocates the combined usage of complex network modelling 
and DEMATEL technique to investigate the RIFs of ship collisions.  

1) The marine accident investigation reports of ship collisions between 
2007 and 2022 were comprehensively searched, screened and ana
lysed to extract the accident chain and RIFs. Then, a complex 
network of RIFs of ship collision accidents was developed, and the 
RIFs were identified as nodes and the relationship between RIFs was 
defined as edges between these nodes.  

2) The established evolution network model for ship collision accident 
is analysed using the topology characteristics, the robustness analysis 
was used to identify key RIFs involved in ship collisions from a 
perspective of global network, and the grey relation analysis tech
nique was employed to verify the key RIFs.  

3) Furthermore, the DEMATEL method was utilized to identify the 
primary RIFs from a perspective of causality, and targeted strategies 
were proposed for preventing ship collision accidents, so as to reduce 
the likelihood of such accidents. 

As maritime transport trade is rapidly developing, conducting an RIF 
analysis of ship collision accidents based on complex networks and 
DEMATEL holds significant research importance. 

3. Materials and methods 

In order to comprehensively and scientifically analyse the risk evo
lution in the process of ship collision, this study proposes a risk analysis 
model that contains two stages, as shown in Fig. 1. The first stage is the 
identification part of ship collision RIFs. Based on collected ship colli
sion accident investigation reports, the causal chains of ship collision 
accidents are extracted and a risk indicator hierarchy system is devel
oped. The second stage is the risk analysis part. Firstly, the risk evolution 
network model of ship collision RIFs is established based on the complex 
network theory. Then, the topological characteristics of complex net
works are descripted, robustness analysis is used to find key RIFs from a 
perspective of global network, and GRA is utilized to verify the effective 
of above analysis result. Finally, the DEMATEL method is applied to 
identify final key RIFs from a perspective of causality, and the risk 
control measures are proposed to mitigate those key RIFs. 
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3.1. Risk influential factors of ship collision accidents 

Accidents are often caused by unsafe acts, unsafe conditions and a 
lack of management, involving RIFs from complex human, ship-related, 
environmental and management perspectives. These RIFs interact to 
impact the process of safe navigation of ships. 

3.1.1. Human factors 
Human factors are the main contributing factor in marine casualties. 

The operation of ships involves many crew members, from the captain 
through the first mate to ordinary sailors. If their actions are not stan
dardized and correct, it can directly result in marine accidents. In
vestigations into accidents at sea have found that around 80% of the 
marine accident are related to human error (Aydin, 2023). Previous 
accident analysis has shown that human factors are the most significant 
and challenging ones to control in the RIFs of collision accidents (Liu 
et al., 2023b). 

The majority of human factors are operational errors caused by 
human error, which is influenced by the technical level and competence 
of crew members, professional ethics and literacy, physical and mental 
health and psychological quality (Xia et al., 2023). 

3.1.2. Ship-related factors 
Two key indicators for evaluating a ship’s ability to navigate safely 

are its manoeuvrability and seaworthiness. Ship manoeuvrability varies 
with ship types, and is crucial for collision avoidance operations such as 
ship turning performance, acceleration and deceleration performance, 
starting and braking performance. Ensuring the manoeuvrability of 
ships allows the crew to handle successfully and avoid hazards at a safe 
distance. The seaworthiness status of a ship mainly covers ship hull 
performance, cargo type, and equipment performance. It is essential to 
conduct a stringent check of the above aspects before sailing. In order to 
guarantee a secure navigation, it is essential for navigational officers to 
utilize modern technology such as navigation aids, positioning equip
ment, and communication device. This is especially important when 
facing sudden challenges, such as engine failure and narrow water areas. 
By comprehensively understanding the ship’s real-time navigation sta
tus, navigational officers can expertly handle the ship and avoid 
dangerous accidents such as collisions. Therefore, it is crucial to monitor 
the ship’s status. 

3.1.3. Environmental factors 
The navigational conditions of a ship are heavily influenced by the 

external environment. Multiple elements such as wind force, wind di
rection, wind speed and other marine meteorological factors can notably 
impact a vessel’s navigation. These factors lead to the ship swaying 
under the influence of wind and waves when navigating in rough 
weather, resulting in decreased navigation stability. Additionally, they 
make it challenging for the operator to identify targets accurately. The 
inability to make reasonable navigational decisions increases the like
lihood of ship collisions. Hydrological factors, including current direc
tion, tidal height, wave height and tidal current, pose recurrent 
problems for ships at sea. Particularly in shallow water regions, varia
tions in tidal range frequently cause complications. Navigating through 
high waves results in a challenging task for controlling the ship’s speed 
and course, increasing the probability of operating errors and collisions. 
In addition to the two aforementioned dynamic environmental factors, 
the geographical and navigational environmental factors within a nav
igation area also significantly affect ships. Geographical environmental 
factors comprise vital information, such as shallow water, restricted 
waters, shoals and reefs in proximity to the route. Many waterways 
permit only one vessel to traverse at a time, and the water depth and 
margin of safe water depth can influence navigational speed, steering 
efficiency, and other ship indicators. The navigational environment of 
ships comprises pilot facilities, navigational aids, obstacle distribution, 
and traffic flow characteristics. It exerts a profound impact on ship 
safety, particularly during entry and exit port areas. Any equipment 
failure in any of these areas can cause ship collision accidents to occur. 

3.1.4. Management factors 
Management factors typically include pertinent regulations estab

lished by shipping companies, maritime administrations and other in
stitutions, as well as taking into consideration aspects such as manning, 
crew training and labour relations. Following the implementation of the 
International Safety Management (ISM) code, the majority of interna
tional vessels have been able to effectively implement a safety man
agement system in compliance with the regulations’ mandates. Ship 
equipment has been enhanced, and there has been significant 
improvement in communication between ships and shipping companies. 
However, variations exist among different shipping companies, and 
discrepancies in the execution of the ISM code result in a range of issues. 
The safety management system could lack sufficient operability and its 
objectives and requirements are often too general, making 

Fig. 1. The methodological framework of this study.  
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implementation difficult to achieve when applied to practical scenarios. 
Furthermore, crew members and company personnel could have not 
undergone in-depth training in all necessary aspects of the safety man
agement system documents, ultimately resulting in ineffective execu
tion. Additionally, a company’s training plan could be incomprehensive 
enough to address the issue at hand. The safety management system 
implementation requires a reasonable and effective supervision and 
restraint mechanism to ensure the system’s continuity and self- 
improvement. It is hence crucial to examine management factors in 
detail. 

3.1.5. Accident report analysis 
Based on the official websites of the IMO and national maritime 

authorities, including the United States, Australia, the United Kingdom, 
Japan, China, Norway, Poland, Germany, Canada and Malta, 300 ship 
collision accident reports between 2007 and 2022 were collected. 
Through the integrity analysis of reports, 207 accident reports were kept 
after the screening process, as shown in Fig. 2. RIFs were then extracted 
from these 207 accident reports. During the extraction process, it was 
found that there were a large number of repetitive or similar de
scriptions of these RIFs, due to differences in the investigation agencies. 
Therefore, those similar RIFs were categorized and merged. With 
reference to existing literatures (Cao et al., 2023a; Wang et al., 2021, 
2023c), RIFs were categorized into four groups: human factors, 
ship-related factors, environmental factors, and management factors. To 
ensure the rigor of these RIFs, five experts were invited to evaluate the 
verified these RIFs, and the names of some RIFs were modified. The basic 
information of these experts is shown in Table 1. Then through analysis 
of marine accident investigation reports and expert judgment, Table 2 is 
obtained by refinement. 

3.2. Complex network analysis 

3.2.1. Overview of complex networks 
In essence, a complex network denotes a highly intricate arrange

ment of nodes alongside corresponding relationships between them. The 
components comprising complex networks are often simple, yet the 
interaction mechanisms between these components exhibit extreme 
complexity (Wang et al., 2023a). These networks demonstrate 
complexity primarily through five overarching features, including node 
diversity, edge diversity, the large scale of the network, the complex 
structure and the dynamic complexity of the network (Deng et al., 
2023). 

Complex networks can describe the frameworks of numerous open 
complex systems, ranging from technology to biology to society, and are 
valuable instruments for analysing their topological structures. 

3.2.2. Analysis of network topology characteristics 
The parameters employed to examine the topological properties of 

intricate networks usually comprise degree (degree of node linked with 
others), degree centrality, node betweenness, and proximity centrality 

(Wang et al., 2023a). 

(1)Degree of nodes 

In complex network theory, the node degree is defined as the number 
of other RIFs connected to the RIF. Degree centrality determines the 
significance of a node (RIF) according to its degree, whereby a greater 
degree value correlates with increased importance. In this study, it can 
be used to describe the number of the links between a target RIF and the 
other RIFs. Equation (1) (Zhou et al., 2015) demonstrates this 
relationship: 

ki =
∑n

j=1,j∕=i

aij (1)  

where ki is the degree of the i th RIF, and n is the total number of RIFs. If 
there is a relationship between RIFs i and j, aij is 1, otherwise it is 0. 

The degree of a RIF is the aggregate of the number of RIFs and the 
number of subsequent factors. 

The influence of a RIF within a network can be measured by its de
gree, with higher degree RIF being more important. Degree centrality 
not only indicates the correlation between RIFs, but also varies 
depending on network size. In other words, the maximum possible de
gree increases as the network becomes larger.  

(2) Minimal path system 

The term "path" in a complex network typically denotes a sequence of 
nodes, where each adjacent pair of nodes in the sequence is connected 
by an edge. The length of a path is determined by counting the number 
of edges in the node sequence. In this study, the minimal path linking 
two RIFs is the path with the fewest number of variables connecting 
those RIFs. Its length is determined by counting the edges in the minimal 
path. The aim of creating a complex network in this study is to acquire 
the fastest and shortest path leading to an accident, followed by setting 
up a preventive mechanism along this route to minimize the chance of 
risks. 

Usually, the minimal path length between RIFs vi and vj is denoted as 
d(vi,vj), and dij is the distance between RIFs. 

By calculating the minimal path between RIFs in the complex 
network model, the network diameter and the average path length of the 
complex network can be obtained. The calculation process is shown as 
Equation (2) (Deng et al., 2023): 

Fig. 2. Sources of ship collision reports.  

Table 1 
The background information of the employed experts.  

Expert 
No. 

Age 
(year) 

Time at 
sea 
(year) 

Job Title Field and Experience 

Expert 
A 

46 10 Officer of the 
Maritime 
Administration 

Engaged in maritime 
supervision for 15 years 

Expert 
B 

39 5 Associate professor, 
second officer 

Engaged in research 
related to marine 
accident analysis for 10 
years 

Expert 
C 

36 3 Associate professor, 
third officer 

Engaged in research 
related to ship safety for 
8 years 

Expert 
D 

64 8 Chief officer and 
professor 

Engaged in research 
related to maritime 
safety for 35 years 

Expert 
E 

48 16 Captain and 
associate professor 

Engaged in theory and 
practice related to 
marine navigation for 21 
years  
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LRIF =
1

n(n − 1)
∑

i∕=j⊆G

dij (2)  

where, n is the total number of RIFs in the network, and the distance 
between RIFs vi and vj is dij. The average path length of a complex 
network is relatively small (Lee and Yu, 2023). Through the computa
tion of the average path length in a complex network model, it can be 
concluded that the network exhibits the small-world characteristics and 
the structural properties of the complex network.  

(3) Closeness centrality 

The average distance between network nodes and other nodes can be 
represented by the closeness centrality of complex network nodes. A 
correlation between RIFs can be determined by calculating the closeness 
centrality of nodes, which leads to the determination of RIFs impor
tance. The centrality value of a node is indicative of its importance, with 
higher values implying greater importance. Equation (3) provides this 
value (Sui et al., 2022). 

BRIFi =
n − 1
∑n

j=1dij
(3) 

By assessing the closeness centrality of RIFs, it becomes feasible to 
establish how to decrease the likelihood of risk happening via chain 
breaking.  

(4) Clustering coefficient 

In complex network model, the clustering coefficient of each RIF is a 
fraction. The numerator is the number of true connected edges between 
the RIFs that are associated with the RIF, and the denominator is the 
ratio of the maximum number of potential connected edges between the 
RIF and its neighbouring RIFs. The network’s clustering coefficient is the 
average clustering coefficient of all RIFs in the network. The clustering 
coefficient of nodes can be calculated using Equation (4) (Deng et al., 
2023). 

FRIFi =
2Li

ki(ki − 1)
(4)  

where FRIFi is the clustering coefficient of RIF i, Li is the actual number of 

edges between neighbouring nodes of RIFi. 
The clustering coefficient of a complex network is indicative of the 

amalgamation of various nodes within the network. When RIFs have 
explicit clustering properties, the average path length of complex net
works is shorter and the clustering coefficient is larger. 

3.3. Network robustness analysis 

The connectivity of a network’s nodes may suffer failures, but the 
network’s robustness reflects its capacity to maintain such connectivity. 
Any local network failures can significantly impact the overall network 
structure and functioning. It is crucial to disrupt the structure of the 
network model of risk evolution of ship collision and lower the network 
connectivity to impede the evolution of risk, ultimately thwarting any 
potential accidents. To fast and effectively prevent the progression of 
RIFs, a thorough analysis of network robustness is completed on sig
nificant network nodes using prior identification. 

From the perspective of the nature of the sources of network damage, 
research on network vulnerability can be divided into two types: 
deliberate attacks and random accidents. Deliberate attacks often target 
important nodes, while random accidents are random and irregular. 
Network vulnerability leads to a reduction in the overall functionality of 
the system during disasters, so removing nodes to reduce the robustness 
of the network is also one of the means to prevent collision accidents 
from occurring. 

Network efficiency, often regarded as the mean path length of a 
network, is a common metric used to evaluate network robustness. In 
this study, the reciprocal of the minimal path length dij between nodes is 
used to calculate network efficiency. If the distance between two nodes 
is infinite, the reciprocal distance is 0. The resulting average path length 
is always finite. After an attack, for the convenience of calculation, the 
efficiency 1/dij between two nodes in the network with no links is set to 
0. Equation (5) (Deng et al., 2023) demonstrates the process by which 
network efficiency can be derived. 

E=
1

n(n − 1)
∑

i∕=j⊆G

1
dij

(5)  

3.4. Grey relation analysis 

Assessing node importance through a single indicator is one-sided in 

Table 2 
The RIFs of ship collision accidents.  

Node category Node code Node description Node category Node code Node description 

Human factors H1 Lookout negligence Ship-related factors S25 Difficult to detect by electronic devices 
H2 Lack use of good seamanship S26 Poor ship structural design 
H3 Improperly and ineffective avoidance S27 Improper equipment description 
H4 Poor communication S28 Uncontrolled ship drift 
H5 Insufficient cooperation Environmental factors E29 Poor visibility 
H6 Decision error E30 Density traffic 
H7 Insufficient skill level and inexperience E31 Effect of tide 
H8 Improper ship handling E32 Hydrodynamic effect 
V9 Violation of rules E33 High backlight intensity 
H10 Improper duty arrangements E34 Complex navigation environment 
H11 Improper use of radar E35 Bad weather 
H12 Unused safe speed E36 Noise and vibration 
H13 Improper signal display Management factors M37 Incomplete rules 
H14 Improper shore-based command M38 Lack of supervision 
H15 Poor physical condition M39 Incomplete risk assessment 
H16 Improper equipment layout M40 Lack of safety education 
H17 Inattention M41 Insufficient manning 
H18 Improper route design M42 Lack of skill training 
H19 Absence without leave M43 Incompetence of crew 
H20 Insufficient language ability M44 Unseaworthiness 
H21 Improper information processing M45 Chart defect 
H22 Alcoholism or drug dependency M46 Insufficient shore-based support 

Ship-related factors S23 Equipment failure Accident result A47 Collision 
S24 Improper equipment maintenance  
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practice (Wang et al., 2023a). Comprehensive consideration of multiple 
factors is necessary for risk analysis. Different parameters from various 
dimensions should be used to statistically analyse the impact of nodes on 
the network. The comprehensive effects of multiple factors, including 
human factors, ship-related factors, environmental factors and man
agement factors, determine maritime casualties. The factors are inter
dependent and exert varying degrees of impact on accidents. Due to the 
incomplete comprehension of the collision process and the complex 
nature of accidents, it is impossible to fully establish the internal link
ages between the RIFs. Consequently, the GRA method provides a useful 
approach for investigating the relationship between marine casualties 
and their underlying RIFs (van Diessen et al., 2022). 

The ship system is regarded as a grey system during the maneuvering 
process, and the correlations between the different RIFs can be identified 
by analysing the similarities and differences in their changing trends. A 
higher correlation is observed if the changing trends are similar, and 
vice versa (van Diessen et al., 2022). The core of GRA is the calculation 
of the degree of correlation: the reference sequence X0′ = (x0(1)’, x0(2)’,
..., x0(N)’) is selected, and other factors are recorded as comparison se
quences as Xi′ = (xi(1)’,xi(2)’,...,xi(N)’), and n+1 data sequences form a 
matrix, as shown in Equation (6): 

(X0
’，X1

’，...,Xn
’) =

⎡

⎢
⎢
⎣

x0(1)’ x1(1)’⋯xn(1)’
x0(2)’ x1(2)’⋯xn(2)’

⋮ ⋮ ⋱ ⋮
x0(N)’ x1(N)’⋯xn(N)’

⎤

⎥
⎥
⎦

N×(n+1)

(6)  

where, N is the length of the variable sequence. 
In order to unify the dimensionality of the numerical values in the 

sequence and to avoid variables with small orders of magnitude that 
cannot have sufficient influence on the analysis results, the multi- 
attribute data sequence matrix (X0

′，X1
′，...,Xn

′) is dimensionless ac
cording to the Equation (7): 

xi(k)=
xi(k)′

1
N

∑N

k=1
xi(k)′

(i= 0, 1,…, n; k= 1, 2,…,N) (7) 

The final dimensionless matrix is obtained as shown in Equation (8): 

(X0，X1，...,Xn) =

⎡

⎢
⎢
⎣

x0(1) x1(1)⋯xn(1)
x0(2) x1(2)⋯xn(2)

⋮ ⋮ ⋱ ⋮
x0(N) x1(N)⋯xn(N)

⎤

⎥
⎥
⎦

N×(n+1)

(8) 

Record the correlation coefficient between X0 and Xi as Equation (9): 

ξ0i(k)=
min
1≤i≤n

min
1≤j≤N

|x0(j) − xi(j)| + ρ⋅max
1≤i≤n

max
1≤j≤N

|x0(j) − xi(j)|

|x0(k) − xi(k)| + ρ⋅max
1≤i≤n

max
1≤j≤N

|x0(j) − xi(j)|
(9)  

where, ρ is the resolution coefficient used to control the discrimination 
of the correlation coefficient ξ0i(k), which is taken as a value in (0, 1). 
Since the smaller ρ, the greater the discrimination between the corre
lation coefficients, the values are usually taken between 0.1 and 0.5 
based on actual situations. 

The correlation coefficient ξ0i(k) is a positive number less than 1 and 
reflects the degree of correlation between sequence X0 and Xi at the kth 
value. The degree of correlation ζ0i between the reference sequence X0 
and the comparison sequence Xi is comprehensively reflected by N 
correlation coefficients, as shown in Equation (10): 

ζ0i =
1
N

∑N

k=1
ξ0i(k) (10) 

GRA can be used to establish the correlation between various RIFs 
and collision accidents, making it possible to determine the cause of 
accidents more accurately. However, this high accuracy is achieved 
based on a large amount of accident data. Therefore, in this study, GRA 

is used as a validation method to test the identified significant RIFs. 

3.5. DEMATEL analysis 

The DEMATEL technique is a structured analytical approach 
employing graph theory and matrix tools for problem analysis. In 
complex network models, an influence matrix can be created by 
DEMATEL, founded on the logical interrelationships of each node; 
determining the degree of influence of each node on other nodes, and 
obtaining the degree of cause and centrality of each node, in turn, 
establishing the position of the RIFs connected to each node within the 
system (Animah and Shafiee, 2021). The matrix representation of 
complex network models can be considered as the impact matrix of 
DEMATEL, as demonstrated in Equation (11) (Zheng et al., 2022). 

A=

v1
v2
⋮
vi
⋮
vn

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 e12 ⋯ e1j ⋯ e1n
e21 0 ⋯ e2j ⋯ e2n
⋮ ⋮ ⋱ ⋮ ⋯ ⋮
ei1 ei2 ⋯ eij ⋯ ein
⋮ ⋮ ⋯ ⋮ ⋱ ⋮

en1 en2 ⋯ enj ⋯ enn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

v1 v2 ⋯ vj ⋯ vn

(11)  

where, the value of eij is 0 or 1 (i = 1，2⋯n，j = 1，2⋯n). If eij = wij, it 
indicates that two nodes are connected, and the weights between the 
nodes is wij. While eij = 0, the two nodes are not connected. 

Normalize the influence matrix, then calculate the normative impact 
matrix to obtain the comprehensive influence matrix T, as shown in 
Equation (12) and Equation (13) (Zheng et al., 2022): 

AN =A × λ (12)  

T =AN ⋅ (I − AN)
− 1

=
(
tij
)

n×n (13)  

where λ is the normalized parameter, I is the identity matrix, and tij 
represents the overall impact of the i th row node on the j th column node 
in the overall influence matrix. 

Apply the comprehensive impact matrix to calculate different in
dicators of the DEMATEL methodology, such as the Impact Degree value 
(D), the Affected Degree value (E), the Centrality Degree value (DE), and 
the Cause Degree value (ED). Equations (14)–(17) (Zheng et al., 2022) 
present the respective calculation process. 

Di =
∑n

j=1
tij (14)  

Ei =
∑n

j=1
tji (15)  

DEi =Di + Ei (16)  

EDi =Di − Ei (17)  

4. Results and discussion 

4.1. The establishment of accident RIFs network 

A causal chain of ship collision accident, highlighting the accident 
occurrence process, is established for each report based on the RIFs and 
the resulting ship collision events. Based on the causal chains of marine 
accidents, the relationship matrix of nodes is established. If there is an 
arrow pointing from a column node to a row node in the causal chain, 
then the matrix element corresponding to that column node and row 
node is 1. If that arrow appears twice during the merging of the causal 
chain, then the matrix element is 2, and so on. If no arrow exists between 
the two nodes, the matrix element is 0. Based on the node relationship 
matrix, a complex network diagram is drawn to obtain the RIFs network 
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model of ship collision accidents. The process is shown in Fig. 3. 
The ship collisions are rarely isolated incidents. An evolutionary 

structural model has been established based on the logical relationship 
and order of occurrence of indicators to illustrate the complex network 
of RIFs that contribute to these accidents. The accident chain combi
nation process as shown in Fig. 3 is applied to 207 accident reports, then 
all the accident chains are aggregated and combined into an accident 
network, and the node impact matrix of the accident network is ob
tained. The accident impact matrix is imported into Python, and the 
network algorithm and drawing function of Python are used to visualize 
the matrix to obtain Fig. 4. 

Fig. 4 shows the RIFs and their evolutionary relationships in the 
collision accident network which consists of nodes and connecting 
edges. These nodes and edges create risk transmission chains associated 
with various indicators. Since the accident network model of RIFs is 
formed by combining a large number of accident causal chains, many 
similarly accident occur multiple times during the combination process. 
The number of occurrences of link edges between RIFs is assigned as 
weights to the matrix elements of the accident impact matrix during the 
combination of accident causal chains. The weights are calculated as 
shown in Fig. 3. This accident impact matrix is used as an impact matrix 
in the DEMATEL analysis to calculate the causality between RIFs. It is 
important to note that each RIF in the graph can act as a risk transfer 
indicator that may result in accidents. 

The network for assessing collision risk in ships has revealed the 
multiple factors impacting unsafe human behaviour that can ultimately 
result in a collision accident. The RIFs are multifaceted, for instance, 
H11 (Improper use of radar), may be impacted by H7 (Insufficient skill 
level and inexperience), H15 (Poor physical condition), H17 (Inatten
tion), H21 (Improper information processing), S24 (Improper equip
ment maintenance), and E30 (Density traffic). Each RIF can impact 
various unsafe behaviours, such as lack of supervision, which can lead to 
ineffective avoidance, negligence, unused safe speed, and absence 
without leave. Additionally, a single type of human error occurs in every 
collision accident, while the factors that trigger multiple types of human 
error are diverse. Therefore, implementing chain-breaking control 
measures can attain the aim of preventing or slowing down ship collision 
accidents by intercepting RIFs which may trigger several human errors 
concurrently and by obstructing their evolutionary pathway. 

4.2. Results analysis based on topology characteristics 

According to Fig. 5, the majority of accident RIFs exhibit low degree 
values, with 10 RIFs displaying high degree values (i.e., over 22 value). 
These RIFs are identified as H1 (Lookout negligence), H2 (Lack use of 
good seamanship), H3 (Improperly and ineffective avoidance), H4 (Poor 
communication), H6 (Decision error), H7 (Insufficient skill level and 

inexperience), H8 (Improper ship handling), H11 (Improper use of 
radar), H17 (Inattention), and E30 (Density traffic). A high degree value 
signifies that these RIFs can be easily impacted by other RIFs and serve 
as the central nodes of complex network models - also referred to as hub 
nodes - that are essential hubs in the risk transmission chain. The mean 
degree value of the complex network model for ship collisions is 16, with 
merely 17 nodes surpassing the average value. The degree of most nodes 
is small, while the degree of a few nodes is large. Therefore, this model 
adheres to the scale-free property. This also shows that the established 
accident network is a complex network, which can be analysed with the 
relevant characteristics of complex networks theory. 

Lower degree nodes have limited connections in complex network 
models, resulting in a relatively minor influence on accident networks. 
The probability of those accident RIFs directly leading to accidents is 
low. These findings imply that improving the prevention and control of 
higher degree nodes is an effective strategy for reducing accident 
occurrence. 

The clustering coefficient is also a significant indicator in the eval
uation of complex network models. Fig. 6 displays the clustering co
efficients for each node. The network model’s clustering coefficients 
range from 0.3 to 1.0, with more than 50% of the nodes having co
efficients larger than 0.6. The calculated average data clustering coef
ficient of the network is 0.67, which indicates that each node in the 
network is closely connected with other nodes in the network. If the 
efficiency of the interaction between RIFs is higher, the accident de
velops more rapidly, and the prevention is more difficult, which con
forms to the characteristics of complex network community structure. 
Upon assessing the importance and risk evolution of nodes, it is apparent 
that the shortest path for each node is relatively short and the discrep
ancy is insignificant. The model’s network diameter is 1.64, indicating 
that a RIF can cause a collision with a maximum of two evolutionary 
steps. The small average diameter and high clustering coefficient of the 
model aligns with small world characteristics. Thus, the ship collision 
risk evolution model suggests that generated RIFs easily transfer risk to 
other RIFs, which rapidly lead to final accident ship collisions. 

To examine the variations in the significance of diverse contributing 
factors which lead to accidents, this study conducts an analysis of the 
nodes’ degrees and their respective shares of contribution in the direct 
cause of accidents. The probability of each node being the cause of the 
accident is also significantly different, as illustrated in Fig. 7. Various 
RIFs contribute to collisions at sea, including H1 (Lookout negligence), 
H2 (Lack use of good seamanship), H3 (Improperly and ineffective 
avoidance), H4 (Poor communication), H6 (Decision error), H7 (Insuf
ficient skill level and inexperience), H8 (Improper ship handling), and 
H9 (Violation of rules). It is evident that in most cases, human factors 
directly lead to collisions. Environmental and managerial factors 
contribute to the occurrence of high accident rates at specific locations, 

Fig. 3. The fusion process of accident chain.  
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indicating that indirect factors (i.e., H7, M37, M38, M39, M40 and M42) 
significantly affect the development of accident risk. 

Fig. 8 displays the closeness centrality of the nodes. Upon analysis of 
the graph, it is evident that nodes with a high centrality include: H1 
(Lookout negligence), H2 (Lack use of good seamanship), H3 (Improp
erly and ineffective avoidance), H4 (Poor communication), H6 (Decision 
error), H7 (Insufficient skill level and inexperience), H8 (Improper ship 
handling), H11 (Improper use of radar), H17 (Inattention), and E30 
(Traffic density). This suggests that these nodes are in close proximity to 
other nodes, with a very short shortest distance, situated at the centre of 
the network, and capable of rapidly influencing other nodes. 

4.3. Results analysis based on robustness analysis 

After analysing complex network models, estimating crucial barriers 
along the risk evolution pathway can facilitate the formulation of risk 
control strategies. Fig. 9 illustrates changes in network efficiency of 
complex network models during various mode attacks. Notably, random 
attacks produce a relatively gradual reduction in network efficiency 
compared to deliberate attacks. After attacking 10 nodes, the efficiency 
of the targeted network model was less than 0.4, while the efficiency of 
the random attack disrupted network model was around 0.63. Once 
about thirty nodes are attacked, the complex network model, which 
relied on accident rate, closeness centrality, and degree, collapsed 
almost entirely. 

The rate of decline in network efficiency can be concluded as follows. 
In deliberate attacks, the key nodes in the network are attacked first, 
which can isolate more nodes in the network. This can cause the network 
to crash, thereby preventing the network from evolving to node A47 
(Collision). For example, when attacking node H1 (Lookout negligence) 

Fig. 4. The complex network model for the evolution of ship collision RIFs.  

Fig. 5. The degree of RIFs.  

Fig. 6. The clustering coefficient of RIFs.  
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in the network, 45 accident chains in the complex network model can be 
disabled and the 79 accidents recorded in the accident report can be 
prevented from occurring. When nodes are attacked randomly, the 
probability of attacking key nodes is small. Only when more nodes are 
attacked at the same time, the network structure will change greatly, 
which is difficult to prevent the risk evolution of the network. 

According to Fig. 9, deliberate attacks predicated on node degree, 
proximity centrality, and accident incidence rate instigate a more rapid 
decrease in network efficiency in complex network models. Based on the 
aforementioned parameters, the 10 key RIFs are H1 (Lookout negli
gence), H2 (Lack use of good seamanship), H3 (Improperly and inef
fective avoidance), H4 (Poor communication), H5 (Insufficient 
cooperation), H6 (Decision error), H7 (Insufficient skill level and inex
perience), H8 (Improper ship handling), H11 (Improper use of radar), 
E30 (Density traffic). 

4.4. Results analysis based on GRA 

In order to verify the relevance and importance of the selected in
dicators, the parameter of GRA is used to evaluate the selected indicators 
again. The importance of the 10 key RIFs in the progression and 
advancement of ship collision catastrophes can be determined, so as to 
propose safety measures for prevention and control throughout the 
operation. 

As can be seen in Fig. 10, the importance ranking of RIFs is basically 
consistent with the importance ranking obtained from the analysis in the 
complex network method. It can be seen that the key RIFs identified by 
complex network method are reliable and they are the key RIFs in the 
evolution of ship collision risk. 

Although the GRA method can more accurately analyse RIFs with 
strong correlation, its analysis of accident risk evolution is more one- 
sided. Moreover, the GRA method requires a large amount of data for 
comparative analysis, and fail to distinguish RIFs with lower correlation. 
Therefore, this study adopts the method of robustness analysis as the 
main method to analyse the established network of ship collision RIFs. 
Then, the GRA method is used to verify the effectiveness of robustness 
analysis by analysing the RIFs with strong correlation, which is more 

Fig. 7. The RIFs’ accident rate.  

Fig. 8. The closeness centrality of RIFs.  

Fig. 9. The results of network robustness analysis.  

Fig. 10. The node importance results of complex network.  
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advantageous in improving the comprehensiveness of the accident 
results. 

4.5. Results analysis based on DEMATEL 

Using the complex network model for ship collision RIFs, the 
DEMATEL technique calculates the centrality and causal degree of each 
node in the network. The higher the centrality, the more influential the 
factors are in the system. Factor attributes are classified based on cau
sality. If a value is larger than 0, this indicates that the factor is a causal 
one and is more likely to impact other factors. If a value less than 0, this 
means that the factor is more susceptible to other factors. The calculated 
centrality and degree of causality are shown in Fig. 11. 

Based on the results obtained from the DEMATEL analysis, RIFs are 
categorized into five categories based on their ability to influence as 
shown in Table 3 (Khatun et al., 2023). 

RIFs with medium influence and higher impacts on complex net
works are selected by Centrality Degree. Namely H1 (Lookout negli
gence), H2 (Lack use of good seamanship), H3 (Improperly and 
ineffective avoidance), H4 (Poor communication), H5 (Insufficient 
cooperation), H6 (Decision error), H7 (Insufficient skill level and 
experience), H8 (Improper ship handling), and H12 (Unused safe speed), 
H13 (Improper signal display), H17 (Inattention), H19 (Absence 
without leave) and M38 (Lack of supervision). These factors mainly 
contribute to accidents directly, so controlling them can regulate the 
progression of accidents and avert their occurrence. 

According to the theory of DEMATEL, RIFs for accidents can be 
divided into two categories based on their Cause Degree value. Factors 
with a Cause Degree larger than 0 are considered as causal factors, 
whereas factors with a Cause Degree less than 0 are outcome factors. 
During the risk evolution process, Cause Degree with a higher value can 
influence more RIFs, leading to an increased range of accident effects 
and making accident prevention more challenging. There are six RIFs 
that have a Cause Degree value larger than medium influence, H7 
(Insufficient skill level and inexperience), M37 (Incomplete rules), M38 
(Lack of supervision), M39 (Incomplete risk assessment), M40 (Lack of 
safety education), and M42 (Lack of skill training). These factors mainly 
serve as indirect factors of accidents, meaning their presence does not 
cause accidents, but increases the likelihood of accidents occurring. By 

controlling these factors, the likelihood of accidents can be decreased, 
hence reducing the risk of accidents. There are five RIFs with a Cause 
Degree value lower than medium influence, namely H1 (Lookout 
negligence), H3 (Improperly and ineffective avoidance), H6 (Decision 
error), H8 (Improper ship handling), and H12 (Unused safe speed). 
These RIFs exhibit a high degree of instability as outcome factors and are 
susceptible to changes in state caused by other RIFs. It is evident from 
the accident report that outcome factors tend to be the direct RIFs of 
accidents. By controlling these RIFs, it is possible to prevent accidents 
from escalating into their final outcomes, much in the same way that the 
control of high-risk factors can achieve (Cui et al., 2023). 

The 11 key RIFs obtained by using the DEMATEL analysis method are 
based on the two parameters of cause degree and centrality, which are 
not comprehensive enough for the analysis of RIFs. By comparison, it is 
found that the RIFs obtained from the analysis of the complex network 
method only partially overlapped with the RIFs obtained from the 
DEMATEL analysis. Therefore, based on the results obtained from the 
comprehensive analysis of the robustness analysis method, supple
mented by the results of the multi-perspective analysis of the DEMATEL 
method, 17 RIFs are finally obtained after merging duplicate RIFs as the 
key RIFs to control the risk of ship collision. The synergistic analysis of 
the two methods makes the final RIFs more comprehensively describing 
the risk of ship collision accidents. 

4.6. Discussion and implications 

Human factors are the primary cause of ship collisions. The shipping 
system is inseparable from the role of human beings. Common factors 
contributing to collisions include H1 (Lookout negligence), H2 (Lack use 
of good seamanship), H3 (Improperly and ineffective avoidance), H4 

Fig. 11. The centrality degree and cause degree of RIFs.  

Table 3 
The DEMATEL-influence rate description.  

Definition Centrality Degree Cause Degree 

No influence (0,10) |0,5| 
Low influence (10,20) |5,10| 
Medium influence (20,30) |10,15| 
High influence (30,40) |15,20| 
Very High influence (40,50) |20,35|  
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(Poor communication), H5 (Insufficient cooperation), H6 (Decision 
error), H7 (Insufficient skill level and inexperience), H8 (Improper ship 
handling), H11 (Improper use of radar), all of which are underlying RIFs 
of collisions. In addition, ship-related factors, such as S24 (Improper 
equipment maintenance), and management factors, such as M37 
(Incomplete rules), may contribute to human factors. Additionally, 
environmental factors like E30 (Density traffic) can limit human 
perception and judgement, leading to incorrect decision-making or ship 
maneuvering behaviours. Thus, human factors not only directly result in 
accidents but also interact with other factors to jointly cause ship 
collisions. 

In summary, the effective prevention of ship collision accidents in
volves isolating identified key nodes in the RIFs network and severing 
links between them and other nodes (Deng et al., 2023). For different 
RIFs, distinct risk prevention and control measures should be under
taken. Risk prevention and control measures primarily focus on two 
principles: "prevention" and "control". "Prevention" entails actions aimed 
at diminishing the probability of accidents during the regular operation 
of ships by evading the activation of hazards. "Control" refers to actions 
aimed at halting a hazard from evolving into an accident, following its 
activation. Fig. 12 illustrates the process of risk mitigation. 

Based on the analysis results of robustness analysis and DEMATEL, 
17 RIFs were selected as key and primary nodes for "prevention" and 
"control" after merging the similar items, they are, H1 (Lookout negli
gence), H2 (Lack use of good seamanship), H3 (Improperly and inef
fective avoidance), H4 (Poor communication), H5 (Insufficient 
cooperation), H6 (Decision error), H7 (Insufficient skill level and inex
perience), H8 (Improper ship handling), H12 (Unused safe speed), H13 
(Improper signal display), H17 (Inattention), H19 (Absence without 
leave), M37 (Incomplete rules), M38 (Lack of supervision), M39 
(Incomplete risk assessment), M40 (Lack of safety education) and M42 
(Lack of skill training). Based on the above RIFs, targeted risk prevention 
and control measures are proposed in terms of controlling the sources of 
risk and interrupting the evolution of risk after discussion with the of
ficer of the China Maritime Safety Administration. The RIFs are cate
gorized into two parts, macro and micro, due to the difference between 
measures that can be done by shipboard personnel only and those that 
require a larger number of personnel. As shown in Table 4. 

5. Conclusion 

This study analysed 207 national and international ship collision 
reports, extracting and identifying RIFs and their accident chains, and 
summarizing a total of 46 RIFs. Of these, the highest 10 RIFs responsible 
for accidents are all related to human factors. The accident reports 
reveal that crew members’ insufficient knowledge and experience, 

Fig. 12. The risk evolution and blocking of ship collision accidents.  

Table 4 
The risk prevention and control measures of ship collision.  

Methods Level RIFs Prevention and control 
measures 

Hazard source 
control 

Macro Incomplete rules Disorderly navigation and 
poor fairway conditions can 
increase the risk of collision. 
The maritime authorities 
should improve the 
conditions for channel 
positioning, aids to 
navigation and monitoring of 
the navigation order in 
accident prone waters. 

Insufficient skill 
level and 
Inexperienced 

Carry out regular skills 
testing and training for crew 
members, provide skills 
improvement training for 
those who fail, and provide 
emergency and hazard 
response training for all crew 
members to improve their 
emergency management 
skills. 

Lack of skill 
training 

Regularly organize skills 
training for crew members, 
learn how to use general 
marine equipment and ensure 
that crew members have 
sufficient ability to respond 
to emergency situations. 

Lack of supervision Strengthen the construction 
of safety culture, enhance 
personal safety awareness, 
promote mutual supervision 
among crew members in 
addition to supervision by the 
master and the company, and 
create an atmosphere of 
safety work. 

Incomplete risk 
assessment 

It is recommended that the 
master and pilot carry out 
regular risk assessments in 
order to control the 
occurrence of relevant RIFs 
during the ship’s voyage and 
to take preventive measures. 

Lack of safety 
education 

Regular safety briefings are 
held each year, and safety 
training is incorporated into 
the crew skills training 
process, with safety measures 
included in the scope of 
assessment to raise crew 
safety awareness. 

Micro Lookout negligence Put up warning signs in 
accident prone areas; train 
crew members before sailing 
to understand high-risk areas 
on the route and increase 
vigilance; increase crew rest 
time to prevent observation 
lapses due to fatigue. 

Unused safe speed There is no fixed value for 
safe sailing speed and it 
should be flexible to the 
environment and the 
situation encountered. 
Adverse weather and high 
speed navigation in complex 
water areas should be 
avoided. In addition to 
collision avoidance, loss of 
control due to excessive 
deceleration should be 
avoided. 

(continued on next page) 
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improper ship operation, regulation violation, and inappropriate duty 
arrangements are related to 39.5%, 39.5%, 38%, 26.5%, 25.5%, 25.5%, 
22%, 20.5%, 20.5% and 15.5% of the accidents. Furthermore, in
teractions between human error and other factors are responsible for 
most accidents. 

After creating a comprehensive ship collision network evolution 
model with 47 nodes and 390 edges, robustness analysis method is 
firstly employed to identify 10 key RIFs from a global network 
perspective, and the GRA is used to verify the identified key RIFs. Then, 
the DEMATEL method is used to identify 11 key RIFs from perspective of 
causality. Finally, 17 RIFs are gained by merging duplicate RIFs. The 17 
RIFs combined the results from both a global perspective and a causal 
association perspective, making the findings more comprehensive. In 
general, this study provides ample insights for managers to detect and 
manage ship collisions in waterways. By identifying significant RIFs that 
influence these collisions, it suggests measures to control the evolution 
network of such accidents. 

Although this study is valuable for the accident studies for ship 
collisions, some limitations exist and need to be concerned in the future 
research. On the one hand, there is a strong subjectivity as the accident 
chain in this study is artificially extracted based on accident investiga
tion reports. On the other hand, the accident reports used in this paper 
originate from all over the world, the region where the accidents 
occurred is wide, the results obtained from the analysis are more 
generalizable, the measures proposed based on them are less targeted 
and need to be further discussed and adjusted in practice. In the future 
research, it can be considered to extract accident chain by navigational 
data such as AIS data, and then build a complex network model. This can 
give more objective results, and may be a direction of subsequent 
research. 
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Table 4 (continued ) 

Methods Level RIFs Prevention and control 
measures 

Improper signal 
display 

Train crew members to issue 
sound signals in a timely 
manner based on weather 
and channel characteristics, 
and set up easily identifiable 
signal lights. 

Inattention Attention should be paid to 
duty arrangements to ensure 
that crew members are not 
unable to maintain 
concentration due to fatigue 
or prolonged duty boredom. 

Absence without 
leave 

Strengthen safety training for 
crew members and ensure 
that other crew members 
assist in the performance of 
their duties when they leave 
their positions for special 
reasons. 

Interruption of 
risk evolution 
process 

Macro Poor 
communication 

When using VHF to 
communicate with other 
vessels, a cautious attitude 
should be adopted to avoid 
mistakes such as mishearing, 
forgetting, and inconsistent 
words and actions during the 
call; communicate promptly 
when discovering other 
vessels, rather than using 
VHF communication to 
command them after taking 
evasive action; VHF may not 
be smooth within visible 
distance of the vessel, and 
other methods should be used 
to communicate in a timely 
manner. 

Lack use of good 
seamanship 

In addition to assessing the 
traffic situation on the water 
surface in a timely manner, 
potential trends should also 
be anticipated. If the 
situation is complex and 
decisions cannot be made in a 
timely manner, timely 
assistance should be sought 
from the master or other 
experienced crew members. 

Improperly and 
effective avoidance 

When taking evasive action, 
quick decisions should be 
made and quick action should 
be taken, rather than trying to 
reach a consensus with all 
personnel; appropriate 
rudder angles should be 
applied as early as possible to 
avoid a situation where the 
ship does not turn sufficiently 
and gets into an emergency 
situation; in the event of poor 
communication, it is 
necessary to avoid a collision 
as soon as possible, in 
accordance with the 
International Maritime 
Collision Avoidance Rules. 

Micro Insufficient 
cooperation 

In case of communication 
barriers between crew 
members, they should follow 
the captain’s command 
uniformly and inform each 
other of the captain’s 
decision to ensure that all 
crew members understand 
the captain’s intention.  

Table 4 (continued ) 

Methods Level RIFs Prevention and control 
measures 

Decision error The master and pilot should 
study the ship and route 
information in advance, fully 
understand the sailing 
characteristics of the ship and 
the environmental 
characteristics of each water 
area on the route, and avoid 
making decisions based on a 
lack of understanding. 

Improper ship 
handling 

Choose a captain and pilot 
with experience of sailing to 
ensure that they do not make 
incorrect manoeuvres due to 
a lack of understanding of the 
vessel.  
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Özaydın, E., Fışkın, R., Uğurlu, Ö., Wang, J., 2022. A hybrid model for marine accident 
analysis based on Bayesian Network (BN) and Association Rule Mining (ARM). 
Ocean Eng. 247, 110705 https://doi.org/10.1016/j.oceaneng.2022.110705. 

Özdemir, Ü., Güneroglu, A., 2015. Strategic approach model for investigating the cause 
of maritime accidents. Promet - Traffic & Transp. 27 (2), 113–123. https://doi.org/ 
10.7307/ptt.v27i2.1461. 

Sahin, B., Senol, Y.E., 2015. A novel process model for marine accident analysis by using 
generic fuzzy-AHP algorithm. J. Navig. 68 (1), 162–183. https://doi.org/10.1017/ 
s0373463314000514. 
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