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Abstract

The discovery of the optical counterpart, along with the gravitational waves (GWs) from GW170817, of the first binary
neutron star merger has opened up a new era for multimessenger astrophysics. Combining the GW data with the optical
counterpart, also known as AT 2017gfo and classified as a kilonova, has revealed the nature of compact binary merging
systems by extracting enriched information about the total binary mass, the mass ratio, the system geometry, and the
equation of state. Even though the detection of kilonovae has brought about a revolution in the domain of multimessenger
astronomy, there has been only one kilonova from a GW-detected binary neutron star merger event confirmed so far, and
this limits the exact understanding of the origin and propagation of the kilonova. Here, we use a conditional variational
autoencoder (CVAE) trained on light-curve data from two kilonova models having different temporal lengths, and
consequently, generate kilonova light curves rapidly based on physical parameters of our choice with good accuracy.
Once the CVAE is trained, the timescale for light-curve generation is of the order of a few milliseconds, which is a
speedup of the generation of light curves by 1000 times as compared to the simulation. The mean squared error between
the generated and original light curves is typically 0.015 with a maximum of 0.08 for each set of considered physical
parameters, while having a maximum of ≈0.6 error across the whole parameter space. Hence, implementing this
technique provides fast and reliably accurate results.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Neutron stars (1108); Compact objects (288);
Light curves (918)

1. Introduction

The concomitant discovery of gravitational waves (GWs)
and their optical counterpart electromagnetic waves (EMs)
(Abbott et al. 2017a; Arcavi et al. 2017; Coulter et al. 2017;
Lipunov et al. 2017; Soares-Santos et al. 2017; Tanvir et al.
2017; Valenti et al. 2017) from the merger of the binary
neutron star GW170817 (Abbott et al. 2017b), also accom-
panied by a short gamma-ray burst (GRB) (Goldstein et al.
2017; Savchenko et al. 2017), has advanced the domain of
multimessenger astronomy. This optical counterpart, desig-
nated as a kilonova (KN) and known as AT 2017gfo, has
bolstered previous predictions of the existence of such
electromagnetic transients (Li & Paczyński 1998; Rosswog
et al. 1999). Prior to the discovery of GW170817, it was
predicted that such an event would be accompanied by an EM
counterpart, including short-duration GRBs (Eichler et al.
1989; Nakar 2007), emissions ranging from radio to X-rays
pertaining to on- or off-axis afterglow (van Eerten &
MacFadyen 2012; Coward et al. 2014; Fong et al. 2015; Lamb
& Kobayashi 2016), and optical to near-IR emission resulting
from the decay of r-process nuclei. A KN is an isotropic quasi-
thermal transient that is powered by the radioactive decay, in
the merger ejecta, of r-process nuclei, having luminosities of
1040–1042 erg s−1 (Li & Paczyński 1998; Rosswog et al. 1999;
Metzger et al. 2010; Barnes & Kasen 2013). This EM

counterpart can provide deeper understanding of the merger
environment and its products. When EM information is further
combined with GW information, it leads to a unique platform
for an extensive understanding of such binary events. KN
models consist of one or more radioactive ejecta components
that produce light curves peaking at different timescales and
temperatures depending on the atomic mass number of the
ejecta and on the luminosity. The two-component model
consists of blue KN (Metzger et al. 2010; Roberts et al. 2011;
Metzger & Fernández 2014) emission having a poor lanthanide
fraction (10−5) in the merger ejecta peaking at a relatively early
timescale and red KNe (Barnes & Kasen 2013; Kasen et al.
2013; Tanaka & Hotokezaka 2013) comprising lanthanide-rich
(10−2) merger ejecta with peak values at later days. In the
three-component model (Perego et al. 2017) there is an
inclusion of purple KNe, which indicates the presence of a
lanthanide fraction of 10−3. Various papers (Cowperthwaite
et al. 2017; Villar et al. 2018) have provided the best-fit
parameter for AT 2017gfo related to the blue, purple, and red
KNe in terms of the ejecta mass, ejecta velocity, and lanthanide
fraction. However, since there has been only one GW-
confirmed detection of a KN from a merger of binary neutron
stars, along with some possible candidates from other sources,
it is difficult to understand and verify the properties of binary
merging systems that emit electromagnetic radiation. An
overview of the physical parameters that govern KNe has
been provided by Metzger (2019).
In recent years, machine learning (ML) has been used for

various data analysis and formulation techniques required in
astronomy (Ball & Brunner 2010; Vander Plas et al. 2014;
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Shen et al. 2019; Ntampaka et al. 2021; Jones et al. 2022).
There have been certain areas where the application of ML
techniques has produced a remarkable result, especially when it
focused on providing faster results as an alternative to existing
methods (Ball 2011; Sipőcz et al. 2020). There is plenty of
excellent literature available on a wide range of topics of ML
application in astronomy and astrophysics (García-Jara et al.
2022; Gheller & Vazza 2022; Li et al. 2022; Sheng et al. 2022).
In this paper, we incorporate a method from the ML domain
known as autoencoder (Rumelhart et al. 1986), which is based
on a feed-forward mechanism, to generate light curves. The
primary task of an autoencoder is to encode the input into a
lower-dimensional latent representation and then decode it
back to data. In a feed-forward mechanism, the neural network
has unidirectional processing of information. The striking
feature for an autoencoder is that the encoder compresses high-
dimensional input to a low-dimensional latent space and the
decoder decompresses to produce results to match the input.

In this work, we regenerate KN light curves by implement-
ing a conditional variational autoencoder (CVAE) (Kingma &
Welling 2019), which is developed based on a variational
autoencoeder (Kingma & Welling 2013). We use this CVAE to
generate light curves based on our choice of physical parameter
values of the binary merging system. For the CVAE, once
training has been completed, we have more flexibility to
rapidly generate light curves based on the physical parameters
depending on the choice of data set. Although KN data from
only two models for training and producing results are used in
this work, it is possible to extend the same idea for data from
other models. Although the data have been produced from the
model, this unique data analysis technique can not only
generate light curves for parameter values that are not explicitly
mentioned in the model but also replace the time-consuming
and resource-draining simulations required for predicting light
curves. The novelty of this technique is expressed in the fact
that once the CVAE is trained on a KN model, we can generate
numerous light curves for different combinations of physical
parameters in a very short time. An alternative approach for
such CVAE and KN work has been presented in Lukošiūtė
et al. (2022), where a different method has been studied for
obtaining results. One of the fundamental differences between
Lukošiūtė et al. (2022) and our work is in using spectra rather
than light curves during training. In our method, we look into
the light-curve evolution with respect to different sets of
physical parameters aiming to complete the process in a shorter
timescale compared to that of existing simulation methods.
This kind of rapid generation technique for KN light curves can
be useful as a template for rapid parameter estimation of KNe.

In the following sections, we show the gradual implementa-
tion of our idea, and the results are discussed thereafter. In
Section 3, we discuss the CVAE architecture implemented in
our work. Section 4 puts forward differences in the data and the
physical parameters used for the training and generation of KN
light curves. Section 5 provides a detailed discussion of the
results obtained after the implementation of the CVAE. In
Section 6 we summarize our approach and present some
important features of this technique. Additional results for
reference are included in the appendix.

2. KN Models

KN emission results from the mass ejection in neutron star
mergers (Freiburghaus et al. 1999; Ruffert & Janka 2001;

Hotokezaka et al. 2013; Kawaguchi et al. 2020). The properties
of the ejecta such as the ejecta mass, velocity, and opacity
dominate the peak luminosity and the time of the peak
luminosity (Li & Paczyński 1998; Barnes & Kasen 2013;
Kasen et al. 2013, 2015; Tanaka et al. 2017). This luminosity is
sourced from the radioactive decay of the r-process elements
synthesized in the merger. This work primarily focuses on two
KN models having different physical parameters that determine
the light curves. Below we provide an outline of the two
models used in this work. In Kasen et al. (2017), light curves
that are dependent on the peak magnitude and decay time with
respect to the ejecta mass, velocity, and lanthanide fraction are
provided. Quantitatively, the peak luminosity to first order is
denoted by L∝Mej and the width of the light curve is

M vej ej
1 2t kµ ( ) , pointing to lanthanide-rich ejecta with higher

κ, where Mej, vej, and κ are the mass, velocity, and opacity of
the ejecta. Hence heavier ejecta from the merger leads to higher
peak magnitude with relatively long duration KNe whereas
ejecta with higher velocities have short duration with bright
KNe. We see that the lanthanide fraction plays a major role in
the light curves, where ejecta with a lower lanthanide fraction
decays on a shorter timescale compared to lanthanide-rich
ejecta decaying over weeks. From the literature in Nicholl et al.
(2021), the study presents an approach where light curves are
predicted from the chirp mass, mass ratio, and orbital
inclination, including the properties related to the nuclear
equation of state. Here we see the nature of light curves based
on these physical parameters. It is important to note that Kasen
et al. (2017) is based on a radiative transfer model, whereas
Nicholl et al. (2021) is based on a semi-analytic model. While
KN light curves can be generated with the CVAE, we choose
these models due to their different parameterizations and the
data availability. However, this does not put any limitations on
the use of the CVAE, since data from any other available KN
models can be equally used.

3. Autoencoder

The advancement of new ML methods and their implicit
application in data analysis has opened up a new era in which
ML techniques can be implemented to obtain faster results.
Time-consuming and resource-draining simulations can be
completed on a reasonable timescale (Carleo et al. 2019). There
are many available ML techniques that can be used for data
analysis with specific techniques built to obtain certain results.
We use an autoencoder, an ML technique that is based on a
feed-forward mechanism, and its function is to reproduce the
input. As is the case with any standard autoencoder, the CVAE
consists of three sections, an encoder, a latent space, and a
decoder, as shown in Figure 1. The encoder (Q(f)) compresses
the high-dimensional input data into a lower-dimensional latent
space while capturing the features of the data. Latent space (Z),
which is also referred to as the output of the encoder, has a
lower-dimensional representation. Generally, a well-trained
CVAE has the entire high-dimensional input data smoothly
distributed over the latent space. To generate light curves of our
choice, we draw samples from this latent space and pass them
through the decoder (P(θ)), which takes the compressed
representation and generates the required light curves. This
facilitates using the CVAE not only as a generative model but
also as a tool to quickly look into the parameter dependency of
KN light curves. In the CVAE, training is regularized in order
to avoid overfitting. Hence, the latent space is well distributed
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to enable a generative process. Even though there are other
generative models, like generative adversarial networks
(GANs) (Goodfellow et al. 2014), since in our work we want
to sample new data from the probability distribution of the
input data to look at the model parameters crucial for the light
curves, we prefer to utilize an autoencoder because of its strong
ability to derive a probability distribution of input.

Even though GANs and CVAEs are both generative models
and belong to the category of unsupervised learning, one of
their primary differences lies in their architecture, where a
GAN has a generator and a discriminator and a CVAE has an
encoder, latent space, and a decoder. Along with this, the loss
functions used in GANs and CVAEs are different from each
other. It is important to note that for generating new data,
sampling a hidden state in GANs takes place from a predefined
distribution, and the sample is then fed into the discriminator,
in contrast to that in CVAEs, where sampling of a hidden state,
to be fed into the decoder, is done from selecting a prior
distribution related to the actual data. Here, to achieve our goal,
we take advantage of the CVAE, training it on the light curves
by conditioning them on physical parameters and generating
new light curves based on physical parameters of our choice. In
this case, we have complete control over the generated data set.
In this work, we take advantage of this feature of the CVAE to
generate new data. In our CVAE architecture, the loss function
is a combination of the reconstruction loss and the Kullback–
Leibler divergence (Asperti & Trentin 2020). Training is
carried out with batch_size= 50 for epochs= 1000 and with a
learning rate of 0.0001. From the training until the generation
of light curves for different physical parameter values, it takes
;20 minutes for the process to complete using a 3.9 GHz
eight-core Intel Core i9 processor with 32 GB memory. In our
training and regeneration of light curves, we do not use the
GPU of the system and completely rely on the CPU. Once the

model is trained and saved, it takes only a few milliseconds to
generate the light curves. In this section, we outline the CVAE
without delving into details; for a more detailed description of
variational encoders readers can refer to Kingma & Welling
(2013, 2019). In Section 5 more insights into the results
obtained from the CVAE are shown.

4. Data

In the ML domain, one needs to be very careful about the
data that is fed into the algorithm. The data have to be
preprocessed and prepared accordingly. The data used for the
training, validation, and test sets are categorized into two types
as mentioned in Section 2. We adopt the data from https://
github.com/dnkasen/Kasen_Kilonova_Models_2017, here-
after D1 (Kasen et al. 2017), to prepare the data set to be fed
into the CVAE. The physical parameters in this data set are the
ejecta mass (0.001–0.1Me), the ejecta velocity (0.1–0.3c), and
the lanthanide fraction (10−4

–10−9). There are 329 light curves
with duration of ≈25 days. Each light curve has different
values of the physical parameters within the ranges mentioned
above. Light curves are available for different filter bands (u, g,
r, y, and z) within the same physical parameter range. Using
these data, 241 light curves are used as the training set, and the
rest are equally divided into the test set and the validation set.
In our analysis, we train the CVAE on each filter band's data
separately (hence there are five trained CVAEs) and carry out
light-curve generation. However, in the main sections, only the
g-band results are shown; the rest are added in the appendix.
The second type of data used here, hereafter D2, consists of

simulated light curves at the same filter bands but having
different physical parameters. The physical parameters of these
data are the chirp mass of the binary system, the mass ratio, the
fraction of the remnant disk that is ejected, the viewing angle in
degrees from the pole, and the opening angle of the cocoon

Figure 1. Schematic diagram of the CVAE, consisting of an encoder, latent space, and a decoder, from input to data generation. In this figure, we have a probabilistic
encoder Q(f) and a probabilistic decoder P(θ). Z represents the compressed input or encoded representation. Here, the encoder transforms the high-dimensional input
data into the low-dimensional latent space, which represents the compressed form of the high-dimensional input data, while the decoder maps this compressed
representation in the low-dimensional latent space leading to the reconstruction of the original high-dimensional data. We take a set of data x, which is the KN light
curves, and condition it on a given parameter y, which is each of the physical parameters from the model, and then the encoder compresses this representation in the
latent space. The decoder decompresses the representation and provides the relevant output data, KN light curves, based on the physical parameter values of our
choice. This is an overview of the CVAE architecture that is used in this work to train and generate KN light curves.

3

The Astrophysical Journal, 961:165 (14pp), 2024 February 1 Saha et al.

https://github.com/dnkasen/Kasen_Kilonova_Models_2017
https://github.com/dnkasen/Kasen_Kilonova_Models_2017


shock (Nicholl et al. 2021). The ranges of values are
0.7Me–2.0Me for the chirp mass, 0.5–1.0 for the mass ratio,
and 0.15–0.45 for the fraction of the remnant disk. For the
viewing angle the data corresponds to values of 0°, 60°, and
90°. There are 529 light curves having a temporal length of 30
days, out of which 401 are included in the training data and the
rest are equally divided into test and validation sets. The
difference between the two data sets appears in the physical
parameters used in the respective KN models. These data are
used to verify the pliability of the CVAE. Since the physical
parameters in the two data sets used are entirely different, this
gives an extra edge in verifying our approach, and the results

are detailed in Section 5. Since both data sets contain light
curves that have different absolute magnitude peak values,
while feeding them for training, we scale the light-curve data
and the physical parameters between 0 and 1, as this would be a
more effective approach. Later, after training and generating
light curves, we rescale them and plot them accordingly.
Throughout the paper, we follow a particular format to
represent the physical parameters in the text and in the legends
of the plots. For text and plots relevant to D1, we use the format
in which a, b, and c are the values of the ejecta mass in Me, the
velocity of the ejecta in units of the velocity of light, and the
lanthanide fraction, respectively. Similarly for D2, we use the
format of [w, x, y, z], where w is the chirp mass in units of Me,
x is the mass ratio, y gives the fraction of the remnant disk that
is ejected, and z is the viewing angle in degrees from the pole.
We use the above format throughout the paper wherever
required, without further mentioning the respective units.
Figure 2(a) shows 50 of the 329 original light curves from
D1 in the g band for physical parameters corresponding to
ejecta mass, ejecta velocity, and lanthanide fraction with values

Figure 2. (a) In this plot, we present only 50 KN light curves of the g band of D1, which are a part of the data set for training. These light curves consist of the mass of
the ejecta, the velocity of the ejecta, and the fraction of lanthanide as physical parameters with values ranging within (0.001–0.1Me), (0.03–0.05c), and (10−9

–10−4),
respectively. (b) In this plot, we show 50 light curves for the g band of D2, which are a part of the training data set. These light curves consist of the chirp mass, mass
ratio, and fraction of the remnant disk with values ranging within (0.7–1.10Me), (0.50–1.0), and (0.15–0.45), respectively, and a viewing angle of 0° as their physical
parameters. This figure gives an outline of the KN light curves and their decay time, which are used for training the CVAE. For both data, the KN light curves are
presented in terms of the absolute magnitude. These light curves are scaled within [0–1] while being fed into the CVAE for training, but to represent the generated
results, these light curves are scaled back to the absolute magnitude.

Table 1
Physical Parameters of D1 and D2 Used for Training and Generating KN Light

Curves

Data Physical Parameters Data Features

D1 Ejecta Mass (Me) 0.001, 0.0025, 0.005, 0.01, 0.02,
0.025, 0.03, 0.04, 0.05, 0.075

Ejecta Velocity (c) 0.03, 0.05, 0.1, 0.2, 0.3

Lanthanide Fraction 10−9, 10−5, 10−4, 10−3, 10−2, 10−1

D2 Chirp Mass (Me) 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8

Mass Ratio 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Fraction of
the Remnant Disk

0.15, 0.30, 0.45

Viewing Angle 0°, 60°, 90°

Notes. D1 is taken from https://github.com/dnkasen/Kasen_Kilonova_
Models_2017 and D2 is adopted from https://github.com/mnicholl/kn-
models-nicholl2021. The training, test, and validation data for the corresp-
onding data set consist of these individual physical parameters.

Table 2
Interpolated Physical Parameters Used to Simulate Light Curves with MOSFIT

for Comparison with the CVAE-generated Light Curves

Data Physical Parameters Data Features

D2
† Chirp Mass (Me) 1.0, 1.2, 1.4, 1.6, 1.8

Mass Ratio 0.7, 0.75, 0.8, 0.85, 0.9

Fraction of the Remnant Disk 0.15, 0.20, 0.25, 0.30, 0.35, 0.40

Viewing Angle 45°, 60°, 75°, 90°

Note. Light curves from these physical parameters, alongside those from the
test set, are employed to evaluate the performance of the CVAE over the
parameter space.
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ranging within 0.001–0.1Me, 0.03–0.05c, and 10−4
–10−9,

respectively, whereas in Figure 2(b), we show 50 of the 529
light curves corresponding to D2 having the physical
parameters of chirp mass (0.7–1.10Me), mass ratio (0.5–1.0),
fraction of the remnant disk (0.15–0.45), and viewing angle of
0° from the pole as mentioned in Section 4. In Figure 2, we
show the input light curves corresponding to D1 and D2 that are
fed into the CVAE. During training and validation, scaled
values of the KN light curves and the conditional physical
parameters are used for both D1 and D2, and the obtained
results are shown in absolute magnitude values. The input for
training from D1 consists of 241 light curves and that from D2

has 401 light curves from the g band. As previously mentioned,
each light curve has different physical parameters corresp-
onding to the ejecta mass, ejecta velocity, and lanthanide
fraction for D1 and to the chirp mass, mass ratio, fraction of the
remnant disk, and viewing angle from the pole for D2.
Throughout the text, D1 and D2 are referred to accordingly,
keeping the above training, test, and validation sets unchanged.
In Table 1, we tabulate the physical parameters and the data
ranges used in this work. In this study, while defining the
training, test, and validation sets we do not restrict the physical
parameters to different regions of the parameter space. Instead,
the physical parameters present in the training, test, and
validation sets cover the entire parameter space. At the same
time, we ensure that none of the parameter combinations, i.e.,
ejecta mass, ejecta velocity, and lanthanide fraction for D1 and
chirp mass, mass ratio, fraction of the remnant disk, and
viewing angle for D2, are repeated in the training, test, and
validation sets. Specifically, for D2, apart from the training,
test, and validation sets, we put aside a separate set of simulated
light curves from MOSFiT,6 which are utilized to evaluate the
performance of the CVAE. We augment the existing test set
with these separately simulated light curves, hereafter D2†, to
provide a robust performance check. The combination of

physical parameters present in D2†, as shown in Table 2,
covers the parameter space but is previously unseen to the
CVAE. The CVAE will be employed with these sets of
physical parameters to generate light curves to be compared
with the true light curves, thus providing a robust approach to
appraising the CVAE's performance. Hence, using the CVAE,
we generate light curves over a grid on the parameter space.

5. Results

In this section, we present the results after the implementa-
tion of the CVAE. After training, samples are drawn from the
latent space to reconstruct light curves based on the required
physical parameters. This section points out the comparison
between the generated light curves from the latent space and
the original light curves from the simulation. This technique
allows us to generate as many light curves as we require over a
wide range of physical parameters within the range provided by
the model.
In Figure 3(a), we show the generated light curves of the g

band after implementing the CVAE for the physical parameters
of [0.001Me, 0.03c, and 10−5], which are the ejecta mass,
ejecta velocity, and lanthanide fraction, respectively, as
mentioned in Section 4. The loss plot for the CVAE is shown
in Figure 3(b). We find that the validation loss and the training
loss decrease to a point of stability and there is a small gap
between the two curves. Although the CVAE has the ability to
generate as many light curves as we want for one or many
physical parameters, in order to avoid congestion in the plots,
we limit ourselves to 100 generated light curves based on the
above physical parameters. The 100 light curves are closely
spaced and the apparent variations at later days come from the
variations of the probability distribution in the latent space.
These variations are expected since, to regenerate light curves,
we randomly draw samples from the latent space. This
randomness allows the CVAE to produce variations in the
light curves even for the same input. Thus, we see these
variations in the CVAE-generated light curves for the physical

Figure 3. (a) This figure shows the light curves' comparison corresponding to the g band after training and generation are implemented on D1. We display 100 light
curves for the physical parameters of ejecta mass, ejecta velocity, and lanthanide fraction having values of [0.001Me, 0.03c, and 10−5] alongside the light curve from
the test data for the same physical parameters. The original light curve is shown in diamond markers and is within the distribution of the generated light curves shown
by solid lines. The deviations seen in the generated light curves arise from the variations in the latent space. (b) This plot corresponds to the learning curve after we
implement the CVAE. The gap between the two curves is small indicating a good fit.

6 https://github.com/guillochon/MOSFiT
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parameters. Besides, the light curves are more sensitive to
changes in the physical parameters in later days. However,
since we are more interested in the earlier KN evolution, we
restrict the plots to 14 days. This parameter is chosen from the
simulated data in order to verify the robustness of the CVAE. It
is clear that the input light curve (shown by diamond markers)
used from the validation data of the CVAE is well within the
limit of the regenerated light curves.

This confirms that the CVAE is well trained. In Figure 3(a),
we see some overlapping in the light curves, since the 100
generated light curves have relatively similar values. While
generating these light curves, samples are drawn from different
points in the latent space. It is possible to generate as many
light curves as desired and observe the possible variations from
the latent representation. Since the encoder maps the input light
curves to a probability distribution over the latent space, even

though in the respective KN models there is only one light
curve associated with a single value of the physical parameter,
implementing the CVAE provides a comparatively wide range
of the light-curve distribution for the same value of the physical
parameter arising from the latent representation. This variation
of the generated KN light curves is particularly interesting
when the light curves are generated for an entirely new physical
parameter set that the CVAE has not come across during
training and validation.
KN light curves are extremely sensitive to the ejecta mass

(Kasen et al. 2017). With a change in the ejecta mass, the peak
value of the light curves increases and shifts to later days,
which is explicitly shown in the top left, top right, and bottom
left panels in Figure 4. This result is expected in accordance
with the KN evolution. In this figure, a comparative analysis
for different values of the ejecta mass (0.02Me, 0.1Me, and

Figure 4. In this figure, we compare 100 light curves (solid lines) generated from the CVAE with the original light curves (diamond markers) for ejecta masses of
0.02Me (upper left), 0.1Me (upper right), and 0.03Me (bottom left) keeping the ejecta velocity (0.03c) and lanthanide fraction (10−9) constant for all the generated
light curves. These values of the physical parameters are chosen from the test set. In the bottom right panel, 10 light curves for an arbitrary physical parameter
configuration [0.025Me, 0.035c, and 10−5] are shown. All the generated and original light curves correspond to the g band.
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0.03Me) is shown keeping the ejecta velocity (0.03c) and
lanthanide fraction (10−9) unchanged. One hundred light
curves are generated from the CVAE compared with the
original light curve for the above physical parameters. In the
bottom right panel, the light curve for an arbitrary parameter
configuration (0.025Me, 0.035c, and 10−5) is shown. This
physical parameter value configuration is not present in D1;
therefore we do not have any benchmark to validate it with.
However, with more data from the respective KN model, this
can be verified. Similar comparative analysis, for all other filter
bands, showing the evolution of the light curves with changes
in ejecta masses, ejecta velocities, and lanthanide fractions is
shown in the appendix in Figure A1. We next take the second
data set, D2, with physical parameters of chirp mass, mass ratio,
fraction of the remnant disk, and viewing angle from the pole.
We run the same analysis as above. As mentioned in Section 4,
this data set has a total of 529 light curves, with the above
physical parameters having the values given in that section.
The training data has 401 light curves, and the remaining are
equally divided into a test set and a validation set. In Figure 5,
we demonstrate the application of the CVAE on D2, where we
compare 100 light curves generated from the CVAE with the
original light curve for the physical parameters of [1.8Me, 0.9,
0.15, and 90°] correlated to the chirp mass, the mass ratio, the
fraction of the remnant disk, and the viewing angle from the
pole, respectively. This set of physical parameters is taken from
the test data set.

The input light curve is within the distribution of the
generated light curve, which indicates that the CVAE is
performing well and the training and regeneration of the light
curves are successful. Figure 6 shows the confidence plot for a

set of physical parameters where it is important to mention that
the neural network has not seen this set of physical parameters
and hence from the similarity between the generated and true
light curves we can substantiate the performance of the CVAE.
Other relevant plots for different combinations of physical
parameters and changes in the light curves corresponding to
other filter bands are shown in Figure B1 in the appendix. To
measure the predictive accuracy of the trained CVAE, we use
the mean absolute error (MAE), where a lower value
corresponds to a more accurate prediction, calculated using

n
y yMAE
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where yi and yî are the true values and predicted values of the
light curves of the test data and n is the total number of points
drawn for each light curve from latent space. Alongside the
above MAE, we calculate and plot the mean squared error
(MSE) between the true and predicted light-curve values using
the equation
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where n is the total number of data points and zi and zî are the
respective values of the true and CVAE-predicted light curves.

6. Discussion

Since the CVAE depends on the input data, light curves from
different KN models can be used for training and the
corresponding trained CVAE is saved for generating light

Figure 5. Comparison for the true and generated light curves corresponding to D2. These 100 light curves from the r band are generated from the CVAE, for which
comparison is shown with the physical parameters of chirp mass, mass ratio, fraction of the remnant disk, and viewing angle from the pole having values of [1.8Me,
0.9, 0.15, and 90°], respectively. The diamond markers correspond to the true light curve, whereas the solid lines correspond to the CVAE-generated light curves. The
physical parameter for the true light curve is taken from the test set for verifying with the generated ones.
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curves. The input data contains both training data and physical
parameters. This versatility of the technique provides a unique
opportunity to test this on other data sets. Using Equation (1),
we have MAEs of 0.0995 and 0.0339 for D1 and D2,
respectively. The MSEs for D1 and D2 calculated on the test
data using Equation (2) are 0.00241 and 0.00153, respectively.

Compared to that for D2, the MAE for D1 is higher, as the
number of training data is relatively lower for D1. We not only
successfully reconstruct the light curves for known values of
the physical parameters but also generate light curves for
physical parameters that are not present in the data set but are
well within the range of the physical parameter values provided
in the respective models. In Figure 3, we present the
reconstructed light curves and the corresponding loss values
for the CVAE. Based on these results, we proceed to generate
light curves for different combinations of physical parameters
and verify those as presented in Figure 4. The obtained results
are consistent with the KN evolution presented in the model.
Comparing the plots in Figures 3(a) and 4, as mentioned in
Section 5, we can see more variations in the latter, and for the
latter figure the light curves are truncated to 14 days while in
the former, the CVAE-generated light curves are extended until
the end. For the plots generated from D2, since there is no
significant change of astrophysical importance, we truncate the
light curves to 14 days. Model evaluation is performed with the
test data, and in the current work, we move a step ahead to
evaluate performance via the confidence interval (Figure 6) and

MSE (Figure 7) between the CVAE-generated and true light
curves by taking physical parameters from D2†, which contains
the physical parameters from the test set as well as entirely new
physical parameters that are absent in the training, test, and
validation sets. Therefore, as mentioned in Section 4, we use
the physical parameter combination from Table 2 to produce
Figure 7. Therefore, when evaluating performance on these sets
of previously unseen parameters, we simulate the real scenario
akin to observing a new KN. In Figure 6, we present the 90%
confidence interval between the generated and true light curves
in different filter bands of u, g, r, i, z, and y having a chirp mass
of 1.2Me, a mass ratio of 0.7, a 0.15 fraction of the remnant
disk, and a viewing angle of 60°. The true light curves for this
set of parameters are not included in the training, test, or
validation data set; thus this data is unseen to the network. To
plot the confidence interval, we take the mean light curves from
the 2000 CVAE-generated light curves for the above physical
parameter values [1.2Me, 0.7, 0.15, 60°] in each filter band.
Each result is highlighted with a color-shaded region for each
filter band including the true light curve. Here we see good
agreement between the true and generated light curves, which
provides supporting evidence in favor of the performance of the
CVAE. In addition to the above, we calculate the MSE between
the generated and true light curves, where we obtain an error
that is always within (0.015–0.08) for the above set of physical
parameters. To provide further evidence of the CVAE's
performance, we illustrate the MSE calculated over the entire

Figure 6. This figure corresponds to the 90% confidence plot for the CVAE-generated and true light curves in the g, r, z, y, i, and u bands that have the physical
parameters of 1.2Me chirp mass, 0.7 mass ratio, 0.15 fraction of the remnant disk, and a viewing angle of 60°. True values of the light curves for the above parameters
are represented by the solid lines in each color-filled region. We find quite satisfactory agreement between the true and CVAE-generated light curves. The light curves
corresponding to the above parameters are taken from the D2† data set and thus are entirely new to the CVAE for prediction and generation.
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parameter space while considering the following values of
physical parameters for the different filter bands: 1.0Me,
1.2Me, 1.4Me, 1.6Me, and 1.8Me for the chirp mass region;
45°, 60°, 75°, and 90° for the viewing angle region; 0.15, 0.20,
0.25, 0.30, 0.35, and 0.40 for the fraction of the remnant disk
parameter; and 0.70, 0.75, 0.80, 0.85, and 0.90 for the mass
ratio parameter (as shown in Figure 7). To calculate the MSE,

we use the mean of 2000 CVAE-generated light curves and the
true light curves for the respective sets of physical parameters.
Figure 7 consists of four frames, each having an inset, which

show the error calculated for the respective value of the
physical parameter (along the x-axis) across the parameter
space of the other physical parameters. For the chirp mass
frame (upper left), the error is calculated for different chirp

Figure 7. In this figure, we present the performance of the CVAE spanning the whole parameter space of chirp mass (1.0Me–1.80Me), viewing angle (45°–90°),
fraction of the remnant disk (0.15–0.40), and mass ratio (0.70–0.90) in the u, g, i, r, z, and y filter bands represented by the different color bars grouped accordingly.
The y-axis represents the mean squared values whereas in the x-axis we have the respective physical parameter values for which we have calculated the overall MSE in
the different filter bands shown with different color bars. For the chirp mass frame (upper left), the MSEs for the different filter bands are grouped by the chirp mass
values, 1.0Me, 1.2Me, 1.4Me, 1.6Me, and 1.8Me, while covering the parameter space of viewing angle, mass ratio, and fraction of the remnant disk. For the viewing
angle frame (upper right), we show the error for 45°, 60°, 75°, and 90° viewing angles calculated over the entire parameter values of chirp mass, mass ratio, and
fraction of the remnant disk. In the remnant disk frame (lower left), for values of 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40 of the fraction of the remnant disk, errors are
grouped in the different filter bands encompassing the chirp mass, viewing angle, and mass ratio. For the mass ratio frame (lower right), errors corresponding to mass
ratio values of 0.70, 0.75, 0.80, 0.85, and 0.90 are shown as grouped bar plots across the parameter space of chirp mass, viewing angle, and fraction of the remnant
disk for the different filter bands. In the insets for all the frames, we show the CVAE's performance over the entire parameter space, as discussed above, obtained from
the CVAE-generated g-band light curves. Each dot in the inset corresponds to the calculated value of the MSE of a light curve for the relevant set of physical
parameters. For each of the histograms corresponding to a different parameter space, error bars are shown. The histograms without error bars correspond to a single
light curve that is available for calculating the MSE between the true and CVAE-generated light curves.
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masses (1.0Me, 1.2Me, 1.4Me, 1.6Me, and 1.8Me) across the
parameter space of the viewing angle, the mass ratio, and the
fraction of the remnant disk, grouped together for each value of
the chirp mass for the different filter bands. For the viewing
angle frame (upper right), for values of 45°, 60°, 75°, and 90°
the error is calculated across the chirp mass, mass ratio, and
fraction of the remnant disk and grouped accordingly. For
calculating the MSE for the fraction of the remnant disk, we
consider 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40 across the
parameter space of chirp mass, viewing angle, and mass ratio
grouped by the parameter values in the different filter bands. In
the mass ratio frame (lower right), the error is calculated for
mass ratio values of 0.70, 0.75, 0.80, 0.85, and 0.90, across the
parameter space of chirp mass, viewing angle, and fraction of
the remnant disk grouped accordingly. Certain sets of physical
parameters in certain filter bands tend to have comparatively
high MSE values, adding more to the overall error. For
instance, the above case can be seen in the viewing angle frame
in Figure 7 for the 45° viewing angle in the i band. However,
the overall error is considerably low. In the insets of Figure 7,
the g-band results are shown, where each dot refers to the MSE
of a single light curve for the respective set of physical
parameters across the parameter space. Here also, we find that
for certain sets of physical parameters, the error value is higher
as evident from outliers in the 1.8Me chirp mass, 60° viewing
angle, 0.15 fraction of the remnant disk, and 0.80 mass ratio in
the insets. In comparison to one–one MSEs, the overall error is
higher as it includes all the parameter sets across the individual
parameter considered. From the above result, we find the
regions in parameter space for the different filter bands where
the CVAE has comparatively unsatisfactory results. While
comparing Figures 3 and 4 for D1 with the results from D2 in
Figure 5, one will find similar deviations in the tail of the light
curves after 10 days for the different sets of physical parameters
shown in the plots presented in the appendix (Figure A1 and
B1). In the main text, only one such plot (Figure 5) is shown
for a single set of physical parameters, where the deviations are
smaller. One of the main reasons for such different deviations is
the distribution of the latent space owing to the difference in the
number of training data, since D1 has less training data than D2.
In addition to the above, a summary of the network (Figure C1)
is presented in the appendix for reference.)

7. Conclusion

In this paper, we look into rapid generation of KN light
curves based on different physical parameter values while
implementing a CVAE. We present a methodological approach
to our idea. In the initial stages, a performance check is carried
out while inspecting the loss curves during the training and
validation. We also evaluate the CVAE's performance on
different physical parameters from the test data, and hence
perform rapid interpolation of light curves and subsequently
provide evidence that the results are quite in agreement with the
true light curves. However, in certain cases, we find that for D1,
as compared to the original light curves, the generated light
curves tend to deviate after 8 days but for D2 we do not see
such deviations in later days. Here, we use publicly available
KN data to provide a proof of concept, but this does not put any

limitation on our technique. This technique can also be used for
similar kinds of data analysis comprising data related to other
domains in astronomy and astrophysics. The striking point for
such an approach is that it reduces the time that is required by
simulations to rerun and reproduce similar results for different
physical parameters every time. We train the data that are
available and produce the desired results rapidly rather than
adjust the simulation code each time and the saved CVAE
model can be used to generate the required KN light curves. In
this work, by speeding up the light-curve generation by 1000
times, we have achieved rapid results. Besides the current
application for KNe, the CVAE technique demonstrated above
has prospective applications in a similar procedure where data
are available for training, test, and validation. In the current
work, since the detailed calculations of the simulation are not
incorporated into the CVAE, we do not expect any new results,
but at the same time, the trained CVAE produces results
without looking into the particulars of the simulation. An
alternative approach for generating simulation results, with the
help of ML tools, without actually re-executing the simulation
is presented here. Additionally, this method can accommodate
other KN models where data are available to be fed into the
network. This kind of CVAE approach also has potential to be
utilized for rapid parameter estimation not only for KNe but
also for other astrophysical sources for which rapid data
analysis is required.
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Appendix A
Additional Results of Other Filter Bands after

Implementing CVAE on D1

Figure A1 shows the comparative analysis of the light
curves for D1 with changes in ejecta masses, ejecta velocities,
and lanthanide fractions for the different filter bands.
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Figure A1. This figure encompasses the CVAE-generated light curves for different values of physical parameters for the respective filter bands. In each row of the
figure, the light curves correspond to different ejecta masses having values of (0.1Me, 0.01Me, 0.001Me) with the ejecta velocity (0.03c) and lanthanide fraction
(10−5) kept constant, to different ejecta velocities having values of (0.01c, 0.03c, 0.05c) with the ejecta mass (0.025Me) and lanthanide fraction (10−5) kept constant,
and to different lanthanide fractions having values of (10−4, 10−5, 10−9) with the ejecta mass (0.025Me) and ejecta velocity (0.03c) kept constant for the i, r, y, or z
filter band.
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Appendix B
Additional Results of Other Filter Bands after

Implementing CVAE on D2

Figure B1 shows the evolution of the light curves for D2
with changes in chirp mass, viewing angle, mass ratio, and the
fraction of the remnant disk for different filter bands.

Figure B1. This figure demonstrates the evolution of light curves for the different physical parameters of chirp mass, viewing angle, mass ratio, and fraction of the
remnant disk. In each row of the plot, we bring together the CVAE-generated light curves for different chirp mass values (1.0Me, 1.2Me, 1.4Me, 1.6Me, 1.8Me)
while keeping the viewing angle (60°), mass ratio (0.9), and fraction of the remnant disk (0.15) constant; those for different viewing angles having values of (10°, 30°,
45°, 60°, 75°, 90°) from the pole while keeping the chirp mass (1.2Me), mass ratio (0.9), and fraction of the remnant disk (0.15) constant; those for different mass
ratios of (0.70, 0.75, 0.80, 0.85, 0.90) while keeping the chirp mass (1.2Me), fraction of the remnant disk (0.15), and viewing angle (60°) constant; and those for
different fractions of the remnant disk having values of (0.15, 0.20, 0.25, 0.30, 0.35, 0.40) while keeping the chirp mass (1.2Me), mass ratio (0.9), and viewing angle
(60°) constant for the i, r, y, z, or u filter band.
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Appendix C
Summary of the CVAE

Figure C1 shows a summary of the CVAE network.
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Figure C1. This is a summary of the CVAE implemented in the current work.
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