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A B S T R A C T 

Fulfilling the rich promise of rapid advances in time-domain astronomy is only possible through confronting our observations 
with physical models and extracting the parameters that best describe what we see. Here, we introduce REDBACK ; a Bayesian 

inference software package for electromagnetic transients. REDBACK provides an object-orientated PYTHON interface to o v er 
12 different samplers and o v er 100 different models for kilono vae, superno vae, gamma-ray burst afterglows, tidal disruption 

e vents, engine-dri ven transients among other explosive transients. The models range in complexity from simple analytical and 

semi-analytical models to surrogates built upon numerical simulations accelerated via machine learning. REDBACK also provides 
a simple interface for downloading and processing data from various catalogues such as Swift and FINK. The software can also 

serve as an engine to simulate transients for telescopes such as the Zwicky Transient Facility and Vera Rubin with realistic 
cadences, limiting magnitudes, and sk y co v erage or a hypothetical user-constructed surv e y or a generic transient for target-of- 
opportunity observations with different telescopes. As a demonstration of its capabilities, we show how REDBACK can be used to 

jointly fit the spectrum and photometry of a kilonova, enabling a more powerful, holistic probe into the properties of a transient. 
We also showcase general examples of how REDBACK can be used as a tool to simulate transients for realistic surv e ys, fit models 
to real, simulated, or pri v ate data, multimessenger inference with gravitational waves, and serve as an end-to-end software toolkit 
for parameter estimation and interpreting the nature of electromagnetic transients. 

Key w ords: softw are: data analysis – black hole–neutron star mergers – gamma-ray bursts – neutron star mergers – transients: 
supernovae – transients: tidal disruption events. 
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 I N T RO D U C T I O N  

apid advances in electromagnetic telescope sensitivity and surv e y 
apabilities are revolutionizing transient astronomy. However, to 
ealize the full promise of the rich and large photometric and 
pectroscopic data sets, we need a robust toolkit for simulating what 
e expect to see, building and exploring our models and fitting the
bserv ations. Such adv ancements can enable us to ultimately learn 
he physics that drives these transients, optimize our surv e y strate gies
nd instruments, and gain insights into the lives and afterlives of stars
 E-mail: nsarin.astro@gmail.com 

e  

r
(  
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ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
nd the evolution of our Universe. Such a tool must also be modular
nd open-source, easily adaptable to an individual user’s needs and 
fficiently maintained and upgraded. 

Several iterations of open-source software have served important 
oles in improving our understanding of transients. For example, 
OSFIT (Guillochon et al. 2018 ), a modular package that has been
sed for parameter estimation of several electromagnetic transients 
uch as tidal disruption events (Mockler, Guillochon & Ramirez-Ruiz 
019 ), superluminous supernovae (Nicholl, Guillochon & Berger 
017 ), and kilonovae (Villar et al. 2017b ). The SNCOSMO (Barbary
t al. 2022 ), and SN AN A (Kessler et al. 2009 ) software suites that are
eadily used to fit Type Ia supernovae to enable cosmological analyses 
e.g. Vincenzi et al. 2024 ) or study the detectable rates of supernovae
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or different surv e y designs (e.g. Bom et al. 2024 ). 3ML (Vianello
t al. 2015 ), which provides a cohesive framework utilizing existing
nstrument-specific software to best capture how the data is generated
nd perform detailed modelling of gamma-ray bursts (GRBs) across
ata from multiple instruments (e.g. Klinger et al. 2024 ). Haffet
Yang & Sollerman 2023 ), which enables data-driven reconstruction
f supernova bolometric luminosity from multiband photometry
nabling a more direct probe to study the explosion properties
e.g. Dong et al. 2023 ). NMMA (Pang et al. 2023 ), that provides
achine-learning based ‘surrogates’to radiative transfer simulations

f kilonovae, enabling inference with kilonova models that include
he most physics. The NMMA package also provides an interface for
ointly analysing electromagnetic and gra vitational-wa ve data such
s for the first gra vitational-wa ve observation of a binary neutron
tar (BNS) merger, GW170817 (Abbott et al. 2017b ), enabling
trong constraints on the behaviour of nuclear matter (Koehn et al.
024 ). 
Although these software packages have driven significant progress

n electromagnetic transient astronomy, several limitations must be
ddressed to take full advantage of the currently available and forth-
oming electromagnetic data. For example, models for explosive
ransients are under constant development and often make several
nderlying assumptions. Ho we v er, these packages abo v e are limited
o a small library of implemented models and inflexible interfaces
o change or add new models. This prevents detailed studies into
odelling systematics or the use of the best models for any given

ransient. To truly leverage the data and maximally extract insights
nto these transients, open-source packages must come equipped with
 large variety of built-in models and are routinely updated to capture
he best theory has to offer. Ideally, such packages also provide a
implified interface to enable end users to drop-in replacements or
odify features for inbuilt models or with minimal interaction with

he source code. The last point is pertinent as this could help remo v e
he burden on development teams to keep pace and implement
evelopments from transient modelling, particularly in the scenario
here key developers leave the field, as has been the case of some
f the abo v e packages. 
Similarly, there are constant impro v ements to Bayesian inference

echniques that are not captured by several of these packages abo v e
s they typically use at most one sampling package such as EMCEE

F oreman-Macke y 2015 ). It is worth noting that some of these
ackages are also not Bayesian, failing to provide robust estimation
f the uncertainty in estimating parameters from any fit. The lack of
ultiple implemented packages prevents cross-sampler validation

a valuable tool to determine if results are robust) or leveraging
he benefits of different samplers, such as evidence calculation for
ayesian model selection. Other sampling algorithms can also be
etter tuned for specific transient problems (dramatically improving
ampling wall-clock time), allowing for the use of the best tools for
he task at hand. Similarly, there are also several practical benefits
o having access to multiple different sampling algorithms, such
s a better ability to capture multimodal posterior distributions or
arallelization. 
A critical validation step in any inference workflow is to test how
odels perform across the parameter space and tests with complete

nd-to-end analyses, that is, from simulation to fitting workflow.
hile the abo v e packages hav e been tested in various ways, the y do

ot all provide a cohesive framework to both simulate model outputs
for a variety of different formats such as flux density or magnitudes
r bolometric luminosity) and realistic observations (for real surv e ys
r target-of-opportunity, ToO, observations) and fit them. This is a
imitation of many of these packages, as we can only truly determine
NRAS 531, 1203–1227 (2024) 
ias in parameter estimation by performing simulations with the
ame tools we use to fit and control the data generation process.
roperly capturing the data-generation process is also instrumental
or accurate transient analyses. The bulk of the abo v e packages can
nly work with the simple assumption of a Gaussian likelihood (i.e.
he noise distribution is Gaussian around the true input model). This
imple noise assumption is known to be incorrect for the majority of
urrent and projected future observations and will undoubtedly cause
roblems as we continue to observe each transient more frequently
nd with higher fidelity. 

Higher fidelity and more e xtensiv e observations of transients also
pen up another challenge to maximally leverage our data: astronom-
cal events are now readily observed in multiple ways. An example
lready described abo v e w as the multimessenger gravitational-w ave
isco v ery of the BNS merger GW170817 (Abbott et al. 2017b ),
hich had an afterglow observed across the electromagnetic spec-

rum (Hallinan et al. 2017 ; Alexander et al. 2018 ; Fong et al. 2019 ;
amb et al. 2019a ), a kilonova from near-infrared to ultraviolet

UV, Pian et al. 2017 ; Smartt et al. 2017 ; Villar et al. 2017b ),
ery-long baseline interferometry (VLBI, Mooley et al. 2018 ), and
ra vitational-wa ve data (Abbott et al. 2017a ). While packages such
s NMMA can perform a joint analysis of the gravitational wave
nd electromagnetic photometry, they fail to include the spectrum
r VLBI data. Although these constraints could be folded through
fter the photometric and gra vitational-wa ve analysis, you then lose
he significant benefits offered by the full Bayesian framework
Gianfagna et al. 2023 ; Ryan et al. 2023 ). The opportunity to
ointly fit the spectrum and photometry also provides a holistic
ook into the properties of the transient, where the photometric
nd spectroscopic analyses can often tell a contradictory story.
oreo v er, a fle xible framework for combining datasets could also

nable Bayesian hierarchical modelling, a powerful technique to
nco v er the properties of a population. 
Here, we introduce REDBACK , an open-source, end-to-end

ayesian Inference software package for simulating and fitting
lectromagnetic transients. REDBACK provides an object-orientated
YTHON interface to o v er 12 sampling software and o v er 100
odels for se veral dif ferent electromagnetic transients. Furthermore,

EDBACK provides a simplified interface to download data for
ultiple transients from various catalogues, handling processing

o a homogeneous format, removing the burden from end users
o fully understand the peculiarities of different data sources. For
ll models implemented in REDBACK or user-provided models, end
sers of REDBACK can simulate transients for actual surv e ys such
s the Large Synoptic Surv e y of Space and Time (LSST, Ivezi ́c
t al. 2019 ) and Zwicky Transient Facility (ZTF, Bellm et al. 2019 ),
r a custom surv e y, alongside ToO observations for any collection
f observatories/telescopes. Users can fit this simulated, private,
r publicly available data through Bayesian inference alongside
ombinations of different data types such as VLBI data, gravitational-
ave data, and a transient spectrum and photometry. REDBACK is

lso built on modern PYTHON , with many adopted practices to aid
ontinual dev elopment, continuous inte gration, and an e xtensiv e
ibrary of unit tests and examples which ensure that the primary
eatures of REDBACK remain stable through future development. 

REDBACK pro vides sev eral advantages o v er other software pack-
ges and mitigates the aforementioned issues: 

(i) An e xtensiv e library of inbuilt models and a simple interface
or users to add their o wn. Se veral models implemented in REDBACK

re direct impro v ements to previous models or model transients one
an not model in other packages. 
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(ii) An engine to simulate realistic transients for surv e ys and ToO
bservations and perform inference, that is, a tool to validate an entire
nference workflow or optimize surv e ys. 

(iii) A tool to access and process photometric data alongside 
uxiliary data such as sky position from many publicly available 
atalogues and brokers. 

(iv) A modular and flexible interface, users can swap likelihoods, 
odels, and plotting without ever modifying the source code. 
lternati vely, change ho w existing aspects of REDBACK function by 
assing their own function to existing functional modules. 
(v) Simplified interface (replace a string) to o v er 12 different 

pen-source samplers, enabling cross-sampler validation or use of 
amplers better tuned for transient inference or have additional 
apabilities such as multiprocessing. 

(vi) Modern PYTHON software development practices, including 
ontinuous integration and unit-testing to ensure core software 
eatures remain functional, even if core developers leave the field. 

This paper is intended to describe the capabilities and mark the 
ersion 1.0 release of REDB ACK . REDB ACK is installable via pip
nd available at https:// github.com/ nikhil-sarin/ redback. We note 
hat REDBACK has been open-source and distributed under the GPL 

icence since 2022 March. Earlier versions of REDBACK have already 
een used in previous publications, which we refer the interested 
eader to see some of the use cases for REDBACK (Sarin, Lasky &
shton 2020a , b ; Sarin et al. 2021 , 2022a , b ; Sarin & Lasky 2022 ;
e v an et al. 2024 ; Schulze et al. 2024 ; Omand & Sarin 2024 ;
osswog et al. 2024 ; Sarin & Metzger 2024 ). 
This paper is structured as follows: in Section 2 , we describe

he design objectives of REDBACK , how the different parts of
he software interact, and the three typical workflows we expect 
EDBACK to be used for. In Section 3 , we describe the different
unctional modules in REDBACK and how they are used in various 
orkflows. In Section 4 , we showcase a new scientific analysis 

nabled by REDBACK ; the joint fitting of the spectrum and pho-
ometry of a kilonova. In Section 5 , we briefly describe features
n REDBACK that will be added in future releases and conclude 
n Section 6 . In the appendix, we showcase the general interface
ith detailed code snippets of how to use REDBACK , alongside 
ore detailed examples. In particular, in Appendix A , we show 

o w to do wnload and process data, set up the inference workflow,
everal plotting methods and simulate transients. This basic interface 
s followed by more detailed examples in Appendices B and C
here we demonstrate the different capabilities of REDBACK . In 
articular, we first show how REDBACK can be used to jointly 
nalyse a multimessenger BNS signal with X-ray and gravitational- 
ave data and then to fit different types of real electromagnetic 

ransients. 

 D E S I G N  A N D  IMPLEMENTATION  

 core design objective for REDBACK is to be truly modular, with
he flexibility to adapt to the different requirements/preferences of 
nd users and for users to use different parts of the software without
equiring additional o v erhead or modifying the source code. 

Second, REDBACK must be flexible to both serve as a workhorse 
n expert workflows in transient astronomy and as an accessible tool 
or newcomers to the field. In particular, while advanced users can be
xpected to modify or interact more directly with various aspects of
he REDBACK software, novice users must be able to use all aspects
f REDBACK from data collection, simulation, and fitting with just a 
ew lines of code. 
Third, where possible, we also aim to leverage other open-source 
oftware to reduce the burden on core developers of REDBACK and
etter keep pace with developments in other areas. For example, we
re tightly integrated with the BILBY framework for sampling. This 
rovides a simplified interface for end users to multiple open-source 
amplers and access to a large and active development team that
aintains BILBY and different sampling packages. 
To address these design objects, all primary functional modules of 

EDBACK are built as PYTHON classes or functions. These functional 
odules can be readily modified by end users via k eyw ord arguments

r replaced entirely within a workflow with other functional modules 
mplemented in REDBACK or something the user provides. This 

odularity extends to primary modules described below and to more 
ractical features such as plotting or where REDBACK outputs are 
tored. 

This modular interface addresses some critical limitations with 
revious packages described in the introduction. F or e xample, all
EDBACK models are implemented as callable PYTHON functions. 
hese models also have minimal dependencies and do not depend on
ther aspects of the software, enabling users to e v aluate a model as
hey would with any other PYTHON function. Moreover, all models 
n REDBACK can produce different outputs, for example, bolometric 
uminosity, a spectrum, a flux, a magnitude, a flux density, or auxiliary 
nformation such as the photospheric v elocity. F or man y REDBACK

odels, users can also change critical assumptions of the model, such
s the spectral energy distribution (SED), by passing in a different
 eyw ord argument. This allows end users to generate model outputs
or any arbitrary input, better understand the effects of different 
arameters, or change modelling assumptions without modifying the 
ource code. It also facilitates holistic studies by fully considering 
 arious observ ations, for example, spectrum and photometry. End 
sers can also replace a model with their own PYTHON function,
eeping intact all of the other functionality of REDBACK , making it
ignificantly easier to use new and impro v ed models with REDBACK .

Advanced users can also change the likelihood, that is, their as-
umptions about the data-generating process or the prior distribution 
n model parameters with different implementations in REDBACK or 
heir implementation, again, without needing to change the source 
ode. This enables advanced users to adapt their fitting or simulation
orkflows for more sophisticated analyses. At the same time, such 

hoices are made by default for novice users, who can perform such
asks with minimal domain e xpertise. Moreo v er, different sampling
lgorithms and software packages can be used with minimal effort 
y simply changing the string referring to a sampler. This addresses
he limitations of previous packages with inflexible interfaces for 
sers to change assumptions about how the data are processed or
enerated and leverage the best samplers for the respective task. 
In Fig. 1 , we show the different functional modules of REDBACK ,

mplemented as either a PYTHON subpackage, a PYTHON module, a 
YTHON class or as a PYTHON function and how they interact for the
hree most common workflows we expect this software to be used
or. 

A: Fitting a real transient . We anticipate that one of the most
ommon use cases for REDBACK will be fitting data of a real
strophysical transient. This workflow typically involves getting 
ata from one of the catalogues using the get data subpackage
n REDBACK , or users can provide pri v ate data. The user will then
se this data to create a specific Transient class object from
he transient subpackage, which loads the data in a homogeneous 
ormat and can be used for plotting the data or additional processing,
MNRAS 531, 1203–1227 (2024) 
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M

Figure 1. Flowchart showcasing the different subpackages, modules, and classes of REDBACK and how they interact for different workflows. 
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uch as converting flux data to luminosity. The user then passes this
ransient class object along with a string referring to a model

rom transient models subpackage or their own PYTHON -
rapped model, an instance from the prior class, an instance of the

ikelihood class and a string referring to a sampler that is available
n BILBY (Ashton et al. 2019 ; Romero-Shaw et al. 2020 ). This will
erform fitting through Bayesian inference and obtain a result
lass object. The result object contains the posterior, and other
roperties such as the Bayesian evidence. This result class can
lso be used to make plots such as the fitted light curve, the corner
lot, or the cumulative distribution function of all parameters, which
re internally handled by a separate plotting module. We emphasize
hat for the novice user, choices like the likelihood, prior, sampler
hoice and plot aesthetics are made by default, but more advanced
sers can change these as they desire. 

B: Fitting a simulated tr ansient. Man y users will also fit simulated
ata to verify the inference workflow or predict constraints from
ock observations. In this workflow, the user would start with a
odel from transient models or supply their own model. Then,

se the simulation module to create synthetic data. After the
reation of this simulated data, the workflow for fitting is the same
s workflow A. 

C: Simulating a transient or a population of transients. Users
ay also wish to create a population of transients, for example,

o understand how many afterglows LSST will see in a year or
o understand the selection effects of surv e ys. These workflows
equire choosing a model from transient models or supplying
 PYTHON -wrapped model and passing this to the simulation
odule alongside a prior object which describes the distribution of

ach parameter in the model that constitutes the population. Complex
rior constraints can be placed on this population through the use of
rior constraints functional module. 

The abo v e briefly describes ho w dif ferent aspects in REDBACK

nteract for dif ferent workflo ws. We no w gi v e a general o v erview
f the REDBACK software and describe each functional module’s
apabilities in detail and how it can be modified. 
NRAS 531, 1203–1227 (2024) 
 SOFTWA RE  PA  C K A  G E  OV ER  VI EW  

EDBACK is built predominantly on a class structure and almost every
spect of the software exists as an independent PYTHON class. Here,
e describe each of these different functional modules and their pri-
ary functionality. We stress that these modules are standalone and

an be used independently to adapt to different needs and workflows,
r modified via k eyw ord arguments or replaced to provide additional
unctionality. 

.1 Data interface 

EDBACK provides an interface to download and process data
rom multiple catalogues through the get data subpackage. In
articular, this includes the flux, flux density or the photon arri v al
ime data for GRBs detected by the Neil Gehrels Swift Observatory
vailable at Swift Data Centre (Evans et al. 2010 ), the magnitude or
ux density data of transients from ZTF from LASAIR (Smith et al.
019 ) or FINK (M ̈oller et al. 2021 ) which in the future are expected
o also host transient light curves from LSST (Ivezi ́c et al. 2019 ),
he archi v al GRB data from Burst and Transient Source Experiment
BATSE) (Fishman et al. 1994 ) and compilation of optical transient
ight curves available at the Open Access Catalog (OAC, Guillochon
t al. 2017 ). 

For each of the abo v e catalogues, the get data module pro-
ides a one line interface to download and process the data into
 PANDAS data frame and save it as a human-readable file in
n appropriate location to integrate with the rest of REDBACK .
his module also attempts to find additional metadata such as

he redshift of the transient, the GRB photon index, T90 among
ther properties and process the data to add additional attributes
uch as the integrated flux, flux density and their respective
rrors. 

As the data are stored as human-readable file and readable as
 PANDAS data frame, the user can easily add additional pri v ate
ata or verify and modify any erroneous data. The get data can
e used independently of all other parts of REDBACK and may be
sed to simply process a large quantity of transient data from public
rchives. 
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.2 Transient classes 

he primary unifying module of REDBACK are the Transient 
lasses that are available through the Transient subpackage. 
hese are separated into two main types, a generic transient class
hich is applicable for any type of transient and an optical tran-

ient class. These classes serve as parent classes for five other 
lasses; prompt , afterglow , kilonova , supernova , and 
de which provide a more seamless interface for the specific type 
f transient, any additional processing such as converting the flux 
ata to a luminosity and modify some default behaviour, such as
abels for plotting, where plots are saved etc. We note that the
fterglow class is further split into a short and long GRB class
ut these are functionally equi v alent and only differ in locations of
etadata. 
For all transient classes, we provide one-line class methods to load 

he data from different catalogues obtained via the get data mod- 
le, or from the simulation module (described in Section 3.4 ). 
he Transient objects can also be initialized independently of any 
lass method by specifying the observed properties. In Appendix A2 , 
e sho w ho w to initialize these Transient objects for different
orkflows. 
All transient objects also have two important attributes; 
ata mode and use phase model . The former is an attribute
hich dictates what REDBACK assumes to be the mode of data for

he transient, for example, magnitude for magnitude data, while 
he latter is a Boolean switch which dictates whether the transient 
as observed times in reference to a known start time (as usually the
ase for an afterglow) or is in Modified Julian Days (MJD) without a
eference (as usually the case for most other transients). Again, these 
ttributes affect choices such as the labels for plotting and where 
lots are saved but also in some cases the default likelihood used by
EDBACK . 

.3 Models 

hile the most desirable method would be to confront observations 
ith the best models that include the most physics (typically 
ydrodynamical and radiative transfer simulations), such models 
re not tractable for fitting given the demanding computational 
equirements of Bayesian inference (each model must be e v aluated 
 v er a range of parameters at least O(10 4 ) times to fit a typical
ransient). To be tractable for inference, all models in REDBACK are 
ither analytical, semi-analytical, or surrogates built with machine 
earning from numerical simulations. The latter are provided by 
nother standalone software package redback surrogate that 
s available independently but we consider as part of the RED-
ACK software stack. Here, we describe the models for various 
ifferent transients available in REDBACK and how they can be 
odified. 
To remain true to our driving aim of modularity, all models are

allable PYTHON functions and can be called on an arbitrary set
f values with minimal dependencies. These functions can all be 
asily modified through the use of dependency injection (described 
n Section 3.3.1 ) without needing modify the REDBACK source code 
r replaced entirely within the rest of the workflow with a user-
rovided model. Most REDBACK models can provide outputs in 
ifferent formats, for e xample, luminosity, inte grated flux, magnitude 
r flux density enabling them to be used to fit any type of data format.
or magnitude and integrated flux data, REDBACK will integrate 

he spectrum and calculate the band pass magnitude/flux. This 
ehaviour could be easily modified to use a flux density to magnitude
onversion to further alleviate computational demands. We note that 
his behaviour is enabled by default for afterglow models where the
ffect of assuming a flux density to magnitude conversion as opposed
o integrating a band pass is minimal. 

.3.1 User-defined models and dependency injections 

s alluded to abo v e, REDBACK is built on a flexible interface which
llows the user to use their model with all other aspects of REDBACK .
he only requirement is that the user-defined model is a PYTHON 

unction with the first input being the time of observations and the
utput being the desired output, for example, flux density if the
ser wants to fit flux density data. Once written, this PYTHON 

unction can be passed to different modules of REDBACK , either to
imulate data or to fit some observations. This workflow also enables
sers to combine REDBACK models, replacing each of the individual 
odels with their own model or a different REDBACK model. 
Many REDBACK models use additional k eyw ord arguments to 

ictate the precise physics of the model. Some k eyw ord arguments
re Boolean switches to turn on/off certain physics, but others require
 more complex object. This pattern is often referred to as dependency 
njection , which allows us to build a more flexible interface. We
mplemented the dependency injection pattern to handle features 
uch as the SED, or the conversion from inspiral parameters to
ilonova parameters, photosphere, or the cosmology used to associate 
 redshift to a luminosity distance. By default, every model has
hese choices set internally but users can make changes to the model
y simply using a different object as a k eyw ord argument which
ould either be an instance of a REDBACK class or a class they write
hemselves. Through these model modifications and dependency 
njections, many REDBACK models can be extended and have their 
hysics changed without ever modifying the source code, alleviating 
he burden on the end user to make a change to a model. Ho we ver, as
he interface is modular, a REDBACK model can also just be replaced
ntirely. 

.3.2 Specific transient models 

road-band GRB afterglow. GRBs are typically followed by lower 
nergy broad-band emission referred to as afterglow (e.g. Sari, 
iran & Narayan 1998 ). The broad consensus is that the afterglow

s a product of the relativistic jet interacting with the ambient inter-
tellar medium, an interaction that produces synchrotron emission. 
o we ver, there are se veral aspects of afterglow models that are ill-
nderstood, such as the jet structure, that is, the distribution of energy
s a function of angle, or the role of reverse shocks, or additional
mission components, or energy injection. 

REDBACK provides an interface to several different afterglow 

odels. F or e xample, the different jet-structure models implemented 
n afterglowpy (Ryan et al. 2020 ), and implementations of 
everal other physical models described in the literature (Sari et al.
998 ; Sari, Piran & Halpern 1999 ; Gottlieb, Nakar & Piran 2018 ;
amb, Le v an & Tanvir 2020 ; Lamb et al. 2021 ). For each of the
odels, users can make additional modifications to the physics such 

s the inclusion of jet spreading, inverse Compton emission, and 
nergy injection or more specific settings such as the resolution 
f the integration scheme. For other models, users can choose the
xact jet-structure profile, whether the interstellar medium is at a 
onstant density or a wind-like medium etc., and whether the shock
s refreshed. All these modifications are handled through additional 
ptional k eyw ord arguments in the PYTHON function which allows
MNRAS 531, 1203–1227 (2024) 
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he advanced users to make changes as they wish while more novice
sers can a v oid ha ving to make these decisions. 
Alongside these physically moti v ated models we also include

ome purely phenomenological broken power-law models with
ifferent degrees of components. In total, REDBACK includes 21
hysically moti v ated afterglo w models in addition to the five phe-
omenological models, providing coverage of the different physical
ssumptions involved in afterglow modelling and to test the robust-
ess of inferred models across different modelling assumptions. 
Broad-band kilonova afterglow . Similar to a GRB afterglow,

here also exists an expectation for synchrotron emission when the
lower mo ving kilono va ejecta interacts with the ambient interstellar
edium. Ho we ver, unlike models for the GRB afterglow, where we

re aided by decades of observations, there are currently no confident
etections of a kilonova afterglow. Nevertheless, we provide an
nterface to several different kilonova afterglow models described
reviously in the literature (Nakar & Piran 2011 ; Sarin et al. 2022b )
nd make modifications to some of GRB afterglow models described
bo v e to be more suited for a kilonova afterglow (e.g. Gottlieb
t al. 2018 ; Ryan et al. 2020 ). In the future, we will add kilonova
fterglow models more representative of the ejecta distribution we
ee in numerical simulations (Kathirgamaraju, Giannios & Beniamini
019 ; Nedora et al. 2021 ). 
Kilonovae . The re volutionary observ ations of AT2017gfo (e.g.

bbott et al. 2017b , a ; Arcavi et al. 2017 ; Kasen et al. 2017 ; Coulter
t al. 2017 ; Villar et al. 2017a ) pro vided definitiv e evidence of a
hermal transient powered by r -process nucleosynthesis. Ho we ver,
espite the e xtensiv e observations and significant theoretical model
ev elopment, man y aspects of kilonovae remain uncertain. In RED-
ACK we provide implementations of 18 different kilonova models
hich range in complexity and implemented physics. Many aspects
f these models such as the distribution of ejecta mass or the recipe
o relate the BNS or neutron star black hole (NSBH) parameters to
ilonova parameters can be changed through the use of dependency
njection (described in Section 3.3.1 ). 

The simplest kilonova model implemented in REDBACK is a one
omponent kilonova model (Villar et al. 2017b ). Although minimal
n parameters and quick to e v aluate and therefore fit to observations,
his model has already been shown to be unsuccessful in explaining

ultiple aspects of kilonovae observations. To address the inability
f such a simple model to explain observations, we also provide
mplementations of two- and three-component kilonova models
ollowing Villar et al. ( 2017b ) and implementations of MOSFIT

ilonova models (Cowperthwaite et al. 2017 ; Villar et al. 2017b ).
hese models all ef fecti vely ignore the dynamics of the ejecta,
ssuming the entire ejecta component is moving at one velocity,
n assumption that is likely incorrect. We therefore also provide
odels where the ejecta is distributed into shells which expand

omologously, similar in spirit to the model presented in Metzger
t al. ( 2010 ) and Metzger ( 2019 ). Alongside this, we also provide an
nterface to the heating-rate kilonova models (Korobkin et al. 2012 ;
otokezaka & Nakar 2020 ; Dorsman et al. 2023 ), which allow the
ser to describe the velocity and opacity distribution themselves. 
The abo v e models all hav e parameters that describe the kilonova

jecta properties itself, that is, the mass and velocity of the ejecta.
o we ver, it has become increasingly common for kilonova models to
e built upon the BNS or NSBH parameters which are then related to
he ejecta parameters with a series of recipes from numerical relativ-
ty simulations. We provide several implementations of these models
ncluding models for BNS and NSBH, including, for example, the
NS model implemented in MOSFIT (Nicholl et al. 2021 ) which

ncludes additional physics such as shock cooling to describe the
NRAS 531, 1203–1227 (2024) 
arly optical light curve (Piro & Kollmeier 2018 ), or implementations
f models presented in Coughlin et al. ( 2019 ). 
While the abo v e models are all semi-analytical, we also provide

hree models that are machine-learning surrogates to numerical
imulations. These surrogates are provided in the optional package
edback surrogate (described in more detail below), and are

mplementations of surrogates built in KilonovaNet (Luko ̌siute
t al. 2022 ). In the future, we will continue to add more kilonovae
odels (Banerjee et al. 2020 ; Korobkin et al. 2021 ) and allow greater
e xibility to e xisting models such as changing the calculation of the

hermalization efficiency. 
Supernovae . REDBACK contains man y superno v a models of v ary-

ng levels of complexity. Most of the models have both a bolometric
mplementation and an implementation for multiband photometry.
his setup allows the user to fit bolometric luminosity, magnitude,

ntegrated flux, or flux density data. Similar to MOSFIT where
hysics such as the interaction process, photosphere, and SED can
e swapped, REDBACK supernovae models can do the same since
hey are implemented using dependency injection. For all models,
hese aspects are chosen by default corresponding to the physics
mplemented but can be swapped without modifying the source code
or a different module to capture different physics. 

The simplest model, such the e xponential-power-la w model, is
urely phenomenological and built upon no physics in terms of
uminosity but assumes a dif fusi ve photosphere with a temperature
oor, and a blackbody SED. Other models are more physically
oti v ated such as several variations of the Arnett ( 1980 , 1982 ) model

or 56 Ni-po wered supernov ae including a version which also incor-
orates shock cooling, a version that incorporates line absorption
or modelling Type Ia supernovae, and a version which incorporates
ynchrotron emission for modelling Type Ic supernovae. Then there
re models for circumstellar (CSM) interaction powered supernovae
Chatzopoulos et al. 2013 ; Villar et al. 2017a ; Jiang, Jiang & Ashley
illar 2020 ) as well as a mix of CSM and 56 Ni power. We also

nclude other models similar to those available in MOSFIT , such as the
asic magnetar , slsn , and magnetar + nickel models

Nicholl et al. 2017 ; Guillochon et al. 2018 ), as well as new models
hich include non-vacuum dipole spin-down (Lasky et al. 2017 ) and

jecta acceleration from the pulsar wind nebula (Sarin et al. 2022b ;
mand & Sarin 2024 ). 
Again, through the use of dependency injection, these models can

e easily modified to capture different physics. We also provide an
nterface to supernova models implemented in SNCOSMO (Barbary
t al. 2022 ), which further amplifies the library of supernovae
odels available in REDBACK . In future releases, we will be adding

urrogate models to hydrodynamical/radiative transfer simulations
f interaction powered supernovae, among other models. 
Engine-driven transients . Distinct from the magnetar-driven su-

ernovae models described above, we also provide a general class of
agnetar driven models. Such models aim to capture the emission

hat would be produced in a magnetar-driv en kilono va or a magnetar-
riven fast blue optical transient (Drout et al. 2014 ; Arcavi et al.
016 ). Se veral dif ferent models are implemented such as those that
apture the dynamical evolution of the nascent neutron star (Sarin
t al. 2022b ) or the dynamical evolution of the ejecta (Metzger & Piro
014 ; Sarin et al. 2022b ). We also include models with relativistic
onsiderations (Yu, Zhang & Gao 2013 ; Sarin et al. 2022b ), non-
acuum dipole spin (Lasky et al. 2017 ), and models with variation
n their treatment of the thermalization efficiency or gamma-ray
eakage (Wang et al. 2015 ; Sarin et al. 2022b ). We also include
n implementation of the trapped magnetar model that has been
uggested as an explanation for the enigmatic fast X-ray transient,
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DF-S XT1 (Sun et al. 2019 ). In the future, we will add models to
apture energy injection from fallback accretion onto a central black 
ole. 
Millisecond magnetar . Ever since the launch of Neil Gehrels Swift

bservatory (Gehrels et al. 2004 ), the origin of the X-ray afterglows
f GRBs has been a long source of debate. In particular, features
eferred to as the internal and external plateaus are difficult (although 
ot impossible) to explain within the standard picture of synchrotron 
mission from a jet interacting with the ambient medium. These 
lateaus are readily explained as the bare or processed spin-down 
rom a highly magnetic, rapidly rotating newly born neutron star, 
hat is, a millisecond magnetar. 

In REDBACK , we provide several implementations of millisecond 
agnetar models, such as early models which assumed the neutron 

tar only spun down through vacuum dipole radiation (Zhang & 

 ́esz ́aros 2001 ; Rowlinson et al. 2013 ), to extensions that included
 variable braking index (Lasky et al. 2017 ). We also provide models
hich include a collapse time (Sarin et al. 2020a ), to capture light

urves when the neutron star undergoes a delayed collapse to a 
lack hole. The abo v e models all implicitly assume that the observed
mission is a constant factor of the real spin-down power of the
eutron star. In reality, it is difficult to assume that this factor will be
onstant in time and be the same for different environments/ejecta 
roperties. To capture this behaviour, some other models have been 
eveloped which account for this changing efficiency by accounting 
or the radiative losses at the interface between the jet and interstellar
edium (Dall’Osso et al. 2011 ; Sarin et al. 2020b ), these models are

lso implemented in REDBACK . Similar to the extension in physics
f how emission is generated, the assumption that a neutron star
pins down with a constant braking index is also simplistic, we 
herefore include models where the braking index is a time-dependent 
alue conditioned on the evolution of the angle between the spin and
agnetic field axes (e.g. S ¸a s ¸maz Mu s ¸ et al. 2019 ; Sarin et al. 2022b ).
Tidal disruption events . Tidal disruption events occur when a 

tar in a galactic nucleus approaches a supermassive black hole 
SMBH) and is sufficiently close to be torn apart by tidal forces
Hills 1975 ). Many models for tidal disruption events exist which 
ave different assumptions of how the optical/UV light curve is 
roduced. F or e xample, some models assume that the optical/UV 

ight curve directly tracks the fallback rate (Guillochon & Ramirez- 
uiz 2013 ; Guillochon et al. 2017 ; Mockler et al. 2019 ), consistent
ith the light-curve decay slope of L ∝ t −5/3 expected for complete
isruptions (e.g. Guillochon & Ramirez-Ruiz 2013 ). Other models 
ssume that the disrupted material does not circularize rapidly and 
nstead the light curve is powered by stream–stream collisions (Piran 
t al. 2015 ; Ryu et al. 2020 , 2023 ). Recent numerical simulations
ave shown that disrupted material does indeed circularize rapidly 
Steinberg & Stone 2024 ) but this need not lead to rapid feeding
f the SMBH, instead the material forms a quasi-spherical pressure 
upported envelope rather than in an accretion disc (Metzger 2022 ). 

Moti v ated by these different assumptions, in REDBACK , we provide
wo primary sets of models; the cooling envelope model described 
n Metzger ( 2022 ) and Sarin & Metzger ( 2024 ), which models the
ptical/UV emission from a cooling envelope and a more fallback 
ate inspired model similar to MOSFIT (Guillochon et al. 2018 ; 

ockler et al. 2019 ). In future versions, we will add models that
escribe the light curve from stream–stream collisions and surrogates 
hat directly emulate the light curve produced by radiative transfer 
imulations. 

Shock-powered models . The emission produced via shocks is 
iverse and an important ingredient for many different transients, 
uch as the early cooling that may occur in a supernova or kilonova
jecta (Piro & Kollmeier 2018 ), the shock powered emission when a
lastwave interacts with the preceding material such as supernova ex- 
losions with CSM interaction (Mar galit 2022 ; Mar galit, Quataert &
o 2022 ). Or the synchrotron emission produced in mildly relativistic
last waves with both thermal and non-thermal electrons (Margalit & 

uataert 2021 ). In REDBACK , we provide an individual model for each 
f these processes, to be used independently or added onto any other
EDBACK model. 
Prompt gamma-ray burst . The mechanism that produces the high- 

nergy gamma-ray emission in GRBs is unclear. Ho we ver, the
rompt emission light curves of GRBs are often analysed to look for
ignatures of periodicity (H ̈ubner et al. 2022 ; Chirenti et al. 2023 ),
ensing (Paynter, Webster & Thrane 2021 ), or to characterize the
bservations into different GRB subtypes. In REDBACK , we provide 
ve models for GRB light curves to facilitate this research. 

.3.3 General purpose models 

eneric models . While physical intuition is often the highest priority
hen performing inference, sometimes we require a model that is 

obust, flexible and will fit all our observations. Such models can
ften form the basis of more physically moti v ated models or just be
sed to directly gain insight into the population. In REDBACK , we
ro vide sev eral phenomenological models to address this aim, from
odels which mimic a Gaussian rise, to an exponential rise and power 

aw decay, to broken power laws with one to six components. As these
odels have no physics, they are often orders of magnitude faster to
 v aluate and fit than the physical models described abo v e, making
hem particularly practical as a way to screen transient candidates. 

REDBACK surrogates . All of the models described abo v e rely on
n analytical or semi-analytical model prescription for the physics 
ictating the light curve. Although such models are incredibly useful 
or getting insight into different transient phenomena, they likely 
ake simplified assumptions which may not be suitable to draw 

ccurate inferences into observations. In an independent package, 
edback surrogate , which has a direct interface to REDBACK ,
e provide a library of models which are machine learning surrogates 

o numerical simulations. At present these models are restricted 
o surrogates of kilonovae simulations (Kasen et al. 2017 ; Bulla
019 ; Luko ̌siute et al. 2022 ). All models in redback surrogate
eamlessly integrate into REDBACK and can be used like any other
odel implemented in REDBACK . In future releases, we will provide

urrogates for hydrodynamical/radiative transfer simulations of many 
ifferent transients as well as an interface to build your surrogate from
 grid of simulations. 

Joint afterglow/kilono va/superno va . Observations of supernovae 
n afterglows (Zeh, Klose & Hartmann 2004 ; Greiner et al. 2015 ;
ano et al. 2017 ) and more recent infrared excesses consistent with
 kilonova in some GRBs (Tanvir et al. 2013 ; Lamb et al. 2019b ;
astinejad et al. 2022 ; Le v an et al. 2024 ) have moti v ated jointly
tting the broad-band afterglow alongside a kilonova or supernova 
omponent. In REDBACK , we provide three such joint models to
nable joint fitting. In particular, a top-hat afterglow with an Arnett
odel, to jointly fit a wide variety of GRBs with supernovae, and

wo models for jointly fitting a kilonova, one using a two-component
ilonov a follo wing Villar et al. ( 2017b ) and another following the
eating-rate model (Hotokezaka & Nakar 2020 ) with a simple top-hat 
fterglow. 

We note that to keep a consistent data generation method, these
odels can only be fit in flux density, requiring the assumption

hat optical bandpass magnitudes are approximately equi v alent to 
MNRAS 531, 1203–1227 (2024) 
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he flux density at the bandpass ef fecti v e wav elength. We further
mphasize that these models are simply adding the prediction of
he two emission processes and do not capture the complicated
hysics, for example, the interaction of the jet with the ejecta that
ay significantly alter the o v erall light curv e (Klion et al. 2021 ;
ativi et al. 2021 ). We also note that while the abo v e options are

imited in variety, the choice is motivated by both the simplicity (less
arameters to fit) and flexibility of the models. Users of REDBACK

an replace each of the individual components with a different
odel implemented in REDBACK or their own model. We provide

n additional, simple joint model interface that enables users to use
ny other REDBACK afterglow or kilono va/superno va model, only
equiring the user to pass a string referring to the model they wish to
se. 
Gaussian process base model . While the large diversity of models

n REDBACK offers a lot of opportunity that one model might explain
bserv ations suf ficiently well. Transient phenomena is quite often too
omplicated, and often the data we observe has underlying processes,
or example, periodicity, correlated noise or unmodelled physics that
an not be captured analytically or not understood a priori. To provide
v en more fle xibility and as a better estimate of uncertainty and
tting procedure in the presence of correlated noise, we provide a
eneric interface to Gaussian processes in REDBACK . In particular,
very model in REDBACK can be used as a mean model for Gaussian
rocess kernels implemented in George (F oreman-Macke y 2015 )
nd celerite (F oreman-Macke y et al. 2017 ). 

Phase and attenuation models . All REDBACK models are written
ith the assumption of no attenuation and that the transient time
bservations are since the transient started (i.e. that the time of
he explosion is known). In practice, these assumptions are mostly
ncorrect. Therefore, we provide an interface which for all REDBACK

odels can make the time in reference to an unknown start time
which can be added as a parameter to sample) and/or add attenuation
hich can be added as a parameter to be estimated by sampling. The

ttenuation is handled through the EXTINCTION package (Barbary
016 ). We note that REDBACK assumes all photometry has already
een corrected for Milky Way extinction before creating a Tran-
ient object. Ho we ver, if not, the user can do this through the
XTINCTION package alongside online resources to gather the Milky
ay extinction along the line of sight of the transient. 
Acknowledgement of models . Many of the models implemented in

EDBACK are implementations of models that have been described
reviously in the literature or exist as an interface to another open-
ource package. To ensure these previous works are adequately
cknowledged and facilitate development we provide a simple one
ine attribute to all models that will provide a reference to the NASA
DS page for the paper describing the model or the software that
riginally implemented this model. 

.4 Simulation 

 key requirement for inference workflows is the ability to test
ipelines on realistic synthetic data. To wit, we have created a
imulation module in REDBACK to create light curves for transients
hat can be loaded in a transient object and used in inference.
pecifically, we provide three classes. 

(i) A generic simulation interface that can be used to create
imulated data for any type of transient. In this module, the time,
bserved filters/frequencies are sampled randomly from user inputs
nd added to a user-specified noise level. This generic interface can
NRAS 531, 1203–1227 (2024) 
e used for any REDBACK model and is appropriate for generating
oO style of observations rapidly. 
(ii) A more detailed simulation interface specifically for optical

ransients to be used for producing light curves from real or user-
enerated surv e ys/telescopes. Specifically, here we use official table
f pointings for ZTF and the Vera Rubin Observatory (provided
n REDBACK ), which describe the pointings of the telescope, the
imiting magnitude, cadence of filters, and other properties. Users
an also build a pointings table with minimal inputs and design
heir own surv e y or pro vide a table of pointings from an surv e y
ot implemented in REDBACK . This allows any REDBACK or user-
rovided model to be used to generate realistic survey light curves and
ot only validate their inference methodologies but also understand
onstraints from surv e y light curves or optimize survey design. 

(iii) A full surv e y, here a user provides a rate, a survey duration
nd a REDBACK model and prior (described in detail below) and a
ull surv e y is generated with ev ents dra wn according to the rate,
laced isotropically in the sky and uniformly in comoving volume.
he detected/not-detected events are tracked and this can be used to
nderstand the detectable fraction of events and how that is affected
y the population properties of the transient and surv e y strate gy. 

We note that we assume a circular field of view for simulating
eal surv e ys in REDBACK . This is incorrect for surv e ys such as ZTF,
hich has a rectangular field of view and a circular field of view

ould underestimate the rate of transient detections if adopting a
ircular field of vie w. Ho we ver, this approximation is likely not a
oncern, in ZTF, the fields are fixed to the same sky coordinates
ith no dithering, which provides uniformity and more accessible

eduction and background subtraction. Nevertheless, the transients
anding on the gaps between the CCD quadrants are consistently
ost. This results in an ≈ 15 per cent loss of the ef fecti ve area. In
EDBACK , we approximate the 47 sq deg rectangular field of view of
TF as a perfect inner circle of 36 sq deg, corresponding to a loss of
20 per cent , which is a reasonable approximation for most studies

iven significant uncertainties on rates and source properties. For,
SST, this is not a concern as the Rubin field of view can be well
pproximated as a circle. We will impro v e the treatment of different
urv e ys’ focal plane geometry in future releases. This simulation
nterface can also be used to optimize surv e y strate gies and design
or different transients or specific science goals. 

.5 Inference 

he key aim of REDBACK is to enable Bayesian inference on
lectromagnetic transients. For inference, REDBACK leverages the
nterface to BILBY , which provides a wrapper to many open source
ampling software. With this interface a user of REDBACK , simply
eeds to (1) specify an implemented sampler as a string (16 samplers
re implemented at time of writing), (2) write a prior (or use the
efault for the model), (3) specify a likelihood (chosen by default
nless specified), and then (4) fit a model. In this paper, we assume
amiliarity with Bayesian inference but we refer readers who are
eginning in this field to Mackay (2003 ), Hogg, Bovy & Lang ( 2010 ),
shton et al. ( 2019 ), and references therein. 

.5.1 Likelihoods 

ikelihoods in REDBACK are chosen by default and apart from the
xception of photon count data (which uses a Poisson likelihood),
re by default, Gaussian. Ho we ver, the modular interface means
hat users can change the likelihood used with one line of code
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o another REDBACK -implemented likelihood (there are several to 
hoose from) or write their own and use that instead. This flexibility
nables REDBACK to be useful to both advanced users who wish to
odel the likelihood more accurately and users who simply wish to 
t a transient. 

.5.2 Priors 

o obtain a posterior in Bayesian inference, we require a prior. For all
EDBACK implemented models, we provide a default prior, this prior 

s typically broad and uninformative. REDBACK priors are written 
n the same way as BILBY priors and are ef fecti vely a dictionary
ith keys corresponding to each prior. Many prior distributions are 

mplemented but users can also implement their own which they 
ither write mathematically or provide a grid of the prior that can
e used to build an interpolant. REDBACK also provides access to 
onditional priors to write priors on parameters that depend on 
ne another. Many astrophysical models also have constraints, for 
 xample in engine-driv en models we al w ays w ant to ensure that the
nergy in the ejecta does not exceed the energy budget of the engine
r that our flux does not exceed a known upper-limit/non-detection. 
hese conditions can be placed on any prior as a Constraint ,
hich will ensure that any prior draw does not violate any constraints. 
ll REDBACK priors can also be sampled from with one line of code

o enable users to better understand the prior distributions. 

.5.3 Samplers 

here are many advantages to being able to choose from a list of
amplers (with no additional o v erhead be yond changing one line
f code), for e xample, sev eral samplers come with the ability to
o parallel processing, which can dramatically impro v e run times. 
ome samplers also have the ability to resume from checkpoints and 
roduce regular diagnostic plots that can be used to verify progress.
here are also large differences in the algorithm of certain samplers,
eyond the general distinction between nested sampling and Markov 
hain Monte Carlo, with some algorithms better suited to one type 
f transient than another. 
For REDBACK specifically, we use the DYNESTY (Speagle 2020 ) by 

efault, but we regularly find that PYMULTINEST (Buchner et al. 2014 )
nd NESTLE 1 give similar posteriors for significant shorter run times. 
o we ver, the latter tend to be less robust at dealing with a complicated
arameter space. A full sampler comparison is beyond the scope of
his paper but we strongly encourage users to perform inference with 

ultiple different samplers, both to gain a better understanding of 
he parameter space, what algorithms perform best and as a cross
ampler validation to ensure that their results have converged. 

.6 Format of results 

fter a fit, REDBACK returns a homogeneous result object. This 
bject is the same for any type of transient analysed. The object
s also saved locally (in a machine-readable json file by default) 
ither with a user-specified location/label or as a subfolder with 
he name of the model in a folder that is the name of the type of
ransient analysed (by default). The result object contains several 
ttributes needed for diagnosis, such as a PANDAS data frame of the
osterior values, alongside metrics (depending on the sampler) such 
s the Occam factor, the Bayesian evidence, the number of likelihood 
 http:// kylebarbary.com/ nestle/ 

t  

w  

o  
 v aluations, the priors used in the analysis and additional metadata
hich includes a copy of the Transient object used in the fit. The
esult object also contains several methods, from convenience 

unctions to obtain the credible intervals and latex strings for the
onstraints on all parameters, to plotting the corner or light curve and
ultiband light-curve plots with the data and the fit. The result file

an also be shared and loaded in REDBACK to enable users to share
heir analysis or work across multiple machines. We note that the
EDBACK result object inherits from the BILBY result object, 

nheriting additional useful methods and diagnostics such as the 
bility to importance sample or make a percentile–percentile (PP) 
lot (Cook, Gelman & Rubin 2006 ) to validate an inference workflow. 

.7 Plotting 

n REDBACK , all plotting methods are implemented in a specific
lotting module. Ho we ver, we note that the access to these meth-
ds is through the Transient and result objects. In particular, 
e provide interfaces to plot the observations themselves, the fit to

ingle or multiband photometry as random models drawn from the 
osterior or as a credible interval and a residual plot. The different
EDBACK plotting functionality is demonstrated in Appendix C . To 
implify modification of REDBACK plots, all plotting methods return 
he MATPLOTLIB axes, which can allow users to change things such
s the axes labels/fontsize/scale/limits or plot something extra on the 
ame plot. Furthermore, users can also pass their own MATPLOTLIB 

gure and axes to REDBACK , enabling multipanel light-curve plots 
r a customized size. The plotting module also uses dependency 
njection and k eyw ord arguments for several settings which can be
sed to change many features of the different plots. Users can also
eplace the plotting module to be more specific to their needs or
all the model themselves to plot what they would like. 

.8 Analysis 

eparate from the main modules provided in REDBACK , we include an
nalysis module that can be used to set up the different workflows
r make additional diagnostic plots for some models or calculate 
rior/posterior predictions for other properties. F or e xample, here we
rovide a method to plot light curves generated by a user-provided set
f parameters on top of the ‘plot multiband’ or ‘plot data’ generated
lots to get a sense of the appropriate prior for fitting or build
ntuition about a model. Alongside this, we provide methods to plot
he spectrum generated by REDBACK model, or additional posterior 
redictive plots such as of the evolution of the nascent neutron star.
n the future, we will add more diagnostic analysis methods and
ncourage REDBACK users to contribute with typical diagnostic plots 
nd calculations of their fa v ourite transient. 

.9 Dir ectory structur e 

y default, the REDBACK directory structure is set by the type of
ransient, the name of the transient and the model used in fitting. For
xample, if one downloads the data for the kilonova, AT2017gfo, 
his data will be saved to a folder called kilonova in the current
orking directory. If a user then loads this data and fits with a
odel called redback , then the result file alongside all plots

nd sampler-specific diagnostics will be saved to a folder within 
ilonova with the model name. This behaviour can be changed in

w o primary w ays. (1) The user can specify an outdir and label
hen running the fit (see below) which will save the result to folder
utdir with the label prepended to any output. (2) The user can
MNRAS 531, 1203–1227 (2024) 
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hange the name attribute of the Transient object. Which will
hange the label that is prepended to any output file but keep the
efault directory structure. We note that any result files generated
y a non-default directory structure can simply be loaded up by
pecifying the path, while plotting locations can also be specified via
he typical method of MATPLOTLIB . 

 J O I N T  ANA LY SIS  O F  SPECTRUM  A N D  

HOTOMETRY  

ith the software’s design objectives and overview out of the way.
e now turn towards a new application enabled by REDBACK . As we

escribed in the introduction, it is becoming increasingly common
or electromagnetic transients to have extensive spectroscopic and
hotometric observ ations. Ho we ver, photometric analyses and spec-
roscopic analyses are often performed independently . Typically , the
pectrum is often used primarily for the identification of a redshift
nd to identify the type of transient and later potentially specific
mission lines. Meanwhile, the photometry is left for estimating the
roperties of the transient, such as the ejecta masses in supernovae
nd kilonovae or the black hole mass in tidal disruption events. 

It is understandable that currently, analysis of the spectrum and
hotometry is performed separately, given the high computational
ost of detailed spectral models and analytical/semi-analytical mod-
ls that work on photometry but fail to capture the details of a
pectrum. Ho we ver, it is often the case that separate analyses of
hotometry and spectrum can provide contradictory information.
 or e xample, some superno v ae observ ations where the photometry
re often better described purely by 56 Ni decay while the spectrum
as tell-tale signatures of interaction with CSM material. Each
ndependently suggests different quantities of ejecta, making it
ifficult to understand the properties of superno vae e xplosions and
an sometimes even change the interpretation of specific events (e.g.
chulze et al. 2024 ). Or the case of the kilonova, AT2017gfo, where

he spectrum at 1.4 and 4.4 d is best described by electron fractions
Gillanders et al. 2022 ) inconsistent with those used to fit the pho-
ometry (Villar et al. 2017b ). Such contradictions are likely down to

odelling limitations. Ho we ver, it is critical we understand which of
he estimated properties are more robust, where our modelling could
e impro v ed and what the photometric and spectral observations
re jointly telling us. Joint analysis can also provide significantly
ore powerful constraints by breaking degeneracies present in the

ndependent analyses and thereby improving our estimation of the
ransient properties. This has important consequences as, ultimately,
e aim to use the estimated parameters of the explosion to answer

undamental questions in physics and astrophysics. 
We now describe how REDBACK can be used to jointly fit the

pectrum and photometry of a kilono va. F or the purposes of this
emonstration, we choose a simplified simulated spectrum and
hotometry to ensure we can validate the entire process. This is a
pecific example of workflow B, described in Section 2 . We simulate
oO observations of a hypothetical kilono va, AT2025ixp, observ ed
y the Vera Rubin observatory through the REDBACK simulation
odule. In particular, we use the two-component kilonova model

mplemented in the transient models subpackage following
illar et al. ( 2017b ). We then e v aluate the spectrum at 4.5 d from this
odel, by calling the model with an additional k eyw ord argument

o change the output format of the model. Assuming this model
nly captures continuum emission, we add an additional absorption
nd emission line at 8800 and 21 000 Å, respectively. Here, we
odel both spectral lines as a Gaussian, mimicking their Doppler

roadening due to the high-velocity kilonova ejecta. We add Gaussian
oise to the total spectrum (spectral lines and continuum emission)
NRAS 531, 1203–1227 (2024) 
omparable to noise in the X-shooter spectrum of AT2017gfo (Pian
t al. 2017 ; Smartt et al. 2017 ). With the data generated, we create an
nstance of the kilonova Transient object. We then independently
t the spectrum and photometry and jointly fit both together using the
YMULTINEST sampler (Buchner et al. 2014 ) through the REDBACK

nterface, specifying a Gaussian likelihood via the likelihood
odule and broad uninformative priors via the prior module. 
In Fig. 2 , we show the results from our analysis. In particular, in

he left panel, we show the data in multiple LSST filters alongside
he 95 per cent credible interval from our fit to the photometry. In
he right panel, we show the simulated spectrum at 4.5 d (in black)
longside our fit, showing the continuum emission in blue and the
ull spectrum, including absorption and emission lines in red. In both
ases, we see we can fit the observations well, correctly reco v ering
he input. 

In Fig. 3 , we show the posterior distributions on multiple param-
ters of the two-component kilonova model from the independent
pectrum and photometry fits and the joint fit. These posteriors
ighlight the power of joint analysis, while all analyses reco v er
he true input (indicated by black lines), the joint spectrum and
hotometric fit do so with significantly more precision by breaking
he de generac y in the independent photometric and spectroscopic
nalyses. F or e xample, the precision of the second ejecta compo-
ent’s mass and velocity improves from a precision of 29 per cent and
5 per cent, respectively, from the independent fit to the photometry
o a precision of 8 per cent and 4 per cent. This boost to precision has
everal important consequences as kilonova properties have been
re viously sho wn to be useful for constraints on the behaviour
f nuclear matter (Pang et al. 2023 ), constraints on the Hubble
onstant (P ́erez-Garc ́ıa et al. 2022 ), while offering better precision
o ultimately understand how these explosions work. 

The abo v e e xample is a demonstration of one of the unique
apabilities of REDBACK : a cohesive, single framework analysis of
pectrum and photometry that is facilitated by the modular design of
EDB ACK . Specifically, REDB ACK enables stitching together different
unctional modules for different problems. In particular, we can
ointly, and independently fit both the spectrum and photometry
y setting up the rele v ant functional modules in distinct ways.
imilarly, we can simulate the two types of data in question, enabled
y the design implementation of all models such that they can be
 v aluated for arbitrary inputs, times and return outputs in multiple
ormats, alongside the implementation of the simulation and
ransient functional modules, where the former can be used to
enerate synthetic observations for distinct data types, while the latter
as the required flexibility to handle such distinct data. 

 F U T U R E  DEVELOPMENT  

s we continue to drive progress in transient astronomy, we develop
ewer and better models for transients and make impro v ements
o how we treat the data. This paper marks version 1.0 release
ut REDBACK will be further developed to keep pace with the
evelopments in modelling and treatment of data. 
One of the primary aspects that will be impro v ed are the models im-

lemented in REDBACK . In particular, we are currently implementing
odels for interacting supernovae and fast-blue optical transients,

rom semi-analytical models of shocks produced by interacting
hells (Margalit 2022 ), to surrogates of radiative transfer simulations
Khatami & Kasen 2023 ). We are also improving some of our models
f afterglows for better treatment of reverse shocks and to make them
ore computationally efficient. We will soon implement model for

 -process nucleosynthesis from collapsars (Barnes & Metzger 2022 ;
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Figure 2. Simulated photometric data (left panel) with colours corresponding to different LSST filters and spectroscopic data (right panel) in black for a 
kilonova. In the left panel, the shaded band shows the 95 per cent credible interval fit to the photometry. On the right panel, we show the predicted continuum 

flux (in blue) and total spectrum (red) from 100 randomly drawn points from the posterior, alongside the true input in black dashed lines. 

Figure 3. Posterior distribution on the component ejecta masses, M ej, 1 and 
M ej, 2 , and bulk ejecta velocity of the first component, v ej, 1 for the joint fit 
and the photometry and spectrum independently. 

A  

w
a

 

d
i
t  

l
a  

t
a

a
p  

6

R  

n
U  

d
r
n  

b  

R

f
s

i
t
s  

u
R  

o
s
h
o  

c
t  

l
a
s  

G  

l
t

 

a  

p  

d  

o

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/1/1203/7671143 by Sarah D
akin user on 03 O

ctober 2024
nand et al. 2024 ). On longer timescales, we will implement models
ith better spectral modelling, enabling joint fitting of the spectrum 

nd photometry. 
Alongside impro v ements and addition of models, we will further

evelop REDBACK for more practical purposes, for example, provid- 
ng a generic interface in redback surrogate to allow users 
o make their own surrogate from a grid of simulations and newer
ikelihoods that better describe the data generation process. We will 
lso be further developing the simulation module to impro v e our
reatment of focal plane geometry. On longer time-scales, we will 
dd some GPU implementations of models to enable rapid inference 
nd an application programming interface (API) to download and 
rocess data from the Fermi catalogue (e.g. von Kienlin et al. 2020 ).

 C O N C L U S I O N  

ealizing the rich promise of the large transient data expected from
ew observing facilities such as the Vera Rubin Observatory and 
LTRASAT (Shv artzv ald et al. 2024 ) requires us to confront such
ata with models describing the different transient phenomena. This 
equires fast, reliable, open-source code that is both accessible to 
ewcomers to the field and modular such that it can be adapted to
e the powerhouse required by e xperts. Here, we hav e described
EDBACK , a Bayesian inference software package for end-to-end 
or parameter estimation and interpretation of electromagnetic tran- 
ients. 

REDBACK is an engine for simulating realistic transients and 
nferring their properties enabling end-to-end analysis and valida- 
ion of inference workflows. Furthermore, one can also use this 
oftware to understand how to optimize surv e y strate gies/design or
nderstand the selection function of different telescopes/surv e ys. 
EDBACK is also fully Bayesian, enabling the v ast adv antages
f this statistical paradigm such as model selection, importance 
ampling, and Bayesian hierarchical modelling. We re-emphasize 
ere that REDBACK is object-orientated, enabling users to input their 
wn model, priors, and data without needing to edit the source
ode, and simply replace any functional module of REDBACK with 
heir own code. The interface to BILBY also provides access to a
arge variety of samplers enabling validation across samplers and 
 simplistic interface for multimessenger analysis for joint events 
uch as GW170817 (e.g. Radice et al. 2018 ; Coughlin et al. 2019 ;
ianfagna et al. 2023 ). These design objectives address many of the

imitations of previous open-source packages for electromagnetic 
ransients. 

In this paper, we have described the overall design of REDBACK ,
 new scientific application where we jointly fit the spectrum and
hotometry of a kilonova. This holistic look at a complete transient
ata set offers the opportunity to both increase the precision of
ur constraints and confront contradictions that may emerge when 
MNRAS 531, 1203–1227 (2024) 
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nterpreting only one type of data. For the specific case of a kilonova,
e sho w ho w joint fitting can dramatically impro v e the precision
f the inferred ejecta masses, increasing the value of each event
or constraints on the equation of state. Or also remo v e biases
nadvertently caused by fixed opacities in photometric analyses that
re inconsistent with the spectrum. In the appendix, we provide
dditional examples demonstrating the functionality and usability of
he software in various applications and a general interface. 

As discussed in Section 5 , we will continue to further develop
EDBACK , including the addition of newer models and additional
unctionality. REDBACK has already been used in previous publica-
ions such as inference on tidal disruption events (Sarin & Metzger
024 ), analysis of SN 2018ibb (Schulze et al. 2024 ), magnetar-
riv en kilono vae and supernovae (Sarin et al. 2022b ; Omand & Sarin
024 ), GRB afterglows (Sarin et al. 2021 , 2022a ), and to infer joint
RB and kilonov ae observ ations (Le v an et al. 2024 ), demonstrating

he flexibility of the software. A more comprehensive comparison
f results for different transient catalogues is underway alongside
nterpretation for other transients. 
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The REDBACK package makes use of the standard scientific

YTHON stack (Jones et al. 2001 ; McKinney 2010 ; Harris et al.
020 ), MATPLOTLIB (Hunter 2007 ), and CORNER (F oreman-Macke y
016 ), for the generation of figures, and ASTROPY (Robitaille
t al. 2013 ; Price-Whelan et al. 2018 ; Astropy Collaboration
022 ) for common astrophysics-specific operations. REDBACK makes
se of BILBY (Ashton et al. 2019 ; Romero-Shaw et al. 2020 )
o provide an interface to different sampling algorithms and for
 v aluating prior distributions. REDBACK uses SNCOSMO (Barbary
t al. 2022 ) for filter definitions and calculations of magnitude
rom SEDs, EXTINCTION (Barbary 2016 ) for extinction correc-
ions. And REQUESTS and SELENIUM for downloading data from
atalogues. 
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he software package along with example scripts for all analysis
emonstrated in this manuscript alongside a plotting notebook to
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/ github.com/nikhil-sarin/ redback. The specific result objects for
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0.5281/zenodo.8273145 . REDBACK is available on PYPI . This paper
ses v1.0 release of REDBACK with documentation at https://redbac
.readthedocs.io/en/ latest/ . The data for all transients is available at
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et data module or hosted at https:// github.com/nikhil-sarin/ redb
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M

A

W w to download and load data, simulating a transient or calling a REDBACK 

m  e xhaustiv e demonstrations of the REDBACK API and merely show some 
d ttps:// redback.readthedocs.io/en/ latest/ . 

A

A d and process data from multiple catalogues. These data are saved as a 
h lar, 

nt = name, transient type = ’’supernova’’) 

ient = transient, transient type = ’’supernova’’) 

n event data from open transient catalog data(tde) 

atse(grb = name) 

 data from swift(grb = GRB, data mode = ’’flux’’) 
 to obtain the data for and use the rele v ant class method of the get data 

m transient or the type of data to ensure we get the data we want and that it 
i cesses the AB magnitude data for sources hosting multiband photometry. 
T  compared to the OAC. Ho we v er, the ra w data file is also downloaded and 
u

A

O s to create a Transient object. For example, we provide simple class 
m ASAIR. 

 open access catalogue(name = ’’ZTF22abdjqlm’’, 
d

 data(name = ’’ZTF20aamdsjv’’, 
u

.array([’’ztfr’’])) 
rom data that was downloaded from FINK. We note that as FINK and 

O r FINK data. Here, we have also specified the data mode to be flux , 
w ilarly, the second line creates a supernova object but from LASAIR data. 
H which sets all bands apart from the ztfr band to be inactive (not used in 
fi ase model = True . The latter condition ensures that the time values 
w le in the start time of the event. 

ift , BATSE, and the simulation module. In particular, 
imulated optical data(name = ’’my kilonova’’, 

d
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PPENDIX  A :  G E N E R A L  I N T E R FAC E  

e now describe the general interface for REDBACK , for example ho
odel with a constrained prior. We note that these sections are not

emonstrative functionality. Full API documentation is provided at h

1 Getting data 

s mentioned in Section 3 , REDBACK provides an API to downloa
uman-readable file and returned as a PANDAS data frame. In particu
import redback 

# FINK 
name = ’’ZTF22abdjqlm’’ 
data = redback.get data.get fink data(transie

# LASAIR 
transient = ’’ZTF20aamdsjv’’ 
data = redback.get data.get lasair data(trans

# Open Access Catalog 
tde = ’’PS18kh’’ 
data = redback.get data.get tidal disruptio

# BATSE 
name = ’’910505’’ 
data = redback.get data.get prompt data from b

# SWIFT 
GRB = ’’070809’’ 
data = redback.get data.get bat xrt afterglow
In all function calls, we specify the name of the transient we want
odule. For some of these methods we can also specify the type of 

s saved in the appropriate location. We note that REDBACK only pro
his is not a concern for FINK and LASAIR but may result in a loss
sers can reprocess the data as they wish. 

2 Creating transient objects 

nce we have the data of a transient, there are many different way
ethods to load data that is downloaded from the OAC, FINK, and L
supernova = redback.supernova.Supernova.from
ata mode = ’’flux’’) 

sn = redback.transient.Supernova.from lasair
se phase model = True, 
data mode = ’’flux density’’, active bands = np
Here, the first line creates a supernova Transient object f

AC have the same data structure, the OAC method can be used fo
hich will create the transient object with the flux data mode. Sim
o we ver unlike the FINK example, here we specify an active band, 
tting), set the data mode to be flux density and set use ph
e initialize are in MJD, to fit this data we therefore must also samp
We also provide simplified class methods for loading data from Sw
kn object = redback.transient.Kilonova.from s
ata mode = ’’magnitude’’) 
NRAS 531, 1203–1227 (2024) 
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kilonova we generated using the simulation module. REDBACK 

T y loading in a data file and specifying the specific attributes directly. For 
e

glow.csv’’) 

s 

 = name, data mode = ’’flux density’’, time = time d, 
 flux density err, frequency = frequency) 
for any other combination of attributes, enabling users to construct a 

T provide several other class methods than shown here and refer the reader 
t n. 

A

A unctions and can be called directly on an arbitrary time array and set of 
p  the function corresponding to a model as well as convenience functions 
t nd gather additional information about the model) and return an instance 
o

dict 

odel) 

ormat = ’’flux density’’) 

 a string referring to a model implemented in REDBACK , we also set the 
r ary to conveniently get the function corresponding to the model string. 
T  for the model. The second set of code sets up some additional k eyw ords 
r e model at and an output format. We then call the function on a random 

s density (in mJy) corresponding to the specific prior draw. This simple 
w he prior, add a constraint to the prior and draw from the constrained prior, 
o odel or the output format. 

A

W e also provide a more comprehensive simulation module (described 
i ve for a kilonova in ZTF can be done via, 

lateOpticalTransient 

 = ’’one component kilonova model’’).sample() 
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Here, we have loaded the magnitude data for a kilonova; my 
ransient objects can also be constructed directly, for example, b
xample, 
import pandas as pd 

data = pd.read csv(’’example data/grb after
time d = data[’’time’’].values 
flux density = data[’’flux’’].values 
frequency = data[’’frequency’’].values 
flux density err = data[’’flux err’’].value
name = ’’170817A’’ 

afterglow = redback.transient.Afterglow(name
flux density = flux density, flux density err =

This direct construction of a Transient object can be done 
ransient object in many different ways. We emphasize that we 

o https:// redback.readthedocs.io/en/ latest/ for the full documentatio

3 Calling a model 

s alluded to in Section 3 , all REDBACK models exist as PYTHON f
arameters. We also provide a convenient look up dictionary to find
o obtain the rele v ant citation for the model (for ease of reference a
f the default prior for the model. 
from redback.model library import all models 

model = ’’one component kilonova model’’ 
priors = redback.priors.get priors(model = m
priors[’’redshift’’] = 1e-2 
function = all models dict[model] 
citation = function.citation 

model kwargs = dict(frequency = 2e14, output f
time = np.linspace(0.1, 30, 50) 
sample = priors.sample() 
sample.update(model kwargs) 
fmjy = function(time, ∗∗sample) 
Here, the first set of code creates the REDBACK prior object from

edshift of the prior to be a fixed value, and use a REDBACK diction
he function also has an attribute ‘citation’ that provides a reference

equired by the model such as the frequency we want to e v aluate th
ample from the prior and arbitrary time array to obtain the flux 
orkflow can be readily changed to draw many more samples from t
r add/change keys in ‘model kwargs’ to change the physics of the m

4 Simulating transient 

hile the interface described abo v e can be used to simulate data, w
n detail in Section 3 ). For example, generating a simulated light cur
import redback 
from redback.simulate transients import Simu

model kwargs = {} 
parameters = redback.priors.get priors(model
parameters[’’mej’’] = 0.05 
parameters[’’t0 mjd transient’’] = 58288 
parameters[’’redshift’’] = 0.005 
MNRAS 531, 1203–1227 (2024) 
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Figure A1. Simulated kilonova (one-component kilonova model) in (left) ZTF and (right) LSST. We emphasize that aesthetic features such as the colours of 
the data points, axes limits etc can all be modified by passing in rele v ant k eyw ord arguments to the plotting methods. 

ansient’’] 

ansient in ztf 
(

wargs, end transient time = 15., 

e with and the parameters of the simulated event. Then, we also place it 
i ndomly place the source within the ZTF observable volume otherwise), 
t n in Appendix A2 , the simulated data can be easily saved and loaded in a 
s . In Fig. A1 , we show two representative simulated kilonovae in ZTF and 
t ugh a simple example the benefits of the high cadence of surv e ys such as 
Z

 light curves for the Nancy-Grace Roman Observatory or a user-generated 
s ples are available at https:// github.com/nikhil-sarin/ redback. Furthermore 
R erically (in a manner more consistent with ToO observations) or simulate 
a

A

A timessenger gra vitational-wa ve and electromagnetic transient analyses. 
H ta for the electromagnetic transient and BILBY provides the same for the 
g rough the use of a joint likelihood which combined with a full 
p

ed BNS signal, GW231116, observed in O4 alongside a GRB afterglow 

d  to also include an optical/radio afterglow and/or a kilonova. Furthermore, 
t ta types, for example, a spectrum and photometry, both of which could be 
p r simplicity. This analysis has been performed for GW170817 by multiple 
g

smo 
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parameters[’’t0’’] = parameters[’’t0 mjd tr
parameters[’’temperature floor’’] = 3000 
parameters[’’kappa’’] = 1 
parameters[’’vej’’] = 0.2 
parameters[’’ra’’] = 3.355395 
parameters[’’dec’’] = 0.5820673 

kn sim = SimulateOpticalTransient.simulate tr
model = ’’one component kilonova model’’, 
parameters = parameters, model kwargs = model k
snr threshold = 5., add source noise = True) 

Here, the first set of code specifies the model we want to simulat
n a part of a sky observable with ZTF ( REDBACK will internally ra
hen generate a light curve with the simulation module. As show
ingle line of code to create a Transient object enabling inference
he LSST Surv e y in the Vera Rubin Observatory, demonstrating thro
TF for fast transients such as kilonovae. 
We note that this exact interface can also be used to generate survey

urv e y and for any model implemented in REDBACK , and these exam
EDBACK also offers the functionality to simulate transients more gen
 full surv e y. 

PPENDIX  B:  MULTIMESSENGER  ANALYSI S  

 key advantage of the interface with BILBY is to facilitate mul
ere, REDBACK provides the likelihood, model and/or simulated da
ra vitational-wa ve data. Both likelihoods communicate together th
rior , can be used to perform joint multimessenger analyses. 
We demonstrate this feature through the observation of a simulat

etected in X-rays. We note that this workflow can be easily extended
he joint likelihood interface can also be used to jointly fit any two da
rovided by REDBACK but we leave such examples from this paper fo
roups (e.g. Gianfagna et al. 2023 ). 
We start by setting up the data, 
import bilby 
import redback 
from astropy.cosmology import Planck18 as co
NRAS 531, 1203–1227 (2024) 
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s import tophat 

(source redshift).value 

ss 2 = 1.3, chi 1 = 0.02, chi 2 = 0.02, lu- 
m 3, psi = 2.659, phase = 1.3, geo- 
c

 2 = 450, fiducial = 1) 
nergy is some unknown fraction of the total rest mass energy of the binary, 

a  along the orbital angular momentum of the binary. These assumptions 
a  so we create a new function, wrapping a simple tophat model already 
i

ion parameters[’’mass 1’’], 
g
[

e factor, 
n’’], 
 energy, 
psb = -2, ksin = 1, 
ss 1’’], 
) 

 jn, mass 1, mass 2, fudge, thc, logn0, p, 

e = fudge) 

, thv = theta jn, loge0 = energy, thc = thc, 
 = logepsb, 

llowing the method outlined in previous sections or by calling the model 
d  instance of the likelihood. Furthermore, we can set up the gravitational- 
w binning approximation (Zackay, Dai & Venumadhav 2018 ; Krishna et al. 
2  this aspect and do not outline the details here. We can also set up the 
e

c’’, 
l

0’’, 
l ’) 

 label = r’’$p$’’) 
fudge’’, 

l
meters[’’logepse’’] 
meters[’’logepsb’’] 
ers[’’ksin’’] 
s[’’g0’’] 
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from redback.transient models.afterglow model
from bilby.core.prior import Uniform 

source redshift = 0.03 
source distance = cosmo.luminosity distance

gw injection parameters = dict(mass 1 = 1.5, ma
inosity distance = source distance,theta jn = 0.4
ent time = 1126259642.413, 
ra = 1.375, dec = -1.2108, lambda 1 = 400, lambda

F or demonstrativ e purposes, we assume that the afterglow kinetic e
longside the more conventional assumption that the jet is launched
re not captured by any afterglow model implemented in REDBACK ,
mplemented in REDBACK . 
def get jet energy(mass 1, mass 2, fudge): 
total mass = (mass 1 + mass 2) 
return total mass ∗ fudge ∗ 2e33 ∗ 3e10 ∗∗2 

fudge factor = 0.04 
afterglow energy = get jet energy(gw inject
w injection parameters 
’’mass 2’’], 
fudge = fudge factor) 
grb injection parameters = dict(fudge = fudg
theta jn = gw injection parameters[’’theta j
redshift = source redshift, loge0 = afterglow
thc = 0.1, logn0 = -1, p = 2.2, logepse = -1, loge
g0 = 50, mass 1 = gw injection parameters[’’ma
mass 2 = gw injection parameters[’’mass 2’’]

def grb afterglow model(time, redshift, theta
logepse, logepsb, ksin, g0, ∗∗kwargs): 
energy = get jet energy(mass 1, mass 2, fudg
energy = np.log10(energy) 
if ’’loge0’’ in kwargs.keys(): 
kwargs.pop(’’loge0’’) 
return tophat(time = time, redshift = redshift
logn0 = logn0, p = p, logepse = logepse, logepsb
ksin = ksin, g0 = g0, ∗∗kwargs) 

We can now simulate the electromagnetic data using this model fo
irectly, and then create a REDBACK Transient class, alongside an
ave analysis, to reduce the computational cost we use the relative-
023 ). We follow the standard BILBY relativ e-binning e xample for
lectromagnetic aspect (i.e. the prior and likelihood) via 
em priors = bilby.core.prior.PriorDict() 
em priors[’’redshift’’] = source redshift 
em priors[’’thc’’] = Uniform(0.01, 0.2, ’’th
atex label = r’’$ \ theta { \ mathrm { core }} $’’) 
em priors[’’logn0’’] = Uniform(-4, 2, ’’logn
atex label = r’’$ \ log { 10 } n { \ mathrm { ism }} $’
em priors[’’p’’] = Uniform(2,3, ’’p’’, latex
em priors[’’fudge’’] = Uniform(0.01, 0.1, ’’
atex label = r’’$f { \ mathrm { fudge }} $’’) 
em priors[’’logepse’’] = grb injection para
em priors[’’logepsb’’] = grb injection para
em priors[’’ksin’’] = grb injection paramet
em priors[’’g0’’] = grb injection parameter
MNRAS 531, 1203–1227 (2024) 
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Figure B1. Left: corner plot showing the 1 σ–3 σ posterior on a subset of parameters with a gra vitational-wa ve (GW) only analysis (blue) and a GW + Afterglow 

analysis (red), with black lines indicating the input values of the simulation. The right-hand panel shows the light-curve fit from the joint analysis. 

Likelihood(x = sim afterglow.time, 

fixing some to the injected values to reduce the computational cost of the 
a ransient object attributes. 

 individual likelihoods and priors), we can simply set up the joint analysis 
v

ointLikelihood(gw likelihood, em likelihood) 

 individual likelihoods) and the functional interface for the code to interact 
c , automatically handling parameters that are shared. 

ed via the BILBY interface, 
priors = priors emgw, label = ’’emgw’’, out- 

d
vided by the above analysis, alongside constraints provided under the 

a e true value of the simulation, indicating that the parameters are reco v ered 
c  X-ray afterglow plotted via the analysis module. As expected, the 
p clination angle de generac y, clearly impro ving the estimate of distance and 
v

A

W trate how REDBACK can be used to fit and infer properties of a variety of 
e available as standalone scripts at https:// github.com/nikhil-sarin/ redback. 
T ppets that are identical to the snippets described above. 

C

W r simulated data by fitting the afterglow of GRB170817A (Hallinan 
e  et al. 2019 ; Lamb et al. 2019a ). We must first load the data file 
a  described in Appendix A2 . After we have created the Transient 
o  or by inspecting the Transient object), we are ready to fit. We 
k bserved off-axis (e.g. Fong et al. 2019 ; Alexander et al. 2018 ) and 
t al. 2019 ). Furthermore, many previous analyses have already fit the 
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em likelihood = redback.likelihoods.Gaussian
y = sim afterglow.flux density, 
function = grb afterglow model, 
sigma = yerr, kwargs = afterglow kwargs) 

Here, we have first set up a prior on a series of parameters, while 
nalysis, and then set up the electromagnetic likelihood, using the T

Once, the electromagnetic and gravitational wave is set up (i.e. the
ia, 
joint likelihood = bilby.core.likelihood.J
priors emgw = em priors.copy() 
priors emgw.update(gw priors) 
Here, the first line sets up a joint likelihood (the product of the two

orrectly. The second line does the same, setting up a prior object
Parameter estimation with the joint likelihood can then be perform
result = bilby.run sampler(joint likelihood, 
ir = ’’joint’’) 
In Fig. B1 , we show the constraints on various parameters pro

ssumption that they are separate events. The orange lines indicate th
orrectly. In the right-hand panel, we show the fit to the simulated
rimary benefit of including the afterglow is to break the distance–in
iewing angle for this hypothetical event. 

PPENDIX  C :  EXAMPLES  

e now go through a series of more general examples that demons
lectromagnetic transients. We note that each of these examples are 
o aid readability of these examples in this paper, we a v oid code sni

1 Broad-band after glo w – GRB170817A 

e first demonstrate how REDBACK can be used to fit pri v ate o
t al. 2017 ; Abbott et al. 2017b ; Alexander et al. 2018 ; Fong
nd create an afterglow Transient object via the method
bject and have verified that the data looks correct (by plotting
now through many lines of evidence that GRB170817A was o
he jet was likely structured (e.g. Lamb et al. 2019a ; Fong et 
NRAS 531, 1203–1227 (2024) 
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Figure C1. Left: posterior on the observers viewing angle, the isotropic equi v alent energy of the afterglow and the opening angle of the relativistic jet from 

fitting the afterglow of GRB170817A with the different shading indicating the 1 σ–3 σ credible intervals. Right: data of the afterglow of GRB170817A at multiple 
frequencies along with the light curves from a 100 random draws from the posterior. 

o  we can fit this data with a gaussiancore structured jet model from 

a  , we simply need to specify this model as a string and load the associated 
p

odel) 
mented in REDBACK for the gaussiancore model. To reduce inference 

w  values consistent as those found by Ryan et al. ( 2020 ). This can be done 
v

und these values instead of fixing these parameters. With these few lines, 
w several REDBACK models require additional k eyw ord arguments; such as 
t utput format of the model (which must be the same as the data). 

ered frequencies, 
o

ncy of the data points (this can be easily extracted from the Transient 
o put format as flux density. We are now ready to fit via, 

ow, model = ’’gaussiancore’’, sam- 
p

ive = 2000, resume = True) 
input the afterglow object being fit, the name of the model, sampler, 

t ments; and returns the REDBACK result object. Here, we have specified 
t  sampler implemented in BILBY . We also specify some sampler settings 
s evious run. When finished, this will return the REDBACK result object, 
w t curve to verify the fit via, 

loge0’’, ’’thc’’]) 
s = 100) 
we wish to show and in the second asked for 100 randomly sampled light 

c ments can be passed into these functions to change aesthetics or the type 
o
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bservations of GRB170817A to remarkable success. In particular,
fterglowpy . As this model is already implemented in REDBACK

rior. 
model = ’’gaussiancore’’ 
priors = redback.priors.get priors(model = m
These lines construct a prior object using the default prior imple

all time, we can also fix some of the parameters of the model with
ia, 
priors[’’redshift’’] = 1e-2 
priors[’’logn0’’] = -2.6 
priors[’’p’’] = 2.16 
priors[’’logepse’’] = -1.25 
priors[’’logepsb’’] = -3.8 
priors[’’ksin’’] = 1. 
We note that we could have instead set a narrow Gaussian prior aro

e are now almost ready for inference. As mentioned in Section 3 , 
he frequencies at which each data point was was observed and the o
model kwargs = dict(frequency = afterglow.filt
utput format = ’’flux density’’) 
Here, we have set up a model dictionary which contains the freque

bject via the filtered frequencies attribute) and set the out
result = redback.fit model(transient = aftergl
ler = ’’dynesty’’, 
model kwargs = model kwargs, prior = priors, nl

Here we call the REDBACK fit model function, which takes as 
he prior, the model k eyw ord arguments, and any other k eyw ord argu
he sampler to be DYNESTY via a string, but this could be any other
uch as the number of live points and the option to resume from a pr
hich can be used to create a plot of the corner and a multiband ligh
result.plot corner(parameters = [’’thv’’, ’’
result.plot multiband lightcurve(random model
Here, in the first line we have also passed a list of the parameters 

urves from the posterior to be plotted. Note that several other argu
f information displayed. These two plots are shown in Fig. C1 . 
MNRAS 531, 1203–1227 (2024) 



1222 N. Sarin et al. 

M

Figure C2. Left: data of AT2017gfo plotted through the plot data method. Right: data of the AT2017gfo plotted through the plot multiband method. 

C

W , in particular the kilonova that accompanied GW170817, AT2017gfo 
( one component kilonova model implemented within REDBACK to 
o own to not provide a great fit to the data so this is merely a demonstration 
o  more complex kilonovae models are available in REDBACK which have 
b t al. 2017b ; Bulla 2019 ; Nicholl et al. 2021 ). 

7 ), which can be obtained via the code shown in Appendix A1 . 
m open transient catalog data 

(
AT2017gfo from the OAC. As mentioned abo v e, this will return a PANDAS 

d he data as they would any other PANDAS object. Ho we ver, for our purpose 
i s is done via 

open access catalogue( 
y’’, active bands = np.array([’’g’’, ’’i’’])) 
ng the data mode to be flux density. We have also set the ‘g’ and ‘i’ bands 

a nds. This can be done to both reduce the computational time of inference 
b filters. To ensure the data are correctly processed, we can plot the data via 

ot others = False, 
b  } , xlim high = 10) 

 sharey = True, figsize = (12, 8)) 
es, 

f  ’’J’’]) 
have also passed additional arguments such a dictionary of the colours for 

e  the plot and the upper limit on the x -axis. Note that REDBACK returns the 
M ged by the user directly or by passing in an additional k eyw ord argument. 
T have also specified the specific filters we wish to display. Note that this 
f  if that filter was set as inactive. Both figures are shown in Fig. C2 . 

 plot, we are now ready to fit. As mentioned abo v e, we will fit with the a 
o strate ho w a user can fit the data with a different likelihood and sampler. 
W ctionary as they are identical to the afterglow example above. 

e = ’’sigma’’, latex label = ’’$ \ sigma$’’) 

 an additional parameter to be fit for, then use a convenience dictionary to 
g pecify the sampler to be used in inference as the NESTLE sampler. We note 
t σ ), and if a user provides a prior but uses the standard (default) likelihood, 
t is estimated by sampling. Ho we ver, here, we wish to demonstrate the use 
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2 Kilono v a – AT2017gfo 

e now demonstrate how REDBACK can be used to fit a kilonova
Abbott et al. 2017b ; Villar et al. 2017b ). For simplicity, we will fit a 
bservations of AT2017gfo (Villar et al. 2017b ). Such a model is kn
f REDBACK functionality. As mentioned in Section 3 , significantly
een previously shown to well explain the observations (e.g. Villar e

The data of AT2017gfo is available at OAC (Guillochon et al. 201
data = redback.get data.get kilonova data fro
transient = ’’at2017gfo’’) 
The abo v e code calls the get data module to obtain the data for 

ata frame while also saving the data to disc. Users can manipulate t
t is more useful to use this data to create an kilonova object. Thi
kilonova = redback.kilonova.Kilonova.from 
name = ’’at2017gfo’’, data mode = ’’flux densit

Here we have created a kilonova Transient object, specifyi
s active, which will disable all other bands and only fit the active ba
ut also for cases when the data or model are unreliable for specific 
kilonova.plot data(show = True, save = False, pl
and colors = { ’’g’’:’’green’’, ’’i’’:’’indigo’’
fig, ∼axes = plt.subplots(3, 2, sharex = True,
kilonova.plot multiband(figure = fig, ∼axes = ax
ilters = [’’g’’, ’’r’’, ’’i’’, ’’z’’, ’’y’’,
Here, the first line will plot all the data onto one figure, where we 

ach band, whether to plot the inactive bands, to not save and to show
ATPLOTLIB axes so several other plotting related things can be chan
he second line, will make a plot with one band per axes and we 

unctionality allows us to show data for a filter or fits for a filter even
With the Transient object created and data verified through a

ne-component kilonov a model. Ho we ver, we will no w also demon
e skip steps to load a prior and set up model k eyw ord argument di
prior[’’sigma’’] = Uniform(0.01, 0.0001, nam
function = all models dict[model] 
sampler = ’’nestle’’ 
Here, we first define a new prior on a parameter sigma , which is

et the REDBACK function for a one component kilonova model and s
hat sigma is the uncertainty in the typical Gaussian likelihood (i.e. 
his will o v erwrite the specific measured errors for a constant σ that 
NRAS 531, 1203–1227 (2024) 
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Figure C3. R - and I -band observations of SN1998bw alongside the 68 per cent credible interval from our fit. 

o fferent likelihood already implemented in REDBACK ), we can do this using 
t

elihoodQuadratureNoise 
( lonova.y[kilonova.filtered indices], 
s s], function = function) 

e, σ added in quadrature (that is fitted for) to the measured y errors. This 
l ily replace this likelihood with their own class. Then, users can use this 
l

a, model = model, likelihood = likelihood, sam- 
p

elieve to be the data generation process and ensured that advanced users 
c  ever digging into the REDBACK source code. 

C

R  model (Arnett 1980 , 1982 ) implemented within REDBACK to observations 
o 998bw through the OAC and API shown abo v e and create a supernova 
o

e fit in a few lines of code. As the arnett model is already implemented 
i ia, 

’arnett’’) 

998bw. We can now set up the fit in another two lines of code. 
ered frequencies, 

o
va, model = ’’arnett’’, sampler = ’’dynesty’’, 

m
= 4) 
YNESTY sampler with multiprocessing o v er four cores to reduce the wall 

t hich ensures that REDBACK will restart this analysis from scratch and not 
r

ject, which we can use to obtain posteriors on various parameters, or for 
p  as a 68 per cent credible interval (shown in Fig. C3 ) via, 

 ’’credible intervals’’, 
p
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f a custom likelihood (either something provided by the user or a di
he processed attributes from the Transient object via, 
likelihood = redback.likelihoods.GaussianLik
x = kilonova.x[kilonova.filtered indices], y = ki
igma i = kilonova.y err[kilonova.filtered indice
Here, we use a Gaussian likelihood with an additional noise sourc

ikelihood is already implemented in REDBACK , but a user could eas
ikelihood in the fit via, 
result = redback.fit model(transient = kilonov
ler = sampler, 
model kwargs = model kwargs, prior = priors) 
With this simple change we can fundamentally change what we b

an easily change the likelihood and settings of the sampler, without

3 Superno v a – SN1998bw 

EDBACK can also be used to fit supernovae. Here, we fit the arnett
f SN1998bw (Galama et al. 1998 ). We can acquire the data for SN1
bject. 
After ensuring that the data are obtained correctly we can set up th

n REDBACK we can simply load up the default prior for this model v
priors = redback.priors.get priors(model = ’
priors[’’redshift’’] = 0.0085 
Here, we have also fixed the redshift to the known redshift of SN1
model kwargs = dict(frequency = supernova.filt
utput format = ’’flux density’’) 
result = redback.fit model(transient = superno
odel kwargs = model kwargs, 
prior = priors, nlive = 500, clean = True, npool 
Here, we have also specified npool = 4 which will set up the D

ime of the analysis. We have also set the option clean to True , w
esume from a previous analysis. 

As with all other analysis, the fit returns a REDBACK result ob
lotting. For example, we can plot the light curve with the fit shown
ax = result.plot lightcurve(uncertainty mode =
lot others = False, show = False, 
credible interval level = 0.68) 
MNRAS 531, 1203–1227 (2024) 
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M

Figure C4. Multiband light curve of PS18bh along with the fitted light curve from a 100 random realizations randomly drawn from the prior. 

 modify the xscale and xlimits of the plot. The fit demonstrates the large 
u ands. 

C

H ACK to multiband observations of, tidal disruption event, PS18kh (Holoien 
e sient object. We set only a subset of bands as active via, 

’, ’’g’’, ’’r’’] 
ve. We can visualize our fit and make the predicted light curve (shown in 

F example, the u band, via 
s = 100, filters = [’’V’’, ’’g’’, ’’r’’, ’’u’’]) 
e driving the fit and whether the fits without a certain band are consistent 

w

C

W ing the X-ray afterglows of a GRB, by fitting the evolving magnetar 
m 9, specifically the integrated flux obtained from Swift –XRT. 

 (XRT) data of GRB070809 from Swift via the get data module 
om swift(grb = ’’070809’’, data mode = ’’flux’’) 

t grb(name = ’’070809’’, data mode = ’’flux’’, 
ime error’’) 

m Swift . This data typically also include BAT data from the prompt phase 
w ompt time error method. 

 could have provided this data when creating the afterglow object but 
w  analytical method which uses the GRBs photon index and a numerical 
m for either method are obtained internally by REDBACK from the Swift Data 
C  flux data to a luminosity. 
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ax.set xscale(’’log’’) 
ax.set xlim(10, 300) 
plt.show() 
Here we have also returned the MATPLOTLIB axes and used this to

ncertainty at early times where there are no observations in these b

4 Tidal disruption events – PS18kh 

ere, we fit the tde analytical model implemented within REDB

t al. 2019 ). We acquire the data from OAC and create a tde Tran
tidal disruption event.active bands = [’’V’
The rest of the code to fit is exactly like the afterglow example abo

ig. C4 ) for multiple filters, including a filter that we did not fit, for 
result.plot multiband lightcurve(random model
This is a useful verification exercise to understand which filters ar

ith those observations. 

5 X-ray after glo w of GRB070809 – millisecond magnetars 

e now use REDBACK on an integrated flux or luminosity data by fitt
odel ( S ¸a s ¸maz Mu s ¸ et al. 2019 ) to Swift observations of GRB07080
We acquire the Burst Alert Telescope (BAT) and X-ray Telescope
redback.get data.get bat xrt afterglow data fr
We construct an afterglow class instance via 
afterglow = redback.afterglow.SGRB.from swif
truncate = True, truncate method = ’’prompt t

afterglow.analytical flux to luminosity() 
ax = afterglow.plot data() 
Here, we have specified to load the flux data for GRB070809 fro

hich we do not wish to fit here. We truncate this data using the pr
The evolving magnetar model works on luminosity data. We

e also provide two convenience functions to generate this data, an
ethod from SHERPA which uses the spectrum. All details necessary 
entre. Here, we use the analytical method to convert the integrated
NRAS 531, 1203–1227 (2024) 
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Figure C5. Residual plot obtained using plot residual method of the result object. Here, the top panel shows the data in black with maximum likelihood 
and 100 randomly drawn light curves in blue and red, respectively, with the bottom panel showing the residual between the data and the maximum-likelihood 
model. 

cts data mode to luminosity. Beyond this point, the fitting workflow is 
i

’evolving magnetar’’) 
magnetar’’, sampler = ’’dynesty’’, nlive = 200, 

t
True) 
t prior implemented in REDBACK for the evolving magnetar model. 

T o not need a dictionary for the model k eyw ords as this model does not 
r ich can be used to plot a corner plot, the light curve or obtain any other 
d e ver, it can be especially informative to show a plot of the light curve 
w ethod of the result object. This generates Fig. C5 , where the top panel 
s  in blue and red, respectively, with the bottom panel showing the residual 
b

C

I ng transients; (1) we often do not know when the explosion occurred and 
( alaxy. 

nown explosion time and including extinction. We will also demonstrate 
h OSMO . We will do this by fitting a supernova, in particular, the UV-to-NIR 

l al. 2024 ). 
b and create a Supernova Transient object via 

k.ascii’’, sep = ’’’’) 
N2018ibb’’, 
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afterglow.analytical flux to luminosity() 
Note, that this will automatically change the afterglow obje

dentical to fitting any other transient, that is, 
priors = redback.priors.get priors(model = ’
result = redback.fit model(model = ’’evolving 
ransient = afterglow, 
prior = priors, sample = ’’rslice’’, resume = 

The abo v e code first constructs a prior object, using the defaul
his is followed by code calling fit model . Note that here we d

equire any. We are again returned the REDBACK result object wh
iagnostic about the inference/posterior. For these data modes ho w
ith the residuals. This can be obtained using plot residual m

hows the data in black with maximum likelihood and random draws
etween the data and the maximum-likelihood model. 
result.plot residual() 

6 Phase and attenuation – SN2018ibb 

n previous examples, we have ignored two important aspects of fitti
2) there is attenuation in the form of dust extinction from the host g

In this example, we show how to fit data while measuring the unk
ow to fit in magnitudes and adding a new filter to REDBACK and SNC

ight curve of the superluminous supernova SN 2018ibb (Schulze et 
As previous examples, we can load the private data for SN 2018ib
First, we read in the pri v ate data. 
import pandas as pd 
data = pd.read csv(’’SN2018ibb photcat Redbac
sn = redback.transient.Supernova(name = ’’S
MNRAS 531, 1203–1227 (2024) 
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[’’MJD’’].values, 
err = data[’’MAG ERR’’].values, 

b

 space. Furthermore, we set use phase model = True because 
w JD instead of days since explosion. When fitting a model to such data, a 
u sampled o v er. We note that use phase model = True , will also 
c

st ensure that all filters of the observations are available in REDBACK . We 
n es or flux as this requires the full transmission curve of every filter rather 
t bb were performed with the GROND camera mounted at the 2.2 m MPG 

t d::z ) are not part of SNCOSMO distribution that is used internally within 
R , from the Spanish Virtual Observatory 2 (Rodrigo, Solano & Bayo 2012 ), 
w

D I.dat’’, 
D Z.dat’’, 

] 

s): 

ta[’’col2’’], name = f, wave unit = u.angstrom) 

odel and the prior via 

odel) 
l = base model)) 
ch has the explosion time and magnitude of extinction as a free parameter. 

T an additional physical model. For simplicity, we use the physical arnett 
m rior object to include the parameters of both models. 

agnitude and update the prior on the ejecta mass as SN 2018ibb requires 
a

ays before the first detection 
JD’’].values.min()-200, maxi- 

m t0’’, latex label = r’’$t { \ rm expl. } $’’) 

mum = 260, name = ’’mej’’, la- 
t ’’) 

um = 1, name = ’’av’’, 
l

2
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data mode = ’’magnitude’’, time mjd = data
magnitude = data[’’MAG’’].values, magnitude 
ands = data[’’band’’].values, 
use phase model = True) 
In contrast to the previous examples, we fit the data in magnitude

e do not know the explosion date. We also specify time values in M
ser must then add a prior on the explosion time which will then be 
hange plotting labels to account for the change. 

Before we can fit the magnitude data of SN 2018ibb, we must fir
ote that this is only a concern when fitting photometry in magnitud
han a reference wavelength. Some of the observations of SN 2018i
elescope. The GROND filters (in our example grond::i and gron
EDBACK for filter definitions. After retrieving the filters, for instance
e add them to SNCOSMO and by extension REDBACK , via 
from astropy.io import ascii 
import astropy.units as u 
import sncosmo 

filter files = [ 
’’/PATH/WHERE/YOU/STORED/FILTER CURVES/GRON
’’/PATH/WHERE/YOU/STORED/FILTER CURVES/GRON

] 

filter names = [’’grond::i’’, ’’grond::z’’

for f, fname in zip(filter names, filter file
data = ascii.read(fname) 
band = sncosmo.Bandpass( data[’’col1’’], da
sncosmo.register(band, f, force = True) 

We can set up the rest of the inference workflow, first set up the m
model = ’’t0 supernova extinction’’ 
base model = ’’arnett’’ 

priors = redback.priors.get priors(model = m
priors.update(redback.priors.get priors(mode
Here, we choose the t0 supernova extinction model, whi

his model itself does not contain any physics and must be specified 
odel as the base model. The last two lines of code just set up the p
We must now also set priors on the explosion time, the extinction m

n extraordinary amount of ejecta (Schulze et al. 2024 ). 
from bilby.core.prior import Uniform 

# Allow the explosion date to be up to 200 d
priors[’’t0’’] = Uniform(minimum = data[’’M
um = data[’’MJD’’].values.min()-1, name = ’’

priors[’’mej’’] = Uniform(minimum = 1, maxi
ex label = r’’$M { \ rm { ej }} ∼( { \ rm M } { \ odot } )$

# Extinction 
priors[’’av’’] = Uniform(minimum = 0, maxim
atex label = r’’$A V$ (mag)’’) 
With the model specified and prior set up, we can now fit via, 
NRAS 531, 1203–1227 (2024) 
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Figure C6. Multiband light curve of SN2018ibb along with the 68 per cent credible interval light-curve fit from the posterior. 

smo bands, base model = base model, out- 
p

odel = model, model kwargs = model kwargs, 

s, there are some minor differences to the model kwargs , namely that 
w equency and must specify the base model. In the fit model argument, 
w te the fitted light curve after inference finishes. In Fig. C6 , we show the 
l t multiband lightcurve() . 
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model kwargs = dict(bands = sn.filtered snco
ut format = ’’magnitude’’) 

result = redback.fit model(transient = sn, m
prior = priors, plot = True) 
We note that as we are fitting with a base model and in magnitude

e must now specify a list of bands for the data points instead of fr
e have also set plot = True , which will automatically genera

ight-curve fit generated with the above code and the result.plo
MNRAS 531, 1203–1227 (2024) 
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