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Abstract

Accurate inflow forecasting is an essential non-engineering strategy to guarantee flood

management and boost the effectiveness of the water supply. As inflow is the primary reser-

voir input, precise inflow forecasting may also offer appropriate reservoir design and man-

agement assistance. This study aims to generalize the machine learning model using the

support vector machine (SVM), which is support vector regression (SVR), to predict the dis-

charges of the Euphrates River upstream of the Haditha Dam reservoir in Anbar province

West of Iraq. Time series data were collected for the period (1986-2024) for the river’s daily,

monthly, and seasonal flow. Different kernel functions of SVR were applied in this study.

The kernels are linear, Quadratic, and Gaussian (RBF). The results showed that the daily

time scale is better than the monthly and seasonal performance. In contrast, the linear ker-

nel outperformed the other SVR kernel with a time delay of one day based on the value of

the coefficient of determination (R2 = 0.95) and the root mean square error (RMSE = 53.29)

m3/sec for predicting daily river flow. The results showed that the proposed machine learn-

ing model performed well in predicting the daily flow of the Euphrates River upstream of the

Haditha Dam reservoir; this indicates that the model might effectively forecast flows, which

helps improve water resource management and dam operations.

Introduction

Water flow is the basis of life on Earth and is considered one of the basic needs of living and

plant organisms, as well as the prosperity of agriculture and ensuring survival. Rivers are con-

sidered one of the primary sources of water on the surface of the Earth. Therefore, it has

become necessary to study the quantity of river flow, as it is one of the main factors for achiev-

ing sustainable development of water resources issues. These studies include the design of

hydraulic facilities and proper planning of water projects, in addition to operating water reser-

voirs, flood control, and treating droughts. It must be noted that the economic return of any

region is directly related to the quantity and quality of water sources in that region. Therefore,

we must work to protect and manage water resources well, develop sustainable strategies to
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provide clean and sustainable water for all and balance the needs of humans and aquatic eco-

systems. Recent studies indicate that river flow levels are becoming unstable and are at increas-

ing risk of drying out. Rivers in Iraq, in general, are vulnerable to this risk for several reasons,

including climate change and human use of water. Therefore, many studies have been con-

ducted to provide sufficient data to estimate river flow amounts and predict drought. Many

hydrological models have been developed to analyze and predict river water flow, giving prac-

tical tools for water resource management and sustainable decision-making. These hydrologi-

cal models are based on a wide range of data, including climate information, past water

information, and hydrological system behavior. These models use many equations and vari-

ables to estimate water flow and predict drought and are valuable tools for hydrological plan-

ning and water resource management under changing conditions. Using these models and

sufficient data, those interested in water resources management can analyze and evaluate

drought risk and take the necessary measures to deal with it, contributing to the sustainable

development of water resources issues. Forecasting future river flows is essential for making

decisions in water resource management and water project planning. Future forecasting

depends on analyzing past and current variables that describe the hydrological phenomenon

to be studied. Accurate river flow prediction has been a significant challenge in flood manage-

ment and reducing damage and potential threats to life. Accordingly, it is increasingly impor-

tant to use reliable river flow forecasting methods to enable timely and effective planning of

water resource use [1]. Accurate river flow prediction can be essential in water resource plan-

ning and management. However, many complex factors influence this phenomenon, making

it challenging to analyze [2]. Therefore, it becomes necessary to incorporate the influencing

factors into a model that can estimate river flow with acceptable accuracy [3]. Currently, intel-

ligent systems are widely used to estimate nonlinear phenomena, and one of the methods used

in hydrology is the support vector machine model (SVM). The support vector machine (SVM)

model is effective, and optimization algorithms have been developed in recent years to

improve its performance, increase its accuracy, and reduce the error rate in river flow predic-

tion. Accurate river flow forecasting can be achieved using the SVM model, and this informa-

tion can be used in planning and water resource management processes. The SVM model can

be applied in hydrological analyses to improve river flow prediction and achieve more accurate

results. It is important to note that using advanced models such as SVM requires consideration

of optimizing algorithms and tuning parameters and providing sufficient and appropriate

training data to achieve the best model performance in river flow prediction. Forecasting river

discharges enhances sustainability, reduces the negative impacts of floods and droughts, and

improves water resources management and environmental planning. It also supports strategic

decision-making in risk management and planning for the future, enhancing water resources’

sustainability and balancing the diverse water needs of different communities and sectors [4].

Many researchers have used artificial intelligence techniques, including support vector

machines, to predict future river discharges in other regions. A study used a support vector

machine (SVM) model to forecast monthly flow at the Huaxian station in China. The study

found that the proposed SVM model accurately predicted monthly flow at the station. The

SVM model was trained to estimate future flow patterns by analyzing and utilizing historical

monthly flow data. The results demonstrated that the SVM model successfully achieved accu-

rate predictions of monthly flow at the Huaxian station; this indicates that the SVM model can

be an effective water resource planning and management tool in the specified area [5]. In a

study, artificial neural networks (ANNs) and support vector machine (SVM) models in fore-

casting storm water runoff in the Roodak watershed northeast of Tehran. Was used 92 Modis

sensors to collect data during the statistical period from 2003 to 2005. According to the study,

the SVM model showed acceptable performance in estimating rainwater runoff in the
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mentioned area; this means that the model could predict the amount of water flowing on the

surface based on the sensed data [6]. Also, a study compared support vector machines (SVM)

and artificial neural networks to predict daily flow in the Cypress River in Texas. The results of

the study found that the SVM model outperformed the neural networks, demonstrating supe-

rior accuracy. This highlights the effectiveness of SVM in analyzing data and predicting hydro-

logical models [7]. In a study, a support vector machine (SVM) was used to forecast monthly

flow. The SVM model’s performance was enhanced by employing principal components anal-

ysis (PCA) for preprocessing the input variables. The study demonstrated that incorporating

PCA as an optimization technique improved the SVM model’s accuracy in predicting monthly

flow; this highlights PCA’s positive impact on enhancing prediction accuracy and the model’s

effectiveness in handling data [8]. A study analyzed the Wei River in China to forecast 10-day

inflows using input factors like inflow, precipitation, relative humidity, minimum and maxi-

mum temperature, and precipitation projections. The three methods used in the study were

compared using the available data: Artificial Neural Networks (ANN), Support Vector Regres-

sion (SVR), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The results indicated that

changes in income variables significantly impacted forecast uncertainty. The contribution of

data-driven models was limited and varied seasonally, performing better in winter and sum-

mer but needing to be more critical in spring and fall [9]. A study was conducted on the Three

Gorges Reservoir; the predicted monthly flow using three machine learning models: genetic

programming (GP), seasonal autoregressive (SAR), and autoregressive neural kernel (SVR).

The RBF was used as the kernel Influential in the SVR model. The results showed that the per-

formance of the SVR and GP models improves when coupled with independent principal

components analysis (SSA) for flow series forecasting [10]. A study conducted in the Sutami

Watershed in Indonesia used a Wavelet Support Vector Machine (WSVM) with an adapted

RBF kernel to predict flow in the reservoir. WSVM is a machine learning model based on

wavelet support, a technique used for classification and prediction. The RBF (Radial Basis

Function) kernel has been adapted in the model to improve its performance in flow prediction.

The results showed that the WSVM model better predicted the inflow into the reservoir using

the RBF kernel [11]. In a study, a support vector machine (SVM) model was used to forecast

lake water levels. It compared with a multilayer perceptual (MLP) model and a multiplicative

seasonal autoregressive (SAR) model. The results of the SVM forecast were found to be more

accurate than the other two models in predicting lake water levels for several months. These

results suggest that support vector machine (SVM) models can be effective in predicting lake

water levels [12]. A study used the Muskingum model to predict floods in the United States of

America and the United Kingdom. A combination of a hybrid of the bat algorithm (BA) and

the particle swarm optimization (PSO) algorithm, i.e., the hybrid bat-swarm algorithm

(HBSA) was used. The results showed that the Muskingum model represented by (HBSA)

achieved excellent performance compared to other methods based on the squared deviations

(SSD), the sum of the absolute deviations (SAD), the peak discharge error, and the time-to-

peak error [13]. A study used the Adaptive Neuro-Fuzzy Inference System (ANFIS) model to

study the case of the influence of climate on monthly flow in the Aydoughmoush basin in Iran

for the period 1987 - 2007. The bat algorithm (BA), particle swarm optimization (PSO), and

Genetic Algorithm (GA) were used to obtain the ANFIS parameter and obtain the best ANFIS

structure. The results showed better climate index performance with six months’ delays. The

study indicated that ANFIS-BA obtained better results than ANFIS-PSO and ANFIS-GA, with

a root mean square error (RMSE) of 25% and 30% less than ANFIS-PSO and ANFIS-GA,

respectively [14]. A study used the Support Vector Machine Method (SVM) at meteorological

stations in Mosul and Baghdad. It analyzed different weather variables and found the SVM

method successfully predicted wind speed, rainfall amounts, and humidity at the Mosul station
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(R2 = 0.92). These variables can improve the accuracy of weather forecasts in the region [15].

In a study, was used two artificial intelligence models to predict subsurface evaporation rates,

represented by the generalized neural network model for regression and the neural network

for the radiative basis function. The model’s input variables for this model include tempera-

ture, wind speed, humidity, and water depth. The applied models utilize actual hydrological

and climatological in an arid region in the Iraqi Western Desert for two soil types. The results

showed that the neural network model (ANN) could accurately predict subsurface reservoir

evaporation based on the correlation coefficient, which reached (0.936) for fine gravel soil and

(0.959) for coarse gravel soil [16]. A study used a deep learning model to predict river courses

on data from the Tigris River in Iraq. Two methods were used to collect samples: linear deep

learning (LDL) and stratified deep learning (SDL) in deep learning algorithms. The results

indicated that stratified deep learning (SDL) improves accuracy by approximately 7.96-94.6

concerning several evaluation criteria. Thus, it is worth noting that SDL outperforms (LDL) in

monthly streamflow modelling [17].

This study aims to use artificial intelligence with an SVM model to predict the discharge of

the Euphrates River upstream of the Haditha Dam and improve water resources management

and dam operations. The study uses historical data on the discharge of the Euphrates River

upstream of Haditha Dam and information about flow behavior and the impact of the recently

constructed dams in upstream countries. Also, this study aims to analyze and evaluate the rela-

tionship between the river’s daily, monthly, and seasonal discharges and the effect of previous

values on predicting and better understanding the behavior of the water drainage system.

Materials and methods

Study area

The Euphrates River is considered the primary water source in Anbar, Iraq, as most of the gov-

ernorate’s cities are located on its banks and depend on the river’s water for their municipal,

industrial, and agricultural needs [18]. The Euphrates River is an international river that passes

through Turkey, Syria, and Iraq. The length of the Euphrates River in the governorate is about

450 km, representing 43% of the total length inside Iraq (1,160 km) and 17% of the entire

length of the river from its source in Turkey to the mouth of the river. The Euphrates River

enters Iraqi territory at Al-Qaim in Anbar Governorate. It constitutes a vital artery for the gov-

ernorate’s economic, industrial, and agricultural life. The Euphrates River in Anbar province

feeds many agricultural areas, contributes to producing essential crops such as wheat, barley,

and corn, and provides drinking water for the governorate’s residents [19]. Therefore, main-

taining regular flow levels in the Euphrates River downstream of Haditha Dam is essential to

ensuring Iraq’s future development. The Euphrates River and the Haditha Dam reservoir are

located between latitudes (34˚ 40’ and 34˚ 13’) north and longitudes (42˚ 26’ and 41˚ 55’) east.

The highest flood water level for the reservoir and the river is at level 147 and covers about 500

km2 with 10 km of shoreline [20]. Fig 1 shows the Euphrates River upstream of the Haditha

Dam reservoir in Anbar Governorate, western Iraq [21]. The Euphrates River in Anbar faces

many challenges. The biggest challenge is the continuous decline in river flow due to dams

built in Turkey and Syria, which negatively affects agriculture and hydroelectric energy pro-

duction. The Euphrates River in Anbar suffers from pollution due to industrial and agricul-

tural sewage, which affects the quality of the river’s water and the population’s health [22]. The

Euphrates River is suffering from a decrease in discharge due to climate change and the

upstream countries [23]. The river witnessed a decline in its water revenues by up to 30% after

Iraq’s neighboring countries began implementing development projects and building dams at

the river’s sources, especially in Turkey. As a result, the annual yield of the Euphrates River
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decreased from 30 billion cubic meters annually to 17 billion cubic meters annually. If the

upstream countries continue to implement these projects and complete all plans, revenues

reaching Iraq will gradually decrease to 24% by 2035; this indicates that Iraq will be signifi-

cantly affected by these development projects and dams built on the Euphrates River, which

will affect water availability and its future needs. Due to its importance in light of these condi-

tions to which Iraq is exposed in terms of drought, the Euphrates River was chosen, which con-

stitutes a large part of the water sources in Iraq, precisely the provider of the Haditha Dam

reservoir, which is considered the only dam on this river, and all Iraqi cities derive their

municipal and industrial water and agriculture from the water of this river.

Data used

The study relied on the discharges of the Euphrates River at the Husaybah hydrological station,

one of the main old stations in Iraq located on the river in Al-Qaim town, west of Anbar Gov-

ernorate. Time series data on daily discharges from the Haditha Dam Project Administration -

the General Authority for Dams and Reservoirs of the Iraqi Ministry of Water Resources

Fig 1. The red circle indicates the location of the study area, the Haditha Dam reservoir location in Iraq [21].

https://doi.org/10.1371/journal.pone.0308266.g001
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(unpublished data) were collected from 1985 - 2024. It was observed that the highest value of

discharges was (3361) m3/s in 1988, while the lowest was (50) m3/s in 2015. Daily time series

data of the river was used, then converted to monthly and seasonal data. Table 1 shows the sta-

tistical characteristics of the river’s discharge series, while (Fig 2) shows the time series of daily

river discharges.

Support Vector Machine (SVM)

Support vector machine (SVM) refers to supervised learning techniques that examine data and

identify patterns for regression analysis and classification. The SVM learning system uses a

hypothesis space of linear functions in a high-dimensional feature space. It is taught using an

optimization theory-derived learning algorithm that applies a learning bias from statistical

learning theory [24]. Vapnik [25] presented this learning technique as implementing the struc-

tural risk reduction concept. The hyperplane level and Lagrange multipliers, two crucial fac-

tors that significantly impact classification accuracy, are the foundation of the Support Vector

Machine (SVM) model. The underlying data is represented in the input space, where the clas-

sification process is carried out. A hyperplane is defined as a boundary between different

Table 1. Statistical characteristics of drainage data for the study area.

Statistics Years Max. Min. Mean S.D

Daily (m3/sec) Whole data set 1985-2024 3361 50 551.2 369.25

Training & Validation data set 1985-2012 3361 75 604.02 405.35

Testing data set 2012-2024 1600 50 432.25 230.06

Monthly (m3/sec) Whole data set 1985-2024 2984 97 551.08 347.1

Training & Validation data set 1985-2012 2984 159 607.15 378.94

Testing data set 2012-2024 964 97 422.3 207.22

Seasonal (m3/sec) Whole data set 1985-2024 3459 105 551.25 319.52

Training & Validation data set 1985-2012 2459 214 607.44 346.2

Testing data set 2012-2024 897 105 426.48 196.18

https://doi.org/10.1371/journal.pone.0308266.t001

Fig 2. Time series of daily discharges of the Euphrates River.

https://doi.org/10.1371/journal.pone.0308266.g002
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categories or groups in the data. This level is determined based on the characteristics and

information extracted from the training data. In addition, support machine models (SVMs)

use Lagrange multipliers to achieve optimal cutoffs between classes. These multipliers are

adjusted based on data characteristics and desired performance expectations. The support vec-

tor machine (SVM) effectively deals with various problems, including classifying data in a non-

linear space. This technique defines cutoffs in a way that minimizes classification error and

enhances the overall accuracy of the analytical model. An appropriate linear separator that

best separates the data into two classes is found through the SVM algorithm. The separator is

the super level that maximizes the margin between the supporting data and the remaining

errors. The margin is defined as the distance between the hyperplane and the nearest data

points, and these points are called support points. SVM is used in wide applications in artificial

intelligence, such as future predictions of flood discharges of rivers evaporation from lakes.

This technique has achieved great success in many fields. However, SVM must be trained and

parameterized with an extensive data set to achieve satisfactory performance. The SVM model

requires careful selection of parameters such as kernel type and setting of parameter values. It

may be difficult to specify these parameters appropriately, and trial and repeated adjustment

may be required to obtain optimal performance. The SVM model requires careful selection of

parameters such as kernel type and setting of parameter values. It may be difficult to specify

these parameters appropriately, and trial and repeated adjustment may be required to obtain

optimal performance. When dealing with large datasets, SVM model training can be expensive

in terms of time and resources. Getting quick results may take time in these cases.

Consider regression within the collection of linear functions that reflect the data. Eq (1)

[26].

f ðxÞ ¼ wT xþ b ð1Þ

N is the number of training values, while input xk 2 Rn and yk 2 R are the output values.

The following initial problem may then be used to define the optimization problem.

Min J w; x; x∗ð Þ ¼
1

2
wT wþ c

XN

K¼1
xkþ x∗k
� �

ð2Þ

Such that

yk � wT xk � b � εþ xk
wT xk þ b � yk � εþ x∗k

xk; x
∗
k � 0

8
><

>:
ð3Þ

The constant c determines the tolerance level for deviations from the desired ε accuracy, and it

is associated with slack variables ξk and x
∗
k for k = 1, . . ., N. The issue must first be expressed in

Lagrange form, after which the dual problem’s quadratic programming must solve it. The lin-

ear function is converted in the double space.

f ðxÞ ¼
XN

k¼1
ðak þ a

∗
kÞx

T
k xþ b ð4Þ

With
PN

k¼1
ðak þ a

∗
kÞxk and ak þ a

∗
k are the Lagrange multipliers. The fundamental weight

space model that follows is considered to facilitate SVM predictions for a nonlinear scenario.

f ðxÞ ¼ wT �ðxÞ þ b ð5Þ

Applying the mapping ϕ(x): Rn! Rnh to a high dimensional feature space. The kernel meth-

ods have been used in that case, resulting in K (xk, xl) = ϕ(xk)T ϕ(xl) for k = 1,. . ., N.
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Different kernel functions were used in designing the SVM with type space ε. The support

model incorporates additional kernel functions such as the polynomial kernel, linear kernel

function, and radial basis functions (RBFs) [27], as in Table 2, which were used in this study

due to their popularity and wide use. It is worth noting that the vector machine calculations

were based on programming in MATLAB, and the parameters were optimized.

K ðxi; xjÞ ¼ ðg XT
i � Xj þ rÞd ð6Þ

K xi; xjð Þ ¼ exp �
jjxi � xjj

s

� �

ð7Þ

K ðxi; xÞ ¼ XT
i � Xj ð8Þ

Statistical measurements

Determination coefficient (R2). Determination coefficient is a measure to evaluate how

well a prediction model fits the observed data. It is measures the extent to which the model can

explain the variance in observed data. The formula for the coefficient of determination is

shown in Eq (9) [28].

R2 ¼

Pn
i¼1
ðQobs �

�QobsÞðQpre �
�QpreÞ

Pn
i¼1
ðQobs �

�QobsÞ
2∗
Pn

i¼1
ðQpre �

�QpreÞ
2

" #2

ð9Þ

Root Mean Square Error (RMSE). Root Mean Square Error is a measure used to evaluate

the accuracy of a data prediction. It is an improvement of the standard square error (MSE) as

it takes the square root of the MSE value to bring it into the same unit of measure as the origi-

nal data. The formula for RMSE is shown in Eq (11) [29].

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðQobs � QpreÞ
2

s

ð10Þ

Mean Absolute Error (MAE). Mean Absolute Error is a measure used to evaluate the

accuracy of a prediction or prediction model. It measures the average of the absolute errors

between the predicted values and the actual values in the data set, the formula for MAE is as

shown in Eq (11) [30].

MAE ¼
Pn

i¼1
jQobs � Qpre

n
ð11Þ

Where,

Qobs&Qpre: Value of the observation and predicted discharge data, respectively.

Table 2. Tuning components for three different kernels in SVR.

Type of kernel functions Tuning or affecting parameters

Linear C

polynomial kernel C and γ

Gausses (RBF) C, γ and r

https://doi.org/10.1371/journal.pone.0308266.t002
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Q�obs&Q
�
pre: Mean values of observation and prediction discharge data, respectively.

n = number of real data.

Training process

Different training patterns were adopted using the previous values as input to predict the later

values, as in Table 3 below. While the (Fig 3) shows the flowchart of the mechanism for pre-

dicting future discharges of the Euphrates River upstream of the Haditha Dam reservoir and

how to divide, train and test the data using the SVM model.

Results and discussion

Before the training process, the data was divided into two groups. The first group is the train-

ing and calibration group, representing 70% of the river discharge data. The second set is the

test set, representing 30% of the river discharge data.

The SVR technique was applied in MATLAB three-time horizons (daily, monthly and sea-

sonal) with different kernels: linear, quadratic, Gaussian or RBF. These kernels were used to

find the most accurate kernel. Five models with varying input sets were applied to the three

different time horizons, as shown in Table 3. This process aims to study the effect of the

response of daily discharges to previous values in predicting subsequent discharges. After com-

pleting the training process, the test data was used to make predictions and measure the capac-

ity of time delay prediction; this way, the models can predict future values based on past

values. This process aims to analyze and evaluate the relationship between the river’s daily, sea-

sonal and monthly discharges and the impact of previous values on forecasting and better

understanding the behavior of the water drainage system. SVR models are developed and com-

pared regarding RMSE and R2, with different kernel functions and designed input parameters.

A model that produces lower errors will reflect higher performance in this prediction of reser-

voir flow. Different kernel parameters were used as tuning parameters to improve the model

accuracy. Several tuning or effect parameters are used in the SVR kernel. (Fig 4A) show the

results of training the model on daily discharge rates and comparing them with the observed

values observed for the same period. (Fig 5A) show the relationship between the observed val-

ues and the predicted values for the linear kernel function training phase with a determination

factor of R2= 0.96. (Fig 4B) show the results of training the model on monthly predicted rates

and comparing them with the observed values for the same period. (Fig 5B) show the relation-

ship between the observed values and the predicted values for the linear kernel function train-

ing phase with a determination factor of R2. =0.68. Also, (Fig 4C) show the results of training

the model on seasonal discharge rates and comparing them with the observed values for the

same period. (Fig 5C) show the relationship between the recorded observed values and the pre-

dicted values for the training phase of the quadratic kernel function with a determination fac-

tor of R2= 0.21.

Table 3. Different types of inputs and outputs in SVM.

Model Input combination Output Variable

Model-1 Qt−1 Qt

Model-2 Qt−1.Qt−2 Qt

Model-3 Qt−1.Qt−2.Qt−3 Qt

Model-4 Qt−1.Qt−2.Qt−3.Qt−4 Qt

Model-5 Qt−1.Qt−2.Qt−3.Qt−4.Qt−5 Qt

https://doi.org/10.1371/journal.pone.0308266.t003
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Table 4 shows the results obtained from training the models and verifying their perfor-

mance on the daily river discharges based on several successive time delays shown in Table 3.

After analyzing the results, it was concluded that the linear kernel outperformed the other ker-

nels (Quadratic and Gaussian) in predicting the daily data rate using a one-day time delay.

This superiority was measured using significant statistical performance measures, namely the

coefficient of determination (R2), the root mean square error (RMSE) and mean absolute error

(MAE). The value of (R2) for the linear kernel in the testing phase was equal to (0.95), as in the

Fig 3. Flowchart of the prediction mechanism using the SVM model.

https://doi.org/10.1371/journal.pone.0308266.g003
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(Fig 6A), which means that it achieved the highest ability to agree between predicted values

and observed values compared to other kernels, as in the (Fig 7A). The value of (RMSE) in the

testing phase was equal to (53.29) m3/sec, the lowest value among the compared kernels, indi-

cating higher prediction accuracy and less deviation between the predicted values and the

observed values. While the MAE was Value equal to (33.26) m3/sec. Based on these results, it

can be concluded that the linear kernel outperforms other kernels in using a 1-day time delay

to predict the daily data rate.

While Table 5 shows the results obtained from training the models and verifying their per-

formance on the monthly river discharges based on several successive time delays shown in

Table 3, after analyzing the results, it is noted that the performance of the linear kernel is also

superior to the other kernels, with a time delay of three days in predicting the monthly rate of

discharges through comparison with the statistical coefficients (R2), (RMSE) and (MAE). The

value of (R2) in the testing phase was equal to (0.731) as in (Fig 6B), which is the best value

compared to the other cores. In contrast, the value of (RMSE) in the testing phase is equal to

(109.4) m3/sec, which is the lowest value and is considered the best among them, which means

Fig 4. Training process of the SVM model for discharges (a) daily, (b) monthly, and (c) seasonal.

https://doi.org/10.1371/journal.pone.0308266.g004

PLOS ONE Forecasting for Haditha reservoir inflow using Support Vector Machine

PLOS ONE | https://doi.org/10.1371/journal.pone.0308266 September 6, 2024 11 / 21

https://doi.org/10.1371/journal.pone.0308266.g004
https://doi.org/10.1371/journal.pone.0308266


that it achieved the highest ability to agree between predicted values and observed values com-

pared to other kernels, as in the (Fig 7B). While the MAE was Value equal to (76.08) m3/sec.

Based on these results, the linear kernel also performs better than other kernels when using a

three-day time delay in predicting a monthly data rate.

While Table 6 shows the results obtained from training the models and verifying their per-

formance on the seasonal river discharges based on several successive time delays shown in

Table 3, after analyzing the results, it is noted that the quadratic kernel is superior to the other

kernels in prediction average the data seasonal using a time delay of 1 day. The comparison

between the quadratic kernel and other kernels was done using well-known statistical perfor-

mance metrics, namely the coefficient of (R2), (RMSE) and (MAE). The quadratic kernel

showed a value (R2) equal to (0.415) in the testing phase, as shown in (Fig 6C), which indicates

the strength of agreement between the predicted values and the observed values better than

other kernels, as shown in (Fig 7C). In addition, the value of (RMSE) for the linear kernel was

estimated at (152.3) m3/sec, the lowest value, indicating high prediction accuracy and low

Fig 5. R2-value of observed versus predicted flow for the training phase SVM model for discharges (a) daily, (b)

monthly, and (c) seasonal.

https://doi.org/10.1371/journal.pone.0308266.g005
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deviation between the predicted and observed values. While the MAE was Value equal to

(129.3) m3/sec. Based on these results, the quadratic kernel performs better than other kernels

in predicting seasonal data rates using a time delay of 1 day. The (Fig 8) shows the difference

in the value of MAE between the daily, monthly and seasonal discharges in the testing phase of

the models used. It is noted that the lowest value of the statistical coefficient MAE was on the

daily discharges of the first model using the linear kernel function, where its value reached

(33.26) m3/sec, which is the lowest value compared to the monthly and seasonal discharges.

The same applies to the other kernels, which are Gaussian and quadratic. While the (Fig 9)

shows the difference in the value of RMSE between the daily, monthly and seasonal discharges

in the testing phase of the models used. It is noted that the lowest value of the statistical coeffi-

cient RMSE was on the daily discharges of the first model using the linear kernel function,

where its value reached (53.29) m3/sec, which is the lowest value compared to the monthly and

seasonal discharges. The same applies to the other kernels, which are Gaussian and quadratic.

Table 7 shows the statistical characteristics between the observed and predicted values for each

of the daily, monthly and seasonal discharge. By comparing the results, it is noted that the

observed and predicted values for the daily discharge are very good. As for the monthly and

seasonal discharge, there is a closeness but less than the daily discharge.

Based on the results obtained, as shown in Tables 4–6 above, it is clear that using a linear

kernel can provide excellent performance in predicting the daily discharge of the Euphrates

Table 4. Indicators for evaluating daily discharge performance of SVM kernel functions.

Model Train Test

R2 RMSE MAE R2 RMSE MAE

Linear Model-1 0.96 88.07 54.39 0.95 53.29 33.26

Model-2 0.95 88.33 54.09 0.945 54.05 33.86

Model-3 0.95 87.55 53.37 0.945 54.2 33.66

Model-4 0.95 87.41 53.35 0.945 53.83 33.49

Model-5 0.95 87.01 53.08 0.945 54.01 33.54

Quadratic Model-1 0.94 97.9 66.65 0.9465 58.41 42.7

Model-2 0.95 90.3 57.35 0.9444 64.21 49.3

Model-3 0.95 87.9 55.12 0.9436 56.65 38.22

Model-4 0.95 91.7 59.32 0.944 57.41 39.97

Model-5 0.95 91.7 59.28 0.9431 55.08 34.52

Fine Gaussian Model-1 0.95 90.78 55.98 0.931 61.1 37.7

Model-2 0.94 102.07 58.21 0.921 65.5 39.01

Model-3 0.92 114.54 60.41 0.913 68.8 40.41

Model-4 0.9 128.74 63.64 0.913 69 40.78

Model-5 0.88 139.61 66.52 0.914 68.7 41.04

Medium Gaussian Model-1 0.95 88.47 55.05 0.947 53.45 35.05

Model-2 0.95 88.55 54.97 0.945 54.79 36.51

Model-3 0.95 88.92 54.32 0.944 54.79 35.1

Model-4 0.95 89.33 54.38 0.944 54.73 35.78

Model-5 0.95 89.72 54.52 0.944 54.89 35.78

Coarse Gaussian Model-1 0.95 88.16 55.28 0.946 53.67 35.61

Model-2 0.95 87.95 55.26 0.944 54.87 36.94

Model-3 0.95 87.05 54.43 0.944 54.68 36.52

Model-4 0.95 87.1 54.62 0.945 53.96 35.64

Model-5 0.95 86.8 54.58 0.945 54.25 36.37

https://doi.org/10.1371/journal.pone.0308266.t004
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Fig 6. R2 value of observed versus predicted flow for the testing phase SVM model for discharges (a) daily, (b)

monthly, and (c) seasonal.

https://doi.org/10.1371/journal.pone.0308266.g006
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Fig 7. Time series of observation and predicted discharges for the model SVR on discharges (a) daily, (b) monthly, and (c)

seasonal.

https://doi.org/10.1371/journal.pone.0308266.g007
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River upstream of Haditha reservoir, especially when a time delay of one day is applied. That

confirms that the linear kernel shows superior ability in predicting discharge rates with high

accuracy and reliability, indicating substantial agreement between the predicted and observed

values. In addition, the coefficient of determination (R2) and root mean square error (RMSE)

values suggest that the linear kernel provided remarkably accurate estimates, with a correlation

coefficient of 0.95 and a root mean square error of 53.29, the lowest values recorded. Also,

using a linear kernel can provide excellent performance in predicting the monthly discharge of

the Euphrates River, especially when a three-day time delay is applied. The coefficient of deter-

mination (R2) and root mean square error (RMSE) values indicate that the linear kernel pro-

vided remarkably accurate estimates, with the coefficient of determination of 0.731 and the

root mean square error of 109.4 being the lowest values recorded. As for predicting seasonal

discharge, using a quadratic kernel gives an acceptable performance in predicting monthly dis-

charge, especially when applying a time delay of one day, based on the coefficient of determi-

nation, which reached (0.415) and the root mean square error (152.3).

Many global researches have used the same model for future prediction as [12, 16, 23, 28]

was used on certain regions. In this study, the same model was used to predict the future daily,

monthly, and seasonal discharges of the Euphrates River upstream of the Haditha Dam reser-

voir. After analyzing the results, we find that the model used has an acceptable performance in

future prediction, and compared to the results of other research, there are no significant differ-

ences between the results. From observing the results obtained from applying the (SVM)

Table 5. Indicators for evaluating monthly discharge performance of SVM kernel functions.

Model Train Test

R2 RMSE MAE R2 RMSE MAE

Linear Model-1 0.69 214.37 147.25 0.718 111.3 76.23

Model-2 0.69 212.71 143.87 0.73 110.5 78.45

Model-3 0.68 213.94 144.87 0.731 109.4 76.08

Model-4 0.68 215.32 145.43 0.729 109.8 76.61

Model-5 0.68 214.58 146.46 0.727 110.2 77.76

Quadratic Model-1 0.86 216.14 148.81 0.72 111.3 76.23

Model-2 0.67 219.22 147.29 0.721 113.8 76.17

Model-3 0.55 254.39 160.51 0.727 111.9 72.68

Model-4 0.54 256.54 163.09 0.725 111.9 72.97

Model-5 0.48 273.19 166.32 0.713 115.4 75.99

Fine Gaussian Model-1 0.54 257.91 158.74 0.562 141.4 93.82

Model-2 0.45 284.05 169.39 0.471 157 109.9

Model-3 0.37 301.12 183.3 0.553 148 105.86

Model-4 0.35 505.16 184.55 0.482 155 113.2

Model-5 0.32 313.12 191.14 0.489 159 119.46

Medium Gaussian Model-1 0.58 247.54 155.34 0.718 112.5 80.43

Model-2 0.55 255.83 159.34 0.691 119.4 89.19

Model-3 0.56 249.8 154.15 0.699 118.6 89.48

Model-4 0.58 245.38 151.38 0.693 118.3 87.36

Model-5 0.52 264.87 159.53 0.702 115.9 86.25

Coarse Gaussian Model-1 0.62 236.61 152.82 0.714 112.45 80.43

Model-2 0.63 231.77 152.97 0.721 112.17 83.06

Model-3 0.63 229.66 152.52 0.716 112.7 82.16

Model-4 0.63 231.51 156.68 0.711 113.3 82.74

Model-5 0.61 237.25 158.12 0.698 114.9 83.61

https://doi.org/10.1371/journal.pone.0308266.t005
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method on the Euphrates River on a daily basis and comparing them with previous studies

such as [31–33] we notice that the values of statistical coefficients such as (MAE) were close or

close to the general average of these studies, as well as the values of (RMSE) and (R2) When

applied on a monthly or seasonal basis, the results were acceptable, but not as accurate as the

daily forecast. The SVM model used to predict the daily discharges of the Euphrates River

upstream of the Haditha Dam reservoir is considered acceptable and reliable and can provide

many benefits for water resources management and the water sector in general. The model

can predict the size and timing of potential floods; this can help develop flood coping strategies

and improve early warning and risk management procedures. Forecasts can be used to deter-

mine future water needs and plan sustainable use of water resources; this helps determine ade-

quate irrigation, storage, and groundwater management policies. Strategies can be developed

to mitigate the effects of drought and improve water management in periods of drought. The

allocation of water resources can be enhanced, precautionary measures can be applied, and

water consumption can be controlled. Forecasts can be used to determine water infrastructure

needs such as dams, canals, and other hydrological structures. Infrastructure planning and

design can be improved, and more effective use of water resources can be achieved. With a bet-

ter understanding of river discharges and their forecasts, strategies can be developed to protect

and improve the aquatic environment. River management and environmental measures can

be enhanced, and biodiversity and ecological balance can be maintained.

Table 6. Indicators for evaluating seasonal discharge performance of SVM kernel functions.

Model Train Test

R2 RMSE MAE R2 RMSE MAE

Linear Model-1 0.29 292.61 197.14 0.413 153.6 131.5

Model-2 0.26 299.13 201.19 0.379 154.5 129.5

Model-3 0.24 303.19 206.57 0.34 159 130.4

Model-4 0.23 303.24 196.83 0.222 176.1 140.8

Model-5 0.25 300.56 191.44 0.28 171.5 136.7

Quadratic Model-1 0.21 307.96 210.34 0.415 152.3 129.3

Model-2 0.41 311.6 170.96 0.3309 160.1 119.87

Model-3 0.28 340.05 178.26 0.3421 158.75 119.26

Model-4 0.14 321.54 205.46 0.112 198.3 159

Model-5 0.05 337.39 196.49 0.143 202.4 161.7

Fine Gaussian Model-1 0.18 314.15 216.95 0.322 175.3 149.8

Model-2 0.13 323.85 209.58 0.156 203.4 166.8

Model-3 0.07 335.04 226.83 0.253 188.9 163.2

Model-4 0.1 329.23 216.61 0.17 203.6 178.3

Model-5 0.12 325.27 206.18 0.055 227 196.2

Medium Gaussian Model-1 0.18 314.13 208.39 0.385 158.8 136.7

Model-2 0.13 325.15 211.59 0.265 170.6 139.2

Model-3 0.12 326.42 218.69 0.263 174.1 143.6

Model-4 0.17 316.2 202.75 0.122 195.2 162.2

Model-5 0.17 316.2 204.07 0.155 192.1 158.1

Coarse Gaussian Model-1 0.19 313.18 209.06 0.406 158.7 137.7

Model-2 0.17 316.85 205.06 0.338 162.6 140.3

Model-3 0.15 320 209.8 0.318 166.2 142.2

Model-4 0.21 307.81 199.73 0.21 176.1 146.1

Model-5 0.22 305.75 196.03 0.277 171.4 145.3

https://doi.org/10.1371/journal.pone.0308266.t006
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Fig 8. AME value for the testing phase SVM model for daily, monthly, and seasonal discharges.

https://doi.org/10.1371/journal.pone.0308266.g008

Fig 9. RMSE value for the testing phase SVM model for daily, monthly, and seasonal discharges.

https://doi.org/10.1371/journal.pone.0308266.g009

PLOS ONE Forecasting for Haditha reservoir inflow using Support Vector Machine

PLOS ONE | https://doi.org/10.1371/journal.pone.0308266 September 6, 2024 18 / 21

https://doi.org/10.1371/journal.pone.0308266.g008
https://doi.org/10.1371/journal.pone.0308266.g009
https://doi.org/10.1371/journal.pone.0308266


Conclusion and recommendations

The main conclusions of the present study could be summarized as follows:

• According to the results, the daily flow of the river obtained the highest accuracy com-

pared to the seasonal and monthly time intervals.

• By comparing the statistical standards of the SVM models, we notice the superior perfor-

mance of the linear kernel function to predict the daily discharge of the Euphrates River

according to the coefficient of determination, which reached (R2 = 0.95), which is the highest

value compared to the other values, and (RMSE = 53.29), which is the lowest value, between

them.

• Based on the results, the (SVR) model can be used to improve water resources manage-

ment and dam operations for the Euphrates River upstream of the Haditha reservoir.

• The model (SVR) can support develop flood adaptation strategies, improve early warning

and risk management measures, mitigate the effects of drought, and improve water manage-

ment in drought periods within the selected area.

• A hybrid model is recommended to predict the Euphrates River discharges upstream of

the Haditha Dam reservoir.

• Adopting time series data for other variables (rain, temperatures, evaporation coefficient,

etc.) as inputs for forecasting models and investigating their impact on future discharges.

• It is recommended that SVM technology and artificial intelligence models be expanded to

study various issues related to water resources in Iraq.
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