
Hu, Y, Wu, M, Yuan, M, Wen, Y, Ren, P, Ye, S, Liu, F, Zhou, B, Fang, H, Wang, R, 
Ji, Z and Huang, R

 Accurate prediction of dielectric properties and bandgaps in materials with a 
machine learning approach

http://researchonline.ljmu.ac.uk/id/eprint/24295/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Hu, Y, Wu, M, Yuan, M, Wen, Y, Ren, P, Ye, S, Liu, F, Zhou, B, Fang, H, Wang, 
R, Ji, Z and Huang, R (2024) Accurate prediction of dielectric properties and 
bandgaps in materials with a machine learning approach. Applied Physics 
Letters, 125. ISSN 0003-6951 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


 1 

Accurate Prediction of Dielectric Properties and Band Gaps in 

Materials with Machine Learning Approach   

Yilin Hu,1 Maokun Wu,1,a) Miaojia Yuan,1 Yichen Wen,1 Pengpeng Ren,1 Sheng Ye,1 Fayong 

Liu,2 Bo Zhou,3 Hui Fang,4 Runsheng Wang,5 Zhigang Ji,1,a) and Ru Huang 5 

1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai 

Jiao Tong University, Shanghai 200240, China  

2College of Electronic Engineering, Ocean University of China, Qingdao 266404, China 

3School of Computer Science and Mathematics, Liverpool John Moores University, Byrom 

Street Liverpool L3 3AF 

4Department of Computer Science, Loughborough University, Loughborough LE11 3TU, U.K 

5School of Integrated Circuits, Peking University, Beijing 100871, China 

 

 

Authors to whom correspondence should be addressed: 

a)E-mail address: maokunwu@sjtu.edu.cn; zhigangji@sjtu.edu.cn 

 

  

mailto:maokunwu@sjtu.edu.cn
mailto:zhigangji@sjtu.edu.cn


 2 

Abstract 

The conventional approach to exploring suitable dielectrics for future logic and 

memory devices relies on first-principle calculations, which are expensive and 

time-consuming. In this work, we adopt a data-driven machine learning (ML)-based 

approach to build a model for predicting these properties. By incorporating structural 

information into the input descriptors, we achieve record-high accuracy in predicting 

the dielectric constant, with an R2 of 0.886 and an RMSE of 0.083. Additionally, we 

achieve high predictions for the band gap, with accuracies of 0.832 and 0.533 for R2 

and RMSE, respectively. The features corresponding to specific properties are 

analyzed to obtain physical insights. Finally, we employ first-principle calculations to 

validate the feasibility of this model. This work proposes a highly efficient approach 

for using ML to predict material properties. 
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The DRAM capacitor, which consists of a metal-insulator-metal (MIM) structure, must store 

sufficient charge for sufficient time to maintain a reasonable refresh rate. Following the 

continuous and rapid scaling of electronic devices to the nanometer scale, silicon dioxide (SiO2, 

𝜅=4), as an archetypical dielectric material, exhibits a dominant leakage current due to the 

quantum tunneling effect.1 In contrast, dielectrics with high-𝜅 are expected since it can allow 

thicker thickness when maintaining the same capacitance, suppressing the leakage current.2 For 

example, HfO2 is widely used as the gate dielectric in DRAM owing to the high-𝜅 with ~25 and 

the compatibility with Complementary Metal Oxide Semiconductor (CMOS) technology.3 Even so, 

a large band gap (𝐸𝑔) is also required to suppress the charge injection from the electrode into the 

dielectric.4 However, 𝜅 and Eg presents an inversely proportional relationship within a limited 

material dataset as reported.5 Currently, dielectric materials have been continuously discovered 

with the development of technology. Therefore, exploring the dielectric materials with high-κ and 

wide Eg simultaneously is critical to meet the requirement of low leakage current for 

next-generation electronic devices such as memory devices and capacitor-based energy storage.  

Remarkably, for the discovery of materials, a time-consuming process is required in the 

experimental aspect. In contrast, First-principles calculations have been considered as a powerful 

discovery tool for exploring material properties. Utilizing a high-throughput method with 

First-principles calculations, Yim et al. investigated the dielectric constants and 𝐸𝑔 of more than 

1800 binary and ternary oxides.4 Umeda et al. computed the dielectric constants of 2393 oxides, 

suggesting 24 compounds with dielectric constants larger than 100.6 However, powerful 

computational resources are required in high-throughput screening process since the calculation of 

𝜅 can be computationally intensive. In contrast, data-driven machine learning, as an emerging 
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discipline, has attracted widespread attention, since it can establish a simple mapping between 

fundamental physical parameters and target results, accelerating the discovery and design of 

materials in a relatively short period of time. Morita et al. achieved the coefficients of 

determination (𝑅2) of 0.86 in predicting dielectric constants through constructing support vector 

regression (SVR) models. However, the Root Mean Square Error (RMSE) is as high as 0.99, 

reflecting a large deviation between predicted and actual values.7 Recently, the prediction 

accuracy of 𝜅 can be improved by separating 𝜅 into electronic (𝜀𝑒𝑙) and ionic contributions 

(𝜀𝑖𝑜𝑛) in machine learning models, respectively.8 This is due to the fact that the accuracy of 

dominating 𝜀𝑖𝑜𝑛 in 𝜅 is relatively lower, resulting in a big error of overall 𝜅.8 Kim et al. 

achieved an accuracy of 0.68 in predicting the 𝜀𝑖𝑜𝑛 using a gradient boosting regression (GBR) 

model for perovskite-type oxides (ABO3).
9 Takahashi et al. constructed a regression model to 

predict the 𝜀𝑖𝑜𝑛 for ground-state oxides, achieving an improved accuracy of 0.73,8 which is still 

not satisfactory. Further improvement to minimize error is required. Therefore, exploring 

improved schemes for predicting 𝜅 utilizing ML is critical to accelerate the identification of 

dielectric oxides.  

Based on the above motivations, we employed the Support Vector Regression (SVR) model 

to predict the dielectric constants and 𝐸𝑔 of binary and ternary oxides regarding its simple 

synthesis process. Compared with deep learning models, our current dataset only contains 722 

materials, which is not enough to train a reliable deep-learning model. Therefore, classical 

machine learning models such as SVR are more suitable for small datasets. 10-14 In this work, the 

structural information is considered thoroughly owing to its significant role in determining ionic 

contribution. It is found that the prediction accuracy can be improved when the structural 
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information is used as input descriptors, especially for the ionic contribution. Furthermore, the 

significance of the descriptors has been analyzed to understand the physical insights into the 

dielectric constants. Additionally, several materials have been taken to validate the feasibility of 

this model through comparing with DFT calculations. This work provides a useful reference in 

predicting dielectric constants and promoting the discovery of dielectrics. 

As depicted in Fig. 1, the orange arrows indicate the expected area with large 𝑅2 and small 

RMSE. 𝑅2 indicates the relationship strength between the dependent variable and regression 

models on a 0 ~ 1 scale.15,16 RMSE reflects the deviation between predicted and actual values, and 

smaller RMSE indicates better performance.17-19 Fig. 1(a) presents the comparison results of R2 

and RMSE between our model and the data from the literature. It is found that this model in our 

work can achieve better prediction results with 𝑅2 (0.886) and RMSE (0.083), which is superior 

to the reported data.7,20-22 This can be ascribed to the improved accuracy of the dominated ionic 

contribution, as shown in Fig. 1(a). The 𝜀𝑖𝑜𝑛 achieves the highest 𝑅2 score (0.798) compared to 

previous data, and the RMSE (0.163) of 𝜀𝑖𝑜𝑛 is also comparable to the current accuracy.8,9 

Besides, as depicted in Fig. 1(b), we conducted a comparative analysis of the computational 

time-cost between the ML model and DFT calculations. Take YGaO3 as an example, the 

calculation of the Born effective charge and phonon frequencies for dielectric constants can be 

computationally intensive when determining 𝜅.  In contrast, a significant reduction in 

computational time is achieved by employing this model in our work. Additionally, for bandgap 

estimation, utilizing ML for 𝐸𝑔 prediction is significantly better than DFT calculations. This 

clearly illustrates that employing machine learning for predicting material properties can lead to 

substantial savings in both computational time and resources.  
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FIG. 1. (a) The comparison graph between our model and existing models in terms of 𝑅2 score and 

root mean square error (RMSE). The rhombic represents the predicted values of the dielectric constant, 

Compared to other models, our model (𝑅2=0.887) has reached the optimal level. The circles represent 

the 𝜀𝑖𝑜𝑛. (b) The comparison graph between the computational times of Density Functional Theory 

(DFT) calculations and Machine Learning (ML) predictions. As an example with 10 atoms of YGaO3, 

predicting 𝐸𝑔 saved ~105 times, while predicting dielectric constants saved ~104 times. 

In this work, 722 binary and ternary oxides with dielectrics constants and 𝐸𝑔 values are 

obtained as a database from Materials Project (MP) and relevant reports.8,23 The Support Vector 

Regression model is built based on statistical theory.24-26 It exhibits strong generalization 

capabilities and captures robust relationships between features in small-sample scenarios. We 

compared various kernel functions, including linear, polynomial, radial basis function (RBF), and 

Sigmoid kernels. After careful consideration, we selected the RBF kernel due to its superior 

performance in fitting the data and minimizing errors, which is realized using the Scikit-learn 

software package. 27,28 Furthermore, we systematically used grid search to explore a wide range of 

hyperparameter values. The final hyperparameters were set to C = (100, 100, 10) and gamma = 

(0.01, 0.01, 0.1) for electronic contribution, ionic contribution, and band gap, respectively. The 

detailed heatmaps of different hyperparameters C and gamma in the grid search are given in the 

supplementary materials. 
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To construct the machine learning model, the composition and structural information of these 

materials have been extracted to construct 126 characteristic features using the MATMINER29 and 

PYMATGEN30 packages. Remarkably, due to the pronounced sensitivity of phonon frequencies to 

εion and structural parameters such as bond lengths, these factors play a significant role in 

determining phonon behavior in materials.31-33 Meanwhile, since the ionic contribution plays a 

dominant role in the overall dielectric constant, enhancing its accuracy is crucial for improving the 

overall precision of the dielectric constant. Therefore, we extracted a variety of structural features 

from the material’s structural files as input parameters such as lattice constants, bond lengths, 

bond angles, and space groups. To train the model, we allocate 90% for the training set and 10% 

for the testing set. To improve the accuracy of the ML model, grid search technology is adopted to 

select the optimized hyperparameters.34 Similarly, the 𝑅2 score and RMSE are considered as 

performance metrics to evaluate the reliability of the ML model (Fig. 2(a) shows the workflow for 

ML). The selection of an appropriate feature dimension is crucial for enhancing the precision of 

machine learning, which can capture material properties. Meanwhile, the number of the selected 

features should be fewer than the dataset itself to avoid the curse of dimensionality.35,36 Thus, 

feature correlation analysis is initially conducted through calculating the Pearson correlation 

coefficient between each pair of features. When two features have an absolute Pearson correlation 

coefficient (𝜌) greater than 0.9, one of the features is removed from the dataset. And the features 

are then reduced to 82 (shown in Fig. 2(b)). Subsequently, utilizing the embedded random forest 

regression algorithm, we construct the feature selection library efficiently and rapidly in the 

Scikit-learn software.28,37 After multiple iterations, the final features for 𝜀𝑒𝑙, 𝜀𝑖𝑜𝑛, and 𝐸𝑔 are 

determined to be 15, 20 and 10, respectively. 
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FIG. 2. (a) Workflow for constructing a machine learning (ML) model. Starting from the initial 

composition and structure of materials, through feature engineering and ML training, we ultimately 

evaluated using R² and RMSE. (b) The selected 82 feature descriptors of the oxides. The deeper the red, 

the stronger the positive correlation; the deeper the blue, the stronger the negative correlation. The 

direction of the ellipse indicates the sign of the correlation (positive or negative), and the flatness of the 

ellipse represents the strength of the correlation. The more circular the ellipse, the weaker the 

correlation. 
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To accurately quantify feature importance, we selected Random Forest Regression to 

evaluate the impact of each feature on the model’s results, due to its distinguished advantages for 

data mining, handling high dimensional data, and detecting feature significance. Meanwhile, to 

ensure the accuracy of the evaluation results, we performed 500 iterations and averaged the 

importance scores for each feature.37 Herein, The top five features selected are illustrated in Fig. 

3(a)-(c) according to their scores. For 𝜀𝑒𝑙, the highest occupied molecular orbital (HOMO) energy, 

is found to be the most important descriptor (Fig. 3(a)). The energy difference between the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and 

the 𝐸𝑔 show some degree of positive correlation in the statistical results.8,38 And the inverse 

relationship between 𝐸𝑔 and 𝜀𝑒𝑙, has been proved in many studies.5,7,39 The main reason is due to  

 

Fig. 3. The relative importance of the first 5 features screened for the (a) electronic contributions (𝜀𝑒𝑙), 

(b) ionic contributions (𝜀𝑖𝑜𝑛) and (c) band gap (𝐸𝑔). One of the influential features affecting 𝜀𝑖𝑜𝑛is the 

B-C feature, which represents the bond length between the B atom and the O atom in ternary oxides 

(AxByOz). (d) Relationship between the d valence electrons and the bandgap predicted by machine 

learning, confirming that the 𝐸𝑔 decreases with an increase in the number of d valence electrons. 
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the calculation of the electronic static node tensor, where the three primary influencing factors are 

the joint density of states (DOS) composed of valence band and conduction band DOS, the extent 

of valence band to conduction band transition under the influence of an electric field, and the 𝐸𝑔 

and width of the valence and conduction bands.8,40,41 Due to the dominated role of 𝜀𝑖𝑜𝑛 in the 

dielectric constant and the strong dependence of the ionic static dielectric tensor on lattice 

parameters and internal atomic coordinates, feature importance ranking reveals the crucial 

significance of bond length features in determining 𝜀𝑖𝑜𝑛  (Fig. 3(b)). Besides, for bandgap 

prediction, it is evident that d valence electrons play a vital role (Fig. 3(c)). According to the linear 

combination theory of atomic orbitals, the energy bands are determined by the energy difference 

between the bonding and antibonding orbitals. Thus，the 𝐸𝑔 is closely related to the d orbitals of 

the elements. The quantity of d valence electrons can significantly elevate the conduction band 

energy level through s-d and p-d coupling.42 Fig. 3(d) shows the relationship between the 𝐸𝑔 and 

the number of d valence electrons, confirming that the 𝐸𝑔 decreases with an increase in the 

number of d valence electrons. This observation demonstrates the consistency between the model 

and theoretical predictions. 

The predicted results through ML training are depicted in Fig. 4. Herein, the RBF kernel 

function is selected due to the higher accuracy. It can be observed that the predicted 𝜀𝑒𝑙 from the 

well-trained model are uniformly distributed around the y = x function, aligning with the data 

obtained from the input dataset. For 𝜀𝑒𝑙, the R² of the test set is 0.935 and the RMSE is 0.039. 

Similarly, for 𝜀𝑖𝑜𝑛, the R² is 0.789 and the RMSE is 0.132. It is evident that the 𝜀𝑖𝑜𝑛 model has 

achieved optimal performance compared to previous research.8 Fig. 4(c) presents a comparison 

between the model and DFT across the entire k, with an R² of 0.886 and an RMSE of 0.083, 
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demonstrating good consistency that surpasses current literature reports. This improvement can be 

attributed to the increased accuracy of the ionic contributions through considering structural 

information. This indicates the reliability and accuracy of this model in our work. In addition, the 

accuracies of the bandgap predictions are 0.832 and 0.533 for R2 and RMSE (shown in Fig. 4(d)), 

which is also comparable with the reported data.43,44  

 

FIG. 4. Scatter plots of the (a) electronic dielectric constants (𝜀𝑒𝑙), (b) ionic dielectric constants (𝜀𝑖𝑜𝑛), 

(c) 𝜅 and (d) 𝐸𝑔 between the reference values and ML predicted values, respectively. The orange 

stars and green crosses represent the training data (used to construct the model) and test data (not used 

to construct the model). 

In order to demonstrate the feasibility of this model proposed in this work, first-principles 

calculations are employed using the PWmat software in the plane wave pseudo-potential 

formalism to calculate the 𝜅  and gap.45 The polarization response entirely determines the 

dielectric constant. The linear-response method based on the density functional perturbation 

theory (DFPT) is used to obtain phonon modes and Born effective charges.46 In this context, the 
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dielectric constant is the sum of contributions from both electrons and ions. Due to the ionic part 

of κ is sensitive to the low-frequency phonon modes,4 dielectric constant calculations employ the 

Norm-Conserving Pseudo-potential of local density approximation (LDA+SG15) to reduce the 

errors. A structural optimization is stopped until all residual force on each atom is smaller than 

10−3 eV/Å .  

 

FIG. 5. (a) Workflow for calculating 𝜅 using PWmat. (b) Crystal structures of the ternary oxide 

XZrO3 (X=Mg, Ga, Sr, Ba) and the binary oxide X2O3 (X=Sc, Y, La). (c) The density of states (DOS) 

and partial DOS (PDOS) of XZrO3 and X2O3. The Fermi level is set to be 0.0 eV. (d) Comparison of 

DFT-calculated values and ML-predicted values for the selected structures. The orange color indicates 

the predicted results using this model, while the green color is the results of DFT calculations. 

The dielectric constant is given by 

𝜀𝛼𝛽(𝜔) = 𝜀∞ +
4𝜋

Ω
∑

𝑓𝛼
∗𝑛 ∗ 𝑓𝛽

𝑛

𝜔𝑛
2 − 𝜔2 − 𝑖𝜔Γ

𝑛

                                              (1)  

where 𝜀∞represents the 𝜀𝑒𝑙  and the remainder represents 𝜀𝑖𝑜𝑛. Ω, ω, 𝑓𝛼
∗𝑛represents the 
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oscillator strength, the unit-cell volume, the frequency of the infrared-active phonon, respectively. 

The detailed calculation steps are shown in Fig. 5(a).  

To estimate the feasibility of this model, XZrO3 (X=Mg, Ga, Sr, Ba) as ternary oxides and 

X2O3 (X=Sc, Y, La) as binary oxides are chosen from the candidate materials for DFT validation, 

and these materials are not included in the dataset. The crystal structures are illustrated in Fig. 5(b). 

The projected density of states is displayed for XZrO3 (X=Mg, Ga, Sr, Ba) and X2O3 (X=Sc, Y, 

La), as shown in Fig. 5(c). For ternary oxides, the bandgap values are 4.11, 4.12, 3.74, and 3.28eV, 

respectively. From Fig. 5(c), it can be observed that the valence band maximum is mainly 

contributed by O-2𝑝 orbitals, and the conduction band maximum is mainly contributed by Zr-4d 

orbitals. For binary oxides, the bandgap values are 3.91, 4.22 and 3.63 eV, respectively. From Fig. 

1(b), it can be observed that the valence band maximum is mainly contributed by O-2p orbitals, 

and the conduction band maximum is mainly contributed by Sc-3d, Y-4d, and La-5d orbitals, 

respectively. In Fig. 5(d), we have also plotted the comparative relationship between 𝐸𝑔 and 𝜅 

unitizing this model in our work and DFT calculations. It is found that the consistency is well 

depicted in Fig. 5(d) for binary and ternary candidates, further demonstrating the feasibility of this 

model in predicting 𝜅 and Eg in our work. 

Remarkably, to further improve the accuracy of our proposed model, we can focus on 

providing more training samples and improve the model's generalization capability. For example, 

by conducting additional high-throughput DFT calculations to provide more data points for model 

training, it is expected to improve its ability to generalize.11,47,48 In addition, data augmentation can 

be considered since it can effectively increase the size of the dataset by creating transformed 
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versions of the original data.49-51 

To summarize, by integrating ML with first-principles calculations, we have established 

models for the 𝜅 and 𝐸𝑔 of binary and ternary oxides. Through a comparative analysis of 

computational time, our ML-based predictions of oxide properties exhibit a time saving ~105 

times and 104 times for k and Eg calculations. Furthermore, through considering structural 

information as descriptors in the machine learning model, R2 (0.886) and RMSE (0.083) for 

predicting k achieve a superior level owing to the sensitivity of phonon frequencies on structural 

parameters. For validation purposes, XZrO3 (X=Mg, Ga, Sr, Ba) and X2O3 (X=Sc, Y, La) as 

candidate materials have been demonstrated. The results obtained from DFT calculations align 

closely with the predictions made using the ML model. This research aids in rapid material 

screening, significantly shortening the development cycle of next-generation microelectronic 

devices. 

See the supplementary materials, which shows the detailed heatmaps of different 

hyperparameters C and gamma in the grid search for the electronic contribution, ionic contribution, 

and bandgap, respectively. 
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