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Abstract
1.	 Passive acoustic monitoring (PAM) has become an important tool for surveying 

birds, and there is a growing demand for approaches to obtain abundance and 
behavioural information from PAM recordings. Changes in bird populations have 
been assessed by counting recorded calls and calculating the vocal activity rate 
(VAR, i.e. the number of calls per recording time). However, bird calls could be 
counted in various ways and depending on species traits, these call counts could 
give us different insights on bird abundance, vocal behaviour and/or habitat use.

2.	 Our study had two goals: (1) to present and evaluate two new indices based on 
call counts, the detection rate (DR, i.e. the number of 1-min recordings in which 
the presence of a target vocalization is detected) and the maximum count per 
minute (MAX, i.e. the maximum number of calls found in a 1-min recording); and 
(2) to present a conceptual framework showing how the interpretations of VAR, 
DR and MAX could depend on the index and on species traits.

3.	 For three Neotropical bird species with distinct traits, we calculated VAR, DR and 
MAX based on PAM data from 25 sites in the Yucatan Peninsula (Mexico) that 
varied in their degree of anthropogenic habitat disturbance. We found moderate 
to high correlations between the indices and higher temporal variability in VAR 
compared to DR and MAX. We also found different effect sizes of habitat distur-
bance on the three species and indices.

4.	 We suggest that DR might be a more reliable index of relative abundance than 
VAR for species whose calling behaviour exhibits a high cue rate and that MAX 
may be suitable for estimating family or flock size in gregarious birds. Our find-
ings show the potential usefulness of developing new indices based on call 
counts to generate ecological hypotheses and assess changes in bird abundance 
and behaviour.
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1  |  INTRODUC TION

Habitat loss and modification are major threats to animal biodiver-
sity in tropical forest regions around the world (Barlow et al., 2018). 
To evaluate the effects of such threats, birds are often used as a focal 
taxon (Şekercioĝlu, 2012; Whelan et al., 2015). In this context, pas-
sive acoustic monitoring (PAM) has become increasingly popular as 
an effective method for conducting bird surveys (Sugai et al., 2019). 
PAM uses autonomous recording units (ARUs) that capture acoustic 
information, which can be stored and used for a variety of purposes. 
This method is especially suitable for sampling highly vocal species 
and can be very useful in habitats where dense vegetation hampers 
visual detection, such as tropical forests (Darras et al., 2019).

Anthropogenic disturbances of tropical forests affect bird spe-
cies in different ways (Newbold et  al.,  2013). On the one hand, 
forest-specialists are highly vulnerable to disturbances (e.g. toucans, 
Martínez-Ruiz et  al.,  2021), while some habitat-generalists can in-
crease in abundance with progressing disturbance (e.g. brown jays, 
Jones, 2020). On the other hand, disturbances may not only affect a 
species' abundance but can cause changes in behaviour, including its 
vocal behaviour (Gil et al., 2015; Kirschel et al., 2009) and/or patterns 
of habitat use (Graham, 2001). Although PAM has primarily been used 
to detect species presence, data from recordings can also be used to 
assess changes in abundance (Pérez-Granados & Traba,  2021) and 
behaviour (Pérez-Granados & Schuchmann, 2020a).

Methods for estimating absolute abundance (e.g. distance 
sampling, sonogram analysis, cue counting; see Pérez-Granados 
& Traba,  2021 for a detailed review) are not easily applicable be-
cause they require additional information and equipment (Marques 
et al., 2013). Thus, indices of relative abundance (i.e. any measurable 
correlate of absolute abundance; Hopkins & Kennedy, 2004) have 
been proposed as a more convenient alternative, as they only assume 
a positive correlation between a species' absolute abundance and 
the number of vocalizations on a single recording (Pérez-Granados, 
Bota, et al., 2019). For example, ecoacoustic indices, which employ 
mathematical formulas to characterize the soundscape (Alcocer 
et al., 2022), have been utilized as proxies of avian abundance and 
diversity (Bradfer-Lawrence et al., 2020; Orben et al., 2019). In con-
trast, vocal activity indices, which are also derived from soundscape 
recordings, rely on the identification and quantification of target vo-
calizations from focal species. The vocal activity rate (VAR), which 
is the number of calls per recording time, is such an index (Pérez-
Granados, Bota, et al., 2019; Pérez-Granados & Traba, 2021).

Vocal activity rate assumes that as more birds occur in an area, 
more calls of the species are emitted and recorded. However, al-
though variation in VAR across sites may reflect differences in spe-
cies abundance, it could also indicate differences in vocal behaviour 
(Pérez-Granados & Schuchmann, 2020a; Upham-Mills et al., 2020) or 

other aspects of behaviour such as habitat use, that is the time a 
bird spends in a particular part of its habitat (which in turn affects 
how much time it spends near a recording device). Distinguishing 
between potential causes of variation in VAR is difficult because it 
is often unknown whether multiple calls were made by one or more 
individuals (but see Ntalampiras & Potamitis, 2021) and because this 
index does not take into consideration the temporal patterns of bird 
vocalizations. Here, we argue that recorded calls can be counted in 
different ways, and that some types of counts may correlate more 
strongly than others with behaviour or abundance, depending on the 
species' traits.

We introduce two new indices obtained by counting calls in 
ways in which the temporal patterns of bird vocalization are taken 
into consideration: (1) the detection rate (DR), which we defined as 
the number of 1-min recordings in which the presence of a target 
vocalization is detected, per recording time; and (2) the maximum 
count per minute (MAX), which we defined as the highest number 
of calls found in a 1-min recording within the total recording time 
(Figure S1). The first goal of our study was to evaluate the perfor-
mance of DR and MAX in comparison to VAR. We compared values 
of VAR, DR and MAX for three bird species with different traits. 
We used recordings derived from a long-term PAM project in the 
Yucatan Peninsula (Mexico) where sites with varying levels of habi-
tat disturbance were monitored. We obtained values of the indices 
during the non-breeding season for three resident bird species:

	 (i)	The collared forest-falcon (Micrastur semitorquatus, hereafter ‘the 
falcon’), a territorial, forest-dependent, solitary raptor (forming 
pairs only during the breeding season) with a habitat prefer-
ence for old-growth forest (Martínez-Ruiz,  2021). Territories 
are defended more strongly, that is through longer vocaliza-
tion sequences, in higher-quality habitat (i.e. areas with high 
forest cover; Martínez-Ruiz et  al.,  2016). Hence, its vocal be-
haviour depends on the level of habitat disturbance. Territories 
can overlap (Martínez-Ruiz et al., 2016), thus some variation in 
abundance across sites is expected (0–2 individuals).

	(ii)	 The grey-headed tanager (Eucometis penicillate, hereafter 
‘the tanager’) lives in pairs or small family groups consisting 
of parents and their juvenile offspring (Baker & Burns, 2020). 
Although group size may vary among sites due to differential 
reproduction, it remains stable before the breeding season 
(which starts in March; Baker & Burns, 2020) with groups only 
consisting of pairs during that time. This species shows a low 
to moderate degree of territoriality, such that home ranges of 
different groups can overlap (Baker & Burns, 2020). Thus, much 
of the variation in bird abundance across sites is expected to be 
due to variation in the number of groups (Figure 1). The tanager 
is threatened by deforestation (Ridgely & Tudor, 2009), which 

K E Y W O R D S
Eucometis penicillata, habitat disturbance, Micrastur semitorquatus, Neotropical birds, passive 
acoustic monitoring, Saltator atriceps, survey methodology
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reduces the availability of its main food resource, insects es-
caping from army ants (Roberts et al., 2000). Therefore, habitat 
disturbance can negatively influence species abundance (Kumar 
& O'Donnell, 2007).

	(iii)	The black-headed saltator (Saltator atriceps, hereafter ‘the salta-
tor’) lives in groups of 3–10 individuals. Therefore, variation in 
group size is expected among sites. No information on territo-
riality is available (Deshwal et al., 2020). This generalist species 
benefits from habitat disturbance (Patten et  al.,  2010), being 
less common in pristine forest (Deshwal et al., 2020). Habitat 
disturbance may thus positively influence the abundance of this 
species.

The second goal of our study was to propose a conceptual frame-
work that includes several bird traits that we believe can strongly 
affect the number of calls recorded in PAM and can thus influence 
how the results obtained using different indices (DR, MAX and VAR) 
ought to be interpreted (Figure 1, Figure S1). The traits we focus on 
are the vocal activity period, the cue rate, the degree of territoriality, 
the social organization and the pattern of habitat use of a species.

Vocal activity period and cue rate are two aspects of vocal be-
haviour that are directly related to the temporal pattern of a bird's 
vocalization. Vocal activity periods are those times in a day when 
birds show heightened vocal activity (Aide et al., 2013). In full-day 
PAM recordings, more vocalizations will be captured when the vocal 
activity period of a species at a site is longer. When PAM sched-
ules are set to interval recording, recording hours should align with 
vocal activity periods to ensure bird detection. It is also important to 
consider that vocal activity periods may vary due to environmental 
conditions such as background noise (Dorado-Correa et  al., 2016; 
Gil et  al.,  2015; Gentry & Luther,  2017). The cue rate (Sebastián-
González et al., 2018), also called repetition rate (Wheatcroft, 2015) 
or song rate (Upham-Mills et  al.,  2020), refers to the number 
of vocalizations emitted by an individual in a short time period 
(Price, 2013; Suthers, 2004). Thus, a high cue rate causes vocaliza-
tions to be temporally clumped on a recording. High cue rates are 
common in songs (Pérez-Granados et al., 2018; Price, 2013), alarm 
calls (Suzuki, 2016), contact calls (Meaux et al., 2023), and territorial 
calls (Enriquez-Rocha & Rangel-Salazar,  2001). Cue rates can vary 
with breeding status (Upham-Mills et al., 2020), resource availabil-
ity, and the presence of competitors and predators (Clay et al., 2012; 
Morales et al., 2014; Wheatcroft, 2015), and have been used to es-
timate absolute bird abundance in some methodological approaches 
(e.g. cue counting: Sebastián-González et al., 2018; Pérez-Granados 
et al., 2021; sonogram analysis: Drake et al., 2016).

Other traits that can affect the interpretation of call counts on a 
recording are the species' degree of territoriality and social organiza-
tion. For example, in highly territorial solitary species, neighbouring 
territories have little overlap (Robinson & Terborgh, 1995) and most 
recorded vocalizations stem from the same few individuals. Thus, 
differences in call counts between two sites would mainly reflect 
differences in vocal behaviour rather than differences in abundance. 
Calls can also be temporally clumped when multiple individuals 

vocalize during the same time, which occurs in species with a gregar-
ious social organization (i.e. birds living in families or flocks). In this 
case, call counts contain information on both vocal behaviour and 
abundance. Finally, bird species differ in how they use their habitat. 
Consequently, the more time a bird spends near an ARU, the more of 
its calls will be recorded.

In our framework, we propose that indices obtained from differ-
ent types of call counts can correlate more strongly with abundance 
or vocal behaviour, depending on what traits a species possesses 
(Figure  1). We suggest that all three indices (DR, MAX, VAR) may 
correlate with some aspect of abundance (number of individuals, 
number of groups and/or group size), but that they differ in how 
bird traits may influence them. We propose that VAR may be influ-
enced by up to three traits: length of the vocal activity period, cue 
rate and/or habitat use. DR, which only reflects how often a target 
vocalization is detected in 1-min recordings, is expected to be less 
affected by the cue rate, but more by the length of the activity pe-
riod and/or habitat use. MAX, which is obtained from a single short 
time sequence (i.e. from one 1-min recording), should mostly be af-
fected by cue rates. MAX may therefore also serve as an indicator 
of activity bursts, that is of behaviour or events related to increased 
cue rates (e.g. mate attraction: Upham-Mills et al., 2020; predator 
presence: Wheatcroft,  2015; food abundance: Clay et  al.,  2012; 
territorial competition: Morales et al., 2014). We also argue that for 
solitary species, particularly territorial ones, DR and VAR are likely 
to be more strongly correlated with abundance than MAX, because 
MAX mainly reflects cue rates in those species (unless cue rates vary 
very little, in which case the three indices would be highly correlated 
with one another). In contrast, for gregarious species, we propose 
that VAR may indicate group size and/or number of groups, while DR 
would most strongly correlate with the number of groups, and MAX 
with group size (Figure 1).

To explore the applicability of our framework, we performed 
three analyses to (i) assess the strength of correlations between the 
three indices, (ii) quantify the indices' temporal variability within 
monitoring sites and (iii) determine how the indices' relationships 
with anthropogenic habitat disturbance vary among species. We 
reasoned that the strength of correlations among the indices might 
indicate to what extent they are shaped by the same factors. We 
expected the correlations between VAR and MAX and between VAR 
and DR to be stronger than the correlations between DR and MAX, 
because the former pairs have common sources of variation, while 
the latter pair does not (Figure 1; Prediction 1).

Within sites, the abundance of resident bird species is expected 
to remain relatively constant during a 4-month period in the non-
breeding season, whereas vocal behaviour of birds can show short-
term temporal changes (Pérez-Granados & Schuchmann,  2020a). 
Therefore, the within-site variability of our indices in the four-month 
period serves as an indicator of their sensitivity to changes in vocal 
behaviour. According to our framework, VAR is affected by two as-
pects of vocal behaviour (cue rate and length of the vocal activity 
period). Thus, we expected VAR to show higher temporal variabil-
ity compared to DR, which we assume to be mainly affected by the 
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length of the vocal activity period, and compared to MAX, which we 
assume to be mainly affected by the cue rate (Prediction 2). Finally, 
we expected that the effect sizes of anthropogenic habitat distur-
bance would vary among species and indices, depending on how 
the species behaviour and abundance are affected by disturbance 
(Prediction 3).

2  |  MATERIAL S AND METHODS

2.1  |  Study area

We collected data at 25 sites in the Lake Bacalar region (18.6783° N, 
88.3924° W) of the Yucatan Peninsula (Mexico). The region comprises 
a mosaic of large patches of semideciduous tropical forest in various 
stages of succession, smaller patches of agricultural fields and areas 
covered by urban infrastructure (Huchin Ochoa et  al.,  2022). The 
climate is characterized by mean annual temperatures of 24°–28°C 
and rainfall of 1100–1500 mm (Huchin Ochoa et al., 2022). Rainfall is 
seasonal, with a rainy period between June and October (>100 mm/
month) and a dry period between November and May (<100 mm/
month); occasional cold fronts can occur between October and April 
(Tobó Velázquez et al., 2019). Monitoring sites were established in 
late successional and mature forest patches on the western side of 
Lake Bacalar, where the urban expansion is concentrated (Figure S2). 
We obtained permission from local landowners and land managers, 
and systematically selected sites in areas with varying degrees of 
anthropogenic disturbance, maintaining a minimum distance of 1 km 
between sites. Research complied with protocols approved by the 
Secretaría del Medio Ambiente y Recursos Naturales [SEMARNAT: 
479 SGPA/DGVS/03005/19].

2.2  |  Anthropogenic habitat disturbance

First, we developed a land-cover map using the JavaScript API 
Code Editor in Google Earth Engine with open-access satellite im-
agery from the Sentinel-2 Multispectral Instrument (MSI, 10 m/
pixel resolution; Abdi, 2020; Rapinel et al., 2019; see Appendix S2 
in Supplementary Information for details). Second, habitat distur-
bance was assessed as the amount of urban area (i.e. urban infra-
structure in terms of roads and buildings) around monitoring sites 
(see Section 2.5).

2.3  |  PAM surveys and the semi-automated 
detection process

We installed one ARU per site; we used 18 Audiomoth (v.1.1.0 
and 1.2.0, opena​coust​icdev​ices.​info) and seven SM4 (Wildlife 
Acoustics). ARUs were attached to tree trunks or branches at breast 
height and were active for 4 months (November 2021 to February 
2022) outside the breeding season of the three focal bird species. 
Each ARU was set to record for 1 min every 6 min between 5:00 AM 
and 07:00 PM (UTC-5), for a maximum of 140 min per day (48.000 Hz 
sampling rate, medium gain for Audiomoth and default gain of 48 dB 
for SM4 ARUs). However, due to technical failures and corrupted 
data, recording efforts differed among sites and months (Figure S3).

As target vocalizations, we chose the territorial-defence call (a 
high-amplitude vocalization) for the falcon, the contact call (a vo-
calization used for group communication) for the tanager and the 

F I G U R E  1  Conceptual framework showing the proposed 
strongest correlations (straight coloured arrows) between vocal 
activity indices (DR, VAR, MAX; coloured boxes) and aspects of 
species abundance (boxes to the left) for solitary bird species 
(Number of individuals) and for gregarious species (number of 
groups and Group size) as well as behaviour (boxes to the right). 
VAR is the number of detected calls per recording time; DR is the 
number of 1-min recordings in which at least one call is present, per 
recording time; MAX is the maximum number of calls found in a 1-
min recording within the total recording time. Aspects of behaviour, 
such as habitat use and vocal behaviour (length of vocal activity 
period and cue rate) can affect the number of calls recorded 
through PAM and thus influence the values of the indices. The 
emission of multiple redundant calls in a short time determines the 
cue rate and causes temporal clumping of calls, whereas the length 
of vocal activity periods refers to the total time during a day when 
individuals are vocally active. Here, by habitat use we refer to the 
time birds spend near an ARU within their habitat. We propose that 
indices that are affected by fewer behavioural aspects might have 
stronger correlations with abundance and vice versa. For solitary 
species, DR and VAR are expected to be more strongly correlated 
with species abundance than MAX because the latter index is 
sensitive to temporal clumping of calls, and would thus mostly 
reflect cue rates. For gregarious species, VAR is expected to be 
similarly correlated with group size and with the number of groups, 
while DR should be more strongly correlated with the number 
of groups, and MAX with group size. We also expect that VAR is 
equally affected by the cue rate and the length of the vocal activity 
period, while DR is more strongly affected by the length of the 
vocal activity period, and MAX is not affected by it. VAR and DR 
are likely to be affected by habitat use, but MAX less so. Finally, a 
species' degree of territoriality is expected to affect the strength of 
the correlations (curved black arrows): low territoriality should yield 
stronger correlations between the indices and bird abundance, 
while high territoriality should yield stronger correlations between 
indices and behavioural aspects, since the higher the degree of 
territoriality, the less variability in the number of individuals is 
expected to occur at a site. ARU, autonomous recording unit; DR, 
detection rate; MAX, maximum count per minute; PAM, passive 
acoustic monitoring; VAR, vocal activity rate.
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common song for the saltator (Figure S4).We used the open-access 
ARBIMON Pattern Matching tool (Rainforest Connection, https://​
arbim​on.​rfcx.​org) for scanning recordings to detect vocalizations of 
the three bird species. We first performed a random manual scan of 
our recordings to select examples with optimal signal-to-noise ratios 
of the target vocalizations (one per species). These examples were 
used as templates for the Pattern Matching analysis to systemati-
cally detect target vocalizations in the 1-min recordings (threshold 
settings depended on the detectability of target vocalizations found 
during pilot trials: 0.3 for the falcon and the saltator; 0.2 for the tan-
ager, see Appendix S1 in Supplementary Information for details). The 
resulting recording list (including information on site ID, date and 
time of recording) was validated by two of us (MBJ and AT) to ex-
clude false-positive hits and manually count the number of detected 
target vocalizations within 1-min recordings. We evaluated the per-
formance of the ARBIMON Pattern Matching tool for each species 
and found a recall rate of 0.86 for the falcon, 0.77 for the tanager 
and 0.59 for the saltator (see Appendix S1 for details). Precision was 
0.02 for the falcon, 0.01 for the tanager and 0.09 for the saltator.

2.4  |  Vocal activity indices

We calculated DR, MAX and VAR for each of the 4 months in our study 
period (November and December 2021, January and February 2022) 
for each monitoring site and for each species. Calculating vocal activ-
ity indices based on an adequate monitoring period is essential to ac-
count for daily variation in vocal activity when aiming to determine 
relative abundance (Hopping & Klinck, 2021; Pérez-Granados, Gómez-
Catasús, et al., 2019). For this purpose, we chose 1 month as a conserv-
ative time period, based on recommendations from previous studies 
(Pérez-Granados & Schuchmann, 2020a: 3–15 days; Pérez-Granados, 
Gómez-Catasús, et  al.,  2019: minimum 9 days; Abrahams,  2019: 
1 month). DR was the number of 1-min recordings in which the target 
vocalization was detected at least once per total recording time within 
a survey month (rounded to the nearest integer), and VAR was the total 
number of target vocalizations counted per total recording time within 
a survey month (rounded to the nearest integer). Total recording time 
varied among sites and months and averaged 2,966 min (Figure S3). We 
converted the total recording time to days (= minutes

60∗24
) to ensure that the 

resulting values of DR and VAR were not excessively small. MAX was 
the maximum number of target vocalizations found in a 1-min record-
ing in each month. We consider a time interval of 1 min as suitable for 
calculating MAX as it is sufficiently short not to be affected by the 
length of the vocal activity period, while sufficiently long to capture 
the collective calling of group members.

2.5  |  Data analysis

First, to determine the strength of the association between the 
indices, we ran Spearman rank correlations between each pair of 

indices for each species. For this calculation, we determined the 
three indices for each site and month while excluding months in 
which a target vocalization was not detected (i.e. we excluded ze-
roes; N = 51 for the falcon, N = 44 for the tanager, N = 28 for the sal-
tator per index). Second, to compare the temporal variability of the 
three indices, we used the coefficient of variation (CV) as a scale-
independent measure of data dispersal (Abdi, 2010). CVs were cal-
culated for each site, based on the index values obtained in each of 
the months for each of the three species. CVs were calculated only 
for sites in which a species was detected in at least three of the 
4 months (11 sites for the falcon, 7 sites for the tanager, 4 sites for 
the saltator) and only for months with species detection, because 
our objective was to examine to what extent indices varied when 
a species was present. The CVs showed a normal error distribution 
(N = 66, Shapiro–Wilk test: W = 0.9765, p = 0.243); therefore, we 
ran a linear mixed model using the lme4 package (Bates et al., 2015) 
in R (v.4.1.2, R Core Team, 2021) to test for differences among the 
CVs of the three indices (fixed factor). Species and monitoring sites 
were included as random factors, with species nested within sites. 
We checked if the corresponding null model was equally plausi-
ble (i.e. had a ΔAICc <2) than our model, which would indicate a 
lack of support for the influence of the fixed factor (Burnham & 
Anderson, 2002).

Finally, to evaluate the effect of anthropogenic habitat distur-
bance on the indices, we first determined the scale of effect for each 
bird species (Miguet et al., 2016) by evaluating 5 spatial scales (buf-
fers of 100–500 m radius around monitoring sites; see Appendix S3 
in Supplementary Information for details). Subsequently, we used the 
glmmTMB package (Brooks et al., 2017) in R to run generalized linear 
mixed models (GLMM) using data from all 25 sites. For each species, we 
generated three sets of GLMM using DR, VAR and MAX as response 
variables. In each set, the full model contained the z-standardized 
amount of urban area around monitoring sites (at its scale of effect) as 
a fixed predictor factor, ARU model (SM4 or Audiomoth) and survey 
month as fixed control factors and site ID as random factor. We tested 
the full models for overdispersion based on simulation-based uncon-
ditional nonparametric dispersion tests using the DHARMa package 
(Hartig,  2018) before creating all possible additive model combina-
tions using the MuMIn package in R (Barton, 2018). We then calculated 
model-averaged parameter estimates and summed Akaike weights to 
assess the relative importance of anthropogenic habitat disturbance as 
a predictor of each index. We checked if the corresponding null mod-
els were among the highest-ranking models (ΔAIC <2). To visualize 
results, we used the sjplot package (Lüdecke, 2021) to back-transform 
model-averaged covariate estimates and their standard errors from 
the logit scale to the original scale.

3  |  RESULTS

In a total of 294,548 1-min recordings, we detected target vocali-
zations in 219 recordings at 18 sites for the falcon, 98 recordings 
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at 21 sites for the tanager and 72 recordings at 12 sites for the 
saltator. The falcon was detected primarily in the morning (05:00–
09:00 AM) and afternoon hours (5:00–7:00 PM; Figure  S5) with 
vocal activity bursts between 06:00 and 07:00 AM and between 
06:00 and 07:00 PM (Figure S6a). The tanager and the saltator were 
detected throughout the entire day (Figure S5), with vocal activ-
ity bursts between 06:00 and 10:00 AM for the saltator, whereas 
no clear bursts were evident for the tanager (Figure  S6b,c). DR 
values were lower than VAR and MAX for all species (Figure  4; 
Table S1) at all sites (Figure S7). Median VAR values were higher 
than MAX at most sites for the falcon, whereas no clear ranking 
of median VAR and MAX was evident for the tanager and saltator 
(Figure S7).

3.1  |  Correlations between indices

For each species, we found positive correlations between the three 
indices. The correlations were stronger between VAR and DR, and 
between VAR and MAX, compared to those between DR and MAX 
(Figure 2).

3.2  |  Temporal variability of indices

On average, the coefficient of variation was higher for VAR com-
pared to DR and MAX (Figure 3; Table S2), indicating higher tempo-
ral variability in the former index.

F I G U R E  2  Correlations between the indices, VAR, DR and MAX, for the falcon (a), the tanager (b) and the saltator (c). Numbers within 
panels are the values of the Spearman correlation coefficient (***p < 0.001; **p < 0.01). DR, detection rate; MAX, maximum count per minute; 
VAR, vocal activity rate.
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    |  1077HUTSCHENREITER et al.

3.3  |  Effects of habitat disturbance on the indices

The largest effect of anthropogenic habitat disturbance was 
found in the 500-m buffer for the falcon and the tanager, and in 
the 200-m buffer for the saltator (Table S3). The amount of urban 

area ranged from 0 to 11.2% (median = 1.4%) in the 500-m buffers 
and from 0 to 7.6% (median = 0.2%) in the 200-m buffers. The full 
GLMM sets showed good fit when using a negative-binomial dis-
tribution for the falcon (pDR = 0.704; pVAR = 0.240, pMAX = 0.168), the 
tanager (pDR = 0.760; pVAR = 0.864, pMAX = 0.752) and the saltator 

F I G U R E  3  Boxplots showing the 
coefficients of variation (CV) as indicative 
of the temporal variability in the values of 
the three indices (DR, VAR and MAX). The 
lower and upper whiskers are minimum 
and maximum values, the lower and upper 
box limits are the first and third quartiles, 
the horizontal black lines are the medians 
and the dots are outliers. Different letters 
above bars identify statistical differences 
(see Table S2 for detailed statistical 
output). DR, detection rate; MAX, 
maximum count per minute; VAR, vocal 
activity rate.

F I G U R E  4  Effects of anthropogenic habitat disturbance (amount of urban area) on DR (a, d, g), VAR (b, e) and MAX (c, f, h) for the falcon 
(a–c), the tanager (d–f) and the saltator (g, h). Each panel includes the values of the summed Akaike weights (Σ wAIC) and the model-
averaged covariate estimates (ß and its standard error within parentheses) over all candidate models. VAR results for the saltator are not 
presented because the null model was among the highest-ranking models. Shaded areas represent 95% confidence intervals. Note that y-
axis scales were adjusted in each graph for optimal visual representation. DR, detection rate; MAX, maximum count per minute; VAR, vocal 
activity rate.
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(pDR = 0.584; pVAR = 0.616, pMAX = 0.464). Only in the case of VAR for 
the saltator, was the null model among the highest-ranking models 
(ΔAIC = 1.92), indicating lack of evidence for the effect of anthro-
pogenic habitat disturbance. We found strong evidence of negative 
effects of habitat disturbance in the falcon and the tanager using 
all indices (all Σ wAIC >0.9; Figure  4). In the case of the saltator, 
there was weaker evidence for a positive effect of anthropogenic 
habitat disturbance when using MAX (Σ wAIC = 0.68) and DR (Σ 
wAIC = 0.58; Figure 4). VAR showed the largest effect size (i.e. the 
highest coefficient estimate) for the falcon, whereas MAX had the 
largest effect size for the tanager and the saltator. Survey month and 
ARU model had weak effects on all indices (Table S4).

4  |  DISCUSSION

For three bird species, we compared three indices obtained from 
call counts from PAM recordings. DR and MAX, the novel indices 
we proposed, correlated more strongly with VAR than with each 
other in all three species, in accordance with Prediction 1. This sug-
gests that DR and MAX are influenced by different species traits, 
and that they share more sources of variation with VAR than with 
one another. In accordance with Prediction 2, VAR showed higher 
temporal variability than DR and MAX, indicating that the latter 
two are probably less affected by short-term changes in vocal be-
haviour, which in turn suggests that in some cases they may be 
more adequate proxies of bird abundance. All three indices re-
sponded to anthropogenic habitat disturbance, but effect sizes dif-
fered depending on the species/index combination, in accordance 
with Prediction 3. Our results indicate that the biological informa-
tion that can be obtained from different indices may depend on 
the index and on species traits. With our framework, we propose 
that for some bird species, depending on their degree of territorial-
ity and social organization, indices can be more useful for assess-
ing changes in abundance, whereas for other species, indices may 
be more strongly associated with some behavioural aspect (vocal 
behaviour or habitat use). Thus, it is crucial that future PAM stud-
ies consider which index is more appropriate to obtain the desired 
information for a particular bird species. Our study also suggests 
that, when little ecological and behavioural information about a 
bird species is available, the simultaneous use of multiple indices 
can be helpful in inferring some of the missing information.

4.1  |  Temporal variability of the indices

Our study revealed that VAR had higher temporal variability com-
pared to DR and MAX. These results support our argument that DR 
and MAX may be less affected by changes in vocal behaviour than 
VAR. As we propose in our framework, VAR is likely to be affected 
by both the cue rate and the length of the vocal activity period, 
whereas DR and MAX are each affected by only one of these fac-
tors (Figure 1). We believe that this makes DR a potentially more 

accurate proxy of the number of individuals in the case of solitary 
species, and MAX a more accurate proxy of group size in the case 
of gregarious species, compared to VAR. To test these claims, how-
ever, future studies will need to assess the relationships of DR and 
MAX with abundance estimates obtained through other methods 
(e.g. point counts), as has already been done for some species in the 
case of VAR (see Table 2 in Pérez-Granados & Traba, 2021).

Because our study focused on resident bird species and was con-
ducted during the non-breeding season, we can exclude the possibil-
ity that the indices were affected by temporal changes in abundance 
due to migration or reproduction. However, we cannot exclude the 
possibility of small temporal changes in group sizes of both gregari-
ous species (e.g. due to changes in food availability within the 4-month 
study period; Silk et al., 2014). Nevertheless, such changes should have 
affected both VAR and MAX similarly. Yet, we found higher temporal 
variability in VAR, indicating that aspects of vocal behaviour that do 
not affect MAX, such as the length of vocal activity periods, probably 
contributed to the variability in VAR. Although several studies have 
reported seasonal differences in VAR (Pérez-Granados et  al.,  2020; 
Pérez-Granados & Schuchmann, 2020a, 2020b), it remains unknown 
whether these seasonal patterns are due to changes in the length of 
vocal activity periods or changes in cue rates.

In theory, all three vocal activity indices could be used to es-
timate absolute abundances, using regressions of call counts on 
bird abundance obtained through validation datasets (as done for 
VAR: Pérez-Granados & Traba, 2021). However, given the temporal 
variability we observed in the indices, particularly in VAR, caution 
is needed when using such regressions. Large validation datasets 
are likely necessary to obtain accurate and precise regression co-
efficients, capable of offsetting large variability in vocal behaviour.

4.2  |  Responses of the indices to anthropogenic 
habitat disturbance

In the falcon, a solitary species, the three indices had strong negative 
associations with anthropogenic habitat disturbance. Because this 
species is highly territorial, indices, in particular MAX, are assumed 
to reflect mainly cue rates (Figure 1). Thus, the pattern observed for 
MAX is in accordance with results of a previous study showing that 
this species decreases its territorial-defence cue rate in areas with 
higher levels of habitat disturbance (Martínez-Ruiz et al., 2016). The 
same authors observed that individuals defended larger territories 
as the amount of degraded habitat within their territory increased, 
possibly to compensate for reduced food availability. Thus, popula-
tion density of this species most likely decreases in areas of greater 
habitat disturbance, which aligns with the results we obtained for 
VAR. Reflected in the largest coefficient estimate, VAR exhibited the 
strongest response to habitat disturbance. This result suggests that 
VAR may be a more sensitive indicator of habitat disturbance. Yet, 
this index does not discriminate whether abundance, habitat use, or 
vocal behaviour are being affected more strongly by habitat distur-
bance. In such cases, by including information of DR and MAX, in 
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addition to VAR, we may reach clearer conclusions. For example, in 
the case of the falcon, since the coefficient estimates were higher 
for MAX and VAR than for DR, one could infer that cue rate (re-
flected in MAX and VAR but not DR) is more strongly impacted by 
habitat disturbance than abundance, the length of the vocal activity 
period, or habitat use (i.e. factors that influence DR but not MAX in 
solitary species).

In the tanager, an insectivorous species that lives in pairs during 
the non-breeding season, again all three indices showed negative 
associations with habitat disturbance. We expected to find these 
associations with DR and VAR, since it is likely that fewer groups 
occur in disturbed habitat where food availability is scarce (Kumar 
& O'Donnell,  2007; Ridgely & Tudor,  2009). However, we did not 
expect an effect on MAX. According to our framework, MAX should 
mainly reflect group size in gregarious species (Figure 1). Thus, since 
group size was believed to remain stable (2 individuals) before the 
breeding season (Baker & Burns, 2020), we expected no response 
of MAX to habitat disturbance. Yet, not only was MAX negatively 
affected by habitat disturbance, but it also showed the largest effect 
size. Baker and Burns (2020) reported that family groups of the tan-
ager stay together up to 7 months after the offspring hatch and then 
separate, but that occasionally family members rejoin until the next 
breeding season. If this occurred at our study site, our result could 
indicate that larger groups caused by the rejoining of family mem-
bers are less likely in disturbed habitat, possibly due to increased 
resource competition (Rylander, 2021).

Maximum count per minute can also be indicative of cue rates. 
Contact calls, which is the vocalization type we used for the tan-
ager, are used for cohesion and movement coordination within 
groups (Kondo & Watanabe, 2009), and are associated with social 
contexts (Radford & Ridley, 2008), rather than with environmental 
conditions (Meaux et al., 2023). Consequently, we reasoned that a 
direct effect of habitat disturbance on cue rates would be unlikely 
in this species. However, an indirect effect, mediated through group 
size, could be possible. It has been shown that individuals increase 
their cue rates in contact calls with increasing group size (Meaux 
et al., 2023; Striedter et al., 2003). Thus, in the tanager, the lower 
values of MAX observed at sites with greater anthropogenic habitat 
disturbance might represent a combination of smaller group sizes 
due to family members not rejoining and decreased cue rates due 
to smaller group sizes.

The difficulty of accurately interpretating vocal activity indices 
increases when there is less information on the natural history of a 
target species available. In such cases, the use of multiple indices can 
be helpful to gain insights and/or generate hypotheses on the effects 
of habitat disturbance. This is the case of the saltator, a gregarious hab-
itat generalist for which we have even less information than for the 
other two species. We found that, in this species, habitat disturbance 
had a moderate positive effect on MAX and a weak positive effect on 
DR. These results are consistent with previous findings on the saltator, 
which describe it as a generalist species that is positively impacted by 
habitat disturbance (Patten et al., 2010). However, we found no posi-
tive effect of habitat disturbance on VAR. By comparing the responses 

of the three indices, we may infer that group size and/or cue rates (as 
measured by MAX) are probably the aspects more likely affected (pos-
itively) by habitat disturbance, while the variability in VAR introduced 
by other aspects (the number of groups, habitat use, and the length of 
the vocal activity period) was too high to detect a significant effect of 
habitat disturbance. The case of the saltator, along with the examples 
from the other two species, illustrate how our proposed framework 
can facilitate the generation of hypotheses to stimulate additional re-
search on bird behaviour.

4.3  |  DR and MAX as novel vocal activity indices

While our results show that DR and MAX are closely related to VAR 
and reveal the effects of habitat disturbance on bird populations, fur-
ther research is needed to test the assumptions that underlie our con-
ceptual framework (Figure 1), such as DR hardly being influenced by 
cue rate or group size, and MAX being sensitive to both. Studies car-
rying out PAM and observer-based surveys simultaneously could aid 
in testing our proposed interpretations of DR and MAX, as has been 
previously done for VAR (e.g. Pérez-Granados, Bota, et al., 2019) and 
for ecoacoustic indices (Allen-Ankins et al., 2023). We believe that 
DR (and possibly MAX in the case of gregarious species) have the 
potential to be less variable proxies of relative bird abundance than 
VAR. In addition, they are easier to calculate. In our case, whereas 
calculating VAR required counting all target vocalizations recorded, 
determining MAX required counting calls only for the fraction of 
recordings with high call numbers. Similarly, determining DR solely 
required a count of the recordings in which the target vocalization 
was present, without the need of counting individual calls. Counting 
effort depends on the software used, the recording schedule, and 
how indices are adjusted (see below). Given that fully automated de-
tection of target vocalizations is yet unfeasible in most cases (Tuia 
et al., 2022), differences in manual processing effort is an important 
consideration when designing PAM studies.

Whether DR and MAX correlate strongly with species abun-
dance, vocal behaviour, and/or other behaviours such as habitat use, 
is likely influenced by the time intervals used to calculate the indices. 
In our study, we recorded 1 min every 6 min, resulting in DR having 
a maximum value of 1 for every 6-min interval and MAX being lim-
ited to the number of vocalizations emitted within 1 min. However, 
the index parameters can be adjusted to any recording period, de-
pending on the vocal behaviour shown by the species of interest. 
For example, while DR as calculated in our study was adequate for 
the falcon, since the average length of its territorial-defence-call se-
quence is 5.9 min (Martínez-Ruiz et al., 2016), it would be less appro-
priate for a species such as the ferruginous pygmy-owl (Claudidium 
brasilianum), which is known to vocalize in sequences of up to 5 h 
(Proudfoot et  al.,  2020). Therefore, careful consideration must be 
given to the appropriate time interval used to count calls (similarly 
to when calculating ecoacoustic indices: Metcalf et al., 2021), to en-
sure that the calculated indices provide the expected information. 
We recommend gathering as much information as possible on the 
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vocal behaviour of the species of interest from the literature, exist-
ing recordings, or field observations, before defining index parame-
ters, and interpreting index values obtained through call counts from 
PAM recordings.

In addition to the aspects considered here (length of activity pe-
riod, cue rate, habitat use, territoriality, social organization), other 
species traits and survey characteristics can influence how strongly 
vocal activity indices correlate with animal abundance and/or be-
haviour, including home-range size, the chosen target vocalization, 
and the spatial setup of monitoring sites. For example, certain types 
of vocalizations are density-dependent, such that individuals vocal-
ize at higher rates when more birds are present in an area (Veech 
et  al.,  2016). This is the case for the falcon, a species that emits 
territory-defence calls more frequently when more conspecifics 
there are in the vicinity (Martínez-Ruiz et  al., 2016). In such cases, 
indices incorporating such aspects of vocal behaviour (such as VAR) 
can be useful for assessing abundance changes. This might be an ad-
ditional reason why we found VAR to have the largest effect size in 
the falcon. The choice of target vocalization can also influence the 
interpretation of the calculated index. For example, when using a 
song as the target vocalization for a gregarious species (as we did for 
the saltator), MAX might be more likely to capture individuals from 
multiple groups, compared to when using a contact call (as we did 
for the tanager). This is because songs are often more concentrated 
around sunrise and sunset (see Figure S6c), increasing the chances 
of multiple groups singing simultaneously, whereas contact calls 
have broader vocal activity periods (Pérez-Granados et al., 2018; see 
Figure  S6b). Furthermore, the target vocalization may be emitted 
only by certain individuals, resulting in indices that might represent 
only a subset of the population. For instance, if only adult males of 
a species emit the target vocalization, indices may reflect only their 
abundance, and an estimation for the rest of the population needs to 
be based on the species typical ratio of adult males to females and 
juveniles. Unfortunately, information on basic behavioural aspects, 
such as vocal repertoire, is limited for many Neotropical birds (Ruelas 
Inzunza et al., 2023), making it challenging to select target vocaliza-
tions based on their functions and sound characteristics.

5  |  CONCLUSIONS

Based on our findings and the conceptual framework presented, we 
offer some recommendations on the use of vocal activity indices 
derived from counting calls in PAM recordings. First, it is neces-
sary to consider whether the research question requires an index of 
relative abundance, an index of vocal behaviour or some other be-
havioural aspect, or an index that is correlated with both abundance 
and behaviour. Second, it is advisable to gather comprehensive in-
formation on the species' traits and consider how these traits may 
influence call counts obtained in different ways. Third, decisions 
can then be made regarding the choice of target vocalization and 
index, and the design of the recording schedule (if applicable).

The selection of indices based on call counts derived from PAM 
recordings should be tailored to each study, according to the species 
traits, target vocalizations, the recording schedule, and the specific 
research objectives. We believe that the framework we present of-
fers valuable guidance for choosing indices. Looking ahead, there 
is potential to expand this framework to address scenarios where 
more complex relationships between species abundance, behaviour, 
and traits may be at play. This might include species occurring in 
mixed flocks (Kajiki et al., 2018) or non-gregarious species forming 
occasional flocks in response to factors such as food availability 
(Fraga, 2020). With this study, we intend to encourage the explora-
tion of alternative approaches to obtain vocal activity indices from 
PAM recordings, other than the VAR index. We also aim to open 
a fruitful discussion on the need to consider species traits to ad-
equately interpret the information contained in different indices 
based on call counts.
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