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The functional architecture of skeletal compared to cardiac musculature; 

myocyte orientation, lamellar unit morphology, and the helical ventricular 

myocardial band. 

Abstract 

How the cardiomyocytes are aggregated within the heart walls remains contentious. We still do not 

fully understand how the end-to-end longitudinal myocytic chains are arranged, nor the true extent and 

shape of the lamellar units they aggregate to form. In this review, we show that an understanding of the 

complex arrangement of cardiomyocytes requires knowledge of 3-dimensional cell orientation (helical 

and intrusion angle), and appreciation of cell packing within the connective tissue matrix. We show 

how visualisation and segmentation of high resolution 3-dimensional image data can accurately identify 

the morphology and orientation of the myocytic chains, and the lamellar units. Some maintain that the 

ventricles can be unwrapped in the form of a “helical ventricular myocardial band”. Implying the 

ventricular muscle is arranged comparable to that of skeletal muscles, in an ordered fashion, as a 

compartmentalised band with selective regional innervation and deformation, and a defined origin and 

insertion. In contrast to the simpler interpretation of the helical ventricular myocardial band, we provide 

insight as to how the complex myocytic chains, the heterogeneous lamellar units, and connective tissue 

matrix form an interconnected meshwork, which facilitates the complex internal deformations of the 

ventricular wall. We highlight the dangers of disregarding the intruding cardiomyocytes. Preparation of 

the band destroys intruding myocytic chains, and thus disregards the functional implications of the 

antagonistic auxotonic forces they produce. We conclude that the ventricular myocardium is not 

analogous to skeletal muscle, but is a complex 3-dimensional meshwork, with a heterogeneous 

branching lamellar architecture. 

Key words: cardiac muscle; myocyte orientation; lamellar units; 3-dimensional meshwork. 
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Introduction 

The manner in which the cardiomyocytes are aggregated within the walls of the heart remains 

contentious. We still do not fully understand how the end-to-end longitudinal chains of cells are 

arranged, nor the true extent and shape of the higher order aggregations they form collectively. This is 

surprising, since it is now more than 150 years since Pettigrew emphasised that although, like skeletal 

muscles, the walls of the heart are made up of striated muscle cells, in contrast to skeletal muscles, “the 

fibres of the ventricles, as a rule, have neither origin nor insertion, i.e. they are continuous alike at the 

apex of the ventricles and at the base” (Pettigrew, 1864). He was making an analogy with involuntary 

smooth muscles, which are often arranged in continuous circular structures such as in the urinary 

bladder, the uterus, or the walls of the arterioles. It is important that we understand what Pettigrew, and 

others since who have used a peeling method to deconstruct the heart (Greenbaum et al., 1981), meant 

by “fibres”. Certainly, they did not mean fibres in the sense of single cells, as the term is used in skeletal 

muscle. The cardiomyocytes, the individual contractile cells of the ventricles, are typically only a tenth 

of a millimetre long (Satoh et al., 1996). Those describing “fibres” in heart muscle, therefore, generally 

mean multicellular longitudinally aggregated structures that have a visually distinct preferred direction, 

and that tend to separate as a strip from the remaining tissue when progressively peeled away. Others 

have described collective aggregates of cardiomyocyte “fibres” that can be identified by their perimysial 

boundaries. These so-called lamellar units are displayed clearly after pneumatic distension of cardiac 

tissue (Lunkenheimer and Niederer, 2012). Caution is needed, however, when interpreting transverse 

sections of the heart wall, because the cleavage planes between these aggregates give the impression of 

“fibre-like” structures with a preferred direction. This does not, necessarily, reflect the orientation of 

the cardiomyocytes themselves. As we shall show, this can be misleading. The apparent preferred 

direction may reflect the short axis of a lamellar unit, and thus be near orthogonal to the true direction 

of the cardiomyocytes, emphasising the need for care in the interpretation of images of the 

microstructure of the heart. 
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Following his many dissections, Pettigrew considered that it was possible to subdivide the wall of the 

left ventricle into 7 layers. He also acknowledged, nonetheless, that the cardiomyocyte chains “…are 

further distinguished by the almost total absence of cellular tissue as a connecting medium – the fibres 

being held together partly by splitting up and running into each other, and partly by the minute 

ramifications of the cardiac vessels and nerves.” (Pettigrew, 1864). He understood, therefore, that there 

is no anatomically distinct substructure that makes up the ventricular musculature, and that the layers 

he described are intimately connected with one another in multiple directions, including the radial 

direction. Many anatomists and physiologists have studied the fine structure of both cardiac and skeletal 

muscle in the 155 years subsequent to the description provided by Pettigrew. Some investigators, for 

example, maintain that the ventricular mass can be unwrapped in the form of a “helical ventricular 

myocardial band” (Buckberg, 2005) (Fig. 1). This suggestion is based on the concept initially 

expounded by Torrent-Guasp, namely that chains of cardiomyocytes take their origin from the 

pulmonary trunk, and can be followed throughout the entire cardiac mass before eventually inserting 

into the aortic root (Fig. 1). This implies that the muscle of the ventricular cone is arranged in an ordered 

fashion comparable to many skeletal muscles, with a defined origin and insertion (Torrent-Guasp, 1957; 

Torrent-Guasp et al., 2005). Others, in contrast, have illustrated the cardiomyocytes aggregated together 

in lamellar fashion, that is, in thin sheets, showing in their diagrams stacked layers of aggregated 

cardiomyocytes separated by fibrous shelves extending transmurally, from epicardium to endocardium 

across the ventricular wall (LeGrice et al., 1995a). An elegant subsequent investigation from this group, 

which used confocal microscopy to illustrate the architectural arrangement, showed that the notion of 

transmural sheets was, in fact, an exaggeration of the true anatomy (Pope et al., 2008). The patterns of 

the aggregations revealed by the confocal study are more in keeping with the notion of a three-

dimensional meshwork. This was the concept described by some of the current authors in a previous 

contribution to “Clinical Anatomy”, (Anderson et al., 2009a), although without emphasis on the 

lamellar architecture, which we will discuss below.  
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An understanding of the complex arrangement of cardiomyocytes within the walls of the heart however, 

requires not only knowledge of the muscle cells themselves, but also an appreciation of the precise 

manner of their packing within the supporting connective tissue matrix. In this respect, Borg and 

Caulfield showed that, as with the skeletal muscles, the supporting fibrous tissue of the heart could be 

analysed in terms of its endomysial and perimysial components (Borg and Caulfield, 1981). In this 

review, we show how attention to the way the matrix packs together individual cells, and attaches them 

to their neighbours to form higher order aggregates, provides an understanding of the similarities, but 

more importantly the differences, in the architecture of the skeletal as opposed to the cardiac 

musculature. Furthermore, we show how visualisation and segmentation of 3-dimensional image data 

can identify the morphology and orientation of the cardiomyocytes, and the lamellar units they form 

(Figs. 2-3). We thus provide insight as to how these heterogeneous structures, which allow shearing 

while maintaining connections with their neighbours, act to produce the complex internal deformations 

of the ventricular wall, and do not support the simpler interpretation of a helical ventricular myocardial 

band. We define these aggregates by our ability to follow them as closely-assembled groups of 

cardiomyocytes, separated from neighbouring aggregates by extracellular matrix and space, or by their 

abutment with other aggregates that have a clearly different average orientation. We note that this virtual 

dissection is only possible in datasets that have sufficient spatial resolution to allow one to observe the 

boundaries between individual cardiomyocytes. 
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The arrangement of the skeletal myocytes  

Activation 

Skeletal muscles are voluntary, and are activated via their motor endplates. The most fundamental 

difference between cardiac and skeletal muscle is that cardiac muscle functions as a syncytium; in every 

cardiac cycle there is contraction of all of the cardiomyocytes.  To achieve this, cells communicate one 

with the other via electrically conducting gap junctions, allowing a coordinated wave of depolarisation, 

triggered in the sinus node, to spread over and through the entire atrial and ventricular myocardium. 

Muscular pumping effort is controlled by variation in the amount of force produced by the individual 

cardiomyocytes, which itself depends on preload, afterload and sympathetic stimulation, and not by 

recruiting more or less individual motor units, as is the case in skeletal muscle. In skeletal muscle, the 

muscle cells are not electrically connected to one another. Each cell is supplied with a nerve ending. 

When fibres are stimulated to contract by the arrival of an action potential at their motor end plate, that 

contraction does not induce contractile activity in their immediate neighbours. Control of force in 

skeletal muscle can thus be achieved by recruitment of more or less motor units as appropriate by the 

central nervous system. A motor unit is the population of muscle fibres innervated by one motorneuron 

via its multiple terminal branches. A typical skeletal muscle in a human limb has a few hundred motor 

units. This gives skeletal muscle the very large dynamic range of force output required for fine and 

precise movement at one extreme, and gross powerful force production at the other.  

Structure 

Skeletal muscles take various forms, but they all possess identifiable external origins and insertions. 

Apart from the tongue and the uvula, these origins, themselves formed from specialised areas of 

collagen, are typically attached to bony structures, and the insertions are via specialised tendinous 

entities, which also usually insert to bony structures. The tongue and uvula are worthy of special 
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attention, because the arrangement of their myocytes has been considered as closely analogous to those 

in ventricular myocardium; we consider this analogy below. 

Single skeletal myocytes may extend over many centimetres from origin to insertion. The word “fibre” 

is thus suitable to describe single skeletal myocytes. Such individual cells can be dissected from small 

muscles as intact single fibres, and are commonly used in physiological testing. The single skeletal 

muscle cell is thus able to perform the function of the whole muscle: that is, to generate a longitudinal 

contractile force between two points. This is not the case for an individual cardiac muscle cell. It cannot 

generate a pressurising force upon an enclosed fluid, as is needed for normal systolic pump function. 

The longitudinal strain created collectively by all the cardiomyocytes only equates to ~15% shortening 

(Lehto and Tirri, 1980; Rodriguez et al., 1992) systolic strains in the left ventricle, however, can greatly 

exceed this value (Arts et al., 1984; Arts et al., 1979). Shortening of a cardiomyocyte causes only an 

8% increase in its diameter, which does not explain the 40% radial wall thickening and ~60% ejection 

fraction in systole (Arts et al., 1979). It is the complex 3-dimensional arrangement of the myocardial 

mesh, made up of the cardiomyocytes and their supporting connective tissue, which that permits greater 

deformation than its active constituents. It is the nature of this cellular arrangement that has fascinated 

students of the heart for decades.  

 

Skeletal myodynamics 

Although individual skeletal muscle cells can generate force between two points, they are collected 

together into larger functional populations, which we call fascicles. Multiple fascicles make up a single 

skeletal muscle. Such muscles have a characteristic supporting fibrous matrix that extends from origin 

to insertion. It is made up of the epimysium, which covers the whole muscle; the perimysium, which 

divides the muscle into fascicles or bundles of typically a few hundred myocytes; and the endomysium, 

which provides a thin sheath around each individual myocyte. These progressively more delicate 

sheaths also provide the tracts along which the intramuscular neural and vascular networks find their 
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way to individual muscle fibres. There is a large amount of literature on the function of these connective 

tissue layers in transmitting tension from one fibre to its neighbour (Huijing, 1999). Some skeletal 

muscle fibres do not run all the way from origin to insertion. The force generated by such fibres is 

transmitted laterally to the endomysial and perimysial network, which then transmits the shortening 

force to the muscle insertion. The mechanism and cellular machinery underlying such lateral 

transmission of force is the subject of ongoing research (Ramaswamy et al., 2011; Street, 1983).  

The overall arrangement of myocytes in skeletal muscles, therefore, is well established. The fibres are 

packed in bundles, but contract as individual units to pass their generated force ultimately to the 

insertion of the muscle. A commonly cited deviation from this generalisation is the muscle of the 

tongue. In this case, there is a mixture of extrinsic muscles, which are connected to bony origins, and 

intrinsic muscles, which have no bony origin (Kier and Smith, 1985). The intrinsic muscles interweave, 

so that in cross sections of the tongue, bundles can be seen running orthogonally to one another (Fig. 

4), and this has triggered comparison with the changing direction of myocyte orientation across the 

heart walls (Streeter and Bassett, 1966; Streeter et al., 1969). 

It is the interaction between the antagonistic forces generated by these orthogonal bundles that allows 

the remarkable freedom of movement of the free portion of the tongue, which underscores both speech 

and swallowing. It also explains how linear contraction of opposing bundles can be integrated into 

curling or bulging actions. This is surely instructive as to the action of the heart walls, as the heart is 

indeed capable of producing antagonistic forces locally within its walls (Lunkenheimer et al., 2004). 

The heart, however, does not show such a clear separation of opposing bundles as in the tongue. Rather, 

the transformations between one primary cell direction and another is achieved more gradually, with 

the subtle changes at increasing depths within the walls producing the so-called helical angle (Streeter 

and Bassett, 1966; Streeter et al., 1969) (Fig. 5). Sharp delineations between populations of 

cardiomyocytes running in one direction, and neighbouring populations running orthogonally, 
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therefore, is unusual. Such an arrangement is found, however, in the tongue (Fig. 4), and in the muscular 

tentacles of the squid and octopus, and in the trunk of the elephant (Kier and Smith, 1985).  

Comparison with the heart 

As we will demonstrate, the precise packing of cardiomyocytes within the heart walls is worthy of 

careful study. Many students of the heart have recognised that the spiral or helical arrangement of 

cellular aggregates within the heart wall means that torsional forces, as well as compressive forces, must 

be generated, and that shear forces must exist between cardiomyocytic chains, and between lamellar 

units, as they shorten and deform (Ingels, 1997; Lunkenheimer et al., 2004; Smerup et al., 2013b). It 

has been suggested that the arrangement of the connective tissues between lamellar units forms planes 

along which groups of cells can slide relative to one another, so-called shearing (LeGrice et al., 1995b). 

Such spaces have been identified as ‘cleavage planes’ in scanning electron micrographs of cardiac tissue 

(LeGrice et al., 1995a; Lunkenheimer and Niederer, 2012), but the nature of the technique means that 

only very small samples of issue can be studied. Histological analysis is difficult because, as our recent 

micro-computed tomography analysis demonstrates (Fig. 5), the primary direction of the 

cardiomyocytes changes almost continuously, and thus a 2-dimensional section cannot illustrate the 3-

dimensional ‘bundling’ or aggregation of cardiomyocytes. Furthermore, the primary direction of chains 

of cardiomyocytes may not be tangential to the near-circular cross section of the left ventricle. Both the 

purported “helical ventricular myocardial band” (Fig. 1), and the earlier loops described by Pettigrew, 

were envisaged as encircling the ventricular cone in a direction parallel to the epicardial surface. We 

now know that some aggregates of cardiomyocytes have a primary direction that includes a transmural 

component, ‘intruding’ from epicardium to endocardium (Lunkenheimer et al., 2013; Schmid et al., 

2007; Smerup et al., 2013a) (Figs. 5-6). Figure 5 shows the complex meshwork of myocytes in a small 

segment of the left ventricular posterior wall, myocyte orientation maps are generated by eigen-analysis 

(Zhao et al., 2012) of micro-computed tomographic data with a spatial resolution of 20 µm. Although 

the helical angles found in the mid-wall suggest predominantly circumferential tangentially orientated 
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cells, the corresponding intruding angle is complex. This supports the notion of a complex cardiac mesh, 

and highlights the necessity to investigate the microanatomy of the heart in 3-dimensions. A 3-

dimensional technique is, therefore, essential in order to distinguish between one cellular chain and 

another. With this in mind, we have utilised the preferential uptake of iodine by the myocytes compared 

to connective tissue to resolve individual myocytes and their aggregates using micro-computed 

tomography (Jeffery et al., 2011; Stephenson et al., 2012) (Figs. 2-3). This makes it possible to identify 

aggregates of cells that are separated from their neighbours by extracellular space or the presence of 

connective tissue. The lamellar units can now, therefore, be followed through the ventricular mass (Fig. 

3). The regional variation among these structures, and their typical shapes and defining characteristics, 

will be published as we perform further analysis (Stephenson et al. unpublished data). We will return 

to the fine scale packing of the ventricular cardiomyocytes when we have considered two examples in 

which the separation of structural components of the heart may be clearly identified. 

The cardiac conduction system 

In one particular case, distinct aggregations of specialised cardiomyocytes can be identified, separated 

from the working myocardium by connective tissue structures. These are the populations of cells 

making up the cardiac conduction system (Fig. 7). We have already emphasised the obvious 

fundamental difference between the cardiomyocyte and the skeletal myocyte, namely that the muscle 

cells within the heart are not under voluntary control. Thus, they lack motor end plates. They are, 

nonetheless, excitable. Activation is provided by small collections of specialised cardiomyocytes, which 

collectively form the cardiac conduction system (Anderson et al, 2009b). In fact, all of the 

cardiomyocytes conduct, but the so-called “specialised system” is responsible for generation and 

propagation of myocardial excitation. The cardiomyocytes that generate the cardiac impulse, the so-

called ‘pacemaker’, are grouped together within the sinus node. The shape of the sinus node varies 

between species. The term node suggests a small collection of cells, this is misleading. In some species, 

3-dimensional analysis has shown it to be a heterogeneous streak of cells, spanning the intercaval region 
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to varying degrees (Dobrzynski et al., 2005; Liu et al., 2007; Stephenson et al., 2012) (Fig.8). The node-

like arrangement, however, is more justifiable when considering the arrangement found in the human 

heart (Anderson and Ho, 1998). At the borders of the node, the nodal cardiomyocytes are in direct 

continuity with the working cardiomyocytes of the atrial walls. The nodal cells and the working 

cardiomyocytes can be distinguished on the basis of the connexins found within the intercalated discs 

joining adjacent cells (Dobrzynski et al., 2013). Those of the sinus node, which are slowly conducting, 

are abundant in connexin 40, while those of the working cardiomyocytes are abundant in connexin 43. 

The nodal cells can also be distinguished by their content of HCN4, the protein that allows the so-called 

“funny current”, which makes the nodal cells intrinsically rhythmical (Chandler et al., 2009) It is the 

impulse generated by the specialised cardiomyocytes within the sinus node that drives the working 

cardiomyocytes packed together within the atrial walls. For a comprehensive review of connexin 

distribution across the working myocardium and specialised tissues see Dobrzynski et al. (2013). 

All of the atrial cardiomyocytes are able to conduct the cardiac impulse, since they are linked together 

within a functional syncytium, although each cardiomyocyte is an individual entity. The junctions 

between adjacent myocytes through the intercalated discs, which contain connexin 43, serve to conduct 

the sinus impulse rapidly towards the atrioventricular junction (Dobrzynski et al., 2013). At the same 

time, the activation of the cardiomyocytes packed together within the atrial walls provides atrial systole, 

propelling the blood into the ventricular chambers. The atrioventricular node, like the sinus node, is a 

collection of histologically specialised cardiomyocytes (Anderson and Ho, 1998).  It has the function 

of slowing the atrial impulse subsequent to atrial contraction, so that the nodal delay permits the 

ventricles to fill during the diastolic phase of the cardiac cycle. Therefore, while much has been written 

concerning the possible existence of tracts of specialised cardiomyocytes extending from the sinus node 

to the atrioventricular node (Anderson and Ho, 1998; James, 1963), a case can be marshalled against 

this on simply teleological grounds, since there is no need for such tracts. Histological examination of 

the internodal atrial working myocardium in most species also fails to reveal tracts of cardiomyocytes 

that are insulated from their neighbours (Anderson et al., 2009b). But this structural phenomenon is yet 
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to be explored in all species using high-resolution 3-dimensional imaging techniques such as micro-

computed tomography.  

A potential exception to this rule, however, is found in the rabbit heart. In this species, insulated bundles 

of cardiomyocytes are present at the attachments of the valves of the systemic venous sinus. Known as 

the sinuatrial ring bundle (Bojsen-Moller and Tranum-Jensen, 1972), this insulated tract does extend 

between the locations of the sinus and the atrioventricular nodes. But despite the fact that its 

cardiomyocytes are joined together by gap junctions containing connexin 43, electrophysiological 

studies have shown the cells within the tract to be slowly conducting (Hiraoka and Sano, 1976). 

Evidence is also lacking thus far that the cells within the insulated tract possess direct connections with 

the cardiomyocytes making up the sinus and atrioventricular nodes. The presence of the ring bundle, 

therefore, does serve to demonstrate that, in certain species, the cardiomyocytes can be aggregated 

together to form muscular structures that are discrete from the remainder of the cardiac walls. 

An additional arrangement of cardiomyocytes aggregated together to produce an unequivocal tract is to 

be found in the atrioventricular conduction axis (Tawara, 2000) (Fig. 9). This pathway originates in the 

atrioventricular node, where the nodal cardiomyocytes are in direct communication with the atrial 

working cardiomyocytes through zones of transitional cells (Li et al., 2008). The nodal cardiomyocytes, 

when traced distally, aggregate together and enter the insulating tissues of the atrioventricular junctions, 

as the penetrating bundle (Fig. 9A,C). Within the insulating tissues, the anterior aspect of the axis is 

known as the bundle of His (Fig. 9B,D). Having entered the ventricles, the axis divides to form bundles 

insulated by fibrous sheets from the adjacent myocardium. These fascicles run on either side of the 

ventricular septum, and are known as the ventricular bundle branches (Fig. 9B,D). These branches are 

continuous with the Purkinje fibre network, a complex branching web of longitudinal chains of 

specialised myocytes with free running aspects, responsible for coordinated contraction of the ventricles 

(Ansari et al., 1999; Eliška, 2006; Stephenson et al., 2012) (Fig. 7). Like the sinuatrial ring bundle in 

the rabbit, therefore, the atrioventricular conduction axis exemplifies an isolated system of 
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cardiomyocytes that is insulated from the overall mass of working cardiomyocytes, and which can be 

recognised as an anatomically discrete entity. 

 

The atrioventricular structures 

By virtue of the insulating nature of the tissues of the atrioventricular grooves, the cardiomyocytes 

packed together within the atrial and ventricular walls constitute separate working units. Much has been 

written regarding the presence of a “fibrous skeleton” within these grooves. In fact, the necessary 

insulation between the atrial and ventricular muscle masses is largely provided by the fibro-adipose 

tissues gathered together within the grooves (Dean et al., 1994). Collagenous cords can be found within 

the inferior and leftward part of the atrioventricular junctions supporting the mural leaflet of the mitral 

valve, but it is rare to find complete “skeletal” elements supporting the entirety of the mitral valvar 

leaflet. Bony elements exist in the large hearts of some bovine species (James, 1965), and cartilage is 

to be found in other species, such as the otter (Egerbacher et al., 2000). Even in these species, however, 

the structures do not provide “skeletal” support for the cardiomyocytes. A major difference between 

cardiomyocytes and skeletal myocytes, therefore, is that cardiomyocytes cannot be recognised to have 

“skeletal” support, not even from the leaflets of the cardiac valves. On the contrary, it is the leaflets of 

the atrioventricular valves, which are suspended from the cardiac junctions. At the ventriculo-arterial 

junctions, the semilunar hinges of the arterial valvar leaflets are attached as much to arterial as to 

muscular structures (Dean et al., 1994). The strongest part of the alleged fibrous skeleton is produced 

in the regions of continuity between the leaflets of the aortic and atrioventricular valves. The larger part 

of the aortic valvar orifice, however, has no contact with the ventricular musculature, since its non-

adjacent and left coronary aortic leaflets are in fibrous continuity with the aortic leaflet of the mitral 

valve (Anderson et al., 1991). There has been confusion as to whether the musculature of left ventricle 

forms an insertion at the aortic root, as is postulated by those who promote the notion of a “helical 

ventricular myocardial band” (Torrent-Guasp, 1957) (Fig. 1). 
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The Cardiomyocytes 

The cardiomyocytes, therefore, unlike skeletal muscles, do not have discrete origins and insertions. 

Instead, each cardiomyocyte is linked to its neighbours, as is the case for smooth muscle. The 

cardiomyocytes, nonetheless, do share with skeletal myocytes their striated appearance. This is because, 

as is also the case for skeletal myocytes, their basic working unit is the sarcomere. Numerous 

sarcomeres are aligned end-to-end within the typical working cardiomyocyte. Unlike the skeletal 

myocytes, however, each cardiomyocyte is joined to several of its neighbours, by end-to-end 

connections and side branches (Barnett and Iaizzo, 2009). The major union between adjacent 

cardiomyocytes is at their ends, so that there is formation of endless chains, which extend throughout 

the atrial and ventricular walls respectively. The alignment of the cells in this fashion produces an 

obvious “grain” (Greenbaum et al., 1981), again evident in the walls of both the atrial and ventricular 

chambers and confirmed by histological analysis (Streeter and Bassett, 1966) and analysis of cell 

orientation by algorithmic computation of attenuation data in 3-dimensional micro-computed 

tomographic datasets (Aslanidi et al., 2012; Haibo et al., 2013) (Figs. 5,6,10). It is the increased 

conduction velocity of the wave of depolarisation along this ‘grain’, rather than across it, that produces 

differential rates of conduction throughout the heart. This is observed most notably within the atrial 

walls, with faster conduction observed along muscle bundles, such as the pectinate muscles and 

Bachman’s bundle. 

 The Architecture of the Cardiac Walls 

The nature of packing together of the cardiomyocytes within the cardiac walls reveals significant 

architectural differences between the atrial and ventricular chambers. An obvious gross hierarchical 

pattern can be discerned within the walls of the atrial appendages, with groups of cardiomyocytes 

aggregated together to form the pectinate muscles. Analysis of micro-computed tomographic data 

confirms that, in such bundles, the cardiomyocyte orientation is generally along the long axis. An 

analogous structure can be seen in the endocardial trabeculations of the ventricles. Figure 5 shows a 
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trabeculation with cardiomyocytes running vertically, as denoted by a high helical angle (red), and low 

intrusion angle (green). The cardiomyocytes are similarly aggregated in parallel fashion in the 

prominent bundles forming the rims of the atrial septum, Bachmann’s bundle, within the terminal crest, 

and in the different layerings present within the thicker walls of the left atrium (Sanchez-Quintana et 

al., 2013). The situation is much less clear-cut with regard to the architecture of the ventricular walls.  

The obvious patterns or ‘grain’ that reflect the long axes of the chains of aggregated cardiomyocytes 

have been recognised for centuries. The spiralling configurations to be found at differing depths within 

the ventricular walls was described in great detail by Pettigrew (Pettigrew, 1864). He described the 

opposing helical grain in the endocardial and epicardial layers, along with a circumferential central 

layer. He also emphasised the opposing spirals to be found at the ventricular apex. Pettigrew (1864), 

nonetheless, was well aware that the change in grain did not reflect the presence of individual muscles 

within the overall ventricular cone. He noted the relative uniformity of the walls. 

The notion that the ventricular cone could be divided into a few subunits stems from the account of 

Mall (1911), who described entities such as the deep sinospiral muscle (Mall, 1911). Lev and Simkins 

(1956) then countered that such tracts could be manufactured at the whim of the dissector (Lev and 

Simkins, 1956). They recapitulated the diktat of Pettigrew, namely that the heart was not to be analysed 

as similar to skeletal muscle. These caveats had no influence on the interpretations of Torrent-Guasp. 

He was able to unwrap the ventricular cone in the form of a continuous strip extending from the aortic 

root to the pulmonary infundibulum (Torrent-Guasp, 1957). His dissections, of necessity, transected the 

multiple connections between the parts of the band, including radially intruding myocytic chains, which 

are found at the alleged boundaries of the band. The obvious spiralling to be seen within the purported 

band, nonetheless, has proved influential in persuading others of the functional importance of the 

concept (Buckberg, 2005). Thus, the concept of the purported band has been accepted enthusiastically 

by some surgeons, who noted the spiralling action of the ventricular cone during their operative 

procedures. It also provided a seemingly robust explanation for the motions observed by 
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echocardiographers using speckle tracking (Buckberg et al., 2008). The spiralling nature of the tracks 

that can be demonstrated using diffusion tensor magnetic resonance imaging have also been cited as 

providing evidence for existence of the helical ventricular myocardial band (Buckberg et al., 2008). As 

we will show, the spiralling of the chains of cardiomyocytes demonstrated initially by Pettigrew, 

(Pettigrew, 1864), and endorsed by measurements of histological sections by workers such as Streeter 

and Bassett (1966), and Greenbaum and associates (1981), provides much better agreement with recent 

findings produced using diffusion tensor magnetic resonance imaging and micro-computed 

tomography. 

Imaging the Ventricular Components 

As we have discussed above, the micro-architecture of the myocardial mass has previously been 

investigated using dissection (Pettigrew, 1864; Lev and Simkins, 1956) or histology (Streeter and 

Bassett, 1966; Greenbaum et al., 1981). Over recent decades, various non-invasive techniques have 

gained increasing usage, particularly diffusion tensor magnetic resonance imaging, which has been 

widely used to elucidate the course of the aggregated chains of myocytes in both skeletal (Froeling et 

al., 2015) and cardiac muscles (Smerup et al., 2009). Newer techniques, such as micro-computed 

tomography (Haibo et al., 2013), and high-resolution magnetic resonance imaging (Gilbert et al., 2012a) 

have also shown promising results in assessing the complex three-dimensional structure of the 

myocardium, and as shown, we have ourselves used micro-computed tomography. All of these 

techniques are non-invasive, and make use of so-called tensors. It is worthwhile, therefore, to comment 

on the bases of the concepts underscoring these approaches, and emphasising their strengths and 

weaknesses. A tensor is a three-dimensional ellipsoidal mathematical construct calculated on a voxel-

by-voxel basis, with its orientation and shape based on the local micro-anatomy. Such tensors can be 

calculated from the spontaneous diffusion of protons as in diffusion tensor magnetic resonance imaging, 

or from grayscale intensities derived from x-ray attenuation by actual structures as in micro-computed 

tomography. The interested reader is encouraged to consult dedicated literature in this matter. From the 



 

 

16 

 

tensors, it is possible to determine the longitudinal orientation of the cardiomyocytes (Smerup et al., 

2013a; Smerup et al., 2009). Such investigations have produced fairly good agreement with the more 

traditional methods (Gilbert et al., 2012b; Holmes et al., 2000; Hsu et al., 1998). When seeking to assess 

the extent to which cardiomyocytes are aggregated into secondary structures, such as lamellar units or 

sheets, the situation becomes more complicated. A tensor in skeletal muscle will assume the shape of a 

bi-axial ellipsoid, which is symmetrical around its long axis. This is due to the fact that, as we have 

shown, no particular anatomical substructures of aggregated myocytes are to be found in skeletal 

muscle. Because of this, diffusion tensor magnetic resonance imaging of skeletal muscle demonstrated 

the myocytic architecture in terms of the longitudinal orientation of the myocytes themselves. In the 

myocardium, however, the tensors assume the shape of a tri-axial ellipsoid akin to a flattened American 

football. This, in itself, is indicative of the presence of a higher order or substructure within the 

anatomical arrangement of the cardiomyocytes (Kung et al., 2011). The orientation of these 

substructures, the so-called lamellar units or sheets, can be assessed by quantifying the angles between 

the eigenvectors of the tensors, and relating these to the planes or directions of the ventricular mass. A 

significant limitation in the assessment of the orientation of the aggregations of cardiomyocytes, 

however, is that techniques based on evaluation of tensors are only able to assess orientations relative 

to the primary eigenvectors. It is not possible using tensor imaging, therefore, to draw conclusions 

concerning the shape and physical extent of the myocardial aggregates. Micro-computed tomographic 

data, in contrast, provides information on actual physical structure, and at high resolution can resolve 

individual myocytes, and the higher order lamellar unit structure (Figs. 2-3). These considerations all 

highlight the issue of insufficient resolution in morphological analysis of cardiac micro-anatomy. 

Imaging techniques, which produce matrices made up of voxels, such as computed tomography and 

magnetic resonance imaging, can provide misleading information. Investigators should always be aware 

of the structures contained within their voxels below the spatial resolution of their image.  

Problems with the notion of a helical ventricular myocardial band 
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Comparison of the architecture of skeletal and cardiac muscle provides multiple reasons why the notion 

of the helical ventricular myocardial band lacks anatomical foundation. It is the epimysial coverings of 

skeletal muscles, apart from the intrinsic muscles of the tongue and the uvula, which separate the 

contractile components, permitting the individual muscles to contract in independent fashion. Even 

within the tongue, and analogous structures such as the tentacles of squid and the trunk of the elephant, 

there are clear boundaries between the bundles that have a near uniform fibre orientation.  In the human 

tongue the median, paramedian and lateral connective tissue septa are described clearly as a flexible 

framework giving attachment to the intrinsic muscles (Abd-el-Malek, 1939).  

Innervation of muscle 

Within the tongue itself, it is then the patterns of innervation that permit the longitudinal and transverse 

muscles to work independently. The same applies to the uvula, which is shortened by the force of its 

longitudinal muscles, and lengthened by the force of the wrapping circumferential compartment. The 

extraordinary flexibility of movement that such an arrangement affords is well understood in terms of 

the muscular hydrostat (Kier and Smith, 1985), in which the constituent muscles reduce one dimension 

of an enclosed fixed volume by their active contraction, thereby causing an increase in another 

dimension. The amazing flexibility of the octopus tentacle is also achieved by such means, and by a 

highly segmented innervation of the constituent muscles so that bending and stiffening can be achieved 

with no apparent restriction to any anatomical reference plane. Due to the syncytial nature of the 

myocardium, and the lack of dense, boundary forming, perimysial networks as found in in skeletal 

muscle, this selective innovation of compartmentalised muscle regions does not occur in the heart. 

Functional interpretations of the helical ventricular myocardial band looks to describe cardiac 

contraction based on innervation and deformation of distinct bands of muscle at specific points in the 

cardiac cycle. But the continuous transmural arrangement of myocytes, and the interconnected branched 

lamellar units they form (Figs. 2-3,5), means the notion of the band disregards the multi-dimension 

strain the heart is capable of producing. The ability of helical muscle bundles to generate torsional, 
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lengthening, and shortening forces in multiple directions is discussed by Kier and Smith, and it is 

surprising that the principles of the muscular hydrostat have not been much applied to the function of 

the heart. The function of the heart as a pump is based simply on the cyclical change in the endocardial 

surface, and the action of the valves. The volumes of muscles are almost constant during contraction 

and relaxation. The total volume of the heart, therefore, changes as a function of the enclosed volume 

of blood (Carlsson et al., 2004). The mean mural thickening of ~40% in systole is focused by 

deformation of the ventricular tissue into the lumen, to generate a variation in ventricular luminal 

volume of approximately 60%. The reduction of the internal diameter of muscle-enclosed spaces has 

been discussed previously (Smerup et al., 2013b), and reaches its most obvious application in the muscle 

sphincters whose function is to obliterate a lumen (Russold et al., 2010).  

The origin and insertion debate 

Supporters of the helical ventricular myocardial band suggest the ventricular muscle has an origin at 

the pulmonary trunk and insertion at the aortic root (Fig. 1). As described above in the section 

‘atrioventricular structures’, this is anatomically unfounded. Descriptions of the band suggest the 

‘origin’ and ‘insertion’ are anatomically separate. Diffusion tractography achieved using diffusion 

tensor magnetic resonance imaging suggests this is again an oversimplification (Fig. 10). The upper 

panels in Figure 10 (A,B) show tracts commencing from the aortic root do not simply form an ascending 

segment, they also encircle the heart and on the contrary to the band make cross ventricular connections. 

The same applies for the bottom panels of Figure 10 (C,D), except that these tracts originate from the 

pulmonary root. These tracts encircle the pulmonary outflow tract, and furthermore cross to the left 

ventricle on the anterior surface of the heart, which again is conflicting to the description of the band. 

The packing of cardiomyocytes and pump function 

As with skeletal muscles, the matrix has endomysial and perimysial components. The endomysium 

forms the interconnected tubes in which the individual cardiomyocytes are strongly fixed by the struts 
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of the fibrous network (Anderson et al, 2009a). Throughout the ventricular walls, these endomysial 

bindings link together the cardiomyocytes into aggregates termed lamellar units. These heterogeneous 

aggregations have a long axis that follows the principle orientation of the cardiomyocytes. Their width 

and height is defined by the number of laterally and vertically connected myocytes respectively, as 

viewed in the short axis of the cardiomyocytes (Figs. 2-3).  They are then separated by clefts lined by 

the perimysial component of the matrix. The perimysial components within the ventricular walls, 

however, are far less dense than those found in skeletal muscles. Unlike the situation in the skeletal 

muscles, the purpose of the perimysial clefts in the ventricular cone appears to be primarily to permit 

the lamellar units to move relative to one another during contraction and relaxation (LeGrice et al., 

1995b) The perimysial component is not substantial enough to structurally and functionally 

compartmentalise regions of muscle, as is the case in skeletal muscle. In addition, the perimysial tissue 

keeps in register the branchings of the coronary arterial and venous systems, the lymphatic channels, 

and the nerves.  As yet, we are unable to explain the differences in structure of the perimysium when 

comparing hearts of different species. In cattle heart, the perimysium is well formed, whereas in the 

porcine and rabbit hearts it is relatively tenuous. 

It has long been known that the thickening of the ventricular walls seen during their systolic contraction 

cannot adequately be explained on the basis of the thickening of the individual cardiomyocytes alone 

(Spotnitz et al., 1974). Instead, during systole, there has to be gliding of the aggregated cardiomyocytes 

relative to one another (Anderson et al., 2008). It is the complex architecture and branching nature of 

the interconnected lamellar units within the walls that permits this regular realignment of the myocardial 

aggregates during systolic contraction and diastolic relaxation. A useful demonstration of the 

substructure of the ventricular walls may be made by distending the structure by injection of compressed 

air into the coronary arteries. The endomysial component of the connective tissue matrix is sufficient 

to preserve the lamellar architecture of the walls whereas the weaker perimysial components of the 

matrix are partially disrupted by the pneumatic distension, revealing the specific alignments and size of 

the lamellar units (Lunkenheimer and Niederer, 2012). 
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The results of such pneumatic distension have provided another difficulty for the proponents of the 

helical ventricular myocardial band. If the cardiomyocytes were truly aggregated together as suggested 

by Torrent-Guasp, then it might be expected that the band would be revealed by the pneumatic 

distension, showing its purported origin from the pulmonary trunk, and its insertion into the aorta. In 

contrast, the distension reveals a complex three-dimensional meshwork of myocyte aggregates with no 

separation into a band that spans the entire ventricular myocardium as suggested by Torrent Guasp. The 

overall alignment of the units is in keeping with the reciprocal helical patterns revealed by Pettigrew 

using gross dissections (Pettigrew, 1864), and by Streeter and Greenbaum, along with their respective 

colleagues, subsequent to histological investigations (Streeter and Bassett, 1966; Greenbaum et al., 

1981). The patterns seen within a short axis view of the pneumatically distended ventricular cone are 

exactly as described by Feneis (1943) (Figs. 11-12), whose own findings endorsed the presence of a 

central band of circumferential cardiomyocytes as reported by Pettigrew and von Krehl (Feneis, 1943). 

There are, however, no physical anatomical boundaries to be found within the different components of 

the ventricular walls. It is possible to recognise five basic patterns, nonetheless, when tracing the 

aggregates of cardiomyocytes from the epicardium to the endocardium (Redmann et al., 2011). This 

will be discussed in the following section. 

The “Feathering” of the Ventricular Mass 

The outermost, subepicardial, component of the ventricular walls is made up of obliquely oriented 

cardiomyocytes that approach but do not reach vertical alignment with the long axis of the heart. This 

compact outer layer, barely distended by the pneumatic process, is thin when compared with the overall 

mural thickness (Fig. 12). Throughout the greater part of the ventricular cone, the cardiomyocytes 

gather themselves into a second layer, which has the appearance in transverse sections of half a feather 

(Figs. 11-12). The fronds of the feather, as they approach towards the middle of the ventricular wall, 

gradually approach a circumferential orientation, forming a central spine. From this central 

circumferential component, a separate array of lamellar units extends towards the endocardial lining of 
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the ventricular cavity, but extending in the opposite direction to the subepicardial half of the ‘feather’ 

(Figs. 11-12). Just before reaching the endocardium, the cardiomyocytes again become aggregated 

together in an almost longitudinal orientation, losing any obvious lamellar architecture, and producing 

another compact, and barely distended, fifth layer of the ventricular wall that includes the endocardial 

trabeculations (Fig. 12).  

When traced in a long axis view, rather than a short axis view, the aggregates of myocytes making up 

the halves of the feathered arrangement extend in helical fashion throughout the length of the ventricular 

cone. Hence the “feathering” is strictly a 2-dimensional observation in the short-axis view, 3-

dimensional representations of this arrangement would appear as a complex mesh as previously 

described (Lunkenheimer and Niederer, 2012; Redmann et al., 2011).  It is impossible when using 

histological sections, however, to determine the extent and alignment of the aggregates themselves. It 

is likewise impossible, at present, to identify the dimensions of the aggregated units when using 

diffusion tensor magnetic resonance imaging, although such imaging does show clearly the average 

alignment of the long chains of cardiomyocytes, and predict the relative orientation of the lamellar units 

(Kung et al., 2011). The resolution of the technique, nonetheless, is currently insufficient to determine 

the detailed course of the cardiomyocytes within the tracts generated by the image-processing 

algorithms used to interpret the datasets. Unfortunately, such tracts have too often been interpreted as 

representing real fibrous structures within the ventricular mass.  

Histological sections of distended myocardium reveal that the outermost subepicardial, along with the 

innermost subendocardial, layers of the walls are less obvious at the apex and base of the cone. At the 

apex, in particular, the spiralling lamellar units of the feather turn in opposing fashion, as was illustrated 

so long ago by Pettigrew (Pettigrew, 1864) and confirmed recently by Smerup and co-workers (Smerup 

et al., 2009). The sections also demonstrate that the spine of the feather, made up of cardiomyocytes 

aligned in circumferential fashion, changes its location within the depths of the wall along the length of 

the ventricular cone, and also varies in its own thickness. This circumferential central component, or 
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spine, furthermore, cannot be detected at the apex. It is also lacking at the very base of the ventricular 

cone. We believe that the use of micro-computed tomography will permit detection of the extent of the 

units into which the cardiomyocytes are aggregated. An example of a segmented aggregate is given in 

Figure 3. Figure 2 includes a histological section of a ventricular tissue preparation that was scanned 

with micro-computed tomography at 5 micron resolution after iodine enhancement. The 2-dimensional 

micro-computed tomography images illustrate that the lamellar units, and the individual cells which 

constitute them, are resolved by the technique. This 3-dimensional data contains sufficient information 

to extract the myocyte chains and their orientation. Although the perimysial space appears empty for 

the most part, our initial studies show that the lamellar units themselves form branches (see asterisks in 

Fig. 2) that communicate with neighbouring units, reinforcing the notion that the ventricular cone is a 

three-dimensional meshwork of interconnected cardiomyocytes (Lunkenheimer et al., 2006). 

When considered relative to the entirety of the ventricular cone, therefore, the architecture of the 

lamellar units is remarkably complex, with each unit differing markedly in its size and alignment within 

the wall. The illustration from the Auckland group that illustrates the lamellar units extending in 

transmural fashion from epicardium to endocardium is thus an over-simplification (LeGrice et al., 

1995a). Histological interrogation of hearts distended by pneumatic distension shows that, although 

separated by obvious perimysial clefts, there are multiple connections between the lamellar units, and 

this fact has been confirmed by our initial studies using micro-computed tomography (see asterisks in 

Fig. 2). Within each lamellar unit, there are then further endomysial connections between the individual 

cardiomyocytes. As emphasised above, therefore, the arrangement is one of a three-dimensional mesh, 

but with an obvious lamellar architecture. This notion of the three-dimensional alignment of lamellar 

units is entirely compatible with the images produced by the Auckland group using confocal microscopy 

(Pope et al., 2008). It is not, however, compatible with the notion that the ventricular cone is formed on 

the basis of a helical ventricular myocardial band of cardiomyocytes aligned in its long axis (Buckberg 

et al., 2005). 
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Significance to Muscular Dynamics 

The differences between the anatomical arrangement of the cardiomyocytes, and their skeletal 

counterparts, reflect the dynamics of muscular contraction. Unlike skeletal muscles, the myocardium is 

not suspended between fixed points. Other than its external pericardial fixation within the mediastinum, 

the hearts lacks internal fixation. The shape, size, and limits of motion of the ventricular cone are 

determined only by its inner structure, and the contained mass of moving blood. Since ventricular 

activity itself is bi-phasic, consisting of systolic constriction and diastolic dilation, there must be two 

opposing impulses acting repetitively in two opposing directions. The discipline of classical cardiac 

physiology, for better or worse, had decided that diastolic ventricular unfolding and refilling are strictly 

passive, driven by venous filling pressure (Harvey, 1628). During the course of the twentieth century, 

nonetheless, it was proven that end-diastolic ventricular shape can be restored even at zero filling 

pressure (Gilbert and Glantz, 1989; Pieper and Martin, 1964). It was also shown that the ventricle is 

able to generate sub-atmospheric pressures when venous return is hampered (Brecher, 1958; Hori et al., 

1982; Meesmann, 1958; Sabbah et al., 1981). It follows, therefore, that there must be active forces, 

which continue during diastole. We have shown that the structural substrate for the dilating forces, 

which act within the myocardial mass, is the non-tangential component of the three-dimensional 

myocardial mesh (Lunkenheimer et al., 2004). This population of cardiomyocytes, which are aligned 

in transmural fashion, are able to generate forces which act against systolic mural thickening. Up to 

two-fifths of the cardiomyocytes aggregated together with the ventricular cone lack a strictly tangential 

alignment, with the angulation of the non-tangential chains reaching values of intrusion and extrusion, 

respectively, of up to 40 degrees in diastole (Lunkenheimer at al., 2006). The values can exceed 45 

degrees in systole, or in the hypertrophic heart (Smerup et al., 2013a; Smerup et al., 2013b). Direct 

measurements have been made of the local forces developed in the components of the mesh aligned in 

tangential and intruding fashion (Lunkenheimer et al., 2004). The population aligned in tangential 

fashion follows the prediction made by Laplace, namely that the peak force is reached in early systole, 

with a decline over the ejection period (LaPlace, 1805). These are unloading forces. The local forces 
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generated by the population of cardiomyocytes aligned in transmural or intruding fashion, in contrast, 

increase throughout the period of ejection, while acting against systolic wall thickening. The particular 

feature of these so-called auxotonic forces is that they are markedly more sensitive to inotropic 

interventions, in both positive and negative directions, than are the unloading type of forces. We suggest 

that this intrinsic antagonistic function drives early diastolic ventricular unfolding, provides the exact 

tuning of regional inward motion in terms of its amount and velocity, and controls ventricular tone. The 

combination of these effects is to control the intrinsic preload, that is, the end diastolic luminal volume, 

in other words, the initial stretching of the cardiomyocytes prior to contraction. Disregarding the 

transmural or intruding alignment of the cardiomyocytes, which we have demonstrated unequivocally 

using histological, diffusion tensor magnetic resonance imaging and micro-CT analysis (Figs. 5-6,12), 

as is the case with the helical ventricular myocardial band, is erroneous. Preparation of the band destroys 

these structures and thus disregards the functional implications of the antagonistic auxotonic forces they 

produce.  

Conclusions  

We have highlighted the similarities and differences with regards skeletal and cardiac muscle gross 

structure, tissue activation, connective tissue architecture, and cellular arrangement. Although both the 

skeletal and cardiac myocyte share the same functional unit, the sarcomere, cardiomyocytes are around 

4 orders of magnitude smaller, and are electrically coupled to neighbouring cells via end-to-end 

connections and side branches. Skeletal and cardiac muscle share a hierarchical arrangement of 

connective tissue structures, namely they both have identifiable epimysium, perimysium and 

endomysium. Skeletal muscle has dense perimysial networks compartmentalising the muscle into 

distinct innervated bundles, or fascicles, of longitudinally aligned myocytes, which can be selectively 

activated. This is not the case for the ventricular myocardium. The less dense perimysial network, 

complex orientation of cardiomyocytes, and the heterogeneous lamellar units their aggregations form, 

make for a complex meshwork without distinct compartmentalisation. This means, generally speaking, 

https://en.wikipedia.org/wiki/Cardiomyocytes
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skeletal muscles produce force along the long axis of the muscle fibres. On the contrary, the complex 

myocardial meshwork produces lengthening, shortening, torsional, and antagonistic forces in multiple 

directions, and these forces have been shown to have both unloading and auxotonic characteristics.        

Some investigators still maintain that the ventricular mass can be unwrapped in the form of a “helical 

ventricular myocardial band”. This implies that the muscle of the ventricular cone is arranged, 

comparable to that of skeletal muscles, in an ordered fashion, as a compartmentalised band of muscle 

with selective regional innervation and deformation, and a defined origin and insertion. In this review, 

we have shown that an understanding of the complex arrangement of cardiomyocytes within the walls 

of the heart requires not only knowledge of the muscle cells themselves, but also an appreciation of the 

precise manner of their packing within the supporting connective tissue matrix. We have shown how 

visualisation and segmentation of 3-dimensional image data can identify the morphology and 

orientation of the cardiomyocytes, and the lamellar units they form. In contrast to the simpler 

interpretation of the helical ventricular myocardial band, we provide insight as to how the complex 

myocytic chains, the heterogeneous lamellar units, and connective tissue matrix form an interconnected 

meshwork, which facilitates the complex internal deformations of the ventricular wall. We stress the 

dangers of disregarding the transmural or intruding alignment of the cardiomyocytes, as is the case with 

the helical ventricular myocardial band. Preparation of the band destroys these structures, and thus 

disregards the functional implications of the antagonistic auxotonic forces they produce. We conclude 

that the ventricular myocardial mass is a complex 3-dimensional meshwork with a higher order, 

heterogeneous and branching, lamellar architecture.  
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Figure 1. Schematic representation of the ‘helical ventricular myocardial band’, showing systematic 
unravelling of the band. Basal and apical loops indicated by blue and red colouration respectively, 
purported origin (pulmonary root) and insertion (aortic root) of the band are labelled. Ao- Aorta, PT- 
Pulmonary trunk. 

 

 

Figure 2 (A) Haematoxylin & Eosin stained longitudinal histological section of left ventricular posterior 
wall sample from rabbit (basal region). (B) Corresponding longitudinal micro-CT images, from the same 
sample as shown in panel A. (C) Reproduction of panel B indicating individual myocyte (yellow circles), 
inter- lamellar branches (*), and cleavage planes (CP). Scale bars represent 100 µm. 
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Figure 3 (D) Whole rabbit heart volume rendering derived from micro-CT data, showing region of 
interest presented in panel E (white box). (E) Volume rendering of subendocardial tissue block 
derived from dataset presented in D, showing the 3D morphology of multiple lamellar units. (F) Single 
lamellar unit (orange) segmented from micro-CT data of the rabbit left ventricular posterior wall, with 
individual myocyte chains resolved. 

 

 
Figure 4 Haematoxylin & Eosin stained longitudinal histological section of a cat tongue, A indicates 
laterally running fibres, B indicates vertically running fibres, and C indicates individual myocyte cross 
sections. Image modified from https://instruction.cvhs.o kstate.edu/Histology/. 
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Figure 5 Three-dimensional myocyte helical angle colour map (top panel) of rabbit left ventricle posterior 
wall sample (~ 4 mm³), generated from eigen-analysis of micro-CT image data (spatial resolution 20 
µm). Corresponding myocyte intrusion angle colour map of the centre z-axis slice (Lower panel) 
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Figure 6 Diffusion tensor imaging tractography of porcine left ventricle harvested using circular knives; 
one basal, two equatorial, and one apical region are presented. The diagonal islands of longitudinally 
sectioned chains of myocytes are coloured red, with the other alignments coloured blue and green, 
the corresponding distribution of the intrusion angles of oblique structures are presented (modified 
from Lunkenheimer et al., 2013). 
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Figure 7 Whole rabbit heart segmentation of the cardiac conduction system (yellow), with ghosted 
myocardium overlaid (pink) (modified from Stephenson et al., 2012). IVS- interventricular septum, LA- 
left atrium, LV-left ventricle, RA-right atrium, RV-right ventricle. 
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Figure 8 (A) Transverse micro-CT section of the posterior wall of the rabbit right atria, showing the 
location of the sinus node, plane of section with reference to the whole heart (top left) (modified from 
Stephenson et al., 2012), (B) corresponding Masson’s trichrome stained histological section (modified 
from Dobrzynski et al., 2005). CT- cristae terminalis, RA- right atrium, SAN- sinus node. Scale bar 
represents 1000 µm. 
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Figure 9 Longitudinal micro-CT section of the interventricular septum in the rabbit, showing the 
penetrating bundle (C) and anteriorly lying His bundle (E) as low attenuating structures (modified from 
Stephenson et al., 2012). Corresponding Masson’s trichrome stained histological sections (D,F). AO- 
aorta, HB- His bundle, IVS- interventricular septum, LBB- left bundle branch, LV- Left ventricle, PB-
penetrating bundle, RBB-right bundle branch. Scale bar represents 500 µm. 
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Figure 10 Diffusion tensor imaging tractography of the porcine heart, tractographies of increasing length 
originating from the basal septum near the aortic root (A, B), tractographies of increasing length 
originating from the pulmonary root (C, D). Colour coding of tracts is to aid visualisation and does not 
reflect tract angle. 
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Figure 11 Schematic representation of myocardial feathering as viewed in the short-axis of the heart 
(modified from Feneis et al., 1943). 
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Figure 12 Azan stained short-axis histological section of the porcine heart (10x magnification) showing 
the typical feathered structure of left ventricular, cross sectioned at the base (area 6) and midway 
between base and equator (areas 14 and 16), with 5 arbitrarily discriminated layers. There are no 
demarcating connective tissue membranes between the "layers" (modified from Redmann et al., 2011). 

 

 


