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Abstract 8 

A novel adaptive decomposition algorithm based on CEEMDAN and fractal dimension is proposed in this 9 

study to overcome limitations like redundancy and mode confusion in traditional EMD-based algorithms. An 10 

intelligent fault diagnosis model is developed using CNN and the proposed CEEMDAN to enhance rolling bearing 11 

state recognition. Sub-signals generated by CEEMDAN are selected and reconstructed using PCA and fractal 12 

dimension. In feature extraction and pattern recognition, the proposed Improve Complete Ensemble Empirical 13 

Mode Decomposition with Adaptive Noise (ICEEMDAN)., coupled with CNN, extracts advanced features from the 14 

reconstructed signal for intelligent diagnosis. The methodology is validated through empirical experiments 15 

involving rolling bearings, where its superiority and reliability are compared with approaches based on CNN. The 16 

accuracy of this method reaches 99.79%  17 

Key Words: complete ensemble empirical mode decomposition with adaptive noise; convolutional neural network; 18 

rolling bearing; box dimension; fault diagnosis 19 

1. Introduction 20 

During the explosive development of computer and sensor technology over the years, rotating equipment 21 

malfunction monitoring and diagnosis has facilitated the emergence of enormous and high-dimensional big data 22 

[1-2]. Energy security and environmental conservation are becoming increasingly essential worldwide, while the 23 

quick development of new energy sources such as wind, water, and nuclear energy needs the utilization of effective 24 

and reliable rotating equipment [3]. However, rolling bearing of rotating equipment is the most fundamental and 25 

susceptible fundamental component, and its steady and efficient operation is closely associated to the overall 26 

performance of energy extraction equipment [4-6]. Meanwhile, its vibration signals are not only solely handy to 27 

collect, but also rich in a giant quantity of superb fault information. It has become as the preferred signal to analyze 28 

the fault traits of rolling bearings, which can also effectively minimize the downtime and useless maintenance 29 

triggered caused by equipment failure and lengthen the service life of equipment [7-9]. Therefore, the predominant 30 

focal point have to be on rolling bearing situation monitoring and fault diagnosis. The irregular vibration and 31 

implications of the device in the actual work setting can easily cause the typical nonlinear and nonstationary 32 

characteristics that appear when collecting signal by acceleration sensors, and it is also difficult to guarantee the 33 

purity of the signal, posing a serious challenge to effective the features extraction and timely fault warning [10]. 34 

The early fault diagnosis process is mainly divided signal acquisition, extraction of fault features, identification and 35 

classification, among which the feature extraction is the most critical process in preprocessing [11].  36 

In order to effectively accomplish fault diagnosis tasks in the presence of noise interference, vibration signals 37 

must be preprocessed to decrease noise in order to extract fault features of signal more effectively. Time-frequency 38 

analysis has recently been popular in the field of fault detection, as it can successfully identify fault features from 39 

nonlinear signals under noise, allowing for improved mechanical equipment preventive and maintenance [12-13].A 40 

large number of studies have been carried out by many scholars, Gabor [14] proposed the short-time Fourier 41 



 

transform (STFT), which uses a time-frequency representation to obtain the power spectrum at different times by 42 

moving the window function to realize fault analysis. Considering the relation of frequency and time resolution, 43 

Morlet [15] proposed the wavelet transform, a time-frequency local transform algorithm that receives and expands 44 

the localization idea of the STFT.  45 

In order to address the issue of limited adaptability arising from the manual configuration requirement for 46 

wavelet transform metrics such as wavelet basis and decomposition layers in the aforementioned methods .Huang 47 

et al [16] was the one to propose the empirical mode decomposition (EMD) approach, which can deconstruct an 48 

extremely complex noisy signal into a series of intrinsic modal functions (IMFs) without requiring human 49 

interaction. Despite its widespread application in the fields of electrocardiogram (ECG) image processing [17], 50 

signal filtering [18] and rotating machinery fault diagnosis [19] etc. The EMD was later discovered to have mode 51 

aliasing, which has a direct impact on fault diagnostic precision [20].  52 

In order to address the issue of mode aliasing inherent in EMD, Wu and Huang [21] proposed the ensemble 53 

empirical mode decomposition (EEMD), which may retain data continuity and suppress mode aliasing by adding 54 

white noise to the input signal for EMD. Furthermore, the consequences of a couple of decomposition are averaged 55 

to attain the last IMF. Despite the fact that this method has been applied to diagnose rotating machinery faults by 56 

the domestic and international scholars[22-24], adding white noise to the raw signal repeatedly via the EEMD 57 

method will result in reconstruction errors. YEH [25] presented the complete EEMD (CEEMD) as a key upgrade to 58 

EEMD. The CEEMD algorithm can makes sure decomposition accuracy and successfully eliminates residual white 59 

noise in the rebuilt signal decomposing the time domain signal by adding the two opposite white noise. Both 60 

EEMD and CEEMD, however, generally require a significant amount of computing, and the decomposition is 61 

overly reliant on the amplitude of adding white noise and the times of ensemble average [26].  62 

In order to address the computational intensity and the excessive reliance on the amplitude of added white 63 

noise and the number of ensemble averages in both EEMD and CEEMD decomposition processes. Improved 64 

versions of the CEEMD analysis have been developed to overcome the problem of inefficiency, culminating in the 65 

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) [27]. At each level of 66 

EMD decomposition, the CEEMDAN adds adaptive white noise and calculates the residual signal to obtain IMF. 67 

Furthermore, the decomposition process is comprehensive, and the reconstruction error is relatively tiny regardless 68 

of the number of integration times [28]. Moreover, Smith [29] devised the local mean decomposition (LMD) 69 

approach, which used the slider mean instead of cubic spline interpolated in EMD but had the similar terminal 70 

effect. Eventually, the CEEMDAN method is utilized to filter and extract defect feature information from rolling 71 

bearings in this work, outperforming the above traditional modal decomposition strategy.  72 

Precise and reliable extraction of faults signal data is an important factor of fault detection and diagnosis, and 73 

it has a direct impact on fault diagnostic recognition rate. Although the time-frequency decomposition method is an 74 

effective modal decomposition, precisely selecting the modal components with fault features is problematic. 75 

Furthermore, the extracted initial feature components have a high dimension and may contain redundant or 76 

insensitive information, adding to the calculation's complexity.  77 

In order to effectively reduce data dimensionality and computational complexity while avoiding dimension 78 

disasters. In 1901, Karl Pearson created PCA algorithm which is one of the most extensively used data dimension 79 

reduction algorithms today [30]. WANG et al. [31] used PCA algorithm to recognize bearing faults. It can reduce 80 

the number of variables in regression and clustering techniques by extracting the largest individual differences from 81 

the principal components and reduce the dimension of feature vectors drawn from raw vibration signals, improving 82 

real-time performance and fault diagnosis accuracy. This technique has been utilized by several researchers to 83 



 

diagnose rotating machine faults [32 -36]. Although the studies above can effectively minimize the complexity of 84 

data dimension and calculation and avoid dimensional disasters, they all overlook a critical issue: fault information 85 

is not included in a single IMF component, but rather in a number of them. 86 

In order to address the issue of fault information being distributed across multiple IMF components. The 87 

fractal dimension proposed by Mandelbrot in 1975 not only better describes the complexity and nonlinear 88 

characteristics of vibration signals, but it also has good anti-noise and relatively simple calculation, making fault 89 

information pleasant to showcase and improving fault identification performance and generalization ability [37].  90 

In order to address the issue of spurious, redundant, and pseudo components encountered during the 91 

CEEMDAN algorithm's processing of nonlinear vibration signals, The application of PCA for the purpose of 92 

filtering IMF components is an effective method for mitigating redundancy within the context of processing 93 

nonlinear vibration signals[38-39]. We propose a pre-processing filter approach that fractal box dimension 94 

combines PCA algorithm.  95 

After selecting low-dimensional sensitive fault feature components for reconstruction, a suitable fault 96 

diagnosis approach is used to identify and classify the different types of bearing states. [40]. Traditional defect 97 

diagnostic approaches are primarily data-driven and relied on mechanism models. The mechanism model diagnosis 98 

approach necessitates the development of a comprehensive mathematical model, therefore its application breadth is 99 

limited. The data driver does not need to create a mathematical model; instead, it depends on an expert system or a 100 

fault library to perform problem diagnostics [41-42]. Although the approaches listed above have a high fault 101 

detection rate, they all require a shallow learning algorithm to recognize fault diagnosis since they cannot learn 102 

their own characteristics, self-adaptive fault feature extraction, and weak model generalization. Convolutional 103 

neural networks are one of the most prominent deep learning models, capable of combining feature extraction with 104 

state categorization. Furthermore, its convolutional kernel can adaptively train and extract fault features in signals, 105 

avoiding the error of artificial feature extraction and selection, and improving fault diagnostic accuracy. It's also 106 

been commonly used in the industrial industry [43-46]. The results show that CNN is not only capable of digesting 107 

large amounts of high-dimensional data, but also of self-learning. However, it is still not possible to exclude 108 

external noise interfering with defect diagnostics. A new rolling bearing fault diagnosis approach based on 109 

ICEEMDAN fusion deep learning is presented for these reasons. The following are the article's primary 110 

contributions and superiorities: 111 

(i) We proposed ICEEMDAN method to solve the limitations in EMD、EEMD or CEEMDAN algorithm for 112 

dealing with unstable signals.  113 

(ii) We proposed a new signal fusion method for IMF modes reconstruction based on PCA algorithm and 114 

fractal box dimension.  115 

(iii) We developed an intelligent ICEEMDAN-CNN model for fault diagnosis, which combining with the 116 

advantages of filter.  117 

The rest of the paper is laid out in the following states. Section 2 discusses the strategies for recognizing states 118 

and preprocessing. Section 3 describes the new structure of the ICEEMDAN-CNN model framework. Section 4 119 

presents the test experimental data as well as the validation of the ICEEMDAN-CNN approach. Section 5 wraps off 120 

with the findings. 121 

2. The relevant theory of state recognition and preprocessing  122 

2.1 CEEMDAN algorithm 123 

CEEMDAN is the ultimate improved algorithm based on Torres' EMD [47]. Using adaptive white noise, it is 124 



 

possible to successfully eliminate modal aliasing, redundant and false components. It also avoids the need to 125 

compute the various order components. The specific procedural steps of CEEMDAN encompass the following 126 

sequence: initially, introducing adaptive white noise into the original signal; subsequently, decomposing the signal. 127 

For each IMF component, employing a collective averaging method, iteratively repeating the process of 128 

decomposition and noise introduction to further enhance the precision and stability of the decomposition. Lastly, 129 

amalgamating all the processed IMF components culminates in the ultimate CEEMDAN decomposition result. The 130 

CEEMDAN decomposition steps are shown in Fig.1. 131 

 

Fig.1 The flow chart of CEEMDAN 132 

where ( )iE ⋅  is the k th IMF decomposed by the EMD, ( ), ( 1, , )i t i Iω =  is the added white noise, I is the number of 133 

times to add white noise. 134 

2.2 Principal component analysis 135 

Principal component analysis is a method for preparing high-dimensional feature data. It can keep the most 136 

critical elements of high-dimensional data while removing complex noise and unexpected characteristics in order to 137 

improve data processing performance. As a result, PCA has been widely employed in exploratory data analysis and 138 

the development of prediction models. It is widely used to reduce dimensionality through trying to project each data 139 

point onto only the first few principal components to get lower-dimensional data while retaining as much of the 140 

data's variation as feasible [48]. The steps of PCA [49] as follows: 141 

Step 1: Normalize the original feature space data { }1 2 3, , , , nx x x xX =   to get standardized *X . 142 

Step 2: Calculate the covariance matrix *cov( )X . 143 

Step 3: Using eigenvalue decomposition to calculate the eigenvalues and eigenvectors of covariance 144 

matrix *cov( )X . 145 

Step 4: Ordering eigenvalue and Choosing components and forming a feature vector. 146 

Step 5: Transform the data into a new space constructed by feature vectors. 147 

2.3 Fractal theory 148 

The original meaning of fractal is irregular, fractional, and fragmented things, which can be regarded as the 149 

similarity between the part and the whole in some ways [50]. Fractal dimension is a useful metric for measuring 150 



 

fractals, as it accurately describes the complexity and nonlinearity of vibration signals [51]. Although there are a 151 

variety of fractal dimensions that can be used to describe the complexity of signals, such as Hausdorf dimension, 152 

box dimension, capacity dimension, information dimension, correlation dimension, etc. The box dimension is now 153 

the most widely used because of its simple and efficient calculation [52]. As a result, it is preferred among 154 

nonlinear field researchers [53-55]. The definition of fractal box dimension is Eq. (1) [35]. 155 
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where ,nY R Y⊂ ≠ Φ , if there ( )N ε hypercube can cover Y . 156 

2.4 CNN Classification Model 157 

Convolutional neural network is derived from the neurons of primate visual nervous system. It not only has 158 

neural network with deep structure, but also has powerful data mining and feature extraction capabilities [56]. 159 

Local receptive field weight sharing and down-sampling, as its unique features, can not only realize the deep 160 

mining of data features, but also enhance the self-learning ability of data features, eliminating algorithm overfitting 161 

well [57]. The CNN model structure is shown in Fig.2. 162 

 

Fig.2 The model structure of CNN 163 

2.4.1. Convolutional and Pooling layer 164 

The convolutional layer is the CNN core, which uses the product and reconstruction of corresponding regions 165 

overlapped by the convolutional kernel and the input features, and achieves feature information extraction by 166 

adding bias to obtain the feature values. Although the feature information extraction ability is improved through the 167 

convolutional layer, the dimension of data is increased, resulting dimension disaster. However, the pooling layer 168 

can reduce the number of parameters while retaining its key features to achieve the purpose of reducing and 169 

screening the main features [58]. 170 

2.4.2. Fully connected layer and Dropout 171 

The full connection layer can classify feature information effectively, and the hidden layer of multi-layer 172 

perceptron can better integrate the data information after convolutional pooling [59]. The regularization technique 173 

of Dropout can omit some elements of the hidden layer to prevent overfitting and improve the generalization 174 

performance of the model [60]. The effect schematic diagram of Dropout operation is shown in Fig.3. 175 

  

(a) (b) 
Fig.3 The effect schematic diagram of Dropout operation: (a) Fully connected network of standard; (b)The net 176 

after Dropout 177 



 

3. The proposed ICEEMDAN-CNN model architecture structure 178 

3.1 ICEEMDAN algorithm 179 

Although the CEEMDAN algorithm with adaptive adding white noise can effectively reduce the mode aliasing 180 

problem, it still cannot completely eliminate the influence of redundant components and false components, which 181 

interferes with the selection of principal components. However, Pearson correlation coefficient, kurtosis and grey 182 

correlation have been used to screen the optimal IMF components by a large number of scholars [61-62-63-64]. 183 

However, they all ignore the fault information often exists in some IMF components, which makes it difficult to 184 

extract all effective information completely. In this paper, the combine method of PCA and fractal dimension is 185 

used to improve CEEMDAN. PCA can extract effective fault information by dimensionality reduction of data, and 186 

use cross analysis method to calculate the fractal dimension before and after dimensionality reduction to reconstruct 187 

the optimal component group. According to the fractal theory, the fractal dimension has a positive correlation with 188 

the signal stability. The flow chart of the improved CEEMDAN algorithm is shown in Fig.4. 189 

 

Fig.4 The improved CEEMDAN flow chart  

3.2 ICEEMDAN model architecture 190 

The ICEEMDAN-CNN model architecture proposed in this paper consists of CEEMMDAN decomposition 191 

denoising, PCA dimensionality reduction processing, fractal dimension screening fault feature component 192 

reconstruction group, feature learning layer and classification layer of one-dimensional CNN. Figure 5 shows the 193 

proposed ICEEMDAN-CNN model framework structure. 194 

As shown in Fig. 5, the proposed method is divided into two steps altogether: model training and verification. 195 

The collected vibration signals need to be decomposed by CEEMDAN, avoiding effectively endpoint effect and 196 

reducing redundant and residual noise in IMF component. Furthermore, PCA method is used to reduce the 197 

dimension of the decomposed high-dimensional components, which can map the faults that are difficult to identify 198 

to another subspace for dimensionality reduction to extract key feature information and improve the ability of fault 199 

feature extraction. According to the dimension properties of fractal box, the best reconstruction components can be 200 

screened out, eliminating redundant components and false components. Finally, it is input into CNN with powerful 201 



 

data processing advantages to realize accurate identification and classification of faults through the full connection 202 

layer and SOFTMAX.  203 

The structural parameters of one-dimensional CNN are shown in detail in Table 1. Compared with the 204 

traditional CNN, Adam gradient descent optimization algorithm is adopted in the proposed model. The CNN is 205 

composed of five convolutional layers and five pooling layers in an alternating fashion, followed by dropout and a 206 

fully connected layer. The learning rate has been maintained at 0.001. The length of one-dimensional signal under 207 

random screening conditions is 2048. Its initial weights are randomly initialized, and the activation function is 208 

ReLU. The cross entropy is the loss function. In addition, multi-layer network structures such as small-size 209 

convolution and pooling, Batch Normalization, and Dropout are used continuously. It can not only simplify the 210 

calculation, avoid gradient explosion, over-fitting and gradient disappearance, but also improve the performance of 211 

fault diagnosis identification and classification [65]. 212 

 

Fig.5 The ICEEMDAN and CNN model architecture 

Table.1 The parameter of CNN network structure 213 

Layer (Type) Convolution kernels Step length Size 

Input layer --- --- 1@2048×1 
Layer 1 16@11×1 [4 1] 16@510×1 

Batch Normalization (BN) --- --- --- 
Pooling layer 1 --- [2 1] 16@255×1 

Layer 2 32@5×1 [2 1] 32@126×1 

Batch Normalization (BN) --- --- --- 
Pooling layer 2 --- [2 1] 32@63×1 

Layer 3 32@3×1 [1 1] 32@61×1 
Batch Normalization (BN) --- --- --- 

Pooling layer 3 --- [2 1] 32@30×1 



 

Layer 4 64@2×1 [1 1] 64@29×1 
Batch Normalization (BN) --- --- --- 

Pooling layer 4 --- [2 1] 64@14×1 
Layer 5 128@2×1 [1 1] 128@13×1 

Batch Normalization (BN) --- --- --- 
Pooling layer 5 --- [1 2] 128@6×1 
Dropout (DR) --- --- 128@6×1 

Full connection layer --- --- 4@1×1 
Softmax --- --- --- 

4. Experiments and verification method 214 

4.1 Sample dataset 215 

For better evaluation of reality and integration with reality, the Xi’an Jiao-tong University experimental data 216 

[ 66], as the standard bearing vibration data set, is used to examine the performances of three kinds of 217 

decomposition method that include EMD, EEMD and CEEMDAN and to compare the performance with 218 

CNN-based models for proving the superiority of the ICEEMDAN-CNN model. The bearing experimental test 219 

platform is shown in Fig.6. The motor speed of the test platform was 2100 r/min and 2250 r/min, The sensor 220 

utilized is an accelerometer sensor. and the sampling frequency was 25.6 kHz. The sampling duration for each 221 

instance is 1.28 seconds, with a sampling interval of one minute. Consequently, each dataset comprises 32,768 data 222 

points, and a total of 100 datasets were collected for each operational condition. The test conditions [67] are shown 223 

in Table 2. 224 

 

Fig.6 The test platform of bearing 225 

Table.2 The test conditions of bearing 226 

Fault types Mixed damage Inner ring wear Cage wear Outer ring wear 

Speed / (r/min) 2100 2250 2250 2250 

Radial force / kN 12 11 11 11 

  

(a) (b) 
Fig.7 Time and frequency domain waveform of bearing vibration signals: (a) The bearing vibration signal time 



 

domain waveform; (b) The bearing vibration signal frequency domain waveform 
As can be seen from Table 2, there are four faults of mixed damage, inner ring wear, cage wear and outer ring 227 

wear. Their time domain diagram is shown in Fig.7. Although there are some differences in time domain and 228 

frequency domain of vibration signals of different faults of rolling bearings, fault identification and classification 229 

cannot be carried out directly, so it is more difficult to ensure the diagnosis accuracy. However, the extraction of 230 

pure and effective fault features is the basis of diagnosis, so the original signal should be de-noised to highlight the 231 

fault information and enhance the practicability of the signal.  232 

4.2 Data preprocessing and method analysis 233 

In this paper, the original signal was processed by EMD, EEMD and CEEMDAN algorithms respectively to 234 

achieve noise reduction. However, there are too much data to display all of them directly. Therefore, only the 235 

decomposition results of inner ring wear are shown in Fig. 8. The time domain and frequency domain plots of the 236 

three kinds of decomposition results cannot accurately select the best reconstructed component groups for fault 237 

analysis. Compared with EMD EEMD algorithm, CEEMDAN algorithm adaptively adds white noise to improve 238 

the effect of mode aliasing, but it still can not accurately remove redundant components and false components.  239 

  

(a) 

  

(b) 

  

(c) 
Fig.8 The different decompose of inner ring wear fault signals: (a) The result of EMD decomposed; (b) The result of 

EEMD decomposed; (c) The result of CEEMDAN decomposed 

Based on the above problems, this paper proposes a method combining PCA dimension reduction and fractal 240 

dimension to screen the best reconstruction components, which can effectively avoid the loss of fault information, 241 

eliminate redundant components and improve the identification accuracy of fault diagnosis. Fig.9 shows the 242 

comparison results of fractal dimension before and after dimension reduction of four kinds of rolling bearing faults.  243 



 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g)  (h) (i) 

   

(j) (k) (l) 
Fig.9 The different methods are used to screen the optimal reconstruction components of each fault: (a) Inner ring wear 
(EMD); (b) Inner ring wear (EEMD); (c) Inner ring wear (CEEMDAN); (d) Outer ring wear (EMD); (e) Outer ring 

wear (EEMD); (f) Outer ring wear (CEEMDAN); (g) Mixed damage (EMD); (h) Mixed damage (EEMD); (i) 
Mixed damage (CEEMDAN); (j) Cage wear (EMD); (k) Cage wear (EEMD); (l) Cage wear (CEEMDAN) 

Fig.9 shows that fractal dimension is negatively correlated before and after PCA dimension reduction, and 244 

CEEMDAN algorithm is significantly superior to EMD and EEMD. Based on the properties of fractal box 245 

dimension, the size of box dimension can indirectly judge the stability of signal. Before using PCA to reduce 246 

dimension, the residual noise in IMF component directly affects the overall stability, which leads to the box 247 

dimension decreasing gradually with the component. After PCA dimensionality reduction, main fault information is 248 

further extracted and purified to enhance the stability of data. The cross method can not only avoid the influence of 249 

residual noise, but also eliminate redundant components and false components. The time domain diagram of the 250 

optimal reconstruction component group of each fault is shown in Fig.10. 251 

 



 

Fig.10 The Time domain diagrams of the optimal reconstructed component group and the original signal component 252 

4.3 Model performance verification 253 

In order to better validate the proposed improved method and its performance, this paper compares 254 

ICEEMDAN with EMD and EEMD algorithms: and inputs the optimized reconstructed filter component group into 255 

CNN for fault diagnosis. In addition, The length of each segment of the original signal is 2048, and they have been 256 

divided into training, testing, and validation sets in a ratio of 8:1:1. The training process consists of 10 epochs, with 257 

10 iterations per epoch. The accuracy and loss of the validation set of the best reconstructed component in the 258 

absence of noise are shown in Fig.11. 259 

 

Fig.11 The accuracy and loss of validation for optimal reconstruction component 260 

As can be seen from Fig.11, the ICEEMDAN-CNN method proposed in this paper is superior to other 261 

algorithms in both accuracy and loss. However, there are mixed noises in the actual environment. In order to further 262 

verify the practicability and generalization of the method, it is necessary to add noises with different SNR to the 263 

signal to restore the actual operating environment as much as possible. 264 

4.4 Visualization and Generalization comparison validation 265 

Deep network learning is mostly based on the analysis of data attributes, which is difficult to restore the actual 266 

complex operating conditions. Therefore, this paper not only adds noise-assisted comparison verification, but also 267 

uses a comparison method to screen the optimal component groups with different entropy. It is compared with the 268 

sample entropy and fuzzy entropy fault diagnosis methods which are widely used in many fields [68-69]. The 269 

t-SNE clustering visualization analysis results under different SNR are shown in Fig.12. 270 
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(a) The sample entropy visualization 

   
Convolutional Layer 1 Convolutional Layer 2 Convolutional Layer 3 

   
Convolutional Layer 4 Convolutional Layer 5 Fully Connected Layer 

(b) The fuzzy entropy visualization  

   
Convolutional Layer 1 Convolutional Layer 2 Convolutional Layer 3 

   
Convolutional Layer 4 Convolutional Layer 5 Fully Connected Layer 

(c) The ICEEMDNAN-CNN visualization  
Fig.12 Visual analysis results of t-SNE clustering  271 

Fig.12 shows that the data processed by deep network can be well classified by t-SNE clustering analysis 272 

method for the four kinds of rolling bearing faults. The proposed ICEEMDAN-CNN method can completely 273 

separate the four faults, while the fuzzy entropy method is better than the sample entropy screening method, but 274 

they still cannot achieve the best clustering effect. The effect of noise on fault diagnosis can be better observed 275 

from the visualization results. It is evident that the choice of distinct methodologies for the selection and 276 

reconstruction of IMFs during the CEEMDAN procedure can exert a discernible influence on the ultimate 277 

performance of the entire model, The method substitutes PCA for sample entropy or fuzzy entropy to select and 278 

reconstruct IMF components during the CEEMDAN process. in this paper can better perform data mining for 279 



 

massive high-dimensional big data, analyze the laws hidden behind the data, realizing fault classification and visual 280 

analysis. Therefore, the ICEEMDAN-CNN method proposed in this paper can better conduct data mining for 281 

massive and high-dimensional big data, exploring the laws hidden behind the data and realizing fault classification 282 

and visual analysis. In order to further highlight the good generalization performance of ICEEMDAN-CNN 283 

algorithm proposed in this paper, noises with different SNR were added to original signals and compared with 284 

existing methods respectively, and the results are shown in Fig.13. 285 
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Fig.13 The recognition accuracy of each method under different SNR 286 

As shown in Fig.13, The proposed ICEEMDAN-CNN algorithm has obvious advantages and good 287 

generalization performance compared with other existing algorithms. The actual operating environment can be 288 

restored well under different SNR, and the correlation between SNR and accuracy is positive, which indirectly 289 

reflects the influence of noise on diagnosis accuracy. The improved algorithm has higher recognition and 290 

classification accuracy than the original algorithm. The accuracy of the proposed method is up to 99.79%, and the 291 

recognition accuracy is still 87.13% at the lowest SNR of -6dB, which is 0.54 - 10.33% higher than other 292 

algorithms. However, there is still room for improvement in this method at low (SNR)." In addition, it can eliminate 293 

redundant signals and false components well and realize noise reduction, enhance the accuracy of extracting 294 

effective fault signs, and further improve the accuracy of fault diagnosis recognition and classification.  295 

5. Conclusions 296 

A novel fault diagnosis method of rolling bearing is proposed using CNN and PCA fractal based feature 297 

extraction in this paper. The method can effectively solve the problems of redundant components and false 298 

components in the decomposition process of existing methods, screening also accurately the optimal component 299 

group. CEEMDAN algorithm is used to process raw signals to achieve noise reduction and decomposition. PCA 300 

can efficiently extract effective fault features by reducing the dimension of high-dimensional data, and fractal box 301 

dimension filters the best reconstruction component groups to eliminate irrelevant components. Finally, CNN 302 

further excavates the optimal component group to realize fault diagnosis recognition and classification. In addition, 303 

the effectiveness and feasibility of this method are verified by a variety of data verification and comparison with 304 

existing methods. The specific conclusions are as follows: 305 

(i) The proposed model framework of ICEEMDAN-CNN fault diagnosis, testing by experiment, can 306 

effectively filter out the noise disturbance and accurately extract the effective fault features, achieving 307 

better classification effect of four kinds of rolling bearing faults and reducing the diagnosis error. 308 

(ii) The PCA and fractal box dimension combine method are used to select the best reconstructed component 309 

groups, which can effectively eliminate redundant components and false components. The reconstructed 310 



 

component group is input into CNN with strong nonlinear fitting ability, which can adaptively extract 311 

features to eliminate the interference caused by human factors and improve the accuracy of CNN fault 312 

identification and classification. The robustness and feasibility of the proposed method are verified by 313 

rolling bearing fault analysis under different working conditions. 314 

(iii) Compared with the existing fault diagnosis models, the proposed ICEEMDAN-CNN model has the 315 

highest recognition accuracy by 99.79% at different SNR. Meanwhile, the generalization of the proposed 316 

model method is superior to EMD-CNN, EEMD-CNN, CEEMDAN-CNN, CEEMDAN-SE-CNN, 317 

CEEMDAN-FE-CNN, IEMD-CNN, IEEMD-CNN etc. 318 

The following future the optimization model analyses are need to investigate multifractal and multiscale 319 

convolutional neural networks. In addition, the effect of adding different forms of noise on generalization can also 320 

be considered. 321 
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