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A B S T R A C T   

Skin cancer is the most common type of cancer worldwide, affecting a large population recently. To date, various 
machine learning techniques exploiting skin images have been applied directly to skin cancer classification, 
showing promising results in improving diagnostic accuracy. This study aims to develop a machine learning- 
based model capable of accurately classifying skin cancer by utilizing extracted features from preprocessed 
images in the publicly available PH2 dataset. Preprocessed features are known to provide more significant in-
formation than raw image data, as they capture specific characteristics of the images that are relevant to the 
classification task. The proposed model of this study can identify the most pertinent information in the images 
more accurately, thereby improving the performance and interpretability of the machine learning classification. 
Our simulation results illustrate that employing XG-boost yields an accuracy of 94% and an area under the curve 
value of 0.9947, further indicating that the proposed technique effectively distinguishes between non-melanoma 
and melanoma skin cancer. Explainable artificial intelligence provides some explanations by leveraging model- 
agnostic methods such as partial dependence plot, permutation importance, and SHAP. Moreover, the explain-
able artificial intelligence results show that asymmetry and pigment network features are the most important 
feature in the classification of skin cancer. These specific characteristics emerge as the most influential factors in 
distinguishing between different types of skin cancer.   

1. Introduction 

Skin cancer is a highly prevalent disease that affects a great number 
of people globally. It is distinguished by aberrant cell growth within the 
skin, which can result in tumor formation. The most frequent types of 
skin cancer are melanoma, basal cell carcinoma, and squamous cell 
carcinoma. These tumors can develop from several types of skin cells, 
including basal cells, squamous cells, and melanocytes (Gloster & Neal, 
2006). The etiology of skin cancer is complicated, involving a combi-
nation of genetic, environmental, and lifestyle factors. Despite advances 
in cancer research and treatment, skin cancer remains a major public 
health concern, underscoring the importance of ongoing research and 
public awareness initiatives to prevent and manage this disease. Skin 
cancer can be caused by various factors, such as excessive exposure to 
ultraviolet (UV) radiation, genetics, and environmental factors. 

According to the American Cancer Society, skin cancer accounts for 
approximately one-third of all diagnosed cancer cases in the United 
States. Skin cancer comes in two primary varieties: non-melanoma, 

which is more prevalent, and the uncommon melanoma variety. 
Because it spreads more quickly, melanoma is more hazardous and can 
be fatal if caught in its later stages (Mukherjee et al., 2019). With 1.5 
million new cases in 2020, skin cancers are the most prevalent type of 
cancer diagnosed globally. A projected 325,000 new melanoma cases 
were diagnosed in 2020, and 57,000 people globally passed away from 
the condition (International agency for research on cacner 2022). In the 
United States in 2022, there were 97,920 new cases of melanoma in situ 
of the skin (Siegel et al., 2022). According to the American Cancer So-
ciety (Gomaa et al., 2022), three million skin cancer cases could be 
avoided each year if people were more aware of the risk factors asso-
ciated with sun exposure and prevention. 

Between first January and 31th December 2019, the UAE National 
Cancer Registry (UAE-NCR) received reports of 4633 newly diagnosed 
cancer cases, including both malignant and benign cancers (Al-Shamsi, 
2022). Early detection of cancer is crucial for managing and curing 
diseases at its earliest stages, this applies to skin cancer, which can be 
identified, treated, and cured similarly to other illnesses. Skin 
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irregularity is referred to as a lesion. Cancerous, allergic, and other types 
of skin lesions are possible. The healthiest of these are skin blemishes 
that can cause cancer. These malignant lesions might be fatal in some 
cases. Among malignant lesions, melanoma is thought to have the 
highest fatality rate at 8%. The frequency of melanoma cases is rising 
daily (Jiang et al., 2020). 

A non-invasive (Pham et al., 2019) diagnostic technique called der-
moscopy enables practitioners to analyze the morphological structure of 
pigmented skin lesions. By analyzing the images produced by the der-
moscopy instrument, melanoma is diagnosed. Dermatologists typically 
use the asymmetrical shape, border, color, and diameter (ABCD) crite-
rion to diagnose melanoma through these photos. Based on the expertise 
and judgment of the relevant doctors, ABCD is a highly subjective 
evaluation (Pham et al., 2019). The ABCD rule-based and 
computer-assisted approaches can enhance melanoma diagnosis. Typi-
cally, ABCD systems have independent components for picture seg-
mentation, feature extraction, and classification, as shown in Fig. 1. The 
classification accuracy of skin lesions is critical in the diagnosis and 
treatment of skin cancer. Traditional methods of skin cancer classifica-
tion rely on human visual inspection, which can be prone to subjective 
interpretation and variability. 

In recent years, machine learning (ML) has emerged as a promising 
approach to developing automated and objective skin cancer classifi-
cation models. The abundance of skin lesion images, as well as the 
availability of advanced image processing techniques, has led to an in-
crease in the application of ML in skin cancer classification. By training 
ML algorithms on large datasets of skin lesion images or even the feature 
extracted from the images, it is possible to develop models that can 
accurately classify skin cancer lesions into benign or malignant cate-
gories. With respect to image classification, the convolution neural 
network is the preferred algorithm to train ML models. CNNs are 
comprised of various types of layers including convolutional, pooling, 
and fully connected layers. Other algorithms can be utilized in the case 
of numerical or categorical data. These algorithms include decision 
trees, XG-boost, random forrest, and support vector machine (SVM). 

A decision tree (Mahesh, 2020) is a graph that displays possibilities 
and their outcomes as a tree. The edges of the graph indicate the con-
ditions or rules for making decisions, whereas the nodes in the graph 
represent an event or a choice. There are nodes and branches in every 
tree. Each node represents a set of characteristics that needs to be 
categorized, and each branch indicates a possible value for the node. 
Ensembles are methods that combine many ML algorithms to create a 
more powerful model or algorithm. For instance, the extreme gradient 
boosting (XG-boost) algorithm (Torlay et al., 2017) has many advan-
tages such as dealing with missing values, and data scale requirements, 
suggesting a gradient boosting technique variation that is 

computationally effective and providing satisfactory results in ML 
performance. 

Random forest (Müller & Guido, 2016) is just a group of decision 
trees, each of which differs somewhat from the others. The theory 
behind random forests is that while each tree may make somewhat ac-
curate predictions, it might overfit some portions of the data. By aver-
aging the outcomes of several trees, we can lessen the degree of 
overfitting if they are all successful and overfit in various ways. 

Different from other approaches that utilize images to classify skin 
cancer, our proposed approach deploys various ML algorithms to clas-
sify directly skin cancer as melanoma or non-melanoma based on the 
extracted features from the preprocessed images. 

The remainder of this paper is organized as follows. Section 2 dis-
cusses the explainable artificial intelligence concept. Section 3 repre-
sents related works about skin cancer classification using different ML 
algorithms. Section 5 represents the case scenario and dataset. Accord-
ingly, Section 6 discusses the results and discussion. Finally, significant 
conclusions are reported in Section 7. 

2. Explainable artificial intelligence 

Explainable Artificial intelligence (XAI) is (Gianfagna & Di Cecco, 
2021) a collection of techniques and methods that can be used to explain 
the outcomes of the development of ML models in a way that is under-
standable to humans. There are two terms that should be mentioned 
which are interpretability and explainability. Interpretability (Thampi & 
Interpretable, 2022) comes down to comprehending cause and effect in 
an artificial intelligence (AI) system. It refers to how accurately we can 
predict what a model will predict given an input, how the model arrived 
at the forecast, how the prediction changes as the input or algorithmic 
parameters change, and lastly how accurately we can detect when the 
model has made a mistake. 

Explainability (Thampi & Interpretable, 2022), meanwhile, goes 
beyond interpretability by assisting us in understanding in a way that is 
understandable to humans how and why a model arrived at a forecast. 
With the goal of reaching a far larger audience, it describes the internal 
workings of the system in straightforward words. In addition to using 
interpretability as a foundation, explainability also refers to other dis-
ciplines and topics including human-computer interaction (HCI), law, 
and ethics. The question is why XAI is needed and why it is so important. 
Relying solely on a single metric, such as classification accuracy, may 
not adequately capture and address the complexities of the situation at 
hand. Simply obtaining the value of accuracy without understanding the 
underlying factors that contribute to it renders the information incom-
plete and potentially useless. The three primary uses for ML models that 
frequently involve prediction and necessitate explainability are model 
debugging, model validation, and knowledge discovery. 

XAI has two main approaches or methods which are the intrinsic 
approach which means that the internal parameters of the model are 
used to generate interpretations and the model agnostic approach which 
means that used when the model is a black box and we can’t know the 
internal parameters. There are various types of explanations such as 
intrinsic which is known as post hoc, model-specific which is referred to 
as model-agnostic, and global or local explanations. In this paper, the 
type of ML model used is the model-agnostic model. 

Model-agnostic methods have emerged as powerful techniques for 
generating explanations in machine learning, avoiding the need to rely 
on the internal workings of models that are often characterized as 
”opaque”. By decoupling the explanation generation process from 
model-specific details, model-agnostic methods offer a versatile 
approach for producing interpretable explanations in a wide range of ML 
applications. These methods include the permutation importance 
method, partial dependence plots (PDPs), and Shapley additive expla-
nations. Permutation importance allows the detection of the most sig-
nificant features. It is based on shuffling the values of a feature and 
repeating the prediction again while monitoring the error. If the error Fig. 1. Automated dermoscopy analysis for the detection of melanoma.  
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gets worsens, this means that this feature is important and highly im-
pacts the prediction. Consequently, the shuffling process leads to a 
deterioration in predictions as the significance of specific features 
increases. 

PDP provides details on how these features are impacting the pre-
dictions. It is a plot that shows the functional relationship between one 
input or more and the output target. From the PDP we can see how the 
change in the prediction can be affected by the most important features. 
Shapley additive operations depend on Shapley values that provide 
explanations on specific instances as well as global explanations. So, it 
changes the direction of explanations from global to local explanations. 
We can determine which feature is more important to a given prediction 
using Shapley values. When we require an answer for a particular pre-
diction and are less concerned with knowing the model’s ”typical” 
behavior, SHAP can be helpful. XAI has numerous applications in 
healthcare. For instance, XAI can be utilized in medical image analysis 
and clinical decision support by building explainable ML models to help 
in the early diagnosis stage. By examining the contribution of bio-
markers or clinical characteristics to a particular disease outcome, SHAP 
has the potential to be applied in the field of healthcare. 

3. Related works 

Ozkan & Koklu (2017) pre-classified the skin lesions into normal, 
abnormal, and melanoma. They designed a machine-learning model to 
support the decision of the doctors. Skin lesions based on dermoscopic 
pictures from PH2 datasets (Mendon¸ca et al., 2015) are the study’s main 
focus. Four different ML techniques, artificial neural network (ANN), 
SVM, K-nearest neighbor (KNN), and decision tree, are used to achieve 
this goal. For ANN, SVM, KNN, and decision tree, the simulation results 
showed an accuracy of 92.50%, 89.50%, 82.00%, and 90.00%, respec-
tively. Alkarakatly et al. (2020) designed a 5 layers convolution neural 
network (CNN) classifier of skin lesions which is melanoma or nevus 
based on the PH2 dataset. The performance of the model was evaluated 
by classification accuracy, sensitivity, specificity, and the area under the 
curve (AUC). On the test set, it scored 100% AUC, 94% sensitivity, 97% 
specificity, and around 95% accuracy. In another study (Mukherjee 
et al., 2019), Soumen Mukherjee et al used DERMOFIT and MEDNODE, 
representing malignant lesion image datasets, employed independently 
and jointly to assess the effectiveness of their proposed CNN presented as 
CNN malignant lesion detection (CMLD). When these datasets were used 
separately, the accuracy was 90.58% for DERMOFIT and 90.14% for 
MEDNODE. 

When they were combined, it achieved 83.07% accuracy. 
Shahsavari et al. (2022) designed a new computer-aided method 

called the En-semble of Deep (SLDED) model in order to detect skin 
lesions. By using the ISIC archive database, which had 4668 skin lesion 
images for lesion localization, they used a modified faster Regions with 
CNN networks (R-CNN) with deep learning model (VGGNet) feature 
extractor and achieved a mean average precision (mAP) of 0.96. They 
assess the experimental classification outcomes on 934 and 200 images 
using test data from ISIC (Gutman et al., 2016)and PH2 (Mendon¸ca 
et al., 2015). For ISIC and PH2 test data, they achieved an average ac-
curacy of 97.1% and 96%, precision of 87.1% and 90.2%, AUC of 98.6% 
and 98.1%, and recall of 86.7% and 85.4%, respectively. 

Jiang et al. (2020) proposed an end-to-end framework called Chan-
nel & Spatial Attention Residual Module (CSARM-CNN) model, which 
can segment skin lesions effectively and automatically. By using spatial 
pyramid pooling, multiscale input images were obtained. In order to 
sum the model’s overall loss, a weighted cross-entropy loss function was 
applied to each side of the output layer. The authors conducted their 
evaluations using the two publicly available standard datasets ISIC 2017 
and PH2, and their findings were competitive in terms of accuracy and 
specificity, with 94.96% and 95.23% accuracy, and 99.03% and 99.45% 
specificity, respectively. 

Kumar & Vatsa (2022) reviewed and analyzed two deep neural-based 

classification algorithms including a convolution neural network and 
recurrent neural network as well as a decision tree-based algorithm 
(XG-Boost) on the ISIC dataset. The authors attempted to determine 
which one has the best categorization performance metric. Loss, preci-
sion, accuracy, recall, ROC, and F1 score are used to benchmark how 
well algorithms work. They indicated that the VGG16 architecture 
performed the best for CNN, with an accuracy of 89.6%. The RNN’s 
bidirectional architecture is also superior to the other RNN architectures 
(accuracy: 95.96%). The XG-Boost approach has a 97.22% accuracy 
rate. 

Hosny et al. (2018) proposed an automated method for classifying 
skin lesions. This approach makes use of deep transfer learning, in which 
the final layer of AlexNet is replaced with a softmax to categorize three 
different lesions. The PH2 dataset is used to train and evaluate the 
suggested model. The performance of the suggested technique is 
assessed using quantitative measures of accuracy, sensitivity, specificity, 
and precision, with achieving values of 98.61%, 98.33%, 98.93%, and 
97.73%, respectively. In another study, Iftiaz A. Alfi (Alfi et al., 2022) 
presented an interpretable approach for the ensemble stacking of ML 
models and deep learning for the non-invasive diagnosis of melanoma 
skin cancer. 

Logistic regression, random forest, SVM, XG-boost, and KNN are 
trained using manually extracted features. Transfer learning was carried 
out using pretrained deep learning models (MobileNet, ResNet50, 
Xception, DenseNet121, and ResNet50V2) using ImageNet data. 
Ensembled ML models with deep learning architectures are performed 
and evaluatedThey determined the most accurate model for categorizing 
skin lesions by calculating accuracy, Cohen’s kappa, F1-score, ROC 
curves, and confusion matrix. 

The Review of previous research reveals that most of the studies use 
skin images directly for the application of ML classification rather than 
features extracted from the preprocessed images. Hence, The aim of this 
work is to focus on classifying different skin cancer categories based on 
preprocessed images. This could allow potentially more interpretable 
ML models to be used to investigate the effect of the extracted charac-
teristics on the categorization or prediction of melanoma or non- 
melanoma skin cancer. 

4. Explainable machine learning related works 

Singh et al. (2020) used Kernel Shapley Additive explanations 
(SHAP) and GradCAM to compare 30 CNN models. It was demonstrated 
that even very accurate models occasionally concentrated on features 
that weren’t crucial for the diagnosis. The attribution maps of both 
methods demonstrated that there were variations in the models’ ex-
planations for similar accuracy. This demonstrated that various neural 
network topologies have the propensity to learn various features. Van 
Molle et al. (2018) exhibited the features of a convolutional neural 
network (CNN) for the classification of skin lesions. The layers were seen 
to be examining risk factors including lighter skin tone or a pinkish 
texture as well as markers like lesion boundaries and color irregularity. 
However, insignificant traits like hair and artifacts were also learned, 
indicating some degree of overfitting. By using XAI techniques, Dindorf 
et al. (2020) looked at how different input representations affected a 
trained model’s accuracy, interpretability, and clinical relevance. Using 
an inertial measuring unit (IMU)-based device, the gait of 27 healthy 
patients and 20 subjects who had had total hip arthroplasty (THA) was 
captured. For categorization, three distinct input representations were 
used. The model interpretation was carried out using Local Interpretable 
Model-Agnostic Explanations (LIME). The features that were automati-
cally extracted provided the greatest accuracy. 

In another study, Binder et al. (2021) provide an understandable 
machine-learning approach for the combined profiling of morpholog-
ical, molecular, and clinical data from breast cancer histology. First, 
their method enables accurate heatmap representations of the classifier 
decisions and the robust detection of cancer cells and tumor-infiltrating 
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lymphocytes in histology images. Second, histology can be used to 
predict molecular characteristics such as DNA methylation, gene 
expression, copy number variations, somatic mutations, and proteins. 
Balanced accuracy of molecular predictions is up to 78%, whereas ac-
curacy for patient subgroups can reach over 95%. Last but not least, 
their defensible AI strategy enables the evaluation of the relationship 
between morphological and molecular cancer features. 

During the Covid-19 pandemic, Magunia et al. (Suri et al., 2020) 
developed an ML-based model to classify patient risk and predict ICU 
outcomes, based on retrospective and prospective clinical data. Predic-
tion accuracy and readability were assessed for ML methods. The 
Explainable Boosting Machine strategy was determined to be the best 
course of action. As a result, it was determined that the model for pre-
dicting the general outcome of the ICU was more accurate in predicting 
”survival”. Age, thrombotic and inflammatory activity, and the degree of 
ARDS (Acute respiratory distress syndrome) at ICU admission were 
found to be indicators of ICU survival. Qu et al. (2022) tried to predict 
the occurrence of congenital heart diseases using innovative 
machine-learning techniques. cardiac hospitals. 

ROC curves and the explainable boosting machine (EBM) for AUC 
prediction were used to evaluate the model’s performance. The most 
effective predictors were chosen based on their contributions and pre-
dicting abilities. The most significant predictors have thresholds deter-
mined for them. The model achieved an AUC of 76% (69-83%), and total 
accuracy, sensitivity, and specificity were 0.65, 0.74, and 0.65, respec-
tively. The Total accuracy, specificity, and sensitivity were 0.65, 0.65, 
and 0.74, respectively. 

Pavan et al. (Magesh et al., 2020) proposed an ML model that 
accurately categorizes each given DaTSCAN as having Parkinson’s dis-
ease or not, in addition to offering a logical explanation for the predic-
tion. Visual cues produced utilizing Local Interpretable Model-Agnostic 
Explainer (LIME) techniques are used in this type of reasoning. Transfer 
learning was used to train DaTSCANs on a CNN (VGG16) from the 
Parkinson’s Progression Markers Initiative database, and the resulting 
models had 95.2% accuracy, 97.5% sensitivity, and 90.9% specificity. 
This study uses visual supe rpixels on the DaTSCANs to identify PD from 
non- PD using LIME explanations since model interpretability is crucial, 
especially in the healthcare industry. 

Yoo et al. (2020) developed an interpretable multiclass ML model 
that selects the laser surgery option on the expert level. The Shapley 
Additive ex-Planation technique was adopted to explain the output of 
the XG-Boost model. When tested on the internal and external validation 
datasets, the multiclass XGBoost model showed an accuracy of 81.0% 
and 78.9%, respectively. The results of the Shapley Additive 
ex-Planations explanations were in line with what ophthalmologists 
already knew. The one-versus-one and one-versus-rest XGBoost classi-
fiers’ explanations were successful in making users of the 
multi-categorical classification problem understandable. 

5. Materials and methods 

In this section, the PH2 dataset, the definitions of the features, and 
the methodology of the skin cancer classification are described and 
presented. 

5.1. PH22 dataset 

Researchers from the Technical Universities of Porto and Lisbon 
created this data collection in the dermatology department of Pedro 
Hispano Hospital (Mendon¸ca et al., 2015). The 200 dermoscopy images 
in the PH2 dataset have a resolution of 768 × 560. The dataset contains 
seven input features and one output feature. Firstly, the asymmetrical 
feature knowing that asymmetry in skin lesions is a reliable sign of 
malignant melanoma. This means that the shape of one half does not 
resemble the other half (Ali et al., 2020). Secondly, the pigment network 
has a linear shape and looks like hair artifacts (Alfed et al., 2015) and it 

has brown lines. Thirdly, the Dots/Globules feature is used to describe 
black, brown, round to oval, variously sized objects that were dispersed 
either regularly or erratically within a melanocytic lesion (Xu et al., 
2009). Fourthly, the streaks which are linear extensions of pigment at 
the edge of a lesion as radially structured linear structures in the di-
rection of growth (Sadeghi et al., 2013). Then, the regression areas 
feature which is identified in the dermoscopic lesion image by the 
presence of white and grey-blue patches (Bassoli et al., 2011). The 
structureless zones of confluent blue pigment with a ground-glass blur 
are known as the ”blue-white veil regions” (Madooei et al., 2013). 
Finally, the number of colors in skin cancer. Some cancers have multiple 
colors such as white, black, red, Dark-Brown, Light- Brown, and Blue 
Gray. 

5.2. Methods 

The typical direction or methodology to classify skin cancer is to use 
the skin images as input to the ML model. The images are passed to a 
CNN which identifies the objects in the images, hence the model can 
learn to discriminate between melanoma and non-melanoma skin can-
cer. In this study, a preprocessing step was performed on the images 
followed by the extraction of features from these preprocessed images. 
By utilizing these features, the ML model can precisely recognize the 
crucial information present in the images, leading to an enhancement in 
the accuracy and comprehensibility of the model. We used classical ML 
algorithms including KNN, XG-boost, decision tree, and random forest. 
Fig. 2 depicts the process of building the ML model on pre-extracted 
image features. 

Finally, in order to provide insight into the potential diagnosis of 
breast cancer, the model’s output and predictions were examined and 
interpreted using XAI. 

6. Results and discussion 

In this section, some descriptive analysis is described in addition to 
the ML model results. 

6.1. Descriptive analysis 

In terms of data description, Fig. 3a shows the histogram for the 
clinical diagnosis which is the output target while Figs. 3b through 3h 
represent the histogram of each input feature. There are three classes: 
typical nevus, atypical nevus, and melanoma. Further descriptive sta-
tistical analysis had been performed on the dataset. For instance, the 
correlation matrix is used to find the relation between the inputs 
themselves and the inputs with the outputs. It is clear from the corre-
lation matrix that there are no two features that are highly correlated. 
The correlation matrix is shown in Fig. 4. 

6.2. Feature importance 

The input feature importance was estimated using chi-square. Fig. 5 
shows that the asymmetry and pigment network features have the 
highest chi-square score which means that these features have the 
strongest relationship with the target variable among all the others 
features being considered. This means that it is likely to have the 
greatest impact on the accuracy of the model and should be given pri-
ority in the feature selection process. 

6.3. ML model performance 

Multiple ML algorithms were utilized to train the model, including 
XGBoost, decision tree, random forest, and KNN. The performance of the 
model was evaluated based on precision, recall, and f-score. The clas-
sification simulation results for each algorithm are presented in Fig. 6. 
The XGBoost and decision tree algorithms yielded the highest accuracy, 
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achieving 94%. Prior research in this field has been limited, with only 
one paper (Ozkan & Koklu, 2017) utilizing preprocessed image features 
to achieve 92% and 90% accuracy using KNN and decision tree algo-
rithms, respectively. In this study, we attained higher accuracy when 
using a decision tree, and equivalent accuracy using a KNN, as compared 
to (Ozkan & Koklu, 2017). 

Moreover, we trained the model using XGBoost, which resulted in 
accuracy surpassing that achieved using the KNN in (Ozkan & Koklu, 
2017). To assure that our model gives better performance, AUC for ROC 
had been estimated. AUC is the ability of the model to differentiate 
between the positive classes and the negative ones. Due to it being a 
multiclassification problem, the One vs All technique is used. Fig. 7 
shows the values of the AUC for each algorithm. Fig. 8 shows the ROC 
curve which is the relation between the true positive rate and the false 
positive rate. It is clear from the curve that the highest AUC value is for 
the typical nevus class which indicates that the model has a high degree 
of discriminatory power in classifying this level compared to the other 
skin cancer categories. 

6.4. XAI results 

In order to understand why the ML model is making the predictions 
that it is, it is essential to explain and analyze the results once the 
model’s performance has been evaluated. This involves understanding 
the relationships between the features and the goal variable, identifying 
any pertinent patterns or trends in the data, and identifying the features 
that are essential for the model’s predictions. 

Our best-performing is achieved using the XG-boost algorithm. 

6.4.1. Permutation importance results 
The feature’s importance is determined by evaluating the change in 

the model prediction error after the permutation. When a feature is used 
by the model to make predictions in this particular situation, it is said to 
be ”essential” if changing its values results in an increase in model error. 

If changing a feature’s values results in the same model error as when 
leaving it alone for the forecast, the feature is said to be ”unimportant.” 
Fig. 9 shows the ranking of the features which reveals that the pigment 
network feature is the most important feature for the ML model to 
classify breast cancer. 

6.4.2. Partial dependence plot results 
The PDP displays a predictor variable’s marginal effect, which is its 

average influence throughout the entire dataset, on the target variable. 
This graph can be used to spot interactions between predictors as well as 
non-linear correlations between the predictor and the target variables. 
The PDP illustrates how, despite keeping all other inputs constant, the 
anticipated outcome varies as the binary input shifts from one level to 
the next. Fig. 10 depicts that when the asymmetry feature changes from 
0 to 1 and from 1 to 2, the prediction of the melanoma class increases. 
On the other hand, when the asymmetry feature changes from 0 to 1 and 
from 1 to 2, the prediction of the nevus whether it is a common or 
atypical class decreases. 

6.4.3. Shapley results 
SHAP can produce local explanations by localizing the model using a 

smaller model and perturbing the input data to observe how the output 
changes. One instance is chosen from the dataset to see the impact of the 
features on the corresponding outcome. Fig. 11 shows the effect of the 
input features on the common nevus class. It is clear that the pigment 
network when equalling 0 pushes the model towards the left side to 
decrease the prediction value. Fig. 12 represents the local SHAP plot for 
the atypical nevus class. It is shown that when the pigment network 
feature equals 1 which has the highest length, the prediction value for 
the atypical nevus class is increased. Fig. 13 shows that when the 
asymmetry feature is 2 and the number of colors is 5, the prediction of 
melanoma increases. 

Shapley values that offer explanations for specific occurrences rather 
than just general ones are necessary for Shapley additive operations 

Fig. 2. Complete process of developing ML model.  
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Fig. 3. Histogram plots of (a) Clinical diagnosis histogram in which 0 represents common Nevus, 1 represents Atypical Nevus, 2 represents melanoma, (b) Number of 
colors histogram, (c) Asymmetry histogram in which 0 is fully symmetric, 1 is symmetric in 1 axis, and 2 is fully asymmetric, (d) Pigment network histogram in which 
0 represents atypical and 1 represents typical, (e) Dots/Globules histogram which 0 is atypical, 1 is typical, and 2 is absent, (f) Streaks histogram in which 1 is absent 
and 0 is present, (g) Regression areas which 1 is absent and 0 is present, (h) Blue-whitish veil histogram in which 1 is absent and 0 is present. 

Fig. 4. The correlation matrix.  
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(Gianfagna & Di Cecco, 2021). Using Shapley values, we may determine 
which feature is more crucial for a specific prediction. SHAP can be 
useful when we need an answer for a specific forecast and are less 
interested with understanding the model’s ”typical” behavior. By 
calculating the contribution of each characteristic to the prediction, 
SHAP (Molnar, 2023) seeks to explain the prediction of an instance x. 

To provide a global explanation for the model, a summary SHAP plot 
is shown in Figs. 14 and 15 for common nevus and melanoma classes, 
respectively. Fig. 14 reveals that the pigment network is the most 
contributing feature in the prediction of the common nevus class. 
Notably, when the pigment network has a high value which is basically 
2, it affects the ML prediction of the common nevus positively and vice 
versa. The SHAP plot in Fig. 15 depicts that the asymmetry feature has 
the most contribution to the prediction of the melanoma class and also 
has a positive impact on the prediction. 

To summarize the SHAP results, the asymmetry feature and the 
pigment network play an important role in the prediction of melanoma 
and nevus of skin, respectively. 

Fig. 5. Feature importance using chi-square scores.  

Fig. 6. The weighted average of accuracy, precision, recall, and f1-score.  

Fig. 7. The area under the curve of each algorithm.  

Fig. 8. ROC curve.  

Fig. 9. Permutation importance plot.  
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7. Conclusion & future work 

The utilization of preprocessed features has been shown to enhance 
the effectiveness, precision, and comprehensibility of ML models in 
image classification tasks, including the classification of skin cancer. By 
emphasizing the most significant information embedded in the images 
and reducing the dimensionality of the input data, ML models can be 
trained more effectively, offering an additional layer of precision and 
objectivity in the diagnosis of skin cancer. Feature importance is per-
formed using the chi-square method showing that the asymmetry and 
pigment network are the most important features. This research employs 
multiple ML algorithms, such as XG-boost, decision trees, random forest, 
and KNN, to train our model. The simulation results indicate an accuracy 

of 94% for both XG-boost and decision tree, further designating the 
significant superiority of the proposed framework. XAI is utilized to 
provide explanations, local or global, of the model results, facilitating a 
better understanding of the model behavior. According to the XAI 
analysis of skin cancer classification, asymmetry and pigment network 
traits are among the most crucial characteristics in evaluating whether a 
skin lesion is malignant or benign. These characteristics are important 
markers that dermatologists and AI models may leverage to assess skin 
lesions, even if they are not directly related. The results of the XAI study 
support pre-existing medical understanding of the visual features of 
malignant skin lesions and demonstrate the potential for AI technology 
to assist in the detection and management of skin cancer. Other model- 
agnostic methods, such as LIME, can be employed in the future in order 

Fig. 10. PDP plot for the asymmetry.  

Fig. 11. SHAP plot for the common nevus class.  

Fig. 12. SHAP plot for the Atypical nevus class.  

Fig. 13. SHAP plot for the melanoma class.  
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to produce more local explanations for each patient individually. 
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