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A Machine Learning System for Automatic Detection of Preterm 

Activity Using Artificial Neural Networks and Uterine 

Electromyography Data 
 

ABSTRACT 

Background: Preterm births are babies that are born before 37 weeks of gestation. The 

premature delivery of babies is regarded as a major global public health issue with those 

affected at greater risk of developing short and long-term complications. The care provided 

for premature infants has significantly improved. However, it has had no impact on reducing 

the prevalence of preterm birth. Therefore, a better understanding of why preterm births occur 

is needed.  

Methods: Electromyography is used to capture electrical activity in the uterus to help treat 

and understand the condition, which is time consuming and expensive. This has led to a 

recent interest in automated detection of the electromyography correlates of preterm activity. 

This paper explores this idea further using artificial neural networks to classify term and 

preterm records, using an open dataset containing 300 records of uterine electromyography 

signals. The Synthetic Minority Oversampling TEchnique is used to oversample the minority 

preterm class (38 records) to address the issues found in unbalanced datasets and 

classification.  

Results: Our approach shows an improvement on existing studies with 94.56% for 

sensitivity, 87.83% for specificity, and 94% for the area under the curve with 9% global error 

when using the Multilayer perceptron neural network trained using the Levenberg-Marquardt 

algorithm.  

Discussion: The Multilayer perceptron neural network trained using the Levenberg-Marquardt 

algorithm produced the best results, which is trained using Newton’s method of least squares 

optimization and is an efficient learning algorithm for neural networks that have a few hundred 

weights, despite being computationally expensive. 

 

Keywords: Term delivery, preterm delivery, machine learning, classification, 

Electrohysterography 

1. INTRODUCTION 

A premature baby is a newborn who is delivered, alive, before 37 weeks of gestation 

according to the World Health Organisation (WHO) [1]. The global prevalence of preterm 

births was said to be 10% of all births in 2010 [1]. In England and Wales, 7% of live births 

were preterm
1
 in 2009. Preterm birth has a significant adverse effect on the newborn. 

Approximately, 50% of all perinatal deaths are caused by preterm delivery [2], with those 

surviving often suffering from afflictions, caused by the birth. These include disabilities, 

                                                 
1
 (Gestation-specific infant mortality in England and Wales, 2009, http://ons.gov.uk) 
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problems with growth, and mental development [3]. In 2005, the overall cost, in the US, was 

estimated to be $26.3 billion, while, in England and Wales, this value was close to £2.95 

billion [4].  

The cause of preterm birth, in many situations, is elusive and unknown. According to Baker 

et al. [2], one-third are medically indicated or induced (delivery is brought forward) in the 

interest of the mother and baby. Another third occurs when membranes rupture, prior to 

labour, and is known as Preterm Premature Rupture of Membranes (PPROM). In the 

remaining third, spontaneous contractions (termed preterm labour or PTL) develop. While it 

is difficult to identify particular causes, studies have found several factors for why 

PTL/PPROM may occur [5], [6]. These include a previous preterm delivery (20%); last two 

births have been preterm (40%), and multiple births (twin pregnancy carries a 50% risk). 

Other health and lifestyle factors have also been found, and these include cervical and uterine 

abnormalities, recurrent antepartum haemorrhage, underweight or obese mothers, ethnicity, 

social deprivation, long working hours/late nights, alcohol and drug use, and folic acid 

deficiency.  

Where there is clinical uncertainty, para-clinical evidence from Electrohysterography (EHG) 

can help to detect preterm activity earlier and provide treatment to mitigate its affects. 

However, EHG capture and interpretation are time-consuming and costly because 

interpretation can currently only be performed by specialist clinicians, trained in EHG 

interpretation. This has led to a recent interest in automated preterm activity detection. In this 

paper, the focus is on prolonged ambulatory monitoring in a hospital for patients with an 

unclear diagnosis and underlying problems that manifest as human preterm activity. An open 

dataset has been adopted, which contains 300 records (raw EHG signals) of pregnant subjects 

(262 term and 38 preterm). The results indicate that artificial neural networks outperform a 

number of previous approaches in the ambulatory monitoring of uterine electromyography 

data. 

The structure, of the remainder, of this paper is organised as follows. Section 2 describes the 

underlying principles of Electrohysterography. Section 3 describes how features are extracted 

from Electrohysterography signals. Section 4 discusses machine learning and its use in term 

and preterm classification, while section 5 presents the approach taken in this paper. Section 

6 describes the evaluation, and Section 7 discusses the results. Section 8 then concludes the 

paper. 

2. ELECTROHYSTEROGRAPHY 

Electrohysterography (EHG) is the recording of changes in electrical activity associated with 

uterine contractions. To retrieve EHG signals, bipolar electrodes are adhered to the abdominal 

surface. These are spaced at a horizontal, or vertical, distance of 2.5cm to 7cm apart. Most 

studies use four electrodes, although other configurations have been reported; two [7]; sixteen 

[8]–[13]; and 64 [14]. 

Raw EHG signals are the result of electrical activity propagated between cells in the 

myometrium (the muscular wall of the uterus). The signal is a measure of the potential 

differences between electrodes, in the time domain. They are not propagated by nerve 

endings; however, the propagation mechanism is not clear [15]. Since the late 70s, one theory 

is that gap junctions are the mechanisms responsible. However, more recently it has been 
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suggested that interstitial cells, or stretch receptors may be the cause of propagation [16]. Gap 

junctions are groups of proteins that provide channels of low electrical resistance between 

cells. In most pregnancies, the connections between gap junctions are sparse, although they 

do gradually increase, until the last few days before labour. A specific pacemaker site has not 

been conclusively identified, although, due to obvious physiological reasons, there may be a 

generalised propagation direction, from the top to the bottom of the uterus [17].  

The electrical signals, in the uterus, are ‘commands’ to contract. During labour, the position 

of the bursts, in an EHG signal, corresponds roughly with the bursts shown in a 

tocodynamometer or intrauterine pressure catheter (IUPC). Clinical practises use these 

devices to measure contractions. More surprisingly, distinct contraction-related, electrical 

uterine activity is present early on in pregnancy, even when a woman is not in true labour. 

Gondry et al. identified spontaneous contractions from EHG records as early as 19 weeks of 

gestation [18]. The level of activity is said to increase, as the time to deliver nears, but 

increases rapidly, in the last three to four days, before delivery [19]. As the gestational period 

increases, the gradual increase in electrical activity is a manifestation of the body’s 

preparation for the final act of labour and parturition. In preparation for full contractions, 

which are needed to create the force and synchronicity required for a sustained period of true 

labour, the body gradually increases the number of electrical connections (gap junctions), 

between cells. In turn, this produces contractions in training. 

Before analysis or classification occurs, EHG signals, in their raw form, need pre-processing. 

Pre-processing often includes filtering, de-noising, wavelet shrinkage or transformation and 

automatic detection of bursts. Recent studies have typically focused on filtering the EHG 

signals to allow a bandpass between 0.05Hz and 16Hz [20]–[24]. However, there are some 

that have filtered EHG recordings as high as 50Hz [15]. Nevertheless, using EHG with such a 

wide range of frequencies is not recommended, since unwanted artefacts can affect the signal. 

3. FEATURE EXTRACTION FROM ELECTROHYSTEROGRAPHY SIGNALS 

Power Spectral Density (PSD) features are widely used in EHG studies. Peak frequency is a 

PSD feature that is provided within the Term-Preterm ElectroHysteroGram (TPEHG) 

dataset
2
. It describes the frequency of the highest peak in the PSD. Most studies focus on the 

peak frequency of the burst and it is said to be one of the most useful parameters for 

predicting true labour [25]. In several studies, the results show that peak frequency increases, 

as the time to delivery decreases; generally, this occurs within 1-7 days of delivery [15], [26], 

[20], [22], [7], [27]. The results in [24] show that there are, statistically, significant 

differences in the mean values of peak frequency and the standard deviations in EHG 

recordings taken during term labour (TL) and term non-labour (TN) and also between preterm 

labour and preterm non-labour. 

Meanwhile, the study in [28] found that median frequency displayed a significant difference, 

between term and preterm records. When considering all 300 observations, the statistical 

significance was p=0.012 and p=0.013, for Channel 3, on the 0.3-3Hz and 0.3-4Hz frequency 

bands, respectively. Furthermore, this significance (p = 0.03) was also apparent when only 

considering early records (before 26 weeks of gestation), with the same 0.3-3Hz frequency 

                                                 
2
 http://www.physionet.org/ 
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band, on Channel 3. The study concluded that this might have been due to the enlargement of 

the uterus, during pregnancy, which would affect the position of electrodes.  

Using the Student’s t-test, the study in [28] found that root mean square might be useful in 

distinguishing between whether the information was recorded early (before 26 weeks of 

gestation) or late (after 26 weeks). The results obtained are in agreement with [26], [15], and 

[29], who found that the amplitude of the power spectrum increased, just prior to delivery. 

This was despite only analysing the root mean square values, per burst, rather than the whole 

signal. Other studies found that amplitude-related parameters did not display a significant 

relationship to gestational age or indicate a transition to delivery (within seven days) [21], 

[19], [24]. Some of these discrepancies may be due to the differences between the 

characteristics in the studies: [28] compared records before and after 26 weeks, whereas [21] 

only examined records after the 25th week; [30] and [27] studied rat pregnancy, in contrast to 

human pregnancy. The frequency band used in [26] and [15] was also a much broader band 

than in other studies (0.3 - 50Hz; no bandwidth given for [29]), and also, the studies by [30] 

and [27] measured per burst, whilst [21] measured the whole signal. 

Sample entropy measures the irregularity of a time series, of finite lengths. This method was 

introduced by [31] to measure complexity in cardiovascular and biological signals. The more 

unpredictable the time series is, within a signal recording, the higher its sample entropy. The 

process is based on calculating the number of matches of a sequence, which lasts for m 

points, within a given margin r. The disadvantage of this technique is the requirement to 

select two parameters, m and r. However, sample entropy did show a statistical difference 

between term and preterm delivery information, recorded either before or after the 26th week 

of gestation, when using any of the aforementioned frequency bands, but only using the signal 

from Channel 3 [28].  

Phinyomark et al. have carried out an extensive evaluation of features commonly used and 

extracted from electromyography (EMG) signals, which have not been widely explored in 

studies on preterm deliveries [32]. Some of the more interesting features include, Log 

Detector, Waveform Length and Variance with classification accuracies of 83.32%, 88.72% 

and 78.42% respectively. The Log Detector of the EMG is useful in providing an estimate of 

the muscle contraction, while Waveform Length measures the complexity of the EMG signal. 

The Variance of an EHG signal does not have the same discriminatory power as the 

aforementioned features, however, it is useful in augmenting the other features to provide a 

more powerful feature vector [33].  

4. TERM AND PRETERM CLASSIFICATION 

Machine Learning algorithms have been utilised in a large number of studies to classify term 

and preterm deliveries and distinguish between non-labour and labour events [34]. In [10], 

Moslem et al. argue that artificial neural networks are particularly useful for identifying 

important risk factors associated with preterm birth with global accuracies ranging between 

73% and 97%.  

In one such study, Baghamoradi et al. [35] adopted the TPEHG database, and compared 

sample entropy with different cepstral coefficient values extracted from each signal recording 

through sequential forward selection and Fisher’s discriminant. A multi-layer perceptron 

(MLP) neural network, trained using the backpropagation algorithm, was implemented to 
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classify each of feature vectors as either term or preterm. The results indicate that using three 

cepstral coefficients produced the best classification accuracy, with 72.73% (±13.5); using 

thirty coefficients showed only 53.11% (±10.5) accuracy, while sample entropy performed the 

worst with an accuracy of 51.67% (±14.6).  

Meanwhile, Al-Askar et al. [36] have developed a neural network that builds on the self-

organized layer inspired by immune algorithm (SONIA) network, to classify both term and 

preterm labour using EHG signals from the TPEHG database. Using a feature set comprised 

of peak frequency, median frequency, root mean squares and sample entropy (extracted from 

the raw signals on Channel 3 in the 0.3-3Hz frequency band), the algorithm was evaluated 

and the results show an overall accuracy of 70.82%. 

Support Vector Machines (SVM) have featured widely in research on preterm deliveries and 

are considered robust algorithms for classification tasks [8]–[10]. The primary focus has been 

to classify contractions as labour or non-labour events, using different locations on the 

abdomen. The feature vectors include the power of the EMG signal, and the median 

frequency. The highest accuracy for a single SVM classifier, at one particular location on the 

abdomen, was 78.4% [8], [9], whilst the overall classification accuracy, when SVMs were 

combined, was 88.4% [10].  

The k-nearest neighbour (k-NN) has also proven to be useful in preterm studies. In one 

particular case [37], the k-NN algorithm was utilised in conjunction with Autoregressive (AR) 

modelling and Wavelet Transform (WT) pre-processing techniques. The study focused on 

classifying contractions into three types, using data obtained from 16 women. Group 1 (G1), 

were women who had their contractions recorded at 29 weeks, and then delivered at 33 

weeks; Group 2 (G2) were also recorded at 29 weeks, but delivered at 31 weeks, and Group 3 

(G3) were recorded at 27 weeks and delivered at 31 weeks. Classification occurred against 

G1 and G2, and against G2 and G3. Using AR, the k-NN provided a classification error of 

2.4% for G1 against G2 and 8.3% for G2 against G3. The classification accuracy for G1 and 

G2 was always lower than the equivalent G2 and G3 classifications. This suggests that it is 

easier to distinguish between pregnancies recorded at different stages of gestation than it is to 

predict the time of delivery.  

5. AUTOMATIC DETECTION OF PRETERM ACTIVITY 

The aim in most studies, on preterm prediction or detection, has been to detect true labour, 

rather than predicting, in advance, whether delivery will be preterm or term. Furthermore, 

many studies have focused on the more advanced stages of gestation. Even when earlier 

stages are incorporated, they always only included those with threatened preterm labour.  

For term deliveries, true labour only starts within 24 hours. For preterm deliveries, it may 

start anywhere between 7 and 10 days. The change in EHG activity, from non-labour to 

labour, is dramatic; throughout the rest of the pregnancy, any change in EHG is more gradual. 

Therefore, classification of records, into preterm and term, is particularly challenging. For 

this reason, and due to the configuration of the TPEHG dataset used in this study, we attempt 

to classify records from an earlier stage, according to whether they will eventually result in 

term or preterm deliveries.  

5.1 Methodology 



 7 

The EHG records used in this study are from a general population of pregnant patients at the 

Department of Obstetrics and Gynaecology Medical Centre in Ljubljana, gathered between 

1997 and 2006. These records are publicly available, via the TPEHG dataset, in Physionet
3
. 

The dataset contains 300 records (one record per pregnancy). Each recording is approximately 

30 minutes long and records are either recorded early, <26 weeks (at around 23 weeks of 

gestation) or later, =>26 weeks (at around 31 weeks). Table 1 shows the classification of 

records in the TPEHG dataset.  

Terms: Term Deliveries Preterm Deliveries All Deliveries 

Recording 

Time 

Number 

of 

records 

Mean/ 

Median 

Recording 

weeks 

Number 

of 

records 

Mean/ 

Median 

Recording 

weeks 

Number 

of 

records 

Mean/ 

Median 

Recording 

weeks 

Early 143 22.7/22.86 19 23.0/23.43 162 22.73/23.0 

Later 119 30.8/31.14 19 30.2/30.86 138 30.71/31.14 

All 

Recording 

Time 

262 26.75/24.36 38 27.0/25.86 300 26.78/24.43 

Table 1: - Numbers of Patients in each group 

The recording time relates to the gestational age of the foetus, at the time of the recoding. The 

classification of these recordings, as term and preterm deliveries, was made retrospectively, 

after giving birth, and following the widely used definition of preterm being under a fully 

completed 37 weeks. Therefore, the four categories of recordings are as follows: 

1. Early-Term: Recordings made early, which resulted in a term delivery 

2. Early-Preterm: Recordings made early, which resulted in a preterm delivery 

3. Late-Term: Recordings made late, which resulted in a term delivery 

4. Late-Preterm: Recordings made late, which resulted in a preterm delivery 

Figure 1 shows the distributions of term and preterm records in the TPEHG dataset, in which 

the majority of the data are term. 

                                                 
3
 http://www.physionet.org 
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Figure 1: Distribution of deliveries in TPEHG dataset 

5.1.1 Data Pre-processing 

Each of the records in the TPEHG dataset, have a sample frequency of 20Hz. The scanning 

system used 16-bit resolution, with an amplitude range of ± 2.5mV. Before sampling took 

place, an analogue, three-pole, Butterworth filter, was adopted with a 1-5Hz range. Signals 

were recorded simultaneously through three different channels (Channel 1, Channel 2, and 

Channel 3), via four electrodes attached to the abdominal surface, with the navel at the 

symmetrical centre. The first of the four electrodes (E1) was placed 3.5 cm to the left and 3.5 

cm above the navel. The second electrode (E2) was placed 3.5 cm to the right and 3.5 cm 

above the navel. The third (E3) was placed 3.5cm to the right and 3.5 cm below the navel. 

Finally, the forth electrode (E4) was placed 3.5 cm to the left and 3.5 cm below the navel. The 

differences in the electrical potentials of the electrodes were recorded to produce the three 

channels (E2-E1 – the first channel; E2-E3 – the second channel; and E4-E3 – the third 

channel).  

Fele-Zorz et al. showed that the 0.3-3Hz filtered signals on Channel 3 were the best for 

discriminating between preterm and term records [28]. The results show that sensitivities 

(true positives – in this instance preterm records), produced by several of the classifiers, was 

higher than those produced when other filters were used [28]. However, there was no 

appropriate filter to remove unwanted artefacts, such as maternal heart rate. Garfield et al.  

[27], found in a study of 99 pregnant indiviuals, that 98% of uterine electrical activity 

occurred in frequencies less than 1 Hz, and that the maternal heart rate (ECG) was always 

higher than 1Hz. Furthermore, 95% of the patients measured, had respiration rates of 0.33 Hz 

or less. Therefore, the authors considered that a 0.34-1Hz bandpass filter could remove most 

of the unwanted artefacts. Several other studies have adopted the same filtering scheme [38],  

[8], [9]. Consequently, in this paper, the raw Channel 3 signal has been filtered using a 0.34-

1Hz bandpass filter. This is based on an empirical analysis of all channels and filters 
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described in the literature, where the best results obtained were from the Channel 3 signal 

using the 0.34-1Hz bandpass filter. This coincides with the findings in [28] and [27]. 

5.1.2 Feature Extraction 

Several feature extraction techniques have been utilized from [28], [39]–[41] to extract 

features from the raw Channel 3 signals using the 0.34-1Hz filter. Table 2 provides a formal 

definition for each feature, where, 𝑥𝑛 represents the 𝑛𝑡ℎ sample in the EHG signals in the 

segment; P represents the power spectrum (calculated using the Fast Discrete Fourier 

Transform), and N denotes the length of the EHG signal.  

EHG Signal Feature Mathematic Expression 

Wavelet length 𝐖𝐋 = ∑ |𝐱𝐧 − 𝐱𝐧−𝟏|𝐍−𝟏
𝐧=𝟎                                                                                                             

Log Detector  𝐋𝐎𝐆 = 𝐞𝟏/𝐍 ∑ 𝐥𝐨𝐠 (|𝐱𝐧|)𝐍
𝐧=𝟏  

Root Mean Square  
𝐑𝐌𝐒 = √𝟏/𝐍 ∑ 𝐱𝐧

𝟐𝐍
𝐧=𝟏                                                                                                                   

Variance  𝐕𝐀𝐑 =
𝟏

𝐍
− 𝟏 ∑ 𝐱𝐧

𝟐𝐍
𝐧=𝟏                                                                                                     

Sample Entropy 

𝐀𝐀𝐂 =
𝟏

𝐍
∑ |𝐱𝐧+𝟏 − 𝐱𝐧|

𝐍−𝟏

𝐧=𝟏

 

Peak Frequency  
𝐟𝐦𝐚𝐱 = 𝐚𝐫𝐠(

𝐟𝐬

𝐍
𝐦𝐚𝐱𝐢=𝟎

𝐍−𝟏𝐏(𝐢)) 

Median Frequency 

 𝐟𝐦𝐞𝐝 =  ∑ 𝑃𝑗   =  ∑ 𝑃𝑗 =
1

2

𝐦

𝐣=𝐌𝐃𝐅

∑ 𝑃𝑗 ∙

𝐌

𝐣=𝟏

𝑀𝐷𝐹

𝑗=1

 

Table 2 Features extracted from raw EHG signals 

Using the features defined in Table 2, feature vectors have been generated. The literature 

reports that peak frequency, median frequency, sample entropy, root mean squares, Wavelet 

length of EMG signal, Log Detector of EMG signal, and Variance have the most potential to 

discriminate between term and preterm records and as such are used in the evaluations in this 

paper.  

A justification for using these features is based on initial exploratory data analysis (on a larger 

set of features0 to measure the distributions of different feature values. Candidate features 

were selected that did not occupy coincident regions of the feature space, to ensure that the 

classification algorithms can make appropriate distinctions between the two classes. From 

this selection, correlation analysis was performed on all feature combinations and highly 

correlated features were removed (above 80%). Using Principle Component Analysis 

provided strong evidence for the features illustrated in Table 2. 

5.1.3 Synthetic minority over-sampling 

In a two class balanced dataset the prior probabilities will be equal for each class. This is not 

the case for the TPEHG dataset as there are 262 true negatives (term majority class) and 38 

true positive values (preterm minority class). Classifiers are more sensitive to detecting the 

majority class and less sensitive to the minority class. This leads to biased classification [1]. 

Therefore, given a random sample taken from the dataset, the probability of a classifier 

classifying a pregnant woman as term will be much higher (87.3% - 262/300) compared with 
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the probability of classifying a pregnant woman as preterm (12.6% - 38/300). This imposes a 

higher cost for misclassifying the minority class (predicting that a pregnant woman is likely to 

deliver full term only to go home and deliver prematurely) than the majority class, (predicting 

a pregnant woman will deliver preterm only to go deliver at term).  

Several studies have shown that the Synthetic Minority Over Sampling Technique (SMOTE) 

can effectively solve the class skew problem [42]–[48]. Using SMOTE, the minority class 

(preterm) is oversampled using each minority class record, in order to generate new synthetic 

records along line segments joining the k minority class nearest neighbours. This forces the 

decision region of the minority class to become more general and ensures that the classifier 

creates larger and less specific decision regions, rather than smaller specific regions. In [49], 

the authors indicated that this approach is an accepted technique for solving the problems 

related to unbalanced datasets. Figure 2 shows the distribution of term and preterm records, 

using the SMOTE technique.  

 

Figure 2: Distribution of deliveries in TPEHG dataset after the SMOTE technique is applied 

Figure 2 shows that using the SMOTE technique allows the term and preterm records to be 

more balanced, compared with the original TPEHG distribution shown in Figure 1. 

While not idea, the justification for using an oversampling technique, resides in the fact that 

the TPEHG dataset does not have enough preterm observations. More importantly, the 

majority term observations significantly outnumber preterm observations. The dataset was 

initially down sampled resulting in a dataset that contained 38 term and 38 preterm. However, 

the results produced by the classifiers was little better than chance. Oversampling the 

minority observations produced better results as can be seen in this study. There are many 

techniques for oversampling data, however, the capabilities of SMOTE is well documented in 

the literature as a viable technique for achieving this. 

5.1.4 Classification 

This study evaluates the use of seven advanced artificial neural network classifiers. These are 

the Back-Propagation Trained Feed-Forward Neural Network Classifier (BPXNC), 

Levenberg-Marquardt Trained Feed-Forward Neural Network Classifier (LMNC), Perceptron 
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Linear Classifier (PERLC), Radial Basis Function Neural Network Classifier (RBNC), 

Random Neural Network Classifier (RNNC), Voted Perceptron Classifier (VPC) and the 

Discriminative Restricted Boltzmann Classifier (DRBMC) [50]. 

The experimental configuration for both the BPXNC and the LMNC classifiers used one 

hidden layer. Our extensive experiments indicated that five hidden units were a suitable 

number of hidden units using the Logistic sigmoid activation function. For the PERLC 

classifier, the number of iterations was set to 100 and the learning rate was 0.1. The weights, 

as affine mappings, were randomly initialised and updated sequentially. In the case of the 

RBNC and RNNC classifiers, one hidden layer was used with 60 hidden units. For the VPC 

classifier, 10 sweeps were performed. Finally, the DRBMC was configured using one hidden 

layer and five hidden units and was trained with L2 regularisation in which the regularization 

parameter was set to zero.  

The PRTools and Matlab Neural Network Toolboxes were utilised for the implementation of 

the neural network architectures and experiments were run on an Intel Core i7-2670QM (2.2 

GHz) with 6G RAM under Windows 7 Professional.  

5.1.5 Evaluation Measures 

In order to determine the overall accuracy of each of the classifiers several validation 

techniques have been considered. These include Holdout Cross-validation, K-fold Cross-

validation, Sensitivities (proportion of women with preterm activity who test positive), 

Specificities (proportion of women without preterm activity who test negative), Receiver 

Operating Curve (ROC) and Area Under the Curve (AUC).  

 

6. EVALUATION 

This section presents the classification results for term and preterm delivery records using the 

TPEHG dataset. The 0.34-1Hz filter on Channel 3 is used with the 80% holdout technique 

and k-fold cross-validation. The initial evaluation provides a base line for comparison against 

all subsequent evaluations, considered in this section.  

6.1 Results for 0.34-1Hz TPEHG Filter on Channel 3 

The performance for each classifier is evaluated, using the sensitivity, specificity, mean error, 

standard deviation and AUC values with 100 simulations and randomly selected training and 

testing sets for each simulation.  

6.1.1 Classifier Performance 

The first evaluation uses the original TPEHG dataset (38 preterm and 262 term). Table 3, 

illustrates the mean average values obtained over 100 simulations for the sensitivity, 

specificity, and AUC. 

 Sensitivity Specificity AUC 

Classifier    

BPXNC 0.0000 0.9987 54% 

LMNC 0.0667 0.9519 58% 

PERLC 0.1619 0.8647 57% 
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RBNC 0.1286 0.9622 56% 

RNNC 0.0667 0.9474 56% 

VPC 0.0000 1.0000 50% 

DRBMC 0.0000 0.9981 58% 

Table 3: Classifier Performance Results for the 0.34-1Hz Filter 

Table 3 shows that the sensitivities (preterm), in this initial test, are low for all classifiers. 

This is expected because there are a limited number of preterm records from which the 

classifiers can learn. Consequently, specificities are higher than sensitivities. More 

specifically, there are 31 preterm records in the 80% holdout training set. This is a limited 

number of records for the classifier to learn from. Furthermore, the AUC indicates that all 

classifiers failed to generate results higher than 58%. Table 4 shows the results for k-fold 

cross-validation. 

 80% Holdout: 100 

Repetitions 

Cross Val, 5 Folds, 1 

Repetitions 

Cross Val, 5 Folds, 100 

Repetitions 

Classifiers Mean Err SD Mean Err Mean Err SD 

BPXNC 0.1278 0.0043 0.1333 0.1309 0.0042 

LMNC 0.1602 0.0331 0.1767 0.1630 0.0151 

PERLC 0.2243 0.1186 0.2400 0.2242 0.0670 

RBNC 0.1434 0.0342 0.1333 0.1366 0.0081 

RNNC 0.1641 0.0363 0.1567 0.1670 0.0106 

VPC 0.1267 0.0000 0.1267 0.1267 0.0000 

DRBMC 0.1283 0.0068 0.1267 0.1271 0.0015 

Table 4: Cross Validation Results for the 0.34-1Hz Filter 

The k-fold cross-validation results use five folds and both one and one hundred repetitions 

and show that the k-fold cross-validation approach does not improve the error rates for most 

of the classifiers. The lowest error rates could not be improved below the minimum error rate 

expected, which is 12.67% (38 preterm/300 deliveries). 

6.1.2 Model Selection 

The Receiver Operator Characteristic (ROC) curve shows the cut-off values for the false 

negative and false positive rates. Each of the classifiers is represented using the original 

signals from the TPEHG dataset filtered between 0.34-1Hz. Figure 4 indicates that none of 

the classifiers performed particularly well. The AUC values in Table 4 support these findings 

with very low accuracy values. 
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Figure 4: Received Operator Curve for the 0.34-1Hz Filter 

The poor results indicate that the classification algorithms do not have enough preterm 

records to learn from, in comparison to term records. Consequently, sensitivities are low 

while specificities are high, which in this study are of lower importance. The main issue, in 

terms of machine learning, is that the dataset is skewed. Although this problem has not been 

widely reported in many recent EHG studies, imbalanced data is a common machine-learning 

problem. As such, re-sampling the classes (with the minority class – in this instance preterm 

records) is a conventional way to balance the dataset [38].   

6.2 Results for 0.34-1Hz TPEHG Filter on Channel 3 Oversampled 

The 38 preterm records are re-sampled using the SMOTE technique. The SMOTE algorithm 

allows a new dataset to be generated that contains an even split between term and preterm 

records (262 each) that has been oversampled using the original preterm records.  

6.2.1 Classifier Performance 

Table 5 illustrates the mean average values obtained over 100 simulations for the sensitivity, 

specificity, and AUC. As it can be seen, the sensitivities, for all of the algorithms, have 

significantly improved, while specificities have decreased. In addition, the AUC results also 

show a significant improvement in accuracy for all of the classifiers. In particular, the LMNC 

has dramatically improved with an accuracy of 94%.  

 Sensitivity Specificity AUC 

Classifier    

BPXNC 0.8058 0.6269 77% 

LMNC 0.9256 0.8763 94% 

PERLC 0.5455 0.5282 57% 
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RBNC 0.7705 0.8872 91% 

RNNC 0.8699 0.7083 84% 

VPC 1.0000 0.0000 50% 

DRBMC 0.5929 0.5622 58% 

Table 5: Classifier Performance Results for the 0.34-1Hz Filter 

Table 6 illustrates the resulting mean error rates of the oversampled dataset. As it can be 

seen, the mean error rates, produced by all of the classifiers, are lower than the cross-

validation mean errors and the expected error rate, which is 262/524, i.e. 50 %. The LMNC 

produced a mean error of 9.90%, followed by the RBNC classifier with a mean error of 

17.12%. 

 80% Holdout: 100 

Repetitions 

Cross Val, 5 Folds, 1 

Repetitions 

Cross Val, 5 Folds, 100 

Repetitions 

Classifiers Mean Err SD Mean Err Mean Err SD 

BPXNC 0.2837 0.0955 0.3015 0.2672 0.0295 

LMNC 0.0990 0.0331 0.1088 0.0999 0.0211 

PERLC 0.4631 0.0462 0.4332 0.4469 0.0263 

RBNC 0.1712 0.0361 0.1870 0.1776 0.0099 

RNNC 0.2109 0.0410 0.2176 0.2148 0.0205 

VPC 0.5000 0.0000 0.5000 0.4996 0.0021 

DRBMC 0.4224 0.0506 0.4141 0.4167 0.0052 

Table 6: Cross Validation Results for the 0.34-1Hz Filter 

The k-fold cross-validation results, using five folds and both one and one hundred repetitions 

show that the k-fold cross-validation approach improved the error rates, for some classifiers. 

Furthermore, the lowest error rates are significantly lower than the expected 50% error rate 

for several of the classifiers. 

6.2.2 Model Selection 

Again, the ROC curve (see Figure 5) illustrates the cut-off values for the false-negative and 

false-positive rates. Compared to Figure 4, there is a noticeable improvement in the accuracy 

of several classifiers. The values in Table 5 support these findings with the LMNC, RBNC and 

the RNNC producing the highest AUC, Sensitivity, and Specificity values. 
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Figure 5: Received Operator Curve for the 0.34-1Hz Filter 

The results illustrate that using machine learning techniques are encouraging. Within a wider 

context, this approach could utilise real-life pregnancy data to predict, with high confidence, 

whether an expectant mother is likely to have a premature birth or proceed to full term. 

7. DISCUSSION 

The study in this paper has focused on discriminating between preterm and term EHG records 

across a group of 300 subjects. The classifiers are trained using 300 patients, and therefore, 

classification is generalised across the whole population in the TPEHG database. To achieve 

this, features from the raw EHG signals were used. In the initial classification results, all the 

features were used from the original unbalanced dataset (38 term and 262 preterm). This 

approach produced relatively poor results, with the LMNC classifier producing the best 

results, with 6.67% for Sensitivity, 95.19% for Specificity, 58% for the AUC, and a 16.02% 

global error. These results are expected given that machine-learning algorithms do not 

perform particularly well on unbalanced datasets. The classifiers were simply classifying by 

minimising the probability of error, in the absence of sufficient evidence to help them to 

classify otherwise. It appeared as though most of the classifiers were classifying according to 

the prior probabilities of the classes, in order to minimise the error. 

Using and oversampled version of the dataset, improvements have been noticed in all of the 

classifiers with particularly good results achieved by the LMNC and RBNC classifiers, with 

accuracies of 94% and 91% respectively. The MLP network trained by the Levenberg-

Marquartdt classifier produced the best results with 94%. This training algorithm 

approximates Newton’s method of least squares optimization and is an efficient learning 

algorithm, especially when applied to neural networks that have a few hundred weights. 

However, the efficiency of the algorithm is compromised by high computational 
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requirements. In the case of the RBNC network, the good results produced can be directly 

attributed to the properties of this kind of network, which is an effective multi-dimensional 

structure that can provide an alternative to polynomial values.  

The simulation results have also shown that the random neural network’s ability to classify 

term and preterm records is good, with an accuracy of 84%. This is a recurrent neural 

network model, which is inspired by the spiking behaviour of biological neuronal networks. 

As the problem domain of this paper is related to classification, rather than prediction, the use 

of recurring links has no effect on the decision of the classification. Hence, we believe that 

the RNNC did not generate the highest classification values. This is despite the fact that 

random neural networks are universal approximators for bounded continuous functions. 

The results also indicate that the SMOTE oversampling algorithm did not significantly affect 

the accuracy of the DRBMC or VPC classifiers. This is reasonable since DRBMCs are usually 

used for feature extraction and initialization procedures for other neural networks 

architectures rather than standalone classifiers. 

A concluding remark to note from the results is that while 80% holdout classification does 

produce smaller errors than cross-validation, the average error increases for almost all of the 

classifiers. In addition, using SMOTE the minimum error (LMNC classifier) decreased (from 

16.2% to 9.90%), but the variance increased. This is equivalent to saying that the uncertainty 

of classifiers is increased. 

8. CONCLUSIONS AND FUTURE WORK 

Within a supervised-learning paradigm, this paper utilises EHG signals to classify term and 

preterm records. Most of the previous work in this area has focused on detecting preterm 

activity. In this paper however, the focus has been on assessing the use of artificial neural 

networks for ambulatory monitoring of patients with an unclear diagnosis and underlying 

problems that manifest as preterm activity using uterine electromyography data.  

A rigorous, methodical, approach to data pre-processing was undertaken and features were 

extracted from the raw EHG signals using several formal feature extraction techniques. In the 

first evaluation, the feature space extracted from the original TPEHG dataset was used to train 

seven classifiers. The highest AUC value of 58% was obtained by the LMNC and DRBMC 

classifiers, with very low sensitivity and very high specificity values. In the second evaluation, 

oversampling the minority class allowed the distribution between the two classes (term and 

preterm) to be more balanced. This technique significantly improved the results, with a 

maximum AUC value of 94%, a sensitivity value of 92.56%, a specificity value of 87.63%, 

and a global error of 9.9% was achieved.    

Despite these encouraging results, more in-depth research is still required. For example, 

regression analysis, using a larger number of classes, would be interesting. This would help to 

predict the expected delivery, in terms of the number of days or weeks, not just whether a 

woman is likely to deliver term or preterm. In addition, more advanced classification 

algorithms, and techniques, will be considered, including advanced Artificial Neural Network 

architectures, such as higher order and spiking neural networks. The investigation, and 

comparison, of features, such as fractal dimension and cepstrum analysis, autocorrelation zero 

crossing and correlation dimension, has also not been performed. Future work will investigate 

these techniques in a head-to-head comparison, with linear methods.  
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Overall, the study demonstrates that artificial neural network classification algorithms provide 

an interesting line of enquiry for separating term and preterm delivery records.  
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