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Abstract 

Steady-state visual evoked potentials (SSVEPs) are a powerful tool for investigating selective 

attention. Here, we conducted a combined re-analysis of multiple studies employing this 

technique in a variety of attentional experiments in order to, first, establish benchmark effect sizes 

of attention on amplitude and phase of SSVEPs, and second, harness the power of a large dataset 

to test more specific hypotheses.  Data of eight published SSVEP studies were combined, in 

which human participants (n=135 in total) attended to flickering random dot stimuli based on their 

defining features (e.g. location, color, luminance, or orientation) or feature-conjunctions. The 

reanalysis established that in all the studies attention reliably enhanced amplitudes, with color-

based attention providing the strongest effect. In addition, the latency of SSVEPs elicited by 

attended stimuli was reduced by ~4 ms. Next, we investigated the modulation of SSVEP 

amplitudes in a subset of studies where two different features were attended concurrently. While 

most models assume that attentional effects of multiple features are combined additively, our 

results suggest that neuronal enhancement provided by concurrent attention is better described 

by multiplicative integration. Finally, we used the combined dataset to demonstrate that the 

increase in trial-averaged SSVEP amplitudes with attention cannot be explained by increased 

synchronization of single-trial phases. Contrary to the prediction of the phase locking account, the 

variance across trials of complex Fourier coefficients increases with attention, which is more 

consistent with boosting of a largely phase-locked signal embedded in non-phase-locked noise.  
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Introduction  

 Selective attention is a mechanism which prioritizes stimuli for processing on the basis of 

their simple features, such as color, orientation, spatial location, or direction of motion. For 

example, while waiting for a friend outside a busy train station, selective attention allows us to 

tune our vision to the station exit as well as the color of their hair or clothes, while ignoring other 

colors and locations. The implementation of selective attention in the brain has been studied using 

a wide array of neuroscientific techniques – from single-cell recordings (Moran & Desimone, 1985; 

Treue & Martínez Trujillo, 1999) to fMRI (Saenz et al., 2002) to event-related fields and potentials 

(Hillyard & Münte, 1984; Hopf et al., 2006). 

Steady-state visual evoked potentials (SSVEPs), recorded through 

electroencephalography (EEG), are a particularly powerful tool for investigating selective 

attention. The SSVEP is a continuous oscillatory response of the visual cortex that has the same 

fundamental frequency as the driving stimulus. A considerable number of studies show that the 

amplitude of this response is substantially increased by spatial as well as feature-based attention 

(see (Andersen, Müller, et al., 2011; Norcia et al., 2015 for review). When multiple stimuli flickering 

at different frequencies are presented concurrently, each one of them will drive an SSVEP at its 

respective frequency, thereby allowing for the assessment of the allocation of attention to each 

element in a multi-stimulus display. This convenient property of SSVEPs together with a high 

signal-to-noise ratio sparked a number of research programs where SSVEPs were used to study 

various aspects of cognition (Morgan et al., 1996; Silberstein et al., 1990, 1995; Wilson & 

O’Donnell, 1986). Once it was established that task-relevance of the flickering stimulus modulates 

SSVEP amplitude, the SSVEP technique has been used in numerous studies investigating 

various aspects of selective attention (reviewed in Andersen et al., 2011).  

We here present a re-analysis of eight published studies that investigated attentional 

selection in the early visual cortex through SSVEPs. The goal of this re-analysis is two-fold. First, 

we aim to consolidate, analyze, and share the knowledge about applying SSVEPs to study visual 

attention in the hope that this will encourage other groups to employ this method and help 

implement their own SSVEP paradigms and analyses. This overview will allow us to explain the 

chosen analytical approach and share the reasoning behind it, give a bird’s eye view of expected 

effect sizes across multiple types of stimuli and tasks, and overall make implicit knowledge explicit 

for the benefit of the research community. Consequently, such a reanalysis will highlight the areas 

of SSVEP research which need further methodological enquiries. Second, we will harness the 

power of the large, combined dataset to answer the questions which individual studies could not 

or did not address.  

 The analyses presented here will tackle six separate issues, starting with the properties 

of the SSVEP signal itself. We will 

 

1. Describe the magnitude and variability of SSVEPs across participants, stimulation 

frequencies, and experiments. 

2. Examine the relationship between these basic properties and the strength of attentional 

modulation of SSVEPs as well as the consequences these have for data analysis in 

SSVEP studies. 
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3. Present the overview of effect sizes that different feature-dimensions of attention have on 

SSVEPs. 

4. Resolve whether attentional effects of different feature-dimensions are combined 

additively or multiplicatively. 

5. Quantify attentional effects on the latency of the SSVEP. 

6. Determine whether SSVEP attention effects in the trial-average are due to changes in 

phase-locking between trials, changes in magnitude of the SSVEP in individual trials, or a 

combination of both. 

 

Parts (4) – (6) each tackle an outstanding question on attentional effects on SSVEPs. The first 

question, discussed in (4), is whether attentional effects of different features are combined 

additively or multiplicatively. Existing models of attention such as the feature-similarity gain model 

(Maunsell & Treue, 2006; Treue & Martínez Trujillo, 1999) or the Theory of Visual Attention 

(TVA;(Bundesen, 1990; Bundesen et al., 2005) assume that attentional selection o(Adamian et 

al., 2019; Andersen et al., 2013; Andersen, Fuchs, et al., 2011)f different features is additively 

independent. However, there is evidence for super-additive combination of attention to different 

features at early visual processing stages both from single-unit recordings (Hayden & Gallant, 

2009), SSVEPs (Adamian et al., 2020; Andersen, Fuchs, et al., 2011) and modelling of human 

behavioral data (Nordfang et al., 2017).  

The second question is whether and how attention affects the latency of SSVEP 

responses. While it is well established that the amplitude of the SSVEP response is modulated 

by attention, whether or not attention also speeds up neural processing in the early visual cortex 

is a subject of debate (Di Russo & Spinelli, 1999; Russo et al., 2003a; Silberstein et al., 1996; 

Sundberg et al., 2012; Zhigalov & Jensen, 2020). To test whether the SSVEP response to 

attended stimuli is faster, in (5) we will estimate and compare SSVEP latencies in attended and 

unattended conditions across studies.   

Last, in (6) we will examine whether increased SSVEP amplitudes in the trial-average are 

attributable to an increase of phase synchronization between trials, as proposed by Kim et al. 

(2007). As we will illustrate in simulated data, phase-locking results not only in increased response 

amplitude, but also necessarily leads to a reduction of the variance of the complex amplitudes 

between trials. We will use the aggregated single-trial SSVEPs to test whether this predicted 

reduction of variance is observed in the experimental data.  

General methods  

The data for the re-analysis came from eight studies authored by S. K. Andersen and 

colleagues published between 2008 and 2020 (Adamian et al., 2019, 2020; Andersen et al., 2008, 

2009, 2011, 2012, 2013, 2015). These studies investigated sustained attentional selection along 

one or two dimensions (color, space, orientation, etc.; see Table 1) using of the SSVEP technique. 

All studies used as stimuli randomly moving dots or bars which flickered at a designated ‘tagging’ 

frequency (see Table 1). Sets of dots or bars flickering at different frequencies (60 to 150 items 

per stimulus) were spatially overlapped, allowing for manipulation and measurement of feature-

based attention without the confounds of spatial attention. The following section briefly describes 

the hypotheses and results of each of the experiments.  

https://www.zotero.org/google-docs/?au9FNp
https://www.zotero.org/google-docs/?au9FNp
https://www.zotero.org/google-docs/?au9FNp
https://www.zotero.org/google-docs/?au9FNp
https://www.zotero.org/google-docs/?au9FNp
https://www.zotero.org/google-docs/?au9FNp
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Brief descriptions of studies  

1. “Attention facilitates multiple stimulus features in parallel in human visual cortex” 

(Andersen et al., 2008). This study tested whether attending to a conjunction of features 

(color and orientation) involves attentional facilitation of both attended features separately. 

The results showed that attention to a conjunction (e.g. ‘attend red horizontal’) enhances 

responses in the early visual cortex to stimuli possessing either feature (‘red vertical’ or 

‘blue horizontal’ stimuli) as well as both features (‘red horizontal’ stimulus). Moreover, the 

attended conjunction enjoys attentional facilitation approximating the sum of attentional 

enhancements of corresponding single features.  

2. “Color-selective attention need not be mediated by spatial attention”  (Andersen et al., 

2009). This study establishes that feature-based attention acts independently of spatial 

attention. Participants attended to one of two spatially fully overlapping sets of random 

dots based on a non-spatial feature (color). Coordinates of all dots were randomly redrawn 

at each cycle of the flicker, thereby making spatial tracking impossible. The results showed 

that the to-be-attended feature elicited larger SSVEP amplitudes even though spatial 

selection was impossible.  

3. “Effects of feature-selective and spatial attention at different stages of visual processing” 

(Andersen et al., 2011). The study explored concurrent attentional selection of color and 

space. Two pairs of spatially overlapped random dot stimuli were presented in the left and 

right visual fields, and participants were instructed to attend one type of dots defined by 

location and color (e.g. ‘attend left red’). The results showed that, similarly to a conjunction 

of color and orientation, color and location are independently facilitated in the early visual 

cortex (as measured by SSVEPs). Conversely, later in processing (according to the 

amplitude of the P3 ERP component) this facilitation is limited to the attended location 

only.  

4. “Bottom-up biases in feature-selective attention” (Andersen et al., 2012). Light and dark 

dots were presented against a changing luminance background, making one set of dots 

higher contrast than the other while preserving the luminance difference between the 

stimuli. This procedure allowed to explore the integration of bottom-up (stimulus induced) 

and top-down (attentional) biases. SSVEP amplitudes increased with higher contrast of 

the driving stimulus, and the slope of this increase in the early visual cortex depended on 

attention, suggesting multiplicative integration of biases.    

5. “Global facilitation of attended features is obligatory and restricts divided attention” 

(Andersen et al., 2013). This study tested the boundaries of the ‘global effect’ of feature-

based attention – preferential processing of the attended feature throughout the visual 

field. In the first experiment participants observed two pairs of red and blue random dot 

stimuli located in the left and right visual field. Their task was either to attend to the same 

color on both sides, or to attend to different colors (for example, blue was simultaneously 

to-be-attended on the left and to-be-ignored on the right). When the same color was 

attended throughout the display, SSVEP amplitudes to the attended stimuli were 

enhanced. However, when opposite colors were attended, amplitudes did not differ 

between attended and unattended stimuli, demonstrating that global feature-based 

selection cannot be overcome by the task demands. The second experiment used a 

https://www.zotero.org/google-docs/?62vSsk
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similar design to show that it is possible to attend to two different colors in two different 

locations.  

6. “Attentional selection of feature conjunctions is accomplished by parallel and independent 

selection of single features” (Andersen et al., 2015). Building on the previous study of 

feature conjunctions (Andersen et al., 2008), this experiment asked whether the 

magnitude of attentional enhancement of a conjunction is related to the magnitude of the 

attentional enhancement of its constituent features. For example, if we knew the size of 

attentional modulation of color and orientation separately (i.e. the difference between the 

SSVEP amplitudes elicited by the same stimulus when it is attended and unattended), 

could we predict the effect of attention to both these features together? The results show 

that SSVEP amplitudes in conditions where single features were selected accurately 

predict the SSVEP amplitudes during conjunction selection.   

7. “Top-down attention is limited within but not between feature dimensions” (Adamian et al., 

2019). This experiment tested whether spatial and feature-based attention are 

independent or whether they rely on a common limiting mechanism. Participants were 

presented with two pairs or red and blue random dot stimuli located in the left and right 

visual fields. Color-based attentional enhancement was measured while spatial attention 

was focused (e.g. ‘attend red on the left’) or divided (‘attend red on the left and right). The 

magnitude of feature-based enhancement did not change depending on the demands of 

spatial attention, demonstrating that the two dimensions of attention are indeed 

independent. This study extends previously established parallel and independent 

selection (Andersen et al., 2015) to the combination of feature-based and spatial attention.  

8. “Parallel attentional facilitation of features and objects in early visual cortex” (Adamian et 

al., 2020) This study examined whether an attended feature (luminance polarity) can be 

selected globally across attended and unattended objects (motion-defined surfaces). 

Participants observed four sets of dots (light and dark, rotating clockwise and 

counterclockwise) while attending to one of them (e.g. ‘dark clockwise’). Similar to the 

cases when the attended stimulus was defined as a conjunction of features or a 

combination of feature and spatial location, attentional enhancement of SSVEP 

amplitudes was not restricted by object boundaries (e.g. frequencies corresponding to the 

‘dark counterclockwise’ and ‘light clockwise’ stimuli were also enhanced when attending 

to ‘dark clockwise’).  

Common materials and methods 

Stimuli were presented against a gray background. Where color was used, equiluminance 

of colors to the background was determined by heterochromatic flicker photometry for each 

participant (with exception of Adamian et al., 2019 where physical luminance was used). Each 

dot or bar moved on each frame. In the majority of studies items moved a set step in a random 

direction, reappearing on the opposite side when reaching the boundary of the field. One study 

used rigid rotational motion (Adamian et al., 2020) and in one study dots were redrawn in random 

positions on each flicker onset (Andersen et al., 2009). In all cases, dots were drawn in random 

order to prevent depth cues from systematic occlusion.  
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Trials in these studies lasted from 3 to 15 s. A few hundreds of milliseconds after flicker 

onset were excluded from SSVEP amplitude calculation to allow for SSVEPs to build up and for 

transient onset-VEPs to end. During each trial, participants observed flickering stimuli while 

performing a behavioral task – detecting a target event (e.g. coherent motion streak or luminance 

decrement) in a cued set of stimuli while ignoring the same (distractor) event in the other set(s) 

of stimuli. Cues specifying the to-be-attended feature (e.g. color, orientation or direction of motion) 

were presented visually prior to the start of each trial.  

Common EEG recording and analysis methods 

Brain electrical activity was recorded from 32 - 128 Ag/AgCl scalp electrodes (see Table 

1 for details) by means of ActiveTwo (BioSemi) amplifiers, except two studies (Adamian et al., 

2020;  Exp. 2 Andersen et al., 2013) where recordings were done via 64 tin electrodes mounted 

in an elastic cap (Electro-cap International) and SA Instrumentation amplifier. In data collected 

with BioSemi amplifier, only the in-built antialiasing filter was applied online. Bandpass filtering 

was applied to the data collected through SA Instrumentation amplifier (0.1 to 80 Hz). Eye 

movements and blinks were monitored through electrooculographic recordings (vertical EOG was 

recorded from the outer canthi of the eyes, horizontal EOG – from electrodes above and below 

one of the eyes).  

This set of studies was carried out using a very consistent EEG processing and analysis 

pipeline performed in MATLAB (The  MathWorks) using the EEGLAB toolbox (Delorme & Makeig, 

2004) as well as custom-built routines. This consistent approach lends itself well to pooling the 

results together for the purposes of re-analysis. However, it is important to note that we did not 

re-preprocess any of the data. While it may be of interest to fully harmonize these datasets (for 

example, by choosing individual peak electrodes as opposed to pre-defined electrode clusters), 

such an approach would introduce more analytical degrees of freedom and potentially make the 

analysis less optimal for each individual dataset. Instead, we follow the published analyses for 

each study, restricting the analytic choices to those already made based on the purposes and 

characteristics of each study.  

Epochs for SSVEP analyses were extracted using one of two methods. The first method 

selects trials where no target or distracter events were present (50% – 70% of total trial number). 

Epochs are then extracted accounting for onset- and offset- related activity changes: epochs start 

a few hundred milliseconds after flicker onset (400 ms in most cases, 600 ms in Adamian et al., 

2020; 500 ms in Andersen, Fuchs, et al., 2011) to account for the visual evoked response and 

allow time for the SSVEP to build up. Epochs end 50-100 ms before flicker offset (see Table 1). 

The second method segments each trial into multiple 1-s epochs, subsequently discarding any 

epoch containing target or distractor related activity as well as the first epoch of each trial. 

Importantly, the signal resulting from the data acquired via longer or shorter epochs is comparable 

as long as the total time of recording per condition submitted to the Fourier transform is equal. 

The second method is more complicated in implementation, but allows more data to be preserved, 

especially if the experiment requires that frequent target and distractor events embedded in the 

ongoing stimulation are excluded from the analysis. In all cases, the epoch extraction method was 

determined at the planning stage of the experiment, prior to any data collection. 
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Mean and linear trends were removed in all epochs (detrending). No other filters were 

applied offline to any of the data. Epochs with blinks and eye movements (larger than 20 μV)  

were excluded, and remaining artifacts were corrected using an automated SCADS algorithm 

(statistical correction of artifacts in dense array studies: Junghofer et al., 2000), except for 

Andersen, Fuchs et al., 2011, where artifact rejection was performed manually). The SCADS 

routine rejected artifact-contaminated epochs based on the statistical properties of the data or 

replaced individual sensor’s data through spherical interpolation. Data were then re-referenced to 

average reference, and epochs were averaged for each condition. SSVEP amplitudes were 

calculated for each electrode of interest, condition, and frequency by Fourier analysis (Fast 

Fourier transform algorithm implemented in MATLAB function fft.m) zero padded to 214 points and 

quantified as the absolute value of the complex Fourier coefficients. 

Electrodes for analysis were selected based on the average voltage maps of SSVEP 

amplitudes. Their selection was preserved in the re-analysis. In studies where stimulation was 

presented centrally, averaged SSVEP amplitudes were presented on the maps as a narrow 

occipitally located peak (Andersen et al., 2008, 2009, 2015). When stimulation was presented 

peripherally, this peak was extended parietally, leading to selecting a wider cluster of electrodes 

(Adamian et al., 2019; Andersen et al., 2013; Andersen, Fuchs, et al., 2011)  Two of the studies 

(Adamian et al., 2020; Andersen et al., 2012) were originally analyzed using scalp current density 

(SCD) transformation (Pernier et al., 1988; Pernier et al,. 1989) which increases spatial resolution 

and allows better correspondence to cortical generators. In this case, average reference was 

used in the reanalysis.  
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Table 1. Properties of SSVEP stimulation, data acquisition and experimental manipulations in re-analysed experiments  

 

Study n 

Numb

er of 

trials 

Epoch 

duratio

n (ms) 

Secon

ds of 

data 

per 

condit

ion 

Stimulus 

positions 

Stimul

ation 

freque

ncies 

(Hz) 

Samplin

g rate 

(Hz) 

Total 

numb

er of 

scalp 

electr

odes 

Electrodes 

selected for 

analysis 

Dimension(s) 

of attention 

manipulated 

Targets 

and 

Distractor

s 

Number of 

attention 

conditions for 

which SSVEPs 

were measured 

 (+ attended, - 

unattended) 

Andersen, 
Hillyard & 

Müller, 
2008 

15 600 

2400  

360 Central 
10, 12, 

15, 
17.14 

256 128 
POz, Oz, Iz, 

SIz 
Color (C), 

Orientation (O) 
Coherent 

motion 
4 (C+O+, C+O-, C-

O+, C-O-) 

Andersen, 
Müller & 
Hillyard, 

2009 

15 432 

2500 

360  Central 10, 12 256 64 Oz, O1, O2, Iz Color 
Luminanc

e 
decrement 

3 (valid, neutral, 
invalid cue) 

Andersen, 
Fuchs & 
Müller, 
2011 

19 600 

3300 

495  Peripheral 

8.46, 
11.85, 
14.81, 
19.75 

512 32 

TO1, TO2, P3, 
P4, PO1, POz, 
PO2, O1, O2, 

INz, IPz** 

Color (C), 
Space (S) 

Coherent 
motion 

4 (C+S+, C+S-, C-
S+, C-S-) 

Andersen, 
Müller & 

Martinovic
, 2012 

16 300 

1000 (8 
epochs 
per trial)  

240  Central 10, 12 256 64 
O1, O2, Oz, Iz, 

POz* 
Luminance 

Polarity 
Coherent 

motion 

10 
(attended/unattende

d x five contrast 
ratios) *** 

Andersen, 
Hillyard & 

Müller, 
2013; 

Experime
nt 1 

13 560 2500 350  Peripheral 
7.5, 

8.57, 
10, 12 

256 64 

PO7, PO3, 
POz, PO4, 

PO8, O1, Oz, 
O2, I1, Iz, I2 

Color 
Luminanc

e 
decrement 

4 
(attended/unattende
d x same/different 

cues for two 
locations) 

Andersen, 
Hillyard & 

Müller, 
2013; 

Experime
nt 2 

11 560 

2500  

350  Peripheral 
7.5, 

8.57, 
10, 12 

250 61 

PO7, PO3, 
POz, PO4, 

PO8, O1, Oz, 
O2, I1, Iz, I2 

Color 
Luminanc

e 
decrement 

4 
(attended/unattende
d x two color pairs) 

Andersen, 
Müller & 

15 192 
1000 
(15 

360  Central 
8, 10, 
12, 15 

256 64 
Oz, Iz, POz, 

O1, O2 
Color (C), 

Orientation (O) 
Coherent 

motion 
8 (C+O+, C+O-, C-
O+, C-O-, C+, C-, 
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Hillyard, 
2015 

epochs 
per trial) 

O+, O-) 

Adamian, 
Slaustaite 

& 
Andersen, 

2019 

16 672 

2500 

280  Peripheral 
7.5, 

8.57, 
10, 12 

256 64 

PO3, PO4, 
PO7, PO8, 

O1, O2, I1, I2, 
Oz, Iz, POz 

Color(C), Space 
(S) 

Luminanc
e 

decrement 

6 (C+S+, C+S-, C-
S+, C-S-, 

C+Sdivided, C-
Sdivided) 

Adamian, 
Andersen 
& Hillyard, 

2020 

15 560 

2500 

350  Central 
12, 15, 
17.14, 

20 
250 61 Oz, Iz, SIz * 

Luminance 
Polarity (L), 
Surface (S) 

Radial 
motion 

4 (L+S+, L+S-, L-
S+, L-S-) 

 
*These studies were analyzed using scalp current density (SCD) transformation (Pernier et al., 1988; Pernier et al,. 1989) which led to a different 

topography and electrode selection  

** Due to considerable variations in topography between individual participants, one electrode out of this cluster with the greatest SSVEP amplitude 

was selected for each frequency and participant 

*** Different contrast conditions were averaged for the re-analysis
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1. Variability of the magnitude of SSVEPs across participants and 

frequencies 

 

SSVEP experiments are typically interested in measuring the modulation of SSVEPs 

by cognitive factors or physical stimulus properties. To this end, the first step in setting up a 

new SSVEP experiment is to ascertain that the stimulation elicits strong and reliable 

SSVEPs. In this first part, we will describe the variability of the SSVEP across participants 

and stimulation frequencies. This will provide researchers with general context and help to 

interpret their own pilot data or evaluate data of other studies for which raw data is available. 

Additionally, in part 2 we will derive some consequences of the variability of SSVEPs 

combined with the proportional nature of attention effects for their statistical analysis. 

For the purposes of these analyses SSVEP amplitudes were calculated as described 

above for each condition, frequency, and participant in each of the studies, totaling 679 

observations across 136 participants. Amplitudes at each frequency were averaged across 

experimental conditions. Since multiple datapoints from each experiment were entered into 

an aggregated correlation analysis and these observations are not independent, we 

calculated repeated measures correlations using the rmcorr package for R (Bakdash & 

Marusich, 2017) denoted as rrm. This technique estimates the common regression slope 

shared among clusters of non-independent data points and adjusts for inter-individual (or, in 

our case, inter-study) variability.   

 

An important property of SSVEP amplitudes is that they are measured on a true ratio 

scale, i.e. the point zero of the scale is non-arbitrary and corresponds to a total absence of 

oscillatory power at a given frequency. Although transient ERP components may, at least 

theoretically, also be on a ratio scale, this is not the case in practice, where the magnitude of 

ERP components is measured against an (arbitrary) baseline, as opposed to a true zero. As 

a consequence, positive ERP deflections (e.g. the visual P1) can have a negative amplitude 

for individual participants and/or conditions due to noise or drifts (and vice versa for negative 

deflections), making it impractical to describe any differences or effects as relative (e.g. twice 

or half as big) and instead differences are typically described and statistically analysed in 

absolute terms (e.g. 0.5 microvolt larger or smaller), in accordance with these measures being 

merely on an interval scale. This is not the case for SSVEP amplitudes, whether quantified as 

the absolute of Fourier coefficients or of time-varying oscillations (e.g., via Wavelets or Gabor-

filters), which will in a strict mathematical sense always be non-negative. Therefore, SSVEP 

effects can readily be quantified in relative terms, and as we will see in part 2, SSVEP attention 

effects are indeed largely proportional to SSVEP magnitude. As a further consequence of 

SSVEP-amplitudes having a fixed lower bound of zero, the distribution of SSVEP amplitudes, 

e.g. across participants, will often not be symmetric, but instead exhibit a skewed distribution 

with outliers in the positive direction straying much further from the mean or median (see Fig. 

1), similar to theoretical distributions with a fixed lower bound of zero, such as the discrete 

Binomial and Poisson distributions or continuous log-normal distributions. 

SSVEP amplitudes (averaged across attentional conditions) in our 9 studies varied 

strongly between participants: the interquartile ratio (i.e. the ratio between the 75th and 25th 

percentiles of the data) across participants, calculated for each frequency (stimulus) in each 

experiment separately, was on average 1.83 (±0.28). Thus, even in fairly small samples (e.g. 

13-19 participants in the datasets analyzed here), one can easily expect the magnitude of 
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SSVEP amplitudes to differ by a factor of two or more, with much higher ratios between the 

lowest and highest amplitudes in a larger sample. Variability and magnitude of SSVEP 

amplitudes scale together (correlation between the amplitude mean and standard deviation of 

each experiment x frequency sample: rrm(19) = 0.92, p < 10-8, 95%CI = [0.81 0.97], Figure 1C). 

In addition to the variability between participants, SSVEP amplitudes also vary substantially 

between frequencies (stimuli), with larger amplitudes tending to be elicited at lower 

frequencies (correlation between the mean amplitude and stimulation frequency: rrm(22) = -0.8, 

p < 10-5, 95%CI = [-0.91 -0.57], Figure 1C, 1D). In the literature SSVEP amplitudes are often 

expressed as signal-to-noise ratio (SNR) -- ratio of the amplitude at the flicker frequency to 

the average of adjacent (noise) frequencies (Norcia et al., 2015). SNR also tends to be higher 

at lower stimulation frequencies (rrm(22) = -0.72, p < 10-4, 95%CI = [-0.87 -0.43], Figure 1E). 

 

 
Figure 1. Summary of SSVEP amplitudes at different frequencies. A: Grand-average amplitude spectra obtained 

by Fourier transformation zero padded to 214 (=16384) points B: SSVEP amplitudes vary between participants and 

stimulation frequencies. Dots represent SSVEP amplitudes of individual participants averaged across conditions, 

box plots show median, first and third quartiles of the between-participant distribution. C: Variability of SSVEP 
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amplitudes scales with their magnitude. D: Lower stimulation frequencies elicit stronger SSVEP amplitudes. Note 

that in two studies with noticeably higher amplitudes (Andersen et al., 2009, 2012), only two stimuli were presented 

foveally (see Walter et al. (2012) for a comparison between foveally and peripherally attended stimuli). 

Furthermore, in Andersen et al., 2009 position changes in the RDK were fully synchronized with the flicker. In the 

other studies, either more stimuli were superimposed, or stimuli were presented outside the fovea. E: SSVEP 

amplitudes at lower frequencies have higher signal-to-noise ratio (SNR)  

 

 

In many published SSVEP studies, including all the current datasets, SSVEP 

amplitudes were measured at multiple frequencies (four in the majority of cases, two in 

Andersen et al., 2009 and 2012) for each participant. Given the high variability of SSVEP 

amplitudes across participants and frequencies it is of interest to consider the extent to 

which this variability between participants is shared across frequencies (stimuli). This is 

especially the case as some studies have included frequency as a factor in between-

subjects statistical analyses, thus implicitly assuming that SSVEP amplitudes at different 

frequencies are consistently correlated across participants. To evaluate this claim, we 

correlated SSVEP amplitudes of all pairs of frequencies in our selection of studies (Figure 2) 

across participants. SSVEP amplitudes were positively correlated across participants for all 

pairs of frequencies, with only one exception where the correlation was not significantly 

different from zero (between 12 Hz and 17.14 Hz in Adamian et al., 2020). Aggregated data 

shows the strongest relationship between the two lowest frequencies selected for each 

experiment (rrm(125) = 0.79, p < 10-29, 95%CI = [0.72 0.85]),  and the weakest – between the 

two highest frequencies (rrm(96) = 0.46, p < 10-5,  95%CI = [0.28 0.60]). Thus, one can expect 

somewhere between roughly one quarter to two thirds of the variance in signal magnitude 

between participants to be shared across frequencies. In summary, there is a consistent but 

modest correlation of SSVEP magnitude at different frequencies across participants. As a 

consequence, it is to be expected that when driving SSVEPs at multiple frequencies, some 

participants may exhibit strong SSVEPs at some frequencies but less so at others. 

Additionally, using standard within-subjects statistical analyses may not be an ideal way of 

controlling this variability in signal magnitude (see also subsequent section) as correlations 

across different frequencies can be modest in size. 
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Figure 2. SSVEP amplitudes elicited at different frequencies are moderately correlated across participants. Panels: 

Scatterplots of SSVEP amplitudes by pairs of stimulation frequencies. Inset: Distribution of correlation coefficients 

across all studies and frequencies. This reveals that the correlation between SSVEP magnitudes at different 

frequencies is consistent albeit modest.  

 

2. Attentional modulation is proportional to signal magnitude 
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The assumption of standard within-subjects parametric statistical tests (e.g. paired t-

test, repeated-measures ANOVA) is that within-subjects variability in the magnitude of the 

dependent variable is of an additive nature, i.e. the size of effects is independent of the overall 

magnitude. This assumption is clearly violated for SSVEPs in our studies (Figure 3). The 

magnitude of attention effects (attended minus unattended) was positively correlated with and 

largely proportional to the overall signal magnitude (average of SSVEP amplitudes across all 

conditions) in all but one of our studies (Andersen et al., 2013 Experiment 2). Aggregated 

across studies, there was a highly significant positive correlation between individual SSVEP  

Figure 3. Attentional modulation of SSVEPs scales with SSVEP amplitude. Each dot represents one frequency-

participant combination.  

 

 

 

magnitude and attentional modulation (rrm(668) = 0.51, p < 10-45, 95%CI = [0.45 0.56]).  

 

 To explore the relationship between stimulation frequency, SSVEP amplitude, and 

attentional modulation, we used a linear mixed-effect model with SSVEP amplitudes as a 

dependent factor and participants as a random factor. Stimulation frequency and average 

amplitude across conditions was included as fixed effects. The results showed that the 

magnitude of attentional enhancement decreases with increasing frequency (β = -0.006, SE 

= 0.003, p = 0.02) and increases with increasing amplitude (β = 0.17, SE = 0.07, p = 0.01) 

while the interaction of frequency and amplitude has no effect (β = -0.001, SE = 0.006, p = 

0.78).  
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 Together the analyses in (1) and (2) reveal three important characteristics of SSVEPs: 

(1) SSVEP amplitudes vary substantially between participants and frequencies, (2) SSVEP 

amplitudes depend on the stimulation frequency – the higher the frequency, the lower the 

amplitude, and (3) the effect of attention on SSVEP amplitudes is roughly proportional to the 

overall SSVEP amplitude, i.e. attentional modulation of SSVEPs is a relative boost, not an 

absolute one. These observations were consistent across the studies presented here. 

 Combined, these properties imply that it is not ideal to enter raw SSVEP amplitudes 

into a statistical analysis that assumes additivity. To give a simple example: if we measured 

three participants with unattended amplitudes of 1.0 μV, 2.0 μV, and 3.0 μV and attended 

amplitudes of 1.2 μV, 2.4 μV, and 3.6 μV, respectively, then the attentional effect, in relative 

terms, would be an entirely consistent boost of 20%. However, entering these values into a 

paired samples t-test would yield seemingly highly variable attention effects of 0.2 μV, 0.4 μV, 

and 0.6 μV, and thus systematic variance would be incorrectly identified as unsystematic 

variance, resulting in a loss of statistical power. To make things even worse, because 

attentional effects are proportional to the amplitude of the signal, any averaging of ‘raw’ or 

unscaled SSVEP amplitudes overweighs attentional effects contributed by datapoints with 

higher amplitudes (e.g. lower frequencies or individual participants). 

To circumvent the issue of relative effects, all studies presented here use a rescaling1 

step prior to statistical analyses. In this step, each individual amplitude (Aijk) is divided by the 

mean of all n attentional conditions k for each participant i and frequency j separately (see 

Equation 1). 

    𝑁𝑖𝑗𝑘 =  
𝐴𝑖𝑗𝑘

1

𝑛 
∑ 𝐴𝑖𝑗𝑘

𝑛
𝑘=1

      (1)  

After such rescaling, amplitudes can be safely averaged across frequencies to yield a 

standardized value for each condition. Note that in the case of only two conditions (attended 

(A) and unattended (U), such rescaling yields attention effects 𝐴 − 𝑈 that are identical to the 

frequently used AMI (attention modulation index 
𝐴−𝑈

𝐴+𝑈
 (Kastner et al., 1999; Roelfsema et al., 

1998), bar a factor of 2.0. Importantly, this transformation is performed on the level of individual 

frequency and participant, circumventing the issue of unequal weighting of lower frequencies, 

and taking account for the modest correlation of SSVEP amplitudes between frequencies. 

Since the denominator includes the average amplitude at a single frequency across 

conditions, each measurement is rescaled to the mean of 1, and subsequent averaging across 

frequencies is scale-free, making any amplitude changes uniquely attributable to the 

experimental manipulation and not the stimulation frequency.  

 Similarly to the other EEG-based techniques such as the analysis of event-related 

potentials, there is considerable variability in the methods of preprocessing and analysis of 

SSVEPs (Clayson et al., 2019; Keil et al., 2014). While multiple approaches may be equally 

applicable to a given dataset and statistical model, we highlight in this part of the re-analysis 

the benefits of rescaling SSVEP amplitudes prior to averaging and statistical analysis as 

compared to ‘raw’ or unscaled amplitudes. Rescaled amplitudes better conform to 

 
1 In the texts of the published studies this procedure was sometimes referred to as ‘normalisation’  
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assumptions of common parametric tests (in particular additivity) and allow for a more 

straightforward interpretation of attentional modulation of SSVEP amplitudes. 

 One popular method of scaling SSVEP amplitudes is via signal-to-noise ratio (SNR), 

where SSVEP is expressed as a ratio of the amplitude at the flicker frequency to the average 

of adjacent (noise) frequencies (Norcia et al., 2015). SNR is particularly useful when seeking 

to determine whether a particular stimulus elicits a detectable response (e.g., Norcia & Tyler, 

1985) or which analytical technique yields the highest SNR (e.g. Cohen & Gulbinaite, 2017). 

However, the fact that some research questions are most directly addressed by computing 

SNR does not mean that this is an ideal way of quantifying SSVEPs in other cases. At least 

two arguments can be made against generally quantifying SSVEPs in terms of SNR: First, the 

SNR itself may have a poor reliability. After divisive rescaling, the resultant measure (SNR) is 

affected by the measurement error of both the numerator (signal) and the denominator (noise). 

In the case of a strong SSVEP amplitude and low noise, the signal itself can be quantified with 

high precision, but the high SNR itself can only be quantified less precisely due to the variability 

of the noise measurement (in the hypothetical ideal case of a noise-free measurement the 

SNR becomes infinite and thus useless). By comparison, our approach of rescaling by dividing 

by the average of all conditions combines all the available data to compute a denominator with 

low variability. Second, unless the magnitudes of noise and the SSVEP are highly correlated, 

rescaling to SNR does not solve the previously identified issues of unequal scaling between 

participants and stimuli. 

 To demonstrate the differences between SSVEPs measured as raw values or 

expressed as SNR, we examined attentional effects (Attended – Unattended) as a factor of 

stimulation frequency in all studies (Figure 4). You may recall from the previous section that 

both stimulation frequency and average amplitude predicted attention effects in raw microvolt 

values. If SSVEPs are expressed as SNR, frequency has no effect on attentional modulation 

(β = -0.008, SE = 0.01, p = 0.54), however, attentional effects increase with average SNR 

(β =  0.34, SE = 0.09, p = 0.0003). Hence, using SNR to analyze SSVEP amplitudes does not 

fully protect from the issues highlighted in the previous section. In contrast, when attention 

effects are calculated based on rescaled SSVEP amplitudes, neither frequency (β = -0.05, SE 

= 0.08, p = 0.49) nor pre-rescaling amplitude (β = 0.12, SE = 0.87, p = 0.88) were significant 

predictors of attentional modulation. Rescaling SSVEP amplitudes is an effective way of 

mitigating effects of different signal magnitude between frequencies and participants in studies 

where multiple frequency tags are used simultaneously.  
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Figure 4. Attentional modulation of SSVEPs as a function of stimulation frequency measured in raw values (left), 

SNR (middle) or rescaled values (right).  

 

 

We provide arguments for rescaling SSVEP amplitudes prior to statistical analysis and 

explain the approach taken in the studies analyzed here. Many other approaches to rescaling 

or transforming raw data are conceivable, and which one is ideal may depend on the study. 

For example, in some cases a log-transformation (e.g., dB scale) may be preferable, as it 

retains overall differences in signal magnitude while transforming relative effects into additive 

effects and thereby making the data conform better to the assumptions of linear additive 

models such as ANOVA (see Andersen & Müller, 2015 for an example). Thus, the key point 

of this section to encourage other researchers to consider the issue and make an informed 

decision on what is best suited in their studies. 

We would like to end this section with two qualifying remarks. First, some participants 

may exhibit very weak and extremely noisy SSVEP amplitudes. By rescaling or log-

transforming such data, small noise fluctuations become magnified and may produce artificial 

outliers that need to be excluded from statistical analysis. Second, despite the utility of 

rescaling or transforming raw amplitudes for statistical purposes, we believe that there is a 

distinct benefit to also reporting raw amplitudes prior to such procedures (e.g. as topographies 

or spectra), as these facilitate comparison of signals across different studies.  

 

3. Attentional enhancement of SSVEP amplitudes: effect sizes 

Having described basic properties of SSVEP amplitudes and caution required to their 

analysis, we will now turn to describing how attention influences SSVEP amplitudes. The 

utility of the SSVEP technique in attention-related research lies in the ability to obtain a high-

SNR measure of neural activity unambiguously associated with a specific part of the visual 

input. It allows presenting multiple streams of visual stimuli simultaneously, both in spatially 

separated and spatially overlapping manner (see Norcia et al., 2015; Andersen et al., 2011 

for reviews). Therefore, the SSVEP technique allows to isolate the effects of attentional 



11 
 

selection of different spatial and non-spatial dimensions. Studies used in this re-analysis 

manipulated selection of color, orientation, luminance polarity, and space, sometimes in 

isolation (Andersen et al, 2009, 2012, 2013) and sometimes in combination (Andersen et al., 

2008, 2011, 2019; Adamian et al., 2020). Here we used a meta-analytical approach to 

estimate and compare the effects of different dimensions of attention.  These estimates can 

be useful as a benchmark for designing new SSVEP paradigms and for planning sample 

sizes for future experiments.  

 

In all presented studies, attended stimuli produced enhanced SSVEP amplitudes 

compared to unattended stimuli. Most of the studies included a manipulation of color-based 

selection, which is partly explained by the fact that color-selective attention produced the 

largest modulation of SSVEP amplitudes (Figure 5), about a 20% change. Consequently, we 

were able to estimate this effect size more precisely than others. Spatial and orientation 

selection increased SSVEP amplitudes by just over 10%. The effect of luminance polarity is 

similar in magnitude to the effect of color, however, with only two studies with luminance 

polarity manipulation this estimate is less precise.  

 It should be noted that while all the presented experiments featured an attentional 

manipulation, these manipulations were not identical. For instance, Andersen et al. (2009) 

used Posner-style cueing where attention was cued probabilistically, while in the other studies 

the uncued color was fully behaviorally irrelevant. Unsurprisingly, probabilistic cueing 

produced a smaller effect on SSVEP amplitudes. Similarly, in Andersen et al. (2013) – 

Experiment 2 – two colors were attended at the same time, resulting in smaller attentional 

modulation. These differences between experiments illustrate that, on one hand, color-based 

selection has a strong enough effect that it can be demonstrated in a variety of experimental 

paradigms, and on the other hand, that the meta-analytic effect size based on the present set 

of studies is more likely to be under- than overestimated.   
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Figure 5. Forest plot of raw effect sizes (attended minus unattended) of different attentional manipulations on 

rescaled SSVEP amplitudes.  The summary polygon in light blue shows the summary estimate of the effect size 

and its 95% confidence interval. 

 

Comparisons between studies using within-participant measurements are complicated 

by the fact that there are multiple ways to calculate standardized mean difference for these 

studies . Figure 5 reports effect sizes based on the pooled standard deviation 

(s =  √
(n-1)SA

2   + (n-1)SU
2   

2×n-2
   where SA and SU are standard deviations of attended and unattended 

measurements and n is sample size. J. Cohen, 1988; Goulet-Pelletier & Cousineau, 2018), 

however, data provided here can be used in all types of calculations in future meta-analyses 

or power analyses.  

To facilitate the use of the present results in planning future studies, in Table 2 we 

provide the results of power calculations for two potential use cases. The first case is when 

SSVEPs are measured in two conditions (Attended and Unattended) to establish whether 

attention can amplify sensory information in a given experimental situation. In this case it is 

prudent to use a conservative estimate of the effect size (e.g. 50%) and carry out a paired t-

test to potentially detect a statistically significant difference between the SSVEP amplitudes in 

the two conditions. The second case is when the goal of the study is to establish whether an 

experimental manipulation modulates the effect of attention. In this case a more optimal 

solution is to implement a 2 x 2 design where the first factor is Attention (Attended / 

Unattended) and the second factor possibly modulates attentional enhancement (e.g. 

presence of a secondary task). Table 2 lists minimal sample sizes required for detecting an 

interaction between the two factors if the modulating factor attenuates or increases the effect 

of attention by 50%. Of course, these are only two out of many possible experimental 



13 
 

scenarios, and the effect sizes provided here can help plan for the effect size of interest more 

precisely.  

 
 

 

Table 2. Standardized effect sizes and minimum sample size recommendations  

Selection 

type   

Average 

standardized 

effect size 

(Cohen’s d) 

Sample 

size 

required to 

detect 

attentional 

modulation 

in a paired 

t-test  

Sample size required to 

detect attentional 

modulation in a paired t-

test (based on 50% of 

reported effect size) 

Sample size required to detect an 

effect modulating attention by 50% 

in a 2 x 2 repeated measures 

ANOVA  

95% 

power 

80% 

power 

95% power 80% 

power 

95% power 

Color 3.46 4 5 7 10 15 

Space 1.84 6 12 18 27 42 

Orientation 1.34 10 20 31 40 64 

Luminance 

polarity  

3.40 4 5 7 18 28 

 

 

4. Attention to a combination of features and its effect on SSVEPs  

 

Five of the available studies were implemented using a full factorial design 

simultaneously manipulating attention to two distinct features from different dimensions such 

as color and space (Andersen et al., 2008; 2015), color and orientation (Andersen et al., 2011; 

Adamian et al., 2019) and color and luminance polarity (Adamian et al., 2020). This subset of 

studies allows us to not only measure the individual contribution of each attentional dimension 

to overall amplitude change, but also to examine the consequences of concurrent selection of 

two separate features. To preview, the results showed that when two features are selected at 

the same time, their attentional effects are combined multiplicatively. 

Conceptually, the question of how the effects of concurrent attentional selection of 

different features are combined determines how far attention spreads to stimuli sharing some, 

but not all, of the attended features. Statistically, this is captured in the interaction of these two 

independent attentional factors. We can conceptualize the different possible interactions as 

lying on the continuum between the basic logic operations AND and OR at the extreme end 

of the spectrum. On the OR end of the spectrum, attentional benefits are evenly distributed 

among all items possessing at least one attended feature. As demonstrated in Figure 6, in a 

busy visual environment, this would lead to a wide distribution of attention among many items. 

Conversely, at the ‘AND’ end of the spectrum, selection is restricted to visual input combining 

all individually attended features simultaneously. This would focus cognitive resources very 

narrowly. Additive combination of attentional effects is towards the center of this spectrum and 

allows a more nuanced pattern of selection where visual input receives some attentional 

facilitation for partially sharing attended features and a ‘double dose’ of attention if both 

attended features are present. Such distribution of attentional resources can support highly 
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adaptive behaviors such as visual search or foraging (Kristjánsson et al., 2020) where one or 

multiple targets must be selected from an array of distracting stimuli.  

The additively independent combination is featured in several theoretical models of 

attention including TVA (Bundesen, 1990; Bundesen et al., 2005) and the feature-similarity 

gain model (Treue & Martinez-Trujillo, 1999). However, some empirical evidence suggests a 

deviation from a purely additive model in the direction of superadditivity (i.e. in the “and” 

direction; a stimulus combining multiple attended features receives a stronger attentional 

boost than the sum of the individual effects for each feature). For example, Hayden and 

Gallant (2009) examined how the combination of feature-based and spatial attention 

modulates responses of single V4 neurons and found that while each attentional dimension 

individually contributed to overall modulation, there was also a small synergistic, super-

additive effect enhancing the target of both attentional systems. Similarly, among the five 

SSVEP studies described here one (Adamian et al., 2020) detected a statistically significant 

super-additive interaction, while four others reported non-significant effects in the same 

direction (p-values of 0.09, 0.07, 0.06 and 0.15). Furthermore, two of the studies also analyzed 

log-transformed SSVEP amplitudes to conclude that the data is better described by a 

multiplicative combination of independent factors (Andersen et al., 2011; Adamian et al., 2020, 

also see Nordfang, Staugaard & Bundesen, 2017). On the other side, the pure “AND” 

combination is unlikely given the number of studies demonstrating that feature-based attention 

is spatially global, that is, the attended color receives attentional enhancement throughout the 

visual field (e.g. Treue and Martínez Trujillo, 1999; Saenz et al., 2002, 2003). Thus, the real 

interaction term is likely to lie between additive and AND cases.  

In absolute terms, the difference between the results of the additive and multiplicative 

combination is a small one. For example, two 20% attentional enhancements could be 

additively combined to 40%, or multiplicatively – to 44% (1+0.2+0.2 vs. 1.2x1.2, see equations 

(2) and (3)). The magnitude of the interaction suggests that individual studies may not have 

had enough statistical power to reliably detect deviations from additivity. Therefore, here we 

will test this hypothesis using a combined dataset.  
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Figure 6. Illustration of the effects of possible combinations of attention to two dimensions. Top row: schematic 

demonstration of the differences between attended and unattended input in three scenarios. Bottom row: simulation 

of the three scenarios when to-be-attended features are yellow color and the spatial location of the ball. In the ‘OR” 

scenario, attended objects include the area around the ball as well as all the yellow objects. Yellow parts of the 

image falling inside the spatially selected area do not receive any additional attentional boost. Under the additive 

combination of effects, both yellow color and the ball area undergo some attentional enhancement, but the yellow 

within attentional focus enjoys a double effect. Finally, the ‘AND’ operation results in the most restrictive selection 

where the only attended input is the to-be-attended color in the to-be-attended location (“IMG_6593” by John 

Martinez Pavliga is licensed under CC BY 2.0).  

 

 

 

In each experiment (Andersen et al., 2008, 2011, 2015; Adamian et al., 2019, 2020) 

SSVEP amplitudes were calculated for each participant, condition, and frequency and 

rescaled as described in Equation (1). The resulting amplitudes were collapsed across 

frequencies to produce average amplitudes for each of the four attentional conditions (both 

features attended: A1+A2+, one feature attended:  A1+A2-, A1-A2+, both features 

unattended: A1-A2-).  For consistency, the first attentional dimension was, depending on the 

study, either color or luminance polarity selection and the second attentional factor was 

selection of orientation, space, or motion direction. Data were submitted to a 2x2 repeated 

measures ANOVA with both attentional dimensions as factors. If factors are super-additive, 

the interaction term in this ANOVA is expected to reach statistical significance. A simulation-

based sensitivity power analysis (using the package Superpower in R: Lakens & Caldwell, 

2021) indicated that with this sample size we will have 94% chance of detecting a deviation 

from additivity of 4%.    

Figure 7 shows the summary of rescaled and averaged SSVEP amplitudes for each of 

the conditions across the five studies as well as their average. Only in one of these studies 

the interaction between the two attentional dimensions was originally reported as significant 

(Adamian et al., 2020). However, in the combined dataset the interaction is highly statistically 

significant (F(1,79) = 18.33, p < 10-5, η2 = 0.03). This effect persists even if the study with the 

originally significant interaction is omitted (F(1,63) = 15.93, p < 10-4, η2 = 0.03). This confirms 

that when two attentional factors are manipulated together, their effects are combined super-

additively. 

Both main effects of the attentional manipulations also significantly modulate SSVEP 

amplitudes (color/luminance polarity: F(1,79) = 249.62, p < 10-25, η2 = 0.63; 

orientation/space/motion:  F(1,79) = 81.92, p < 10-13, η2 = 0.24). To test for the dependence of 

the magnitude of these effects across participants we subjected the main effects for both 

attentional factors for each participant (n=80) to a repeated measures correlation (Bakdash & 

Marusich, 2017). Participants with stronger attentional effects in one dimension also tended 

to exhibit stronger attentional effects in the other dimension (rrm(74) = 0.3, p = 0.008, 95%CI = 

[0.08 0.49]), suggesting that attentional modulation of different features has a common 

influence, perhaps in form of alertness or vigilance, although this is of a very modest 

magnitude and accounts for less than 10% of variability. Thus, the magnitude of attentional 

modulation for different feature dimensions is largely independent across participants, which 

seems consistent with our previous findings of independence of attentional selection of 

different feature dimensions (Andersen et al., 2015; Adamian and Andersen, 2019). 
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Figure 7. Effects of independent attentional dimensions are combined multiplicatively. Error bars are within-subject 

95% confidence intervals (Morey, 2008).   

 

 

The results of ANOVA allow us to conclude that attentional effects are combined super-

additively. To further quantify the strength of this super-additivity we directly compared the fit 

of additive and multiplicative models to the data. The models took the form (2) and (3) 

respectively, where SSVEP amplitude (additive μa and multiplicative μm) is elicited by a 

combination of attentional coefficients related to two features. 𝛼1and 𝛼2 take values of 1 or -1 

depending on whether a feature is attended or unattended. The same resulting SSVEP 

amplitude (the left hand of the equation) could be produced by different 𝛽1 and 𝛽2 coefficients 

depending on the additive or multiplicative mechanism.      

 

𝜇𝑎 = 1 + 𝛼1  ×  𝛽
1

+  𝛼2  ×  𝛽
2
         (2) 

𝜇𝑚 = (1 + 𝛼1  × 𝛽
1
) × (1 + 𝛼2 ×  𝛽

2
)       (3) 

   

 

For each participant regression coefficients 𝛽1 and 𝛽2 in two models were estimated 

using a non-linear curve-fitting procedure implemented by the MATLAB fminsearch function. 

The residuals of both additive and multiplicative models were entered into one-way ANOVA 

to determine whether the models explained the systematic variations of the data and which 

one provides a better fit.  

Both additive and multiplicative models explain the data exceptionally well with R2 of 

the additive model being 94.3% and R2 of the multiplicative model being 95.7%. On the other 

hand, the test of the residuals of both models suggests a small amount of unexplained 

systematic variation (Additive: F(3,77) = 18.33, p < 10-10 , η2 = 0.18; Multiplicative: F(3,77) = 5.8, p 

= 0.0007, η2 = 0.06). The absolute residuals of the multiplicative model are substantially 

smaller than those of the additive model (t(316) = 7.16, p < 10-11), suggesting that the 

multiplicative model provides a better fit to the aggregated experimental data. Importantly, the 
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unexplained variance points in the direction away from additivity, solidifying a multiplicative 

model as the better descriptor of the integration between attentional factors.  

  

5. Attentional effects on SSVEP latency   

 

The original analyses of the data presented here, as well as the previous sections of 

the re-analysis, were focused on the attentional effects on SSVEP amplitudes. The next 

section will turn to the other feature of the SSVEP – its phase. Phase measurements can be 

used to estimate the delay of SSVEP response from its generating flicker (Norcia et al, 2015; 

Di Russo et al., 2003). Of interest for the studies of attention is whether attentional 

enhancement also results in acceleration of stimulus processing. For example, Di Russo and 

Spinelli (1999) estimated the latency of SSVEPs from the phase and found shorter latencies 

(a reduction of ~15 ms) at a spatially attended location. Some electrophysiological studies in 

monkeys also showed that attention speeds up neuronal responses in areas V4 and MT, 

although the estimated acceleration was much smaller, 1-2 ms (Galashan et al., 2013; 

Sundberg et al., 2012). Several other studies did not find any influence of attention on neuronal 

latencies (Lee et al., 2007; Reynolds et al., 2000; Zhigalov & Jensen, 2020). Here we will use 

a combined SSVEP dataset with a variety of attentional manipulations to test whether attention 

changes the speed of processing in early visual cortex. 

To estimate the latency of SSVEP response we first computed phases of complex 

amplitudes in radians for each participant, frequency, and electrode. The electrode selection 

was identical to the analyses of amplitudes. When more than one Attended and Unattended 

condition was present (Adamian et al., 2019; Andersen et al., 2013, 2015) response latency 

was estimated for each pair of conditions separately.  

Phases 𝜑 in each frequency 𝑓 were converted to latencies t in ms using the following equation:  

𝑡 =  −
𝜑 −  

𝜋
2

2𝜋𝑓
(4) 

  

Note that all phases are rotated by 
𝜋

2
 to account for the alignment between the phase of the 

stimulation and phase of the response.  

Conversion of SSVEP phases to absolute latencies is ambiguous due to the circularity 

of the phase parameter. Since 0° phase angle is indistinguishable from 360° phase angle, 

SSVEP response phase can ‘wrap around’. For instance, for 10 Hz flicker, phase angles 

repeat every 100 ms. This means that a phase angle of 
𝜋

2
 occurs at the 25 ms mark, but also 

at 125 ms, 225 ms and so on. This becomes even more ambiguous at higher frequencies. 

Previous studies circumvented this ambiguity by recording response phases at multiple 

frequencies and estimating the slope of the phase-frequency function (Di Russo & Spinelli, 

1999; Russo et al., 2003b). Using these previous estimates, we restricted the values that 

latencies can take from 50 to 200 ms for the purposes of this analysis. In addition, to reduce 

uncertainty at higher frequencies we ensured that the difference between response latencies 

at different frequencies within one participant did not exceed 50 ms. Starting with the latency 

values estimated by equation (4) for each participant and frequency we added or removed full 

latency cycles (e.g. 100 ms for 10 Hz) until these two conditions (range of values and range 

of differences) were satisfied.  
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The estimation procedure based on the restricted absolute and relative values 

successfully returned unambiguous latencies in all experiments.  Average SSVEP latencies 

across experiments ranged from 88 (±4) to 114 (±7) ms (Figure 8). In the combined dataset, 

latencies in Unattended conditions were on average 4.8 ms longer than in Attended conditions 

(t(180) = 8.02, p < 10-13 ). On the level of individual studies, four out of 12 comparisons did not 

reach statistical significance. Note that the resulting meta-analytic effect size (Figure 8: Right) 

is slightly lower than the simple aggregated mean difference, at 3.4 ms.  Based on the 

standardized effect size of d = 0.32 the minimum sample size required to detect an effect of 

this size with 80% power is 64 participants.  

 

 

Figure 8. Attention shortens latency of SSVEP response. Left: Average SSVEP response latency in Attended and 

Unattended conditions. Error bars represent within-subject 95% confidence intervals. Right: Forest plot of effect 

sizes of attention on SSVEP latencies.  The summary polygon in light blue shows the summary estimate of the 

effect sizes according to the fixed-effect model (Borenstein et al., 2011)  and its confidence interval (in ms).  

 

Thus, we identified a small (~4 ms) latency difference in the SSVEP response between 

attended and unattended conditions, which supports the claim that attention speeds up 

processing in early visual cortex. The magnitude of this latency change is comparable with 

previous results in monkey V4 (Sundberg et al., 2012: 1-2 ms). This effect is vastly smaller 

compared to attentional modulation of SSVEP amplitudes. Interestingly, the smallest 

attentional modulations of SSVEP latency (Andersen et al., 2009; Andersen et al., 2015 – 

Orientation) were also associated with relatively small amplitude differences (Figure 5). Low 

statistical power combined with the ambiguities in estimating absolute latencies from circular 

phase makes the use of phase delays in studies of attention less practical. 

However, these results are of theoretical importance. The effects of attention on neural 

response are often compared to those of contrast enhancement. One of the similarities is that 

both attention and contrast increase the magnitude of neural responses (Lee & Maunsell, 

2009; Martı́nez-Trujillo & Treue, 2002; Reynolds & Heeger, 2009), while the effect of attention 

on response latency has been less clear (McAdams & Reid, 2005; Zhigalov & Jensen, 2020). 

Our results confirm that similarly to contrast, attention modulates both amplitude and latency 

of neural responses in the early visual cortex.  

While the main goal of the analysis was the estimation of relative latencies between 

conditions, the absolute latencies of SSVEP response are also of interest, as these are rarely 

reported in the literature. In our results, the range of obtained latencies was constrained by 
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the latencies reported in the prior literature to avoid ambiguity due to the circularity of phases. 

Still, the differences between studies are notable. For example, two studies with the smallest 

SSVEP latencies overall (95 ms: Andersen et al., 2012; 91 ms: Adamian et al., 2020) are the 

only ones using luminance-defined flicker. This is consistent with a previous study using 

similar methodology which estimated that the response delay difference between isoluminant 

and luminance flickering stimuli is ~25 ms (Martinovic et al., 2018). In addition, studies where 

stimulation was presented peripherally have longer latencies (111 ms: Andersen et al., 2013; 

109 ms: Adamian et al., 2019).  

6. Attentional modulation of single-trial SSVEPs  

As detailed in sections 3-5, attention consistently affects SSVEP amplitudes and 

latencies (phases) in the trial-averaged signal. Increased SSVEP amplitudes in the trial-

average can mathematically result from increased amplitudes, stronger alignment of phases 

of single trials, or a combination of both. Here, we investigate which of these possibilities best 

explains the observed attention effects in our data. This question is of relevance for two main 

reasons: first it contributes to our conceptual understanding of attentional mechanisms and 

how changes in stimulus processing may be linked with behavioral effects. Whereas single-

trial amplitude increases may reflect a sensory gain mechanism (Hillyard et al., 1998; Treue 

& Martínez Trujillo, 1999) that increases the signal-to-noise ratio of attended stimuli, a stronger 

alignment of single-trial phases reflects more consistent timing of stimulus processing across 

trials and therefore increased synchronization of neural populations responding to the stimulus 

when it is attended (Kim et al., 2007).  Second, the analysis of single-trial SSVEP amplitudes 

has been successfully used to test for alternative accounts of observed effects in multiple 

studies (Gulbinaite et al., 2017; Soh & Wessel, 2021). For example, this has been used to test 

whether trial-averaged amplitudes result from a mix of trials with different attentional states 

(Andersen et al., 2008; Toffanin et al., 2009) or to establish whether single-trial relationships 

exist between subsequent components in order to narrow down possible causal 

interpretations (Andersen & Muller, 2010; Steinhauser & Andersen, 2019). A thorough 

understanding of attentional effects on the SSVEP on the single-trial level supports the optimal 

implementation of such approaches in future studies. 

The idea of phase synchronization (Kim et al., 2007; Rager & Singer, 1998; Srinivasan 

et al., 1999) as a mechanism for attentional modulation of SSVEPs is based on the 

observation of increased intertrial phase coherence or ITPC of attended stimuli (Gulbinaite et 

al., 2019; Kashiwase et al., 2012; Kim et al., 2007). Inter-trial phase coherence (ITPC) is a 

measure of phase consistency across trials (Tallon-Baudry et al., 1996) which ranges from 0 

(uniformly distributed phase) to 1 (perfect phase alignment). ITPC is defined as 

 

𝐼𝑇𝑃𝐶(𝑓) =
1

𝑛
|∑

𝑎𝑖(𝑓)

|𝑎𝑖(𝑓)|
𝑛
𝑖=1 | (5) 

 

with 𝑎𝑖(𝑓) being the complex amplitude of frequency 𝑓 in trial i, and the total number 

of trials 𝑛. ITPC captures the variability of phases -- If SSVEPs become more synchronized to 

the stimulation frequency, variability of phases decreases and phases become more 

consistent, increasing the ITPC (M. X. Cohen, 2014). However, when increased ITPC is 

accompanied by an increase in response amplitude of single trials, interpretation becomes 

difficult as the increase in synchrony could come about either because of the true 

synchronization of neural activity or because of the higher signal-to-noise ratio (SNR). With 
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increased SNR, background noise (which has variable phase) contributes less to the overall 

response, also increasing ITPC (van Diepen & Mazaheri, 2018). Observing an increased ITPC 

in attended conditions is therefore not sufficient evidence for a pure synchronization account 

of attention effects, as the increased ITPC might just as well be due to the enhancement of a 

phase-locked response embedded in random noise. Distinguishing between these 

possibilities requires consideration. 

Figure 9 illustrates three possible transformations of complex single-trial amplitudes 

(colored arrows) in an “unattended” condition. All three transformations lead to an identical 

trial-averaged response with ~40% increase of the phase-locked amplitude (black arrow), i.e. 

despite reflecting very different neural mechanisms, the three transformations are 

indistinguishable when only observing the trial-averaged response. The three mechanisms lie 

on a continuum with pure amplitude increase and pure phase synchronization at the extreme 

ends and increased signal in noise in-between. In the first transformation, pure amplitude 

increase, each single-trial amplitude receives an attentional boost (here: increase by 40%) 

without any changes in phase distribution. In the second transformation, pure phase 

synchronization leaves the magnitude (length of arrows) of all single-trials unchanged but 

instead rotates the phases to make them more aligned. Even though single-trial amplitudes 

remain the same, this boosts the phase-locked amplitude. One important consequence of this 

process is that it decreases variance of the complex amplitudes as trials move closer to each 

other in the complex plane (i.e. they become more similar). Finally, the increased signal in 

noise transformation assumes that the amplitude in each single trial is the sum of a phase 

locked signal which is equal to the trial average and noise of random phase and magnitude. 

In this case, attention only affects the signal part by adding a proportion of the trial averaged 

amplitude (here: 40%) to each trial. Thus, amplitudes of single trials are uniformly shifted in 

the complex plane, and the variance between them does not change. However, ITPC still 

increases as the proportion of the phase-locked signal relative to the random phase noise has 

been increased. 

Overall, this demonstration shows that if phase-locking is the main driver of attentional 

effects on SSVEPs, single-trial SSVEPs will unavoidably be less variable in the experimental 

data. This prediction was tested in the aggregated dataset.  
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Figure 9. illustration of attentional effects on SSVEPs through three idealized mechanisms.  A: example 

distributions of 50 trials in unattended (blue) and three different theoretical alternatives of attended conditions that 

yield the same trial-averaged SSVEP amplitude and phase. On these polar plots the length of each vector 

represents single-trial SSVEP amplitude and the angle is SSVEP phase. The black arrow represents the average 

phase-locked SSVEP, which is identical in all three theoretically derived attended conditions. Each of the attended 

polar plots shows a direct transformation of the unattended data. Single-trial SSVEP values (n=50) were generated 

by sampling real and imaginary components from a normal distribution based on the estimates of the mean and 

standard deviation of unattended trials across all datasets (m=0.2, sd = 0.5 for real and m=0.5, sd = 0.5 for the 

imaginary part). The generated ‘unattended’ values were used as a baseline for three transformations illustrating 

three paths leading to a ~40% increase of SSVEP amplitude. Pure amplitude increase was achieved by multiplying 

individual amplitudes (absolute values of the complex numbers) by a constant attentional coefficient of 1.4. Pure 

phase synchronisation was simulated by rotating the phases of single-trial SSVEPs such that each trial became 

closer to the average phase. Finally, to simulate the amplification of signal in noise, a proportion of the complex 

average was added to each single-trial value. 

B:  mean amplitude of single trials, inter-trial phase coherence and standard deviation of trials for each of the three 

transformations. Each bar in red (pure amplitude increase), pink (pure phase synchronization) and green 

(increased signal in noise) should be compared to blue (Unattended) to infer the direction of change.  

 

 

In order to test which point on the continuum of transformations from pure amplitude 

enhancement to pure phase synchronization best accounts for observed attention effects in 

our nine datasets, we computed the average magnitude and standard deviation2 of complex 

single trial amplitudes as well as the ITPC for attended and unattended conditions separately. 

SSVEP amplitudes were quantified as the complex Fourier coefficients at each of the 

stimulation frequencies in attended and unattended conditions (leaving out conditions where 

attention was partially directed to the stimulus). In contrast to the analyses described earlier, 

trials were not averaged prior to transformation into frequency domain but instead performed 

on each trial separately. Single-trial SSVEPs were then rescaled as described in equation (1), 

and their mean amplitudes and standard deviations were calculated.   

 
2 In case of complex numbers standard deviation refers to variability of distances to the complex origin 
and was calculated through MATLAB function std. 
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All three metrics -- ITPC, mean magnitude and standard deviation of single trials -- 

were modulated by attention (Figure 10). ITPC was higher in the attended compared to the 

unattended condition (t(134) = 13.12, p < 10-16 , d = 1.13) as were magnitudes of single-trial 

amplitudes (t(134) = 12.77, p < 10-15 , d = 1.10). Contrary to the prediction of the phase-locking 

account, standard deviation across trials also increased with attention (t(134) = 4.91, p < 10-4, d 

= 0.42).  

Our analysis confirmed the previously reported increased ITPC in attended trials 

compared to unattended trials. However, the increase in SSVEP magnitude in single trials is 

not predicted by a pure phase synchronization account and the increased standard deviation 

across trials directly conflicts with this account. A pure amplitude enhancement predicts 

increased magnitude and standard deviation, but not the observed change in ITPC. The 

enhanced signal in noise account is consistent with the increased ITPC and magnitude, but it 

does not predict a change in standard deviation between trials. 

 

 
 

Figure 10. Results of single-trial SSVEP analysis demonstrating that ITPC as well as the magnitude and standard 

deviation of SSVEP amplitudes on individual trials are modulated by attention. Error bars denote 95% confidence 

intervals. Note that the unusually high ITPC in Andersen et al. (2009) might be a consequence of the stimulation 

where each position change in the RDK was synchronized with the flicker.  

 

 

 

In summary, none of the three theoretically derived mechanisms (transformations) fully 

accounts for the observed data. Interestingly, pure phase synchronization (Kim et al., 2007) 

fares worst, as it is the only account that predicts a change in the opposite direction of what 
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was actually observed. The data seems most consistent with a mechanism lying somewhere 

between pure amplitude increase and increased signal in noise. We thus propose that SSVEP 

attention effects can be accounted for by a boosting of a largely phase-locked signal 

embedded in non-phase-locked noise. This is similar to the increased signal in noise account 

but assumes that phase locking of the signal across trials is not perfect, thus leading to an 

increase in the standard deviation across trials with attention. Importantly, this account does 

not contradict previous findings of increased ITPC of SSVEPs with attention (Gulbinaite et al., 

2019; Kim et al., 2007). Instead, it offers an alternative mechanism which explains both the 

increase in ITPC and the increase in single-trial amplitudes. One possibility for why signal 

phases are not perfectly aligned could be due to drifts in perceptual sensitivity over the time 

of a recording (which is typically in the order of one hour in the datasets investigated here). As 

the phase of the SSVEP systematically depends on stimulus contrast (Di Russo et al., 2001; 

Martinovic et al., 2018), such changes could affect the signal phase over the course of a 

recording session. 

To conclude, the findings of our re-analysis rule out a phase synchronization account 

as a mechanism for attentional modulation of SSVEPs, as proposed by Kim et al. (2007). We 

propose that attention works through multiplicative (sensory gain) amplification of a largely 

phase-locked signal embedded in non-phase-locked noise.  

Discussion 

This paper presented the results of a combined reanalysis of nine experiments 

published in eight papers carried out in over the past 15 years. All of these studies used 

SSVEPs to probe visual attention and have individually contributed to our understanding of 

both attention and SSVEPs. Still, their combined reanalysis allowed us to uncover new 

knowledge without collecting more and bigger datasets.  

The reanalysis demonstrated the following:  

1) SSVEP amplitudes are highly variable between participants and stimulation 

frequencies.  

2) Attentional modulation of SSVEP amplitudes is proportional to their magnitude. To 

account for (1) and (2), we recommend rescaling SSVEPs prior to statistical 

analysis rather than analyzing raw amplitudes. 

3) The effect size of selective attention on SSVEP amplitudes is large and consistent 

across studies, with color-based selection demonstrating the strongest modulation. 

4) When multiple features are attended together, attentional effects are combined 

multiplicatively rather than additively. 

5) Attention reduces the latency of SSVEP responses by ~4 ms. 

6) Sensory gain enhancement of a phase-locked signal in noise, rather than 

increased phase-locking across trials, explains the increase of trial-average 

SSVEP amplitude with attention. 

 

The first part of the reanalysis (sections 1 and 2) focused on SSVEP amplitudes 

themselves, rather than on their attentional amplification. Perhaps the most important take-

home message from this birds-eye view of thousands of SSVEP trials is that raw amplitudes 

shouldn’t be used in parametric statistical analyses that assume additivity of effects, such as 

ANOVAs. The reason, as we have demonstrated, is that the magnitude of SSVEP 

amplitudes varies very substantially between participants and frequencies and that attention 

effects are relative to the overall magnitude of the SSVEP rather than additive. The 
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difference between participants can easily become as big as the difference between 

measuring lengths in cm and inch (a factor of 2.54), and therefore using raw SSVEP 

amplitudes for statistical comparison is akin to measuring growth with a mix of 

measurements in cm and inches. Doing so would make highly consistent effects seem to 

vary substantially and thus reduce observed effect sizes. As we briefly discussed in section 

2, there are multiple ways of transforming the data to make it conform better to the 

assumptions of additive parametric statistical tests.  

In sections 3-6 we used the datasets to explore how SSVEPs are modulated by 

attention. The combined dataset featuring experiments similar in design provided an ideal 

ground for the comparison of effect sizes. We demonstrated that colour-based selection 

provides the strongest amplification of SSVEP amplitudes. This is consistent with the 

advantage of colour cues found using the visual search paradigm (Anderson et al., 2010; 

Sobel et al., 2009). However, it is important to remark that in visual search features and 

locations are not independent from each other, therefore attentional effects in our studies 

may not directly map onto the mechanisms of visual search. Still, our finding that colour 

provides the strongest attentional cue amongst simple features at the level of early visual 

cortex may explain cueing advantages found in visual search and preview paradigms.  

We have also demonstrated that when two attentional dimensions are combined, the 

effects of individual attentional cues are applied multiplicatively, meaning that the combined 

effect is greater than the sum of individual attentional enhancements. This suggests that 

different types of attention (e.g. color selection, orientation selection, spatial) are served by 

separate neural subsystems and can be flexibly allocated to support behavioural goals 

(Doherty, 2005; Hayden & Gallant, 2009). An interesting extension of this conclusion 

concerns spatial attention. While some theories of attention posit that spatial location is itself 

a feature which participates in attentional selection on an equal basis with features such as 

color (Bundesen, 1990; Bundesen et al., 2005; Martinez-Trujillo & Treue, 2004), others 

suggest that location is prioritised for selection and that feature-based enhancement 

operates later (Liu et al., 2007) and is more pronounced at attended locations (Hillyard & 

Anllo-Vento, 1998). If spatial location dominated selection at the early stages of visual 

processing, we would have observed a stronger interaction between attentional factors when 

spatial selection was one of them, and weak or absent interaction between features of other 

dimensions. Instead, experiments manipulating spatial attention (Adamian et al., 2019; 

Andersen, Fuchs, et al., 2011) showed a very similar interaction effect size to those 

combining colour and orientation (Andersen et al., 2008, 2015), or luminance and direction 

of motion (Adamian et al., 2020), leading to the conclusion that spatial selection is treated 

equally to selection of other features in early visual processing. In our previous work we 

contrasted the SSVEP results to the ERP evidence (Adamian et al., 2019; Andersen, Fuchs, 

et al., 2011) demonstrating that spatial selection can become more dominant in at the later 

stages of processing of transient events. Based on the combinations of features represented 

in the current set of studies, we can conclude that in early visual processing selection of 

features combines multiplicatively, assigning weighted priority to all the potentially 

behaviourally relevant sensory input.  

All the analyses above used participant-level SSVEP amplitudes, asking new 

questions using the data already reported in published papers. Next (sections 5 and 6), we 

turned to SSVEP phases, which have generally been analysed less in the SSVEP literature. 

The phase analysis showed a small but consistent acceleration of SSVEPs with attention 

which confirmed that attention modulates the latency of neural responses in early visual 

cortex. Finally, we performed a single-trial analysis of SSVEP amplitudes and phases to test 
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whether the amplification of SSVEP amplitudes can be accounted for by phase-locking and 

concluded that this is not a plausible mechanism.  

Many of the analyses presented here were only possible because we had access to 

participant-level and trial-level data. By combining multiple datasets to obtain much larger 

samples than those used in individual studies, we were able to answer our questions with 

much greater certainty and disambiguate small effects which were beyond the scope of the 

original studies. Since all the datasets were collected using a consistent set of functions and 

procedures, we were able to combine the datasets without much difficulty. This highlights the 

importance of developing interoperable and well documented EEG datasets which would 

allow reuse of data not only within a research group but also across different labs and 

platforms (Pernet et al., 2019). While the tools allowing seamless reuse of EEG data are still 

being developed, we would like encourage others to re-analyse their own work over the 

years. Many areas of cognitive science use comparable experimental designs across 

multiple experiments and studies, and as we have showed here, a large dataset combining 

these studies can yield more knowledge than was intended in the constituent individual 

papers.   

 

Limitations of the re-analysis 

This re-analysis included a cohesive set of studies, which, on one hand, allowed us to 

combine their results in meaningful ways, but on the other hand, necessarily restricted the 

variability of data. All the studies presented here were a part of one research program, 

where the stimulation and analysis code, the types of stimuli used, the questions asked, and 

the design of the experiments were similar in nature and shared between studies. Despite 

the fact that the data were collected across three different sites, the experiments were 

similar in design and execution, which may limit the generalisability of the findings.  

The most obvious commonality of these studies is the type of stimulation and 

behavioural tasks. All the studies used a version of random dot stimuli presented against 

grey background, which is far from being the only way to elicit SSVEPs. However, this type 

of stimulation allows to control or manipulate spatial and feature-based attention together 

while keeping the physical properties of the stimuli identical, which is crucial for the studies 

of this type. The behavioural tasks in all the studies entailed detecting brief changes in the 

appearance or in the motion direction of a random subset of items. The advantage of these 

tasks is that they require attending to the whole set of items together rather than tracking an 

individual one, and that it is easy to manipulate task difficulty. On the other hand, they all 

focus on the same type of attention – sustained – and the results may not map directly only 

other contexts such as when attention is used to prepare for an upcoming stimulus 

(Battistoni et al., 2017) or to search for an item in an array (Forschack et al., 2022).      

Given the high consistency of the results presented here, it is important to note that not 

all SSVEP studies find attentional effects, and effect sizes are less consistent when 

compared across a more diverse set of paradigms (Adam et al., 2020). This is not surprising, 

not only due to statistically expected null results (Ioannidis & Trikalinos, 2007) but also 

because of large variation in stimuli and analysis choices between studies. We hope that in 

the future the combination of focused methodological investigations and higher probability of 

publishing null results (Scheel et al., 2021) will allow to systematically investigate the effect 

of stimulation and analytical decisions on effect sizes in SSVEP studies.   
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Tips for successful SSVEP attention experiments 

 Frequency tagging of SSVEPs is not simply an experimental paradigm or an analysis 

technique, but the tightly interleaved combination of both with specific requirements for 

experimental design, stimulus timing, and signal processing. We would like to finish the 

Discussion of our findings with some advice for those deciding to carry out an SSVEP study 

of attention. These tips are a combination of take-home messages from our reanalysis and 

the general knowledge accumulated in the lab over the years.  

 

1) Make sure stimuli elicit a robust SSVEP. If your goal is to detect attentional 

modulation of the SSVEP, the SSVEP itself should be readily observable, e.g., as 

peaks at the stimulated frequencies in the spectrum of a few pilot participants. As the 

SSVEP is highly sensitive to physical stimulus parameters (size, eccentricity, 

contrast, frequency, etc.), optimising these to produce a strong SSVEP should be a 

consideration in every study.  

2) Pick stimulation frequencies according to your goals (see Andersen & Müller, 2015 

for more on this). SSVEPs can be generated across a wide range of frequencies up 

to around 100 Hz (Hermann, 2001). In practice, most studies have focussed on the 

lower frequencies, although the use of higher frequencies has been advocated 

recently facilitated by the availability of high frequency display devices (this is often 

referred to as “rapid invisible frequency tagging” or RIFT, e.g., Sejjdel et al., 2023). In 

general, we have observed equivalent patterns of attentional modulation of SSVEPs 

across a range of frequencies, including those within the alpha band. 

 Other considerations: 

o Lower frequencies often yield better SNRs 

o Range of usable frequencies depends on the mechanisms being driven (e.g., 

SSVEPs elicited by chromatic (isoluminant) flicker rapidly decline as one 

approaches flicker fusion around 20 Hz). 

o Choose nearby frequencies if keeping stimuli perceptually similar is important. 

o Pick frequencies that are further apart to avoid crosstalk when studying time-

courses. 

o Ensure that employed frequencies are not harmonics of each other. 

o Avoid SSVEP frequencies within frequency bands of ongoing oscillations 

(alpha, beta, etc.) if these are to be quantified independently. 

3) The SSVEP is a phase-locked response – analyse it accordingly. Whereas ongoing 

oscillations are commonly analysed in a non-phase locked manner, doing so for 

SSVEPs degrades the SNR as non-phase-locked noise is not averaged out. 

4) Avoid physical confounds. SSVEPs are highly sensitive to changes in physical 

parameters, the effects of which can easily exceed those of attentional manipulations 

(see Andersen et al., 2012 for an example). Most importantly, change in retinal 

position can have a very big effect, and thus control of eye-movements is essential, 

especially when investigating spatial attention. 

5) Verify stimulus timing. Timing issues like dropped frames may affect phase (and 

sometimes frequency) of the SSVEP, undermining its accurate quantification. 

Externally test stimulus timing by means of a photodiode and/or save a log of 

timestamps for each frame onset of an experiment so that any timing issues can be 

investigated after the recording session. 
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6) Tag task-relevant information with SSVEPs. Flickering a co-located stimulus (e.g., a 

patch of the background) as a proxy is indirect and may not fully reflect the relevant 

attentional mechanisms. 

7) Make experimental paradigm and analysis go hand in glove. Even more than with 

other approaches, in SSVEP studies the experimental design defines what is 

measured and how it can be analysed. Test the analysis pipeline with pilot data 

before collecting the full dataset. 

8) Verify the analysis pipeline and data using prior results and data. Do raw SSVEP 

amplitudes (in microvolt) and their topography match expectations from similar prior 

studies? Does the analysis pipeline reproduce known effects (e.g., if applied to 

publicly available datasets)? Are attentional effect sizes within the range of 

comparable studies? The current paper and the associated online resources provide 

a range of options for such comparisons. 

9) Resist the temptation of overly ambitious studies. It pays off to break down the ‘ideal 

study’ into manageable experiments, allowing to verify different aspects of design 

and analysis step by step. For example, studying the time-course of attention using 

SSVEPs poses various additional challenges such as SSVEP time-courses being 

more sensitive to noise than the SSVEP amplitude quantified over a long time-

window. Thus, an initial sustained-attention experiment is worthwhile to provide the 

asymptotic result of the subsequent time-course study, which can then be used as a 

benchmark. 

 

Conclusion 

SSVEP studies are a valuable tool in attention research. If measured and treated correctly, 

SSVEP amplitudes produce large and consistent attentional effects, which makes studies 

aimed at quantifying even subtle attentional modulation feasible. In this re-analysis, the first 

goal was to look at the basics of SSVEPs and demonstrate how intertwined signal 

properties, experimental design, and statistical analyses are. To summarise these basic 

properties, we provided practical recommendations on setting up SSVEP studies and 

analysing their data. The second goal of combining multiple datasets was to push the limits 

of SSVEP studies beyond testing the hypotheses they were originally designed to test. As a 

result, we demonstrated that attentional effects are combined multiplicatively when multiple 

features are attended together, and that SSVEP latency is reduced by attention. We have 

also showed that the increase of trial-average SSVEP amplitude is explained by a sensory 

gain mechanism rather than increase in phase-locking across trials. As cognitive 

neuroscience embraces the age of large-scale collaborative projects, we hope that such 

“zooming in” on the data to refine measurements and “zooming out” to harness the power of 

large samples will go hand in hand.  
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