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A Machine Learning System for Automated Whole-Brain Seizure 

Detection 
 

ABSTRACT 

Epilepsy is a chronic neurological condition that affects approximately 70 million people 

worldwide. Characterised by sudden bursts of excess electricity in the brain, manifesting as 

seizures, epilepsy is still not well understood when compared with other neurological 

disorders. Seizures often happen unexpectedly and attempting to predict them has been a 

research topic for the last 30 years. Electroencephalograms have been integral to these 

studies, as the recordings that they produce can capture the brain’s electrical signals. The 

diagnosis of epilepsy is usually made by a neurologist, but can be difficult to make in the 

early stages. Supporting para-clinical evidence obtained from magnetic resonance imaging 

and electroencephalography may enable clinicians to make a diagnosis of epilepsy and 

instigate treatment earlier. However, electroencephalogram capture and interpretation is time 

consuming and can be expensive due to the need for trained specialists to perform the 

interpretation. Automated detection of correlates of seizure activity generalised across 

different regions of the brain and across multiple subjects may be a solution. This paper 

explores this idea further and presents a supervised machine learning approach that classifies 

seizure and non-seizure records using an open dataset containing 342 records (171 seizures 

and 171 non-seizures). Our approach posits a new method for generalising seizure detection 

across different subjects without prior knowledge about the focal point of seizures. Our 

results show an improvement on existing studies with 88% for sensitivity, 88% for specificity 

and 93% for the area under the curve, with a 12% global error, using the k-NN classifier.  

 

Keywords: Seizure, non-seizure, machine learning, classification, electroencephalogram, 

oversampling 

1. INTRODUCTION 

Epilepsy is a chronic condition of the brain, and causes repeated seizures, commonly referred 

to as fits. Epilepsy is said to affect one in every 103 people in the UK (500,000 

approximately) according to epilepsy research UK
1
, and 70 million people worldwide [1]. 

The risk of developing epilepsy is greatest at the extremes of life with incidences more 

common in the elderly than the young [2] and is the cause of premature mortality for those 

suffering with the condition [1]. 

Seizures can be focal (partial) and exist in one part of the brain only, or they can be general 

and affect both halves of the brain. In a focal seizure, the excess electrical activity is confined 

to the occipital lobes, parietal lobes, frontal lobes, or temporal lobes. During a focal seizure, 

the person may be conscious and unaware that a seizure is taking place, or they may have 
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uncontrollable movements or unusual feelings and sensations. During a general seizure, 

consciousness is normally lost and muscles may stiffen and jerk
2
. A diagnosis of epilepsy is 

made if a patient has had two or more unprovoked seizures
3
, and with the help of an 

electroencephalogram (EEG), which measures the electrical activity in the brain. EEG 

recordings are commonly visualised as charts of electrical energy plotted against time, which 

medical experts study, sometimes for days, in an attempt to detect the patterns produced by 

seizures [3].   

The majority of previous works on seizure detection and prediction have focused on patient-

specific predictors, were a classifier is trained on one person and tested on the same person 

[4]–[11]. However, in this paper, the emphasis is on using EEG classification to generalise 

detection across all regions of the brain using multiple subject records, without prior 

knowledge of which region of the brain the seizure occurred.  

A whole-brain seizure detection approach supports para-clinical evidence obtained from 

magnetic resonance imaging and EEG to make a diagnosis of epilepsy and instigate treatment 

earlier. More importantly, it mitigates the difficulties associated with the capture and 

interpretation of electroencephalogram by neurologists, which reduces the costs associated 

with the training of specialists to perform the interpretation. In this paper, a robust data 

processing methodology is adopted and several classifiers are trained and evaluated, using 

342 EEG segments (171 seizures and 171 non-seizures) extracted from the EEG records of 24 

patients suffering with epilepsy. 

The structure, of the remainder, of this paper is as follows. Section 2 describes the underlying 

principles of EEG and the type of features extracted from EEG signals. Section 3 discusses 

machine learning and its use in seizure and non-seizure classification, while section 4 

describes the evaluation. The results are discussed in Section 5 before the paper is concluded 

in Section 6. 

2. SEIZURE DETECTION AND CLASSIFICATION 

Gotman is one of the pioneers of seizure detection whose research in the area dates back to 

1979. In [12], he proposed a system for automatic recognition of inter-ictal epileptic activity 

in prolonged EEG recordings using a spike and sharp wave recognition method. Extensions to 

this work are presented in [13]–[16], while recent works have focussed on the use of 

functional magnetic resonance imaging (fMRI) and the correlation between cerebral 

hemodynamic changes and epileptic seizure events visible in EEG [17]. More recently, he has 

looked at automatic seizure detection in sEEG using high frequency activities in the wavelet 

domain [7].  

In other studies, classification has featured widely in EEG research. The most common 

classifier used to distinguish between seizure and non-seizure events has been the support 

vector machine (SVM). Using the CHB-MIT database and a patient-specific prediction 

methodology, the study in [18] used a SVM classifier on EEG recordings from 24 subjects. 

The results show that a classification accuracy of 96% for sensitivity was produced, with a 

false-positive rate of 0.08 per hour. In a similar study five patient records from the CHB-MIT 
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dataset containing a total of 65 seizures were evaluated using a linear discriminant analysis 

classifier [19]. The results show that 83.6% was achieved for sensitivity, 100% for specificity, 

with an overall accuracy of 91.8%. Nasehi et al. [20] used the same CHB-MIT dataset with a 

Particle Swarm Optimisation Neural Network (PSONN) which produced 98% for sensitivity 

and a false-positive rate of 0.125 per hour. The main difference with all of these studies, 

compared with the approach taken in this paper, is they are patient specific and do not 

generalise across a wider population. 

In [21], 100 seizure segments and 100 non-seizure segments were used to train an SVM 

classifier. The results show that 100% was obtained for sensitivity, specificity and overall 

accuracy. Meanwhile, Nicoletta et al. [22] carried out a similar study using the BONN dataset 

[21] and SVM classifier, with 94.38% for sensitivity, 93.23% for specificity and an overall 

accuracy of 86.1%. In a similar study, Ubeyli [23], who also used the BONN dataset [21] and 

SVM classifier, produced 99.25% for sensitivity, 100% for specificity and 99.3% for overall 

accuracy. Extending this study, Ubeyli compared seven different classifiers. The SVM was 

the best-performing classifier with similar results produced to those in the original study [24]. 

The worst performing classifier was the multilayer perceptron neural network, which 

achieved 90.48% for sensitivity, 97.45% for specificity, and 90.48% for overall accuracy.   

Acharya et al. focused on using entropies for EEG seizure detection and seven different 

classifiers [25]. The best-performing classifier was the Fuzzy Sugeno classifier, which 

achieved 99.4% for sensitivity, 100% for specificity, and 98.1% for overall accuracy. The 

worst performing classifier was the Naïve Bayes Classifier, which achieved 94.4% for 

sensitivity, 97.8% for specificity, and 88.1% for accuracy. In [26], the decision tree classifier 

was used and achieved an average sensitivity of 99.24%, a specificity of 98.76%, and 

accuracy of 99.02%. 

Using the FRE
4
 dataset

 
Yuan et al. presented a patient-specific seizure detection system and 

an extreme machine-learning algorithm to train a neural network [27]. Twenty-one seizure 

records were used to train the classifier and 65 for testing. The results show that the system 

achieved an average of 91.92% for sensitivity, 94.89% for specificity and 94.9% for overall 

accuracy. Using the same dataset, Williamson et al. [28] used a SVM to classify EEG 

recordings from 18 of the 21 patients in the dataset. The results show an average sensitivity of 

90.8% and a false-positive rate of 0.094 per hour. Park et al. [29] adopted a similar 

configuration and achieved 97.5% for sensitivity and a false-positive rate of 0.27 per hour. 

While Patnaik et al. [30] used a feed-forward back propagation artificial neural network on 

the 21 subjects from the FRE dataset. Classification was performed on a patient-specific basis 

and the results, per patient, ranged from 98.32 to 99.82% for specificity and between 87.73 

and 93.8% for sensitivity.  

Patel et al. [31] proposed a low power, real-time classification algorithm, for detecting 

seizures in ambulatory EEG. The study compared linear discriminant analysis (LDA), 

quadratic discriminant analysis (QDA), Mahalanobis discriminant analysis (MDA), and SVM 

classifiers on 13 subjects from the FRE dataset. The results show that the LDA gave the best 

results when trained and tested on a single patient, with 94.2% for sensitivity, 77.9% for 
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specificity, and 87.7% for overall accuracy. When generalised across all subjects, the results 

show 90.9% for sensitivity, 59.5% for specificity, and 76.5% for overall accuracy. 

In a similar study, Acir et al. used SVM classifier to detect epileptic spikes [32]. The dataset 

used to evaluate their methodology was from the Neurology Department of Dokuz Eylul 

University Hospital, Izmir, Turkey, and consisted of 25 patients with one EEG record each - 

18 used for training and 7 for testing. Their approach achieved 90.3% for sensitivity, 88.1% 

for specificity, and a 9.5% false detection rate. While an SVM classifier was considered to 

discriminate between pre-ictal and non-pre-ictal states in [33], the authors used a 22 linear 

univariate feature space extracted from six EEG recordings for each of the 10 patients from 

the European database on epilepsy. Their approach could detect 34 of the 46 seizures 

achieving a sensitivity of 73.9% and a false prediction rate of 0.15/hour. 

3. ELECTROENCEPHALOGRAPHY AND FEATURE EXTRACTION 

Electroencephalography is the term given for the recording of electrical activity resulting 

from ionic current flows generated by neurons in the brain [34] and is mainly used to evaluate 

seizures and epilepsy. In order to retrieve EEG signals, electrodes are placed on the scalp 

where odd numbered electrodes are placed on the left side of the scalp and even numbered 

electrodes on the right. The letters that precede the numbers represent brain regions (Fp) 

frontopolar, (F) frontal, (T) temperal, (P) parietal, (C) central, and (O) occipital [34]. Each 

EEG waveform is generated from a pair of electrodes. Electrode locations and names are 

specified by the International 10-20 system [18]. 

The collection of raw EEG signals is always temporal. However, for analysis and feature 

extraction purposes, translation, into other domains, is possible and often required. These 

include frequency representations, via Fourier Transform, [35]–[38] and wavelet transform 

[38]–[43]. The advantage of frequency-related parameters is that they are less susceptible to 

signal quality variations, due to electrode placement or the physical characteristics of subjects 

[44]. In order to calculate these parameters, a transform from the time domain is required, i.e., 

using a Fourier transform of the signal.  

In order to obtain frequency parameters, several studies have used Power Spectral Density 

(PSD). Within PSD, Peak Frequency is one of the features considered in many studies. It 

describes the frequency of the highest peak in the PSD. During a seizure, EEG signals tend to 

contain a major cyclic component, which shows itself as a dominant peak in the frequency 

domain [45]. Peak Frequency has been used along with other features to achieve high 

classification accuracy. In one example, Aarabi et al. used Peak Frequency, along with 

sample entropy and other amplitude features, to detect epileptic seizures and achieved a 

sensitivity of 98.7% and a false detection rate of 0.27 per hour [46].  

Meanwhile, Ning et al. [47] found that Median Frequency displayed significant differences 

between seizure and non-seizure patients. By segmenting the EEG signal into five separate 

frequency bands for delta (δ: 0.5 ≤ f ≤ 4 Hz), theta (θ: 4 ≤ f ≤ 8 Hz), alpha (α: 8 ≤ f ≤ 12 Hz): 

beta (β: 12 ≤ f ≤ 25 Hz), and gamma (γ: 25 ≤ f), it was possible to predict 79 of 83 seizures, 

with a sensitivity value of 95.2%. In other works [48], used linear and nonlinear features for 

detecting seizures and found that a combination of the two achieved the best results. In their 

study, mean frequency and median frequency were used as two of the linear features. 

However, mean frequency was discarded, as the correlation between the two was high.  
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Root Mean Square (RMS) has also been considered a useful feature for distinguishing 

between seizure and non-seizure events. RMS measures the magnitude of the varying quantity 

and is a good signal strength estimator in EEG frequency bands [30], [49]. In a study on 

neonatal seizure detection [30], 21 features for seizure classification were compared, which 

saw RMS achieved an overall accuracy of 77.71%. More importantly, the study shows that 

RMS outperformed all the other features used. However, the figure was reportedly lower than 

in other studies [30]. The likely reason is that RMS was used in conjunction with other 

features rather as a separate feature.  

Entropy has been used as a measure of the complexity, or uncertainty, of an EEG signal, were 

the more chaotic the signal is, the higher the entropy [30]. There are two kinds of entropy 

estimators; spectral entropies, which use the amplitude of the power spectrum; and signal 

entropies, which use the time series directly [50]. Many authors agree that during a seizure, 

the brain activity is more predictable than during a normal, non-seizure, phase and this is 

reflected by a sudden drop in the entropy value [43], [30], [49]–[51]. In [50] four entropy 

measures were used – Shannon spectral entropy, Renyi’s entropy, Kolmogorov-Sinai entropy, 

and approximate entropy. This study achieved 90% classification accuracy.  

Energy is a measure of the EEG signal strength. Rather than looking at the energy of the 

whole EEG signal, the energy distribution across frequency bands has been used in seizure 

detection [55]. The study found that delta and theta frequency bands saw a much larger 

distribution of energy during a seizure compared to normal EEG, whereas the alpha, beta and 

gamma frequency bands saw a lower energy distribution during a seizure. Using the energy 

distribution, per frequency band, as a feature achieved an overall accuracy of 94%. In [56] the 

results show that using energy as a feature produced classification accuracies between 92% 

and 99.81%.  

Correlation dimension has been investigated as a correlation measure in several studies, 

which is a nonlinear univariate, widely used to measure fractal dimension. Fractal dimension 

measures the complexity of the EEG signal, in other words, the regularity and divergence of 

the signal [57], [58]. In [59] correlation dimension and five other features for seizure 

prediction of focal neocortical epilepsy produced reasonably good results with 90.2% for 

sensitivity and 97% for specificity. However, when looking specifically at the correlation 

dimension they found conflicting results, where correlation dimension dropped in 44.9% of 

seizures and increased in the pre-ictal phase in 44.9% of seizures. They also found that there 

were stronger dimension changes in the remote channels compared with those near the 

seizure onset.  

In [60] correlation dimension and the largest Lyapunov exponent were studied to determine 

their ability to detect seizures. The study showed that neither measure on its own was useful 

for the task, but did work better, when they were used together. They also noted that 

correlation dimension was only useful when applied to the frequency sub-bands (delta, theta, 

alpha, beta, and gamma), and not on the entire 0-60Hz frequency spectrum that was used in 

the study. The authors concluded that changes in dynamics are not spread out across the entire 

spectrum, but are limited to certain frequency bands.  

Skewness is a third-order statistical moment, and kurtosis is the fourth [48]. Along with the 

first and second order moments, mean and variance, respectively, the four statistical moments 

provide information on the amplitude distribution of a time series. Specifically, skewness and 
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kurtosis give an indication of the shape of the distribution [61]. Khan et al. use skewness and 

kurtosis, along with normalised coefficient of variation, for seizure detection in paediatric 

patients. They managed to detect all 55 seizures from a subset of 10 patients, achieving 100% 

sensitivity, with a false detection rate of 1.1 per hour.  

4. AUTOMATED WHOLE-BRAIN SEIZURE DETECTION 

The aim of most studies, in EEG detection, has been to detect patient-specific focal seizures, 

rather than predicting general seizures across a much bigger population. As Shoeb [18] 

explains, a seizure EEG pattern is specific to a particular patient. The main reason for this is 

that focal seizures can occur in any part of the brain, and therefore, can only be detected in the 

EEG on specific channels. A classifier trained on a patient who experiences focal seizures in 

the occipital lobes, for example, would no doubt be trained on features from channels, 

including electrodes O1, and O2 (electrodes to monitor electrical activity in the occipital 

lobe), as these would be the channels from the area of the seizure and therefore, best at 

detecting the seizure.  

For this reason, and due to the configuration of the dataset, this study focuses on 

discriminating between seizure and non-seizure EEGs across a group of 24 subjects. The 

classifiers are trained on all patient records and therefore, classification is generalised across 

all subjects using features from channels that capture the EEG in all parts of the brain.  

The approach utilises machine learning algorithms embedded in-line with existing clinical 

systems to enhance clinical practices in epilepsy diagnostics. The proposed algorithms 

support para-clinical evidence obtained from magnetic resonance imaging and 

electroencephalography to alleviate the capture and interpretation of electroencephalogram 

and help reduce costs, by minimising the need for trained specialists to perform the 

interpretation. The approach provides automated detection of correlates of seizure activity 

generalised across different regions of the brain and across multiple subjects. 

4.1 Methodology 

The CHB-MIT dataset is a publicly available database from physionet.org that contains 686 

scalp EEG recordings from 23 patients treated at the Children’s Hospital in Boston. The 

subjects had anti-seizure medication withdrawn, and EEG recordings were taken for up to 

several days after.  

The EEG recordings are divided among 24 cases (one patient has two sets of EEG recordings 

1.5 years apart). The patients range between 1.5 and 22 years of age, and there are 5 males 

and 17 females. Case 24 was added after the original dataset was collected and has no patient 

data.  

Most of the recordings are one hour long, although those belonging to case 10 are two hours 

and those belonging to cases 4, 6, 7, 9, and 23 are four hours long. Records that contain at 

least one seizure are classed as seizure records and those that contain no seizures as non-

seizure records. Of the 686 records, 198 contain seizures. 

Although the description supplied with the dataset states that recordings were captured using 

the international 10-20 system of EEG electrode positions and nomenclature, it was found 

that 17 of the files that contained seizures had different channel montages to the rest of the 

seizure files. Therefore, these 17 records have been excluded from this study, leaving 181 
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seizure files. A further 10 records were removed from the dataset due to a large number of 

missing data. 

The final dataset used in this study was constructed from 60-second data blocks (mean ictal 

length across the 171 seizure records), comprising the ictal data (seizure), which were 

extracted from 171 seizure files. Table 1 provides a summary of the ictal data with the 171 

ictal blocks. 

Min 1
st
 Qu. Median Mean 3

rd
 Qu.  Max 

2.00 23.00 45.00 61.53 73.00 752.00 

Table 1: Summary of ictal seizure data in all variable length ictal blocks 

The results show that 25% of the data blocks (42.75 blocks) contains less than or equal to 23 

seconds of ictal data, which means that 75% of our data blocks (128.25 blocks) contain 23 

seconds or more of ictal data, with the average block containing 45 seconds if we consider the 

median. However, the data contains outliers, i.e. the Max value is 752. To get a more 

representative summary the first 60 seconds of ictal data is used from each seizure record that 

lasts longer than 60 seconds. Table 2 provides a summary of the data.  

Min 1
st
 Qu. Median Mean 3

rd
 Qu.  Max 

2.00 23.00 45.00 40.52 60.00 60.00 

Table 2: Summary of ictal seizure data in 60-second ictal blocks 

The average block now contains 45 seconds if we consider the median, 40.52% if we consider 

the mean. More importantly, the majority of the data blocks (64%) of the 171 ictal blocks 

contain 30 seconds or more of icta data. In a real-world scenario, it is unlikely that, whatever 

window size we select, data blocks will contain only ictal data. The more realistic case is that 

it will contain both ictal and non-ictal data. By having 60-second blocks with different ictal 

and non-ictal data splits, this allows us to determine the performance of the classifiers under 

conditions more aligned with a real-world situation. However, future work will explore 

optimal window sizes.  To balance the dataset, 171 data blocks randomly extracted from non-

seizure files were also added to the dataset.  

Figure 1 shows the processes used in the methodology to process the data, that include 

filtering, feature extraction, feature selection, classification and finally validation.  
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Figure 1: Methodology data processes 

Each of these processes is discussed in more detail below. Figure 1 shows a data science 

methodology that produces a robust data analytics based solution.  

4.1.1 Data Pre-processing 

In the CHB-MIT database, each record was sampled at 256Hz, with 16-bit resolution. Signals 

were recorded simultaneously through twenty-three different channels, via 19 electrodes and a 

ground attached to the surface of the scalp.  

A bandpass filter was applied to each of the 342 EEG segments (171 seizures, 171 non-

seizures) to extract the EEG data in each of the frequency blocks. Second order Butterworth 

filters were used as they offer good transition band characteristics at low coefficient orders; 

thus, they can be implemented efficiently. This results in five columns of additional data; the 

complete bandwidth (0.5-30Hz), delta (δ: 0.5 ≤ f ≤ 4 Hz), theta (θ: 4 ≤ f ≤ 8 Hz), alpha (α: 8 

≤ f ≤ 12 Hz): and beta (β: 12 ≤ f ≤ 25 Hz). In other words, each block contains 115 columns 

of data for each of the 23 EEG channels in the original data (N=23*(complete 

bandwidth+delta+theta+alpha+beta) = 23*5=115).  

4.1.2 Feature Selection 

The feature vectors in this paper are generated from the 171 seizure files and 171 non-seizure 

blocks, obtained from 23 patients, using peak frequency, median frequency, variance, root 

mean squares, sample entropy, skewness and kurtosis. These features were extracted from 

each of the 115 columns in an EEG block (N=7 features * 115 columns = 805). The literature 

reports that median frequency, sample entropy and root mean square have the most potential 

to discriminate between seizure and non-seizure records. To validate these findings, the 

discriminant capabilities of each feature are determined using several measures: statistical 

Data Filtering
(

Feature Extraction
(

Feature Selection

(

Classification
(

Validation

(
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significance (p and q-values), principal component analysis (PCA) – Principle Component 

one (PC1) and Principle Component two (PC2), linear discriminant analysis independent 

search (LDAi), linear discriminant analysis forward search (LDAf), linear discriminant 

analysis backward search (LDAb) and gram-schmidt (GS) analysis.  

Using these measures, the top 20 uncorrelated features were extracted from all regions of the 

EEG scalp readings (region-by-region feature extraction is considered later in the paper). For 

example, in the case of p-values we select the top 20 uncorrelated features (from the 805 

features that we have) that have the highest p-values and use these features with all our 

classifiers. The tttest2 function in Matlab can be used to extract p-values and they can be 

ranked using the sort function. These features are then used to determine determine which 

classifier performs the best. The same approach is used for the q-values. The mafdr function 

in Matlab can be used to determine the q-values and again, they can be ranked using the sort 

function. In the case of principle component one (PC1), the top 20 uncorrelated features that 

comprise the most variance in PC1 were selected and evaluated against all classifiers. The 

same approach was used for PC2. In the case of linear discriminant analysis feature selection, 

the featseli, featself, and featselb provided by the Matlab pattern recognition toolbox PRTools 

is used to provide an ordered ranking of features. In a similar way, the Gram-Schmidt ranks 

and orders each feature by importance.  

Table 3 shows that the best results were obtained from the linear discriminant analysis 

backward search technique with an area under the curve (AUC) of 91%. This was followed 

closely by statistical p and q-values with AUC values of 90% and 89% respectively.   

AUCs for Feature Selection techniques 

knnc knnc svn knnc tree knnc loglc knnc loglc 

p q PC1 PC2 PC1 2  LDAi LDAf LDAb GS 

90 89 83 88 87 86 88 91 88 
 

Sensitivities for Feature Selection techniques 

knnc
 

knnc
 

svn
 

knnc
 

treec
 

knnc
 

loglc
 

knnc
 

loglc
 

p q PC1 PC2 PC1&2 LDAi LDAf LDAb GS 

83 84 53 86 80 78 76 84 76 

 

Specificities for Feature Selection techniques 

knnc knnc svn knnc treec knnc loglc knnc loglc 

p q PC1 PC2 PC1& 2 LDAi LDAf LDAb GS 

83 82 90 81 79 80 85 85 86 

Table 3: Results for Feature Selection Techniques 

Figure 2 shows (using PCA) that several RMS and median frequency features, from different 

channels and frequency bands, appear along the principal component. This is consistent with 

the findings in [47]–[49]. The vertical axis shows that CH12_48_Var, CH9_48_Var, and 

CH3_0530_MFreq features align closest with the second principal component. Again, these 

results are consistent with the findings in [47]–[49]. 
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Figure 2: PCA for Median Frequency and RMS Feature Discrimination 

This study also extracts the top five uncorrelated features from each of the five regions 

covered by the EEG scalp electrodes as shown in Table 4. . This ensures that each region is 

represented without the bias from all other regions, and allows classifiers to detect focal 

seizures in different parts of the brain. The features extracted, using the generalised and 

region-by-region approach, are used to evaluate the capabilities of several classifiers 

considered in this study and are  

Feature set Description Features 

1 Top 5 features from region 1 

RMS CH2 0.5-30 Hz 

Samp Entropy CH2 0.5-4 

Hz 

RMS CH2 4-8 Hz 

RMS CH2 0.5-4 Hz 

Samp Entropy CH1 0.5-4 

Hz 

2 Top 5 features from region 2 

RMS CH16 0.5-30 Hz 

RMS CH16 0.5-4 Hz 

RMS CH12 12-30 Hz 

RMS CH16 12-30 Hz 

RMS CH16 4-8 Hz 

3 Top 5 features from region 3 

RMS CH3 0.5-30 Hz 

RMS CH3 0.5-4 Hz 

RMS CH4 4-8 Hz 

Med Freq CH3 0.5-4 Hz 

RMS CH4 0.5-30 Hz 

4 Top 5 features from region 4 

RMS CH18 4-8 Hz 

RMS CH18 0.5-30 Hz 

RMS CH17 0.5-30 Hz 

RMS CH17 0.5-4 Hz  
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RMS CH18 0.5-4 Hz 

5 Top 5 features from region 5 

RMS CH21 0.5-30 Hz 

RMS CH21 4-8 Hz 

RMS CH21 12-30 Hz 

RMS CH21 8-12 Hz 

RMS CH21 0.5-4 Hz 

Table 4: Top five features for the five scalp regions 

The top five features per region were selected based on their rank determined by the linear 

discriminant backward search technique, creating five feature sets containing five features 

each. The top 20 uncorrelated features and the 25 region-by-region features are compared in 

the evaluation.  

4.1.4 Classification 

Following an analysis of the literature, the study in this paper adopts simple, yet powerful 

algorithms. These include the linear discriminant classifier (LDC), quadratic discriminant 

classifier (QDC), uncorrelated normal density based classifier (UDC), polynomial classifier 

(POLYC), logistic classifier (LOGLC), k-nearest neighbour (KNNC), decision tree (TREEC), 

parzen classifier (PARZENC) and the support vector machine (SVC) [62].  

4.1.5 Validation Methods 

In order to determine the overall accuracy of each of the classifiers several validation 

techniques have been considered. These include Holdout Cross-validation, Sensitivities, 

Specificities, Receiver Operating Curve (ROC) and Area Under the Curve (AUC). The 

Holdout Cross-Validation technique uses 80 percent of randomly selected observations 

(N=19.2) to train the algorithms and 20 percent of randomly selected test cases to test the 

algorithms (N=3.8). 

5. EVALUATION 

5.1 Results Using Top Twenty Uncorrelated Features Ranked Using LDA Backward 

Search Feature Selection 

In the first evaluation, the top twenty uncorrelated features, extracted from each of the 

frequency bands within each of the EEG channels, and nine classifiers are used. The 

performance for each classifier is evaluated using the sensitivity, specificity, mean error, 

standard deviation and AUC values with 100 simulations and randomly selected training and 

testing sets for each simulation. In this study, high sensitivities are important to ensure that 

seizures can be detected within an alarm system. High specificities are considered equally 

important as high false alarm rates (more than 1 per hour) will deter doctors from using it.  

5.1.1 Classifier Performance 

The first evaluation uses all the seizure and non-seizure blocks from all subjects in the CHB-

MIT dataset (171 seizures and 171 non-seizures). The simulations use 80% for training and 

20% for testing. Table 4, shows the mean averages obtained over 100 simulations for the 

sensitivity, specificity, and AUC. 

Classifier Sensitivity Specificity AUC 

LDC 70% 83% 54% 
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QDC 65% 92% 62% 

UDC 39% 95% 65% 

POLYC 70% 83% 83% 

LOGLC 79% 86% 89% 

KNNC 84% 85% 91% 

TREEC 78% 80% 86% 

PARZENC 61% 86% 54% 

SVC 79% 86% 88% 

Table 4: Classifier Performance Results for Top 20 Uncorrelated Features 

As shown in Table 4, the sensitivities (seizure), in this initial test, are low for all classifiers. 

This is interesting given that the dataset is balanced between seizure and non-seizure blocks. 

One possible reason for this is that the ictal length across the 171 records was 60 seconds. 

However, in the CHB-MIT records ictal periods ranged between 2 and 752 (cut down to 60 

seconds) seconds. It is possible that some ictal blocks resemble non-seizure records resulting 

in misclassification (particularly blocks that contain 2 seconds of ictal data). However, given 

that 64% of the ictal blocks contain more than 30 seconds of icta data, this is appropriate for 

training. Furthermore, it is a decision that is supported by the relatively high sensitivity, 

specificity and AUC values. Nonetheless, further investigation is required. Table 5 shows the 

error and standard deviations obtained over 100 iterations.  

 80% Holdout: 100 Repetitions 

Classifier Err SD 

LDC 0.23 0.05 

QDC 0.21 0.04 

UDC 0.32 0.04 

POLYC 0.23 0.05 

LOGLC 0.17 0.04 

KNNC 0.15 0.04 

TREEC 0.20 0.05 

PARZENC 0.26 0.04 

SVC 0.17 0.04 

Table 5: Cross Validation Results for top 20 Uncorrelated Features 

The results show that all techniques are able to achieve a classification error, lower than the 

base-rate error of 50% (i.e. 171/342). 

5.1.2 Model Selection 

The receiver operator characteristic (ROC) curve shows the cut-off values for the false 

negative and false-positive rates. Figure 3 indicates that several of the classifiers performed 

reasonably well. The AUC values in Table 4 support these findings with good accuracy values 

for the LOGLC and KNNC classifiers.  
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Figure 3: Received Operator Curve for top 20 Uncorrelated Features 

5.2 Results Using Top Five Uncorrelated Features Ranked Using LDA Backward 

Search Feature Selection from Five Head Regions 

In the second evaluation, the top five uncorrelated features, extracted from five main regions 

across the head, are used to determine whether the detection of seizures can be improved. 

Again, the performance for each classifier is evaluated using the sensitivity, specificity, mean 

error, standard deviation and AUC values with 100 simulations and randomly selected 

training and testing sets for each simulation.  

5.2.1 Classifier Performance 

The simulations use 80% for training and 20% for testing. As shown in Table 6, the 

sensitivities (seizure), for most of the algorithms have improved, including the specificities 

values. The AUC results also show improvements for several of the classifiers, with 93% 

achieved by the KNNC classifier. From the previous results, we find a 4% increase in 

sensitivities, a 3% increase in specificities and a 2 % increase in the performance of the 

KNNC classifier, with other classifiers improving by similar values.  

Classifier Sensitivity Specificity AUC 

LDC 78% 88% 55% 

QDC 84% 86% 60% 

UDC 51% 91% 70% 

POLYC 78% 88% 89% 

LOGLC 82% 84% 90% 

KNNC 88% 88% 93% 

TREEC 82% 81% 89% 

PARZENC 81% 93% 61% 

SVC 85% 86% 90% 
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Table 6: Classifier Performance Results from Top five Uncorrelated Features from Five 

Head Regions 

Again, the results in Table 7 show that the mean error has decreased by 3% using the holdout 

technique. This indicates that using a region-by-region approach is better at discriminating 

between seizure and non-seizure events. 

 80% Holdout: 100 Repetitions 

Classifier Err SD 

LDC 0.16 0.04 

QDC 0.14 0.04 

UDC 0.29 0.04 

POLYC 0.16 0.04 

LOGLC 0.17 0.04 

KNNC 0.12 0.03 

TREEC 0.18 0.05 

PARZENC 0.13 0.04 

SVC 0.14 0.03 

Table 7 Cross Validation Results from top five Uncorrelated Features from Five Regions 

Overall, the mean errors produced, using all of the validation techniques, are significantly 

lower than the expected error, which is 171/342, i.e. 50%. 

5.2.2 Model Selection 

Again, the ROC curve shows the cut-off values for the false-negative and false-positive rates. 

Figure 4 indicates that the performance of several classifiers improved. The AUC values in 

Table 6 support these findings with the KNNC classifier showing a 2% increase in 

performance.  

 

Figure 4: Received Operator Curve for top five Uncorrelated Features from Five Head 

Regions 
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6. DISCUSSION 

The study has focused on discriminating between seizure and non-seizure EEG records across 

a group of 23 subjects, rather than a single individual. The classifiers are trained using all 24 

cases, and therefore, classification is generalised across the whole population contained in the 

CHB-MIT database. To achieve this, features from all the channels that capture the EEG in 

all parts of the brain were used. In the initial classification results, the top 20 uncorrelated 

features from the whole of the head (not region-by-region) were extracted from 805 possible 

features. This was determined using the linear discriminant analysis backward search 

technique to rank features. This approach achieved reasonably good results, using the KNNC 

classifier, with 84% for sensitivity, 85% for specificity, 91% for the AUC, with a global error 

of 15%. 

Interestingly, the features used in this initial evaluation, involved channels from the four lobes 

of the brain, occipital, parietal, frontal, and temporal, but not the channels spread across the 

centre of the head. This implied that rather than having generalised seizures across the whole 

of the brain, a majority of focal seizures occurred in each of the lobes. Unlike studies that 

used the BONN dataset, which only contains one channel; or the FRE dataset, that contains 

six channels and identifies focal and extra focal channels; the CHB-MIT database used in this 

study contains 23 channels with no information on the seizure type or location.  

Using the top five uncorrelated features from EEG channels specific to the five main regions 

of the head improved the sensitivities and specificities, while producing high AUC values. 

The best classification algorithm was again the KNNC classifier, which achieved 88% for 

sensitivity, 88% for specificity, and an AUC value of 93% with a 12% global error. This was 

followed closely by the SVC classifier, which achieved 85% for sensitivity, 86% for 

specificity, and an AUC value of 90% with a 14% global error. 

Comparing our results with other studies, we find that Shoeb [18] produced a better 

sensitivity value (96%) than those reported in this study. However, their approach utilised a 

SVM classifier trained and tested on an individual patient and was not concerned with the 

generalisation of seizures across a bigger population group. Consequently, the 88% sensitivity 

value produced in this paper appears to be extremely good given that our classifiers were 

trained and tested on data from 23 different patients, not just one. In a similar study, Nasehi et 

al. [20] used a neural network and reported a sensitivity value of 98%, which again is higher 

than the results reported in this study. However, as with the work of Shoeb, the classifiers 

were trained and tested on specific patients.   

In comparison with other studies that adopted a similar approach to our study, our approach 

produced better overall results. For instance, in [19]  Khan et al. report a 83.6% specificity 

value, while Patel et al. [31] report 94% for sensitivity, 77.9% for specificity, and 87.7% for 

overall accuracy. Yuan et al. [63] report 91.72% for sensitivity, 94.89% for specificity, and 

94.9% for accuracy. While Aarabi et al. [64], Nicolaou et al. [30], Kannathal et al. [50], and 

Patnaik et al. [30] all reported similar results. The results found in this paper can be compared 

in more detail with the papers listed in Table 8.  

Author Year Data set Classifier Patients Sens (%) Spec (%) Acc (%) FPR/h 

Aarabi et al. 

[64]  
2006 AMI BPNN 6 91.00 95.00 93.00 1.17 
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Acharya et al. 

[25]  
2012 BONN 

PNN, SVM, C4.5, BC, 

FSC, KNN, GMM 
10 94.4-99.4 91.1-100 

88.1-

95.9 
- 

Bao et al. [65]  2008 BONN PNN 10 - - 71-96.8 - 

Chandaka et al. 

[66]  
2009 BONN SVM 10 92.00 100 95.96 - 

Kannathal et al. 

[50]  
2005 BONN ANFIS 10 91.49 93.02 92.2 - 

Kumar et al. 

[67] 
2010 BONN EN, RBNN 10 - - 94.5 - 

Kumari and 

Jose [68] 
2011 BONN SVM 5 100.00 100 100 0 

Nicolaou and 

Georgiou [22] 
2012 BONN SVM 10 94.38 93.23 

80.9-

86.1 
- 

Polat and 

Gunes [69] 
2007 BONN DTC 10 99.40 99.31 98.72 - 

Polat and 

Gunes [26] 
2008 BONN C4.5 10 99.49 99.12 99.32 - 

Song and Lio 

[70] 
2010 BONN BPNN, ELM 10 97.26 98.77 95.67 - 

Srinivasan et al. 

[21]  
2007 BONN PNN, EN   - - 100   

Subasi [71] 2007 BONN MPNN, ME 10 95.00 94 94.5 - 

Subasi and 

Gursoy [72] 
2010 BONN SVM   99-100 98.5-100 

98.75-

100 
- 

Ubeyli [23] 2008 BONN SVM 10 99.25 100 99.3 - 

Ubeyli [24] 2009 BONN 
PNN, SVM, MPNN, 

CNN, ME, MME, RNN 
10 99.20 99.78 99.2 - 

Yuan et al.[73]  2011 BONN SVM, BPNN, ELM 10 92.50 96 96 - 

Zheng et al. 

[74]  
2012 BXH SVM 7 44.23 - - 1.6-10.9 

Khan et al. [19]  2012 CHBMIT LDA 5 83.60 100 91.8   

Nasehi and 

Pourghassem 

[20] 

2013 CHBMIT IPSONN 23 98.00 - - 0.125 

Shoeb [18] 2009 CHBMIT SVM 24 96.00 - - 0.08 

Acir and 

Guzelis [32] 
2004 DEU SVM 7 90.30 - -   

Rasekhi et al. 

[33]  
2013 EUR SVM 10 73.90 - - 0.15 

Park et al. [29]  2011 FRE SVM 18 92.5-97.5 - - 0.2-0.29 

Patel et al. [31]  2009 FRE SVM, LDA, QDA, MDA  21 90.9-94.2 59.5-77.9 
76.5-

87.7 
- 

Patnaik and 

Manyam [30] 
2008 FRE BPNN 21 91.29 99.19 - - 

Williamson et 

al. [28]  
2011 FRE SVM 21 90.80 - - 0.094 

Yuan et al. [63]  2012 FRE ELM 21 93.85 94.89 94.9 0.35 

Bao et al. [65]  2009 JPH PNN 12 - - 94.07 - 

Saab and 

Gotman [75] 
2005 MON BC   76.00 - - 0.34 

Grewal and 

Gotman [76] 
2005 MON2 BC 16 89.40 - - 0.22 

D’Alessandro et 

al. [77]  
2005 

PEN & 

BON 
PNN 2 100.00 - - 1.1 

Sorensen et al. 

[78]  
2010 RIG SVM 6 77.8-100 - - 

0.16-

5.31 

Gandhi et 

al.[71] 
2011 

SGR & 

BONN 
PNN, SVM 21 + 10 - - 99.9 - 

D’Alessandro et 

al.[26] 
2003 Unknown PNN 4 62.50 90.47 - 0.2775 

Subasi [79] 2006 Unknown DFNN 5 93.10 92.8 93.1 - 
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Table 8: Seizure detection studies and classification results 

This work has potential future clinical applications in the investigation of patients with 

suspected seizure disorders and may be useful in the assessment of patients with non-epileptic 

attack disorder (NEAD). Introducing automated seizure detection technologies could help 

increase capacity within healthcare systems such as the UKs National Health Service (NHS), 

which currently suffers from a chronic shortage of trained clinical neurophysiologists to 

interpret EEGs. Tele-EEG reporting has previously been suggested as a solution and more 

recently online systems [80], [81], which are interesting approaches, but carry increased costs 

and concerns over data security. Nonetheless, these, including automated seizure detection 

may be viable solutions, following further work aimed at improving accuracy further. 

7. CONCLUSIONS AND FUTURE WORK 

Within a supervised-learning paradigm, this study has addressed this challenge by utilising 

EEG signals to classify seizure and non-seizure records. Our approach posits a new method 

for generalising seizure detection across different subjects without prior knowledge about the 

focal point of seizures. Our results show an improvement on existing studies with 88% for 

sensitivity, 88% for specificity and 93% for the area under the curve, with a 12% global error, 

using the k-NN classifier. 

The results suggest that the algorithms in-situ with existing clinical systems and practices 

may enable clinicians to make a diagnosis of epilepsy and instigate treatment earlier. It can 

help to reduce costs by limiting the number of trained specialists required to perform the 

interpretation by automating the detection of correlates of seizure activity generalised across 

different regions of the brain and across multiple subjects. 

There are a large number of features reported in the literature, which have not been 

considered in this paper. In particular our future work will consider the set of features 

described in [82] and [83]. Furthermore, our future work will investigate the use of more 

advanced machine learning algorithms, despite the good performance of the classifiers 

considered in this paper. In particular, we will investigate the use of convolutional neural 

networks [84] and SVM with different kernels [85].  

Window sizes will also be considered to determine whether further improvements on 

accuracies can be made. Future development will also utilise regression analysis and a larger 

number of observations. This may help to define the characteristics of the pre-ictal phase. In 

addition, more advanced classification algorithms, and techniques, will be considered, 

including advanced artificial neural network architectures (higher order and spiking neural 

networks). The investigation and comparison, of features, such as fractal dimension and 

cepstrum analysis, autocorrelation zero crossing and correlation dimension, has also not been 

performed. These techniques should be investigated in a head-to-head comparison, with linear 

methods. 

The paper has investigated the use of classic yet powerful machine learning algorithms and 

evaluated their ability to detect correlates of seizure activity. While the results are convincing 

the paper does not address how the system can be generalised for normal use. Furthermore, it 

does not address real-time concerns where performance will degraded significantly. The 
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approach evaluates the algorithms using offline data, however, this is not a good indicator of 

the system’s ability as the signals that are used to train and test the algorithms are processed 

and cleaned and appropriate features extracted. This is a major concern and our future work 

will look to implement the methodology pipeline using real-time signals, using advances in 

the Internet of Things and Big Data community that currently utilise data processing 

technologies, such as Apache Spark. 

Finally, there are concerns regarding the verification of the results produced using the CHB-

MIT dataset against other datasets. Our future work will investigate the use of a bigger 

dataset, using patients provided by our co-author from The Walton Centre NHS Foundation 

Trust, and other datasets that permit access to verify the findings in this paper.  

Overall, the study demonstrates that classification algorithms provide an interesting line of 

enquiry, when separating seizure and non-seizure records.  
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