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An Adaptive Multi-Population Framework for
Locating and Tracking Multiple Optima

Changhe Li, Trung Thanh Nguyen, Ming Yang, Michalis Mavrommtis, Shengxiang Yang

Abstract—Multi-population methods are important tools to the number of peaks. Therefore, to effectively solve DOPs by
solve dynamic optimization problems. However, to effectely MPMs, one key issue is to adapt the number of populations
track multiple optima, algorithm designers need to addressa [23], [30]
key issue: adaptation of the number of populations. In this pper, ’ ) o . )
an adaptive multi-population framework is proposed to address A good practice is to choose the number of populations in
this issue. A database is designed to collect heuristic infmation  relation to the number of optima if known [21]. Many experi-

adaptively adjusted according to statistic information rdated to .
the current evolving status in the database as well as a heutic would negatively affect the performance of MPMs [3], [6],

value. Several other techniques are also introduced, inctling a  [21], [23], [38]. This problem becomes more challenging for
heuristic clustering method, a probabilistic prediction sheme, DOPs with a changing number of optima/peaks [23], [38].
a population hibernation rule, and a peak hiding method. The In the literature of MPMs for DOPs, many studies focus
particle swarm optimization and differential evolution algorithms g 3 fixed number of populations [6], [16], [25]. Although

are implemented into the framework, respectively. A set of mlti- ; : :
population based algorithms are chosen to compare with the algorithms based on a dynamic number of populations were

proposed algorithms on the moving peaks benchmark using fau Proposed [9], [20], [32], the total number of individuals
different performance measures. The proposed algorithms re IS fixed. This limitation constrains the adaptability of Buc
also compared with two peer algorithms on a set of multi-modl  algorithms. For example, it would be out of the capability
problems in static t_environments. Experimental reSl_JIts sh_vy that  of sych algorithms to track all optima in parallel when the
tsrleer?;?i%?ed algorithms outperform the other algorithms inmost number of optima is more than the total number of individuals
To the best of our knowledge, only three versions of adaptive
Index Terms—Multi-population optimization, dynamic opti-  \MpMs [3], [23], [38] have been proposed for DOPs so far.
mization, multi-modal optimization, population adaptation. The difficulties in developing such algorithms lie in tha): a
the number of optima in the fithess landscape is unknown and
. INTRODUCTION b) the relationship between a good choice of the number of

. . : opulations and the number of optima is also unknown even
Generally speaking, multi-population methods (MPMs) u iFa priori knowledge of the number of optima is available.

more than one population to cooperatively search in differe ) ] )
local areas in the fitness landscape to locate multiple @ptim 10 address the aforementioned issues for MPMs, this pa-
the global optimum. They are widely used to track multipl@€" Proposes an adaptive multi-population (AMP) framework
optima/peaks in parallel for dynamic optimization probkambased on an adapuve mech.anlsm. The adaptive mechamsm
(DOPs) in continuous space. The motivation is that eat$@ms from algorithm behavior changes by means of inter-
population covers a different peak, so that tracking théglo acting with environments and, in turn, guides the changes
optimum would be easy if the global optimum moves tgf the algorithm behavior toward a promising direction. In
the area where a population is covering. For a DOP withthe framework, a probabilistic scheme is used to determine
certain number of peaks, tracking the global optimum woulyhether to _inc_rgase, decrease, qr_make no ch_ange to the total
be inefficient if the number of populations is far less tham tfiumber of individuals. A peak hiding method is proposed to
number of peaks, on the other hand, the tracking would al8le peaks that have been explored so that no more popugation
be inefficient if the number of populations is far more thayould move to those peaks any more.

The most important difference between this work and exist-
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Il. RELATED WORK construction starts from the worst particle and all swarms
i . o contain a fixed number of three particles. Particles are ran-
One early version of MPM is the self-organizing scout§omly re-grouped into several swarms after a certain number
(SOS) algorithm [9] proposed to solve the moving peaks jterations in [15]. A multi-nation genetic algorithm was
benchmark (MPB). SOS starts from a parent population “"B}’oposed in [42], where a hill-valley detection method was
explores new promising peaks. Child populations, which afgoduced to create sub-populations (note that, thisrithgo
used to track peaks, are generated by splitting off from ;s proposed before SPSO [32] but it has not been widely
parent population when a certain conditidorking genera- ;seq due to the limitation of the hill-valley detection madj
tions are detected) is satisfied. Based on the scout model of,stead of creating populations during the runtime, many
SOS, several other algorithms were proposed. A multi-swaiibms start with a fixed number of populations. One of
algorithm was developed in [4], where a part of swarms explgje most popular algorithms is the atomic swarm model [5],
peaks that have been detected and remaining swarms Kg@Rre three kinds of particles with different roles are dadin
exploring new peaks. Another multi-swarm forking algomth They are charged particles, quantum particles, and neutral
[44] was developed to solve the MPB by applying the samgticles. In each swarm in the model, either changed pestic
idea _Wlth SOS to PSO. _A fast m_ultl-swa_rm_ optimizationmcpso [6]) or quantum particles (mQSO [6]) play the role of
algorithm was proposed in [19] using a similar idea withyaintaining diversity and neutral particles are used tatec
SOS to organize multiple swarms except that child swarms &jgaks. An exclusion principle ensures that only one swarm
created when changes are detected. To give more compudgounds a single peak and an anti-convergence pringple i
time to those productive swarms than those unproducti¥g introduced to explore new promising peaks.
swarms, a hibernation multi-swarm optimization (HmSO) was pjotivated by the atomic model [5], several similar al-
proposed in [16]. A child swarm is forced to hibernate if it%orithms have been proposed. A multi-population dynamic
radius is less than a converging threshold value and thes§itng;tferential evolution (DynDE) [28] algorithm was propake
of its best particle is less than the fitness of the global bgghere four types of individuals, named DE, entropy DE,
particle by a predefined level. quantum and Brownian, are defined. An improved version
Instead of the splitting idea, many algorithms use a rgf mQSO was proposed in [11], where two heuristic rules
grouping idea to create populations. A popular algorithm jge applied to further enhance the diversity when changes
the speciation-based PSO (SPSO) [32]. As SOS, SPSO algeur. A fuzzy-C-means strategy was introduced to adapt the
starts with a large size swarm. Differently, the initial $ma exclusion radius in [34]. In the algorithm, all particlesear
is divided into a number of sub-swarms by a speciation-basggnsformed to quantum particles till the next iterationewta
rule. A swarm is created by combining the best particle Witthange is detected. Recently, a cooperative quantum PO [41
particles that are close to that best particle (i.e., thead& \yas proposed by using a cooperative framework introduced
to the best particle is less than a predefined value). Onge[7]. A multi-swarm algorithm, called finderCtracker miuilt
a swarm is constructed, its particles are removed from tBgarm PSO (FTMPSO), was proposed in [48] by integrating
initial swarm. These procedures are repeated until th@lnitseyeral schemes, including a finder scheme, a tracker scheme
swarm is empty. The construction of swarms is performegdchange detection scheme, a wakening and sleeping scheme,
every iteration. Based on this re-grouping idea, many imgdo and a local search scheme. Thereafter, the authors proposed
versions of SPSO and variants were proposed. a multi-swarm algorithm based on a new artificial fish swarm
A mechanism to remove duplicated particles was introducggyorithm (mMNAFSA) [47]. In the algorithm, a mechanism of
to enhance the performance of SPSO [33]. Another improvéifiding and covering potential optimum peaks was proposed.
version of SPSO (rSPSO) was developed by integrating a leasinstead of using different types of individuals in each
square regression method [2]. Recently, a multi-poputatigopulation, several MPMs use different search algorithons f
harmony search algorithm was proposed [40], where a haffferent populations. A collaborative evolutionary swaop-
mony search method [13] is used for each population to locafgization (CESO) algorithm was proposed in [25], where two
peaks. The best individuals of converged populations ap¢ kewarms, using the crowding DE [39] and PSO, respectively,
to replace redundant ones. cooperate with each other using a collaborative principle t
In addition to the speciation-based approaches, nichitack the global optimum. Thereafter, a new version of CESO
techniques are also widely used to maintain multiple poptas proposed in [26], called evolutionary swarm coopeeativ
ulations. An adaptive niching PSO was proposed in [Higorithm (ESCA), where another swarm using PSO was
where niching radii can be calculated adaptively. A vectoadded and the cooperation principle was also updated. A dual
based PSO (VBPSO) was developed in [35], in which ttvarm PSO was proposed in [49], where the information
dot product of two vectors is used to identify niches. Thef the two best particles of the two swarms is transmitted
algorithm shows a competitive performance for multi-modait the dimensional level with a certain probability. A multi
optimization. Thereafter, VBPSO was extended in [36] fagnvironmental cooperative model [17] was introduced td dea
DOPs. Recently, a cluster-based DE algorithm for niching waiith DOPs that have different sub-problems or environments
proposed in [29], in which different kinds of strategies er Another important kind of MPMs are clustering-based al-
introduced to efficiently track multiple peaks. gorithms. A popular example is the clustering PSO (CPSO)
A composite PSO was proposed in [24], where swarn6], where a hierarchical clustering method is used toterea
are constructed in a similar way with SPSO except that theultiple swarms by clustering a random swarm whenever
IEEE Transactions on Evolutionary Computation
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a change is detected. In CPSO, an overlapping detectidigorithm 1 AM P()

principle was proposed to identify whether two swarms crowd: P < 0; D < 0; ¢« 0 o

around one single peak when they move into each othe _grftglir‘sgg'%)?c’p“'at'w with gSize individuals;

search area. One of the two swarms is removed if they ai while stopping criteria are not satisfitb

not overlapped but overcrowded (i.e., they crowd around orfe  for each populatiof[i] do P[i].search(); end for

single peak). Thereafter, CPSO was enhanced to a versi(ﬁn, Hibernate populations when they find new peaks; .
- : Derate individuals if they fall into the attraction arehamy peak;

called CPSOR, which does not need to detect changes. CGf- Remove excluded populations;

SOR introduces a principle that the population diversity i®: if 7595" <6 - S then

automatically increased once the total number of indivislua’: Wake up hibernating populations;

. : Create a map and put it to databdse

is less than a threshold value. Recently, a new clusterdbage: Estimate the number of individuals for the next phase;
DE algorithm was proposed in [14], whekemeansis used 13: Create a random populatiai’;

. . . A%
to create populations whenever a change is detected. 'Ii@,e ]tP:t]iLi,Cl“St”(C)'

number of populations may vary after every certain time spag  end if

depending on the performance of the algorithm. 17: end whilex P is a list to store all populationd) is a database to store
All methods mentioned above do not address one important ™aps from the number of populations to the total number dtiddals,

. . . gSize is the initial population size$S' is the search range.

issue of MPMs for DOPs, which is how to adapt the number

of populations to dynamic environments, especially in the

situation where the number of peaks changes overtime.sev%rdjust the number of populations may lead to mistakes due
attempts have been made to address this difficult issue.fA sg} ‘ihe complex nature of dynamic environments. In order to
adaptive multi-swarm optimizer (SAMO) [3] was developedqqress the aforementioned issues of adapting the number of

based on the mQSO [6]. SAMO starts with a single fregqonylations, we introduce the AMP framework in this paper,
swarm. The number of free swarms is decreased when SAf§ich is described below.

of them are converging. SAMO creates a new free swarm if
there are no free swarms. Converging swarms are identified by ||| A pAPTIVE MULTI-POPULATION FRAMEWORK
simply checking their radius against a predefined values Thi

way, the number of populations will be adaptively adjusm(tj)'fdthree major components: clustering, tracking and adgpti

Accordingly, the search area of each swarm is also adjus ; .
: . . e clustering component is used to create a number of non-
by a formula taking the number of populations into accoun

overlapped populations, which have no overlapping search

The motivation of SAMO was adopted in a DE algorithmareas with each other without the need of manually settigg an
called DynPopDE [38]. A new free population is created when y 9

one population is identified as a stagnating population. g\arameters.Thetrackmg component allows locating arira

The work flow of the proposed AMP framework consists
ing local optima using any population-based search algorit
2T ; Finally, the adapting component adjusts the total number of
re-initialization due to exclusion. opulations by predicting what will be the best number of
Note that, in this paper a population is considered “coﬁ]— P yp 9
- : N Algorithm 1 presents the framework of the AMP. The
decrease. A population is considered “converged” if ther-aveada tation mechanism is trigaered whenever the averaiesrad
age distance between individuals is less than a threshbld.va P 99 9
avg | i .
permanently but does not show any trend of converging [1é/£|ue6 - S. Then, Algorithm 3 (introduced later in Sect.lll-B)
Recently, an adaptive multi-swarm optimizer (AMSO) [Zsllashase. A random populatiod’() is created and clustered into
g\?ﬁgedir?yhtzg dﬁLUSter?nnc% Eizg?dthustre]ﬂrrl]nbgg‘. Eu;;z ﬂl%). The detailed description about each component is given
ppIng gp P ' Pop in the following subsections.
number of individuals are introduced when the drop rate ef th Heuristic Cl )
number of populations over a time span is less than a snéll euristic Clustering
difference of the number of populations between the curreiet create non-overlapping populations. Let:
increasing point and the previous increasing point. Thig,wa « d(i,j) be the Euclidean distance between two individuals
during the runtime. e D(Cy,Cq)=minec, jec, d(i, j) be the distance between
Although there are several adaptive MPMs for DOPs, the two clustersC; andCs.
on the current information available, e.g., no free popula- wherei* is the average position of all individuals .
tions in SAMO [3], appearance of stagnating populations dinter:ch,czecD(Clv02) be the sum of inter-cluster
populations at the current and previous increasing pomts i e dintra=y Zi,jeck d(i,j), k = 1,2,...,|C| be the sum
AMSO [23]. Simply relying on the current information to of intra-cluster distances of all clusters @y where the

stagnating population will be removed if it is identified for,
verging” if the average distance between individuals begin populations.

T . . A . . (reomvy of non-stagnating populations is less than a small
A population is considered “stagnating” if it stops impnogi

called to estimate the number of individuals for the next
was proposed. AMSO maintains a number of populatloa number of small populations, which are appended to a list
will decrease after each diversity increasing point. A aiert
value. The number of individuals to be adjusted dependsen th A single linkage hierarchical clustering method [27] isdise
AMSO is able to adaptively adjust the number of populations i andj in the D-dimensional space.
principles to adjust the number of populations simply rely « R(C) = ‘—é‘ziec d(i,i*) be the radius of cluste€,
in DynPopDE [38], and the difference of the number of distances between each pair of clusters in adist
IEEE Transactions on Evolutionary Computation
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Algorithm 2 Cluster(C")

1 R — ]
1: for ¢« < |C’| do C; « C’[i]; end for > C’ is a population  z gl i
2: Calculated;y e, anddinirq Of C; > C=[C1,C2,..] & os6f ngeéchr:r?sg— ,
3: while dintra < dinter do 5 o4f T ncreage ,
4: MergeC; and C;, where D(C;, Cj)=min;; «|¢| D(Ci, Cj); & o2f ]
5: Updatedinter andd;ntra; 0 fmmrme e - ‘ : ‘ -

6: end while M1 M ML -1 0 1 o MM MeL
7: ReturnC;

NE - Net
Fig. 1. The probability of increasing,t déclreasing, or mgkiio change to the
number of individuals, wheré— M, M] is the probabilistic rangelNy is the
number of populations at the end of evolving phase

intra-cluster distance of clust&r;. is the sum of all the
distances between each pair of individualsp.

Algorithm 2 shows the work flow of the heuristic clusteringmprove over two successive iterations. However, this way o
method to cluster a populatiofl’. It first creates a lisC of identifying stagnating populations is not very effectivedait
clusters with each cluster containing only a single indi&kd may cause too many populations to be generated. In AMSO
Then, for each iteration, it merges a pair of clusters whid23] new populations are added if the number of populations
have the smallest distance among all pairs of clustegs@amd over a time span is dropped beyond a threshold. However, this
satisfies the conditiod;,,;ro < dinter. Whend;,ir, iS €qual requires setting the correct values for the time span angd dro
to or greater tham,,.., the clustering procedure terminatesthreshold, which may not be easy [23].

Then, all clusters inC are appended to a population IBt  Based on the above considerations, we aim to find a simple
(see Steps 3 and 14 in Algorithm 1), which is empty initiallyet effective way to identify the moment when populations
The benefit of this heuristic ClUStering method, Compared g?e Converging_ To this aim, the average radmg}’gl(u) of

the existing method in [21], [23], [46] is that it does nohon-stagnating populations is monitored. Population stelju
need users to manually set parameter such as the lower giihts are triggered wher§o is less than a threshold value
upper bounds for cluster size. Note that, this method cannots (S denotes the range of the solution space). Stagnating
guarantee that the sizes of all obtained clusters meet &reelqupopulations should be excluded because they can seriously
minimum population size for an algorithm (e.g., in this papeffect the judgement of whether non-stagnating population
the minimum population size is five for the DE and two fogre converging if they have large search radii. In this paper
PSO). In this paper, such clusters do not take part in thepopulationC is regarded as a stagnating population if all
optimization process and their individuals are used asa@ndthe three conditions below are met: a) its radius does not

individuals when a random populatiofi) is created (see Stepshrink after a certain number of successive iterationscihi

13 in Algorithm 1). is equal to its sizdC| [45]; b) its radius is greater than the
average radius of all populations It c) its radius is greater
B. Adapting Populations than 0 - S. Note that, this method does not guarantee that

There are two main concerns regarding adapting the numgepopu!ation, whic_h satisfies the three conditipns, is_, a real
of populations to changes: a) when to make an adjustment at@gnating population. However, a real stagnating pojulat
b) how many populations to be adjusted. will satisfy the three conditions.

For the first concern, many researchers consider the momenthe second concern is very difficult to address directly due
when a change occurs as the time to make an adjustméhthe two difficulties mentioned in Sect. I, namely the lack
(e.g., increasing/introducing diversity or reusing imhation Of knowledge on the number of optima and on the correlation
learnt from the past in many studies reviewed above [@)etween the number of optima and the number of populations.
[8], [20], [25], [26], [33], [46]). However, this strategyals However, we may still be able to indirectly address this
a limitation: it may not work for changes that are hard ogoncern by observing changes of algorithm behaviours. For
impossible to detect by re-evaluating a set of points in demp €xample, it can be easily inferred that in an MPM algorithm,
environments, such as dynamic environments where a partie@ number of survived populations (i.e., populations fhmet
the fitness landscape changes [23], [30] or there is noise. New, unexplored peaks — these populations will survive the

The adaptive MPM algorithms in [3], [23], [38] do notexclusion procedure in MPMs) is proportional with the numbe
use the above strategy. However, these algorithms have otk peaks in the fitness landscape. If the number of peaks
issues. In SAMO [3], the issue is that a stagnating swarm wilicreases, so does the number of survived populations, and
a large radius due to having individuals searching on difier vice versa. Therefore, we can use this heuristic relatipnsh
peaks can be mistaken as a converging swarm if the total nupgtween the number of survived populations and the number
ber of swarms is far less than the number of peaks. As a res@ftjpeaks to predict the number of populations to be adjusted.
this stagnating swarm will not be eliminated and consedyent Given this heuristic, we can address the second concern
no new swarm can be created. Althouth SAMO still works iby following a two-step process. The first step is to decide
this case because stagnating swarms normally will tramsfowhether to increase, decrease, or make no change to the
to converging swarms after a change occurs, but, this Bituattotal number of individuals. To make a choice from the three
may affect the performance of SAMO. In DynPopDE [38], thigictions, a probabilistic prediction scheme, as illustraie
stagnating issue is taken into account, where a populasionFig. 1, is introduced, wher&/; is the number of populations
taken as a stagnating population if its best individual dugs at the end of evolving phage

IEEE Transactions on Evolutionary Computation
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Algorithm 3 Adjust( )

t 0 1 2 3 4 5
1: ratio < |N¢ — Ne—1|/M;

2: if ratio >=1then f «+ 1; NiN?| 1610 | 149 | 1510 | 148 | 129

3: else ifratio = 0 then f < 0; 2 |¢ | 10055 | 6545 | 6048 | 6242 | 5243 | b =?

4: else - — — —

e pe etk then fern PR random number wiin [0.4]: | # of populations (N3 19=(9.52) Duiol=(65+52)12=58.5

7:  elsef « 0; # of individuals|| Dojoj=6.5 /5 =N(58.5,6.5)+1*(9-8)*5=66
8: end if -

9: end if 8 62 Behavior change N § - N

10: If+1 < N(Du[Nf] Do [NF]) +5f - (Nf = NE_y); D

»
9 65 |52 | »
INg 1oy | D | Dulnil + N
10| (55 |60 NG , )

. It+1|
In this scheme, one of the three actions is taken depending —— || ‘ """""
on the value ofN/-N; ; and a probability, which is related _ _ _
to [N¢-N¢_,|/M. The value ofM >0 determines the prob- Fig. 2. The adaptation mechanism of the proposed AMP.
abilistic range (the scheme is deterministic)if is one). As
illustrated in Fig. 1, the larger the difference betweénand Show that the value of ten is a reasonable choice.
N¢ ,, the larger the probability of increasing/decreasing the Fig. 2 shows an example of the estimation process from
number of individuals. Algorithm 3 presents the pseudoecodhe databaséD with five maps. In Fig. 2, the number of
of this probabilistic scheme. Note that, this scheme canriiPulations at the current adjustment point is nine and the
guarantee that an action made by it is always right. HowevéHrrent map is (9,52). Then, the number of individuals fer th
it is expected that this scheme will improve the adaptatibn Bext evolving phaself) can be obtained by Eg. (1), which
algorithms in adjusting the number of individuals. is 66. As shown in the bottom right graph in Fig. 2, the
The second step is to estimate how many individuals sho@gaptation of the AMP is a feedback loop. The number of
be set in the near future. Different from the existing methodOpulations changes over time by interacting with the probl
[3], [23], [38], where the number of populations changesetias':or example, if increasing the number of population makes th
on the current evolving status, in this paper the adaptaionAMP find new peaks, the AMP will keep doing so until no new
achieved based on historical data and a heuristic adjustmd¢aks can be found. On the other hand, if the number of peaks
To achieve this objective, we first create a map from titecreases, the number of populations will be likely to desee
current number of populationsVf) to the total number of accordingly. The databade keeps receiving feedback of the
individuals at the beginning of the current phag®) (vhenever algorithm behavior changes, in turn, it further guides the
a new adjustment is triggered. Note that, for the first maghanges of the algorithm behavior. Therefore, the AMP is a
an over large initial population (far larger than needed, e Self-regulating framework.
500 individuals for the MPB with ten peaks) would affect the Note that, the constant value 5 in Eq. (1) is a step size.
estimation if we usel? (the initial population size) to createlts value should be small and roughly equal to the average
it. To address this issue, we ugefor the first map instead of Population size. This way, the number of populations for the
IY. Then, the map is added into a datab&sewhich records next evolving phase would be close to the expected value.
all maps created since the start of the run. To estimate #id00 large/small value will cause too many/few populations
number of individuals, we average the number of individuagenerated. Considering the average population size for all
of all maps which have the same number of populations #stances tested in this paper (4.687) and the minimum popu-
the current map. Then, the number of individuals for the nelgtion size for the DE (5) and PSO (2), a value of 5 is chosen
evolving phase is estimated by the formula below: for this constant.

Its1 = N(Du[N{], Do [N;]) +5f - (N; = Niv), (D) : :
C. Population Exclusion

where N (a, b) is a normally distr_ibl_Jted random number with Over-crowding populations, which are multiple population
the mear: and the standard variatian D, [N¢] and Do [N{] ~ that surround the same peak, are not allowed in the AMP. In
are thg mean and standard dewaupn, respectively, Of'”hd'vthis paper, two populations are detected as over-crowding i
uals with maps that hava’; populations,f € {0, 1} denotes o have at least one individual in each other's searchsarea
if to take the corresponding action into account. Then, the population with the worse best individual is reetv

meaIIy, a random populatiod” is created with tf;}e size of from P (see Step 8 in Algorithm 1). Note that, this method
I{, -1 (see Step 13 in Algorithm 1). Note thak,,, will  c5nn0t guarantee that two populations, which are detected a

need to repair in the case 8f,; <= I;, whereC" is created ,yer_crowding, really search on a same peak.
with ten individuals to guarantee that the diversity is @ased

when all non-stagnating populations are converging. Is thi ]

situation, the size of” should be small as many over-crowing®: Aveidance of Explored Peaks

populations would be created if a large value is used. Alglou  Exploring peaks that have already been explored wastes

the exclusion scheme (introduced in Sect.lll-C later) ifeabcomputational resources and hence deteriorates an algxsit

to remove over-crowding populations, such population$ stperformance. This is an important issue for EAs [31]. To

waste computing resources. Preliminary experimentalltsesiaddress this issue, we propose a peak hiding techniquesin thi
IEEE Transactions on Evolutionary Computation
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will not evolve until they wake up. Note that, waking up
hibernating populations (Step 10 in Algorithm 1) is necegsa
when the AMP is running in dynamic environments. This is
because when a change occurs, those hibernating popslation
are holding outdated memories and they must wake up in time
to re-locate peaks that have moved. In the AMP, we choose
the diversity adjustment point as the time point to wake up
x hibernating populations.

Boundary point ~ Turning point

Search range

v

Fig. 3. lllustration of the peak hiding method. .
9 P 9 F. Movements for the Best Individual

paper. All peaks that have been explored are kept. A peak id-0r @ non-stagnating populati@n in order to quickly track
assumed to be explored when there exists a population wh@r810ving peak or a better peak within its search area but not
the distance between its best individual and the peak is I€$yered by any population, the best individual,; performs
than a valued;) and the difference between the objective valu@ Brownian movement [28] within the search area(ofat

of the best individual and the peak height is also less tharfach iteration as follows:

small value §,) in the case that the peak location is known. - e

Otherwise, a peak is regarded as an explored peak only if a 'best = N (Zpest, B(C)) @
population’s radius shrinks to a small value di-B, and the o it will be replaced if a better solutior,..; is found.
location where the population converges is assumed to be th‘F—|owever, if C is a stagnating population, it may not

location of the peak. _ benefit from the Brownian movement. Jumping out its search
To avoid populations re-searching peaks that have begn., coyid help it transform to a converging population. To

explored, an idea is to remove the attraction of those egmorachieve this, we allow its best individual to perform a Cauch
peaks. The idea works as follows. For each explored peak,a\ement at each iteration as follows:

set of vectors from the peak location to the boundary of its

basion of attraction will be created as necessary. Injitile vest = Q(Fpest, S/2) (3)
set is empty. For an individua] we find the closest explored

peakp. In the vector set with peaj, if there does not exit whereQ(a,b) is a random number of Cauchy distribution with
a vectorv’ that makes its angle t@; — &, less than three location parametes and scale parametér

degrees, then a new vectois created fronp in the direction
of ¥, —#,. The length ofv gradually increases by a small step -
(0.2¢y) upntil a turning or a boundary point is found. Then G. igsieppiation of the AMP Framework

is added to the vector set pf The fitness value of is set to In the framework, any population-based algorithm can be
the fitness of the worst solution found so far|if; — Z,| is used to search for optima. In this paper, it will be insteeta
less tharjv| or |¢'|, depending on whether the condition aboveiith a PSO algorithm and a DE algorithm, respectively.

is met. Note that, it is possible to set the values of the anglel) AMP with PSO :The PSO with an inertia weight [37]
threshold and the step to be smaller than the default vatuesis used in this paper. The velocity and position of particle
that the vectow can be more precise but in such a case mogge updated as below:

evaluations will be needed. Our experimental studies show

that the two default values are small enough for all the test Vi = wi; + M (Tp, — Ti) + n2r2 (T — T) 4
problems in this paper. . .
Fig. 3 illustrates the procedures of finding such vectois ( xy =T + v, (5)

andv2) for an explored peak in a 1-D problemf(x). In the -, - . .
figure, the triangle point is a turning point with peakand wherez’; and; represent the current and previous positions
! %f particle i, respectively;v’; and v; are the current and

the star point is a boundary point. The fitness of individual . i L . S -
does not change as, — | is greater thamv2|. However, the previous velocities of particle, respectively;z,, and Z,
b ’ are the best positions found by particdleso far and found

fitness of individual 1 will be set to the fitness of the wors,b the whol ¢ tiveby: — 0.7298 and
individual found so far age1 —z,| is less tharjvl|. This way, y the whole swarm so far, respectively; = 0. an
m = 12 = 1.496 are constant parameters, whose values were

all individuals fall in the basin of the attraction of peakwill ted by 14317 g ; ’ d b
not move forward tg any more since they will get the worst>td9ested by 43} andrs are vectors of random numboers
niformly generated withiff0.0, 1.0] for each dimension. Note

fitness by doing so, that is, peakseems to have disappeare . . o o
for such individuals. %at, the maximum velocity of each particle is set to thaahit

search radius of its swarm in the AMP. Algorithm 4 presents
) ) ) ) the framework of the PSO.
E. Population Hibernation and Wakening 2) AMP with DE: The DE with DE /best/2/bin mutation
To save function evaluations, inspired by [16] a populatiostrategy is used in this paper. Algorithm 5 shows the proce-
will hibernate once it finds a peak and will wake up whedures of the algorithm. The parametdisand CR are set to
the diversity adjustment is performed. Hibernating popoies 0.5 and 0.6, respectively, which were suggested by [28].

IEEE Transactions on Evolutionary Computation
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Algorlthm 4 PSO TABLE |
1: for each particlei do DEFAULT SETTINGS FOR THEMPB, WHERE THE TERM“CHANGE
2 Update particlel according to Egs. (4) and (5); FREQUENCY(u)” MEANS THAT THE ENVIRONMENT CHANGES EVERYu
3 if f(Z:) < f(Zppest;) then FITNESS EVALUATIONS, S DENOTES THE RANGE OF ALLELE VALUES
4: Tppest; = Li; cPeaks DENOTES THE PERCENTAGE OF CHANGING PEAKSAND [, H W
5 it f(Z;) < f(Zgpest) then Zgpess := 2y end if DENOTE THE INITIAL HEIGHT, HEIGHT RANGE, AND WIDTH RANGE,
6 end if RESPECTIVELY FOR ALL PEAKS.
7: end for
Parameter Value Parameter Value
; number of peaks®) 10 |number of dimensionsl§) 5
AIgorlthm 5 P_E . change frequencyu 5000 |correlation coefficient X) 0
1: for each individuali do L = = height severity ~ [1,10]| number of peaks change no
2 Generate a donor vectorby: o' := Zpesy + £+ (Fr1 — Tr2) + F- width severity  [0.1,1.0 S [0, 100]
(Zr3 — @ra); > F'is mutation factor in [0,2] andi,1, T2, 773, peak shape cone H [30, 70]
and Z,4 are randomly selected individuals (indicesiof-1, r2, 3, and basic function no w [1, 12]
r4 are distinct) shift length ) 1.0 I 50.0
3: Generate a trial vectar as follows:
d vl ifr<=CRord=Iqnd4
© O\ et ifr>CRandd! = L is normalized to the shift length. The correlated parameter
whereC'R is a probability constant anfl.,,,4 is a random integer within . . . ) )
[1,D]. A is set to 0, which implies that the peak movements are
4 i f(@) < f(%) then Z; :=; end if uncorrelated. A change of a single peak can be described as
5: end for follows:

H;(t) = H;(t — 1) 4 height_severity; x o (8)
IV. EXPERIMENTAL STUDIES Walt) = Wolt— 1 dth ” 9
To investigate the performance of the AMP, two groups it) = Wil 1 )+ width_severity; x o ©)

of experiments are carried out in dynamic and static envi- Xi(t) = X, () (t — 1) + Ti(b), (10)
ronments, respectively. For the first group, ten peer MPMs ) _ )
are selected for DOPs. They are mQSO [6], SAMO [S,hereo_ls_a normal distributed random number with mean O
SPSO [33], AMSO [23], CPSO [46], CPSOR [21], FTMPSGd variation 1. _

[48], DynDE [28], DynPopDE [38], and MNAFSA [47]. The In this paper, a new featu.re, the change in the n.umber
two proposed algorithms are named AMP/PSO and AMP/DEf Peaks introduced in [23], is used to test an algorithm's
respectively. Among these algorithms, AMP/PSO, AMP/DF_p'erformance in terms of the adaptation of the number of
SAMO, DynPopDE, and AMSO are adaptive algorithms iRopulations. If this feature is enabled, the number of peaks
terms of the number of populations used in the run tim&"@nges using one of the following formulas:

Comparison in this group is conducted based on the MPB Varl : P =P + sign - 2, (11a)
problem [8]. For the second group in static environments, tw b ——

popular multi-modal optimization algorithms: CRDE [39]dcan Var2: P =P+ sign-1(1,5), (11b)
DE/nrand/1 [12], which are baseline models in [22], are eos Vard: P = r(10,100), (11c)
and the comparison is performed on ten multi-modal probJerrwheresign —1if P <=10, sign = —1 if P >= 100, and

the initial value ofsign is one;r(a, b) returns a random value
A. Problem Description in [a,b].

1) The Moving Peaks Benchmarkhe MPB problem [8] 2) .Multi-modal Functions:In thi; paper, ten _ml_JIti-modaI
is constructed by a number of peaks, which change in tﬂépct!ons are chosen. Table Il gives a description of these
location, height, and width. For thB-dimensional landscape, functions, where the major properties are as follows.

the problem is defined as follows: o The Waves function (F1) is asymmetric and has ten peaks
Hi(t) (one global optimum and nine local optima), which are
F(Z,t) = max — , (6) irregular disposed. Some of the peaks are difficult to find
=L P14 Wilt) 30520 (25(t) — Xis(t))? as they lie on the border or on flat hills.

where W;(t) and H,(t) are the height and width of peak  ° The \ﬁncenf[ function (F2) haQD global optlma_and

at time t, respectively, and\;;(¢) is the j-th element of the no Io_cal optima. The global optima have va_stly different
location of peaki at time¢. The P independently specified spacing between them. A part of the optima are very
peaks are blended together by thez function. The position difficult to find as they take a very narrow space in the
of each peak is shifted in a random direction by a vec}af a fitness landscape. , N
distances (s is also called the shift length, which determines * The Six-hump Camel Back function (F3) has six optima,
the severity of the problem dynamics), and the move of a which are disposed in a smooth landscape and two of the

single peak can be described as follows: optima are global optima.

< « The Shubert function (F4) contain33” global optima

U%i(t) = =——=——((1 =N+ A0t - 1)), (7) unevenly disposed. These global optima are divided into
|7+ 7t —1)] 3P groups, with each group havin@® global optima
where the shift vectow;(¢) is a linear combination of a being close to each other. F2 also contains many other
random vector” and the previous shift vectar; (¢ — 1) and local optima, which are between the global optima.

IEEE Transactions on Evolutionary Computation
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TABLE Il

DESCRIPTION OF TEN MULTFMODAL FUNCTIONS, WHERE D IS THE NUMBER OF DIMENSIONS
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Name

Function

# of global/local Opt.

Waves

F1(Z) = (0.321)% + 3.5z123 — 4.7cos(3x1 — 3(2 + x1))sin(2.57x1)
—09<z; <12, -12<2,<1.2

1/9

F2(%) = (Ef’:l sin(10logz;))/ D

D
Vincent 028 < a; < 10 6~/0
o F3(Z) = (4 — 2127 + 27/3)a? + x1m2 + (—4 + 423)23)
Six-hump Camel Back C19<m <1.9,-11 < 29 < 1.1 2/4
FA(@) = 0D (X0 icos((i + )xj +1))
h t =1\Zai=1 J D
Shuber J 0 <10 D3"Imany
p g D =
Modified Shekel F5(%) = 21:1(21‘:1(11 - a”)z +¢j) B 17

0<a; <11

IBA

F6(%) = (If + :1;%)/(1 + .’,(?% + 1%) + k(14(ucf + :L'g) + (:L'f + ;(:3)2)(2 — ZM(VL? — 3,’1:1,’1:3))()/(14(1 + If + :1;5)2)

3/1

—4<z; <4
Himmenblau F1(Z) = (a7 + w2 — 11)7 + (zjg—glx—z)ﬁ +0.1((z1 — 3)Z + (z2 — 2)?) 3
_ = 1=
Five hills F8(Z) = sin(2.2wz1 + 0.57)(2 — [z2])/2(3 — [z1])/2 + sin(0.5rzs + 0.57)(2 — [z2])/2(2 — |z1])/2 14

—25< 2 <3,-2< x5 <2

Center peak

F9(Z) = 3sin(0.5mx1 + 0.57)(2 — \/mg +a3)/4
—2<z; <2

1/4

BraninRCOS

F10(Z) = (z2 — 5.1 27 /(4n?) + 5 x @1 /7 — 6)% + 10(1 — 1/(87))cosz1 + 10
—5<2 <10,0< 2 <15

3/0

o The Modified Shekel function (F5) has eight optima, one

TABLE IlI

Of WhICh |S the global Optlmum_ Most Of the Optlma THRESHOLD VALUES OFes AND €, FOR IDENTIFYING OPTIMA, WHERE

are separated from each other by wide flat valleys. The

parameters;;; andc; are given by

4 4 63 4 4
1 1 85 1 1
6 6 91 6 6

Lo |35 75 4 94

U155 3 3 9f
91 82 2 3 9
15 93 74 3 9
78 22 53 9 3

cj = (0.10.20.40.150.60.20.060.18) .

GOIS THE OBJECTIVE VALUE OF THE GLOBAL OPTIMA(THE SETUP OF
FUNCTIONSF2-F4,AND F71S REFERRED TO[22]).

MPB F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
€s - 015 02 01 0.5 0.2 008 05 02 02 1.0
€o 0.1 1E-3 1E-4 1E4 1E-3 1E-3 1E-6 1E-41E-41E-5 1E5
GO(D=2) | - 7.307 1 -1.0316 186.731 16.832 -8.016E-3 2 2.5 1.5 0.397887

best error found every two objective evaluations and thé-bes
before-change error is the average of the best error achieve
at the fitness evaluation just before a change occurs.

In addition, to evaluate an algorithm’s performance in
tracking multi-optima, the ratio of of peaks that are traced
(PR) and the success rate of tracking all peak&) are used.

A peak is assumed to be traced if the difference of objective

The location of the global optimum is given by vectogajue between any individual and the peak is less thaand
row ar;, j € [1, D], and the other seven local optima argne Eyclidian distance between the individual and the psak i

determined by other vector rows of the matfje||.

less thare, (see Table Il for the values of, ande, for all

« The IBA function (F6) has three global optima and ongroplems tested in this paper). For the valuedor the MPB,

local optimum. In the functionk = —0.95 and x =

—1.26 is used.

it is set tomin(min,j<pd(X;(t), X;(t))/2,0.1) at timet.
A two-tailed¢-test with 58 degrees of freedom at a 0.05 level

« The Himmenblau function (F7) has one global optimurgt significance was conducted for each pair of algorithms on
and three local optima with different objective values. p o and Eppc. The t-test results are given with the letters
« The Five hills function (F8) and the Center peak functioqy» «» or 4 \which denote that the performance of an
(F9) have each one global optimum and four local optimgqorithm is significantly better than, significantly wortsen,
F8 has five very close hills with lines of valleys betweeg statistically equivalent to its peer algorithms, resjvety.
them. The four local optima in F9 are on the edge of the 5 ajgqrithm ConfigurationsFor the AMP, there are three

intervals and the global optimum is in the middle.

parameters to be investigated (see Sect. IV-C later). They a

« The BraninRCOS function (F10) has three global O0Rpe jnitial population size¢Siz¢), the convergence threshold
timum, which are distributed within an irregular anqgy ang the probabilistic rangaf, whose default values are
asymmetric landscape. In addition, the function has nQ; 100,0.005 x S, and 3, respectively. For parameters

local optima.

B. Experimental Setup

of all the peer algorithms, default values suggested inrthei
proposals are used if the algorithms show their best results
For example, the equations of setting the exclusion radius f
each population suggested by Blackwell [6], [3] work well in

1) Performance Evaluation:To evaluate an algorithm’s our test. Therefore, we also use the default setting reggrdi
performance in tracking the global optimum, the offline errahis parameter for mQSO [6], SAMO [3], SPSO [33], DynDE
(Fo) [10] and the best-before-change erréis(zc) are used. [28], MNAFSA [47], and DynPopDE [38] as their authors
The offline error used in this paper is the average of thesed. However, for MNAFSA [47ry_number=2 andN=10

IEEE Transactions on Evolutionary Computation
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Fig. 5. The results of AMP/PSO with different convergingetinolds on the
Fig. 4. The results of AMP/PSO with different initial sizegSize) on the MPB with different numbers of peaks.
MPB with different numbers of peaks.

are used instead ofy_number=4 andN=2 suggested in the mance of AMP/PSO, angSize = 100 is used for both AMP
original paper [47]. The stopping criterion is 200 changas falgorithms in this paper.
the MPB problem and 2.0E+5 function evaluations or finding 2) Sensitivity Analysis of Parametér For the convergence
all peaks for multi-modal problems in static environmentshreshold ¢), the smaller it is, the more time will be spent on
All the results reported in the paper are averaged over 8Rploiting local optima. The larger the value @&fin contrast,
independent runs. the more time will be spent on exploring new optima. To

3) Open Framework of Evolutionary Computatiohe investigate the effect of this parameter on the performarice
open framework of evolutionary computation (OFEC) is AMP/PSO, we conduct an experiment with different values of
template library written in C++ based on the Boost libraryl. Fig. 5 presents the results of AMP/PSO with different value
It supports any population based EC methods running af 6 on the MPB with different numbers of peaks, where the
parallel on CPU ( a new feature of parallel running odarker the shade is, the better the results are.
GPU will be available in the next release). OFEC has so farFig. 5 shows that varying the value éfdoes affect the
collected a number of algorithms from PSO, GA, DE, angerformance of AMP/PSO. Fdip, Egpc, SR, in most cases
several other domains for global optimization problemsltimu the results get better &sncreases from E-4 to 55-3 but then
modal optimization problems, dynamic optimization prabse get worse ag further increases. However, f&tR, the smallest
multi-objective problems, and travelling salesman protse value ofd helps AMP/PSO obtain the best performance and
Common algorithm performance evaluation measurements gie results of PR get worse ag increases. This is because
also available. The source code of the AMP will be availablee measuremenPR focuses more on exploitation of local
in OFEC. The OFEC-v0.3.0 has been released on githubopttima than exploration of the global optima. AMP/PSO will
https://github.com/Changhe160/OFEC. spend the largest amount of time on exploiting local optima
with the smallest value of and hence, the largest number of
peaks is tracked. To take a trade-off between exploring new
optima and exploiting local optim#&, was set to &-3 for the

In this section, the AMP is investigated regarding its kefMP in all the other experiments in this paper.
parameters and mechanisms, based on AMP/PSO. 3) Effect of the Adaptive Adjustment Mechaniskig. 6

1) Sensitivity Analysis of ParameterSize: To test the shows the distribution of the number of populations of
effect of varying the initial population sizg,Size was chosen AMP/PSO and SAMO over 1,000 changes. For both algo-
from the range of 10 to 500. Fig. 4 presents the results othms, we take one sample when the number of populations
Eo, Eppc, PR, andSR of AMP/PSO with different values changes. Therefore, the samples of AMP/PSO are the same
of gSize on the MPB with different numbers of peaks. data as in the databaBe Both algorithms are able to maintain

Fig. 4 shows that varying the value gfize in all MPB a good correlation between the number of populations and
cases does not affect the results too much. This indicatte number of peaks. In problems where the number of
that AMP/PSO has a very stable performance regardlesspefaks remain unchanged, each distribution curve has a very
the initial population size. We would attribute the stablearrow shape. However, the performance of AMP/PSO is
performance of AMP/PSO to its adaptation mechanism. Thetter than that of SAMO at least on problems with a small
continuous adjustment to historical data (see Eq. (1)) douhumber of peaks (e.gl=10 and 20), where the numbers
enable AMP/PSO to adjust the number of populations to @f populations of AMP/PSO at the curve peaks are equal
appropriate level (see evidences in Figs. 6, 8 and 9 laten).the actual numbers of peaks. However, the corresponding
Therefore, different choices @fSize do not affect the perfor- numbers obtained by SAMO are larger than the actual numbers
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4015} P=20 LR S - M ON MULTIMODAL FUNCTIONS, WHERE RE IS THE RATIO OFeval TO
] 0062 [ PRI i\ THE LARGESTeval OF EACH PROBLEM N R IS THE NUMBER OF MAPS
1% N ] 00 AN\ CREATED IN THE DATABASED.
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Fig. 6. Distribution of changes of the number of populati@isAMP/PSO NR 18 11 1 3 8 4 el 4 4 6
and SAMO over 1,000 changes.
TABLE IV TABLE VI

EFFECT OF VARYING THE PROBABILISTIC RANGEM ON THE MPB WITH
DIFFERENT NUMBERS OF PEAKSWHEREW AR IS A WRONG ACTION
RATE AND N R IS THE NUMBER OF MAPS CREATED IN THE DATABASHD.

COMPARISON OFSR AND PR OF AMP/PSOWITH AND WITHOUT THE
PEAK HIDING SCHEME ON FUNCTIONSF2 AND F4,WHERE eval* IS THE
NUMBER OF EVALUATIONS USED BY THE PEAK HIDING SCHEME ANDeval
IS THE TOTAL NUMBER OF EVALUATIONS.

P WAR/NR - -
M=1 M=2 M=3 M=24 M=5 Function Algorithm SR PR eval evalx
10 | 0.295/3720 0.188/3864 0.126/4027 0.097/4189 0.069/4239 Vincent(F2,D=2) AMP/PSO* | 0.1 0.95 191937 0
20 | 0.320/2689 0.214/2904 0.128/2977 0.114/2985 0.091/2995 ' AMP/PSO 1 1 140139 102871
30 | 0.327/2000 0.224/2176 0.153/2310 0.114/2371 0.103/2292 Shubert(F4 D:2)AMP/PSO* 0.9 0.99 82437 0
' AMP/PSO 1 1 39144 11138

of peaks. For problems with a large number of peaks, t

are smaller than the actual numbers of peaks. However,
numbers for AMP/PSO are closer to the actual numbers
peaks.

In problems with a varying number of peaks by a certal
pattern (Varl and Var2), for both algorithms the distribati

curves now have a large band with multiple spikes, corre=
sponding to the variation in the number of peaks of thedgd

problems. However, both algorithms do not show such

e

h . .
numbers of populations at the curve peaks for both algosthi!l the global optima of F2 withl/=1. For most problems

AMP/PSO withM/=1 generates the largest number of maps in

thye databas®, and correspondingly, it also spends a relatively
large number of evaluations. Although less maps are gesterat

With M > 1 than that with}/=1, they enable AMP/PSO to

spend less time to find all the optimal peaks than that with

M =1. That is, the probabilistic prediction scheme makes the
rning more efficient than that without it. In this papef=3
is used for all the experiments as AMP/PSO with=3 shows

behavior in Var3 where the number of peaks changes withouf¥ Pest performance on most problems.

pattern (further comparison of detailed changes of the rumb S) Effect of the Peak Hiding Schemerhe peak hid-
ing scheme encourages individuals to explore un-discovere

4) Effect of the Probabilistic Prediction Schemigo show P€aks. Table VI presents the comparison of AMP/PSO with
the effect of using the probabilistic prediction scheme, df€ Peak hiding scheme and without the peak hiding scheme

of populations can be seen later in Figs. 8 and 9).

action rate for AMP/PSO with the probabilistic rangé in

experiment was carried out to calculate the average wrofff1P/PSO*) on the Vincent (F2) and Shubert (F4) function

in two-dimensional space. F2 and F4 contain 36 and 18 global
[1,5] on the MPB problem with:=10,000. According to the optima, respectively. Table VI shows that AMP/PSO finds all

results in Fig. 6, for problems witl? < 30, we assume that peaks on the two functions for all runs. However, the results

the optimal number of populations is equal to the number 8f SR and PR of AMP/PSO get worse when the peak hiding
peaks. Hence, a wrong action is an action to increase/derezfeme is disabled. The only disadvantage of the peak hiding
the total number of individuals when the number of peaks f$heme is that extra evaluations are needed. However, the
less/greater than the current number of populations. Table total function evaluations are still less than that of AMBOP
presents the wrong action rat&/(AR) and the number of without the scheme. Moreover, the peak hiding scheme greatl
maps created in the databaBe The results show that using'MProves the performance of AMP/PSO. The peak hiding
the probabilistic schemé/ > 1 does help AMP/PSO greatly scheme is rarEIy triggered fpr the MPB problem as there is
decrease the probability of taking a wrong action. not enough time for populatlpr_]s to converge be_fore changes
To further investigate the effect of using the probab':tistioccur' Therefore, the peak hiding scheme has little effect o
prediction scheme, an experiment was carried out on the 8§ MPB problem.
static problems. Table V presents the results, whigkeis the

ratio of the number of evaluationsal) to the largeskewval ; ; :
: . D. Comparison with Peer Algorithms on the MPB Problem
of each test group. Table V shows that AMP/PSO fails to find parison wi gorthms
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1
2
3
4 11
5
6 TABLE VI
7 COMPARISON OF ERRORS O#/p AND Eppc ON THE MPB PROBLEM WITH DIFFERENT NUMBERS OF PEAKS
8
9 P error AMP/PSO AMP/DE SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DBynAMSO mNAFSA
Eo 0.69+0.03 0.9£0.1 2.4£0.3 481 4405 1.9£03 5£0.3 5.2£0.3 2.6£0.2 2.140.3 2.5£0.5 3.4£0.5
10 10 w,t,| 11,0,0 10,0,1 6,1,4 0,2,9 3,0,8 9,0,2 1,1,9 0,1,10 515 ,38,0 524 4,0,7
11 Eppc 0.016£0.01 0.069%£0.1 1.2+0.3 3.5t1 3.1£05 0.8£0.3 0.96t0.3 1£0.3 1.2:0.3 1.2£0.3 1.1-0.6 1.A05
w,t,| 11,0,0 10,0,1 3,3,5 0,1,10 0,1,10 9,0,2 6,2,3 4,4,3 3,44 443, 353 2,0,9
12 Eo 1.140.09 1.4:0.1 2.3+0.08 5. 11 7.2£0.9 3.3t0.4 4+0.2 4.9-0.2 3.2£0.2 2.6:0.3 2.8£0.8 4.8t0.6
13 20 w,t,| 11,0,0 10,0,1 9,0,2 1,2,8 0,0,11 51,5 4,0,7 1,2,8 515 /37,1713 1,2,8
14 EgBC 0.28+0.1 0.52:0.2 1.3:0.1 3. AL 6.4t1 2.5t04 1.2£0.2 2+0.2 2.3:0.2 1.9:0.3 1.5£0.9 3.6£0.6
w,t,| 11,0,0 10,0,1 7,13 1,19 0,0,11 3,0,8 9,0,2 515 4,07 /551 7,13 1,19
15 Eo 1.140.05 1.3:0.06 2£0.04 4.6£1 4.9+1 2.3t£0.2 3.2£0.2 3.8:0.2 2.8:0.09 2.3:0.3 2.2:0.4 3.3+0.3
16 30 w,t,| 11,0,0 10,0,1 9,0,2 0,1,10 0,1,10 6,2,3 3,17 2,0,9 506 2,36, 6,23 3,17
EpBc 0.38£0.04 0.49£0.05 1.1£0.04 3.2E1 3.9+1 1.6£0.2 0.9A01 1.2£02 2£0.1 1.A03 104 2+0.2
17 w,t,| 11,0,0 10,0,1 7,13 1,0,10 0,0,11 4,1,6 8,1,2 6,0,5 2,18 1,64, 7,22 2,18
18 Eo 1.2+0.05 1.4-0.05 1.9-0.04 451 4.240.8 3.2:04 2. A40.1 3.3:0.1 2.40.08 2.7A40.3 2.10.4 3.4:0.3
50 w,t,| 11,0,0 10,0,1 9,0,2 0,1,10 0,1,10 2,2,7 52,4 3,1,7 52,4 2,45, 8,03 2,18
19 EgBC 0.61+0.05 0.7H0.06 1.2£0.04 2.9t1 3.5£0.8 2.6£0.4 0.93t0.07 1.2:0.09 2£0.06 2.2£0.3 1.1-0.4 2.2+0.2
20 w,t,| 11,0,0 10,0,1 6,0,5 1,1,9 0,0,11 1,19 8,1,2 7,13 506 ,73,1 7,22 3,1,7
Eo 1.4+0.05 1.A40.08 2.H0.06 4.3t0.8 5.4+1 3.3£0.4 2.4£0.07 3.2£0.1 3.2£0.1 3.5£0.6 2.2:0.4 4+0.2
21 100 w,t,| 11,0,0 10,0,1 8,1,2 1,1,9 0,0,11 3,2,6 7,04 51,5 425 73,1 81,2 1,19
22 EpBc 0.77£0.04 0.9:0.07 1.4£0.06 2.A40.6 451 2.6£04 1£0.06 1.4£0.08 2.5:0.1 2.9£0.6 1.}0.5 2. A0.2
23 w,t,| 11,0,0 10,0,1 6,0,5 1,4,6 0,0,11 1,4,6 8,1,2 7,04 326 ,71,3 81,2 1,3,7
Eo 1.8+0.04 2+0.04 2.5t0.05 4.6£0.7 6.2:0.9 4.3:0.4 2.5-0.08 3.10.07 3.6:0.1 4.4-0.4 2.5£0.3 4.2£0.2
24 200 w,t,| 11,0,0 10,0,1 8,1,2 1,1,9 0,0,11 2,2,7 7,13 6,0,5 506 ,812 7,272 3,17
25 EgBC 1+0.05 1.2£0.04 1.A0.04 2.8:0.5 5.4:09 3.5£0.4 1.2£0.07 1.4:0.06 2.8£0.1 3.8£0.4 1.3t0.3 2.8£0.2
w,t,| 11,0,0 9,11 6,0,5 3,2,6 0,0,11 2,09 9,1,1 7,13 32,6 10,0, 7,13 3,2,6
26 WA 132 107 44 95 123 23 29 14 -19 20 48 66
27
28 AMP/PSO —— DynPOPDE B~ CPSOR--® - DynDE —v— (SR) in all cases. However, for the peak ratio, AMSO performs
29 AMP/DE - SPSO--m- CPSO —4--  AMSO ---v-- . ! p . ! p
30 SAMO “x mQSO--o-  FTMPSO 4 mNAFSA ~-o- better than AMP/PSO and AMP/DE in the cases with many
31 981 peaks. This is because many populations of the AMP have
32 . 8er not converged yet when changes occur. The number of peaks
33 = 83l traced will be increased if we give more time for the AMP to
34 ol evolve before changes occur (see Fig. 10 in Sect. IV-D3)later
35 . Fig. 8 shows that all the four adaptive algorithms exhibit
36 830 adaptive behaviors, where the number of populations at the
37 o §é end of the run increases as the number of peaks increases.
38 ¢ 0ar For problems with a large number of peaks, AMP/PSO,
39 92 DynPopDE, and SAMO shows similar behaviors where the
40 0 number of populations gradually increases as the search goe
41 on. Different from the above three algorithms, the number of
42 populations obtained by AMSO quickly converges at a certain
43 Fig. 7. Comparison of the peak ratid®>®) and success rateSR®) on the |evel in most cases. Among the four adaptive algorithms,
44 MPB with different numbers of peaks. DynPopDE generated the largest number of populations in all
45 _ cases, followed by AMP/PSO, SAMO, and AMSO.
46 1) Effect of Varying the Number of Peak§able VIl 2) comparison on Problems with a Varying Number of
47 presents the offline errors and the best-before-changeséan  peaks: Problems with a fixed number of peaks may be easy to
48 all algorithms on the MPB with different numbers of peaksyolye. However, problems with a varying number of peaks will
49 Fig. 7 presents the comparison of the resultsSéf and PR challenge an algorithm's adaptability. Table VIIl and Fay.
50 for all peer algorlthms. Fig. 8 plots the changes in the numbgresent the errors df, andEp e, SR and PR, respectively,
51 of populations against time for AMP/PSO, SAMO, AMSOgp, problems with a varying number of peaks.
52 and DynPopDE. From Table VIIl, AMP/PSO and AMP/DE achieve signifi-
53 From Table VI, it can be seen that the results of AMP/PSgantly better performance than all the other algorithmslin a
54 are significantly better than those of the other algorithms the cases. The adaptive algorithms SAMO and AMSO also
gg all cases. Following with AMP/PSO, AMP/DE achieves thachieves relatively good results in comparison with theepth
e second best performance. The performance of the four adapn-adaptive algorithms. Among the non-adaptive algorith
o8 tive algorithms (AMP/PSO, AMP/DE, SAMO, and AMSO)the number of populations in CPSOR is configured according
=9 are better than that of those non-adaptive algorithms. Duetd the number of peaks, which makes it behave as an adaptive
60 a large number of populations generated with DynPopDE, thgjorithm. Therefore, CPSOR performs as well as AMSO.

algorithm achieves very poor performance compared with theThe four adaptive algorithms again show adaptive behaviors
other algorithms. Given the manually configured number & the changing number of peaks, where the number of popu-
individuals, CPSOR also achieves a good performance. |ations is basically synchronous with the change of the remb
Regarding the performance of tracking multiple peaks (seépeaks in the cases &farl andVar2 (they also show such
Fig. 7), AMP/PSO and AMP/DE achieve the best success ra@éaptive behavior in the case bf:r3 if we observe the curves
IEEE Transactions on Evolutionary Computation
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Fig. 8. Changes in the number of populations against timédar adaptive algorithms on the MPB with different numbefgeaks.
TABLE VIl
COMPARISON OF ERRORS O# AND Egpc ON THE MPB PROBLEM WITH A VARYING NUMBER OF PEAKS
P error AMP/PSO AMP/DE  SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSODBynAMSO mNAFSA
Eo 1.8+0.1 2+0.07 2.8:0.2 6.3:09 6+09 3.804 3.A0.2 5102 4402 3.4£03 3t0.3 6.6£0.3
varp Wl 11,0,0 10,0,1 9,0,2 0,2,9 1,1,9 5,0,6 6,0,5 3,0,8 4,07 470,803 0,1,10
Epsc 0.99£0.1 0.99£0.08 1.8£0.2 4.3F0.6 4.740.9 2.9F0.4 1.5F0.2 2.3F0.2 3.H0.3 2.740.3 1.5£0.4 4.8£0.3
wit,| 10,1,0 10,1,0 7,04 2,0,9 0,1,10 4,0,7 8,1,2 6,0,5 3,08 ,650 81,2 0,1,10
Eo 1.4£0.08 1.6£0.09 2.20.1 5741 6.2£0.6 3.3:0.5 3.H0.1 3.950.2 3.10.2 3.103 3.2£2 5.6+04
Varg Wit 11,0,0 10,0,1 9,0,2 1,1,9 00,11 425 53,3 3,0,8 533 ,34,4 443 1,1,9
Eppc | 0.74£0.08 0.86E0.1 1.4E0.1 4ET 5.250.7 2.6£0.5 1.2E0.08 1.5£0.2 2.5F0.2 2.4F0.3 2£2 3.8F0.4
w,t,| 11,0,0 10,0,1 6,2,3 1,1,9 0,0,11 3,35 9,0,2 6,2,3 3,35 ,533 353 1,19
Eo 19+02 2.2£0.2 2.950.1 10f1 45+0.7 3.3t0.2 4.H02 4.6£0.2 4+0.1 3.3:0.2 3.3t0.5 6.9£0.6
var3 w,t,| 11,0,0 10,0,1 9,0,2 0,0,11 2,1,8 6,2,3 4,0,7 2,1,8 506 ,36,2 6,2,3 1,0,10
Epsc 12502 1.4E0.2 2£0.1 6.6E0.8 3.5E0.7 2.5£0.2 1.8£0.1 1.9£0.2 3.7£0.3 2.6E0.2 1.9F0.4 4.950.6
wit,| 11,0,0 10,0,1 6,2,3 0,0,11 2,1,8 4,1,6 9,0,2 6,2,3 2,1,8 64,1623 1,0,10
w-l 65 55 30 -54 -52 -6 20 -9 -15 2 18 54
100 100 100
Q40+ Q40+ Q40
20 & 20 & 20 9
0F 0F 0F ]
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Fig. 9. Changes in number of populations against time for &mlaptive algorithms on the MPB with a varying number of peak

with Var3 closely). Among these four algorithms, AMP/PSO 3) Effect of Varying the Change Frequendyig. 10 and Ta-
and SAMO show the most similar behavior and they also shdse IX present the results &fR and PR, and the errors of’p

o 01Ul
o ©O©

the best synchronization, which almost perfectly matches tand E5 s, respectively, for all the involved algorithms. From
changes of the number of peaks. DynPopDE again generalable IX, it can be seen that AMP/PSO achieves the best re-
the largest number of populations, which makes it perforsults in all cases, followed by AMP/DE. Although AMP/PSO
very poorly. Although all the adaptive algorithms show ¢ami and AMP/DE do not achieve the best results regarding the PR,
behaviors to AMP/PSO in terms of populations adaptatiothey show the best results regarding the SR. AMSO shows
they perform much worse than AMP/PSO regarding the errarery competitive performance regarding the PR. Increasing
Eo and Egpc. the change frequency means that algorithms will have more
evaluations to locate and track optima before changes occur
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1
2
3
4 13
5
6 AMP/PSO —+— DynPopDE & CPSOR - -® DynDE —v— AMP/PSO —+— DynPopDE & CPSOR - @ DynDE —v— AMP/PSO —+— DynPopDE & CPSOR--® DynDE —v—
AMP/DE - SPSO--#-- CPSO —#--  AMSO v~ AMP/DE -~ SPSO --m-- CPSO 4~  AMSO -—¥-- AMP/DE -~ SPSO--#-- CPSO 4~ AMSO —-v--
7 SAMO - mQSO -~ FTMPSO -4~ mNAFSA ¢ SAMO % mQSO -~~~ FTMPSO -~ mNAFSA ~¢ SAMO - mQSO -~ FTMPSO -4~ mNAFSA ¢
8 3 05
b 04l
9 & o3l
10 ra o'éf
11 WAr o9
12 B o1t
x 981 05|
ﬁ i i
02} oL
0.1 g =l i . B 0.1re = § a = !
15 01000 2000 3000 5000 7000 10000 0100 2000 3000 5000 7000 10000 01000 2000 3000 5000 7000 10000
16 Change frequencyPE10) Change frequencyPE30) Change frequencyPE50)
i; Fig. 10. Comparison of the peak rati®’ 2) and success rate5{) on the MPB with different change frequencies.
19 TABLE IX
20 COMPARISON OF ERRORS O/ AND Egpc ON THE 200PEAK MPB PROBLEM WITH DIFFERENT CHANGE FREQUENCIES
21
22 [ error AMP/PSO AMP/DE SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DBynAMSO mNAFSA
Eo 3.6£0.1 4.140.1 4.3:0.1 10+1 7.4+1 6.74+09 7.2:0.2 9403 8t0.7 5.8:0.6 5.3t£0.2 7.3:0.6
23 1000 Wbl 11,00 1001 90,2 0110 326 605 326 0110 209 047, 803 326
24 Eppc 2.3£0.1 2.A0.09 2.9:0.08 7.3E2 6.6£1 5.8:0.9 3.4:0.1 3.9£0.09 1 47406 2.A0.1 4A05
25 w,t,| 11,0,0 9,11 8,0,3 0,2,9 0,2,9 3,0,8 7,04 6,0,5 0,2,9 4,1,80,1,1 4,1,6
Eo 2.7+0.07 3+0.08 3.3t0.06 7.H2 6.6+0.9 4.8-0.4 4.4:0.2 57A0.1 5403 5+04 3.6:0.2 5740.3
26 2000 w,t,| 11,0,0 10,0,1 9,0,2 0,0,11 1,0,10 51,5 7,04 2,18 4,0,7 1,55, 8,03 2,18
27 EpBCc 1.7£0.06 1.9£0.08 2.3t0.04 5. 12 5.9+0.9 4+04 2.10.1 2.A0.08 4.2:0.3 4.1+:04 2+0.2 3.6£0.3
wt| 11,0,0 9,1,1 7,04 1010 0011 317 803 605 218 ,722911 506
28 Eo 2.2£0.06 255008 2.9:007 6.3E1 6.350.8 4.4L04 3.4£009 426009 44502 4.7804 3E03 4.8t03
29 3000 W 11,00 1001 90,2 0110 01,10 416 7,04 6,05 416 182, 803 218
Eppc | 14E0.06 15007 2E0.06  4E1  55E09 3.6004 1.600.07 2E0.07 35001 4504 17403 3.10.2
30 w,t,| 11,0,0 10,0,1 6,1,4 1,2,8 0,0,11 2,27 8,1,2 6,1,4 3,1,7 91,1 81,2 5,0,6
31 Eo 1.8+0.04 2£0.04 2.5:0.05 4.6£0.7 6.2£0.9 4.3:t04 2.5-0.08 3.1#0.07 3.6:0.1 4.4:-0.4 2.5-0.3 4.2+0.2
5000 w,t,| 11,0,0 10,0,1 8,1,2 1,1,9 0,0,11 2,27 7,13 6,0,5 506 ,812 7272 3,1,7
32 EpBCc 1+0.05 1.2:0.04 1.A0.04 2.8:0.5 5.4£0.9 3.5£0.4 1.2£0.07 1.4:0.06 2.8£0.1 3.8£0.4 1.3t0.3 2.8:0.2
33 wtl 11,0,0 9,1,1 6,0,5 326 0011 209 911 713 326 100, 71,3 326
34 Eo 1.6+0.04 1.8£0.05 2.2:0.04 4.2£0.5 6.1£1 4+05 2.3:0.09 2.6:0.07 3.2£0.07 4.2£0.4 2.2+0.4 3.9-0.2
w,t,| 11,0,0 10,0,1 8,1,2 1,2,8 0,0,11 2,2,7 7,13 6,0,5 506 91,1 7,2,2 3,17
7000
35 Eppc 0.86£0.04 0.99:0.04 1.5:0.04 2.6£0.4 531 3.3t04 1.10.07 1.2£0.08 2.5£0.1 3.A0.4 1.2:0.4 2.6:0.1
w,t,| 11,0,0 10,0,1 6,0,5 3,2,6 0,0,11 2,0,9 9,0,2 7,13 4,16 ,10,0 7,13 3,1,7
36
Eo 131003 15:004 20003  3.2£0.3 6281 3.7/204 2£009 2.200.07 2.8:0.07 4E04 2503 35501
37 10000 w,t,| 11,0,0 10,0,1 7,2,2 2,1,8 0,0,11 2,18 7,2,2 6,0,5 5,06 ,10,0 7,2,2 4,0,7
38 EpBCc 0.68+-0.03 0.8£0.04 1.3t0.04 2.3t0.2 5.4+1 3.110.4 0.93t0.06 1.10.06 2.2:0.06 3.6:0.4 1.10.3 2.4£0.1
wt| 11,00 1001 6,05 407 0011 209 902 713 506 ,100 713 308
39 WA 132 105 51 86 119 52 52 4 40 69 64 42
40
41 . .
42 Therefore, the performance of all the algorithms improves a TABLE X
43 the change frequency increases. It is interesting to see thagPERFORMANCE COMPARISON ON MULT+MODAL FUNCTIONS IN TWO
. . . DIMENSIONS, WHERE eval 1S THE TOTAL NUMBER OF FUNCTION
44 AMP/PSO achieves the greatest improvement in PR among EVALUATIONS .
45 all the algorithms (Fig. 10), especially when> 5000. This
46 indicates that the AMP is able to make full use of the avadabl Problem e A'Vl'Z/PSO Agﬂli’/DE D()Eéz;gndfl raanE
47 evaluations to explore as many peaks as possible by adigptive FL el 1.53e+004 1.726+004  2e+005 264005
48 adjusting the number of populations_ o PRSR 1T 0.999/0.967  0.416/0 0.195/0
49 eval 14e+005 17e+005  2e+005 2e+005
PR/SR 171 171 0.667/0 0.317/0
F3
50 E. Comparison on Multi-modal Problems cval _ 2e+004 1.94e+004 2e+005 _2e+005
PR/SR 171 171 1/1 0.628/0.2
. . F4
ol In order to test the performance of the AMP in locating eval 3.91e+004 6.29e+004 3.2e+004 1.68e+005
52 itiol K . | ; . ied Fs PRSR 11 T 0.9/0.367 _ 0.188/0
£3 multip e peaks, an experlmenta_l comparison is carried aut o cval 5.196+004 6.73e+004 1.3264005  2e+005
54 ten multi-modal problems. In this paper, we do not choose the 6 PR/SzR 871/1004 o1 31/1004 O-f%fgo-%%% 0-51193‘/10-0333
. . . - { fet+ .13e+ .obe+ .Ode+
o best and latest algorithms for the comparison since the-moti SRR 1T 1 T 0550
56 vation of this paper is for DOPs. To compare the performance 7 cval 1.03e+004 6.92e+003 1.38¢+004  2e+005
; ; - ; PRISR 171 T1  0.6/0.0333  0.207/0
57 of the AMP in static environments, two popular algorithms, F8 o 764004 10305004 19464005  26+005
58 DE/nrand/1 and CRDE proposed for multi-modal problems, Fg PRSR 171 TT  0987/0.933  0.2I0
were chosen. Table X presents the result§ Bf PR, and the cval 6.76e+003 548¢+003 1.9e+004 _ 2e+005
59 ) F10 PR/SR 171 1/1 1/1 0.622/0.167
60 total number of evaluations spenrt@l). eval 4.98e+003 3.85e+003 1.03e+004  1.68e+005

From Table X, AMP/DE and AMP/PSO outperform the
other two algorithms on most problems. AMP/PSO success-
fully finds all peaks for every run on all problems. AMP/DHinds all peaks for all runs on F4, F7, and F10. However, it
also obtains such good results as AMP/PSO except on Bpends a much larger number of evaluations than AMP/PSO
where one peak is not found for all runs. DE/nrand/1 alssmd AMP/DE on most problems. For the two AMP algorithms,

IEEE Transactions on Evolutionary Computation
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Fig. 11. Comparison of the progress of the number of peakedrdy the four algorithms on three multi-modal problems.

TABLE XI From the experimental results of the two implemented
THE PR AND SR OF AMP/PSOAND AMP/DE ON THE 3D AND 4D algorithms with the AMP, several conclusions can be drawn.
VINCENT FUNCTION, WHERE m_eval 1S THE MAXIMUM NUMBER OF F|rSt|y the AMP iS able to adaptively adeSt the numbel’ Of
FUNCTION EVALUATIONS. ’
populations according to the number of peaks in the fithess
F(D.# of Opt) Algorithm PR SR m_cval | F(D# of Opt) PR SR m_eval  |andscape. Secondly, the AMP achieves the best performance
F2(3,216) ﬁ“,(',lF;f,F,;SEOO_QéQB 0_;97 %%EEJ;%S F2(4,1296) 8:32 8 1;85183 among all the peer algorithms in most test cases, especially
AMP/PSO 1 1 5.0E+0 0.828 0 1.0E+07 with regards to the capability of tracking multiple peaks.
M) AwPiDE 098 0433 sorop Y o705 0 1.oEror Thirdly,gthe AMP is aIsopgoodyat trackinggmultiplg pegks in
static environments.
although they perform the same in SR and PR on nine out ofSeveral interesting topics will be addressed for the future
ten problems, AMP/DE spends slightly less evaluations th@jbrk. Firstly, the investigation on performance differeade-
AMP/PSO on most problems. tween AMP/PSO and AMP/DE on different problems should
Fig. 11 presents the comparison of the progress of th@ performed. This would help to understand what kinds of
number of peaks located by the four algorithms on thregeas are good at solving what kinds of problems. Secondly,
problems. From the results, it can be seen that AMP/PSO WN to reduce the number of evaluations spent by the peak
AMP/DE are the quickest in locating multiple peaks. hiding method would also be interesting, especially in ahhig
In order to test the capability of locating many peaks of thgimensional space. Thirdly, it is also interesting to mate t
AMP, AMP/DE and AMP/PSO are tested on the Vincent angeak hiding method work efficiently on problems with noise
Shubert function in 3D and 4D space with the correspondig with rugged fitness landscape. Finally, the application o
maximum number of function evaluations of 5.0E+06 a.nﬂ’~|e AMP to real-world prob]ems is also important_
1.0E+07. Table Xl shows the results 6fR and SR of the
two algorithms. For the 3D-Vincent function with 216 global
optima, AMP/PSO successfully finds all peaks under the given
maximum number of evaluations and AMP/DE misses onlyl] S. Bird and X. Li, “Adaptively choosing niching paramedein a pso,”
one peak in one run. For the 4D-Vincent function with 1296 ' 2000 Genetic and Evolutionary Computation Conferer@0e, pp.
global optima, although both algorithms fail to find all psak (2] — “Using regression to improve local convergence,”2607 IEEE
under the given maximum number of evaluations, the peak Congress on Evolutionary Computatjor007, pp. 592-599.
ratio is 0.78 for AMP/DE and 0.95 for AMP/PSO, respectively.[3] T- Blackwell, “Particle swarm optimization in dynamianéronments,”
. . . in Evolutionary Computation in Dynamic and Uncertain Enviments
For the 3D-Shubert function with 81 global optima, AMP/PSO  ser studies in Computational Inteligence.  Spinger, 2697 2, pp.
finds all the peaks for all runs and AMP/DE achieves a PR of 29-49.
0.98 and a SR of 0.43. For the 4-D shubert function with 32441 T. Blackwell and P. Bentley, “Don't push me! coliisiorvaiding
. swarms,” in2002 IEEE Congress on Evolutionary Computatienl. 2,
global optima, AMP/PSO and AMP/DE have no successful 5002 pp. 1691-1696.

runs but they achieve the PR of 0.82 and 0.70, respectively[5] T. Blackwell and J. Branke, “Multi-swarm optimizatiom idynamic
env!ronments_," inAppIications of Evolutionary Computatipmol. 3005.
V. CONCLUSIONS Sprlng“er Bgrlln Heldelberg,'2004, pp. 439—500. . '
[6] ——, “Multiswarms, exclusion, and anti-convergence ipndmic en-
|dentifying the correct number of populations is a key issue vironments,”|EEE Transaction on Evolutionary Computatjowol. 10,

- o no. 4, pp. 459-472, 2006.
to apply MPMs to solving DOPs. In order to address this |ssu«?7] M %’Ijackwe” and P. J. Bentley, “Dynamic search withasbed

this paper proposes an adapt_ive multi-p_opulatio_n frambw"_" _ swarms,” inProceedings of the Genetic and Evolutionary Computation

database is used to record important information for ggidin ~ Conference ser. GECCO '02.  San Francisco, CA, USA: Morgan
; ; ; Kaufmann Publishers Inc., 2002, pp. 19-26.

the adjl.JStment of the total numb.er.Of popul_atlons. MUItIp.Ie[B] J. Branke, “Memory enhanced evolutionary algorithms &hanging

populations are C_reated by a h_eU”S“C C"J_Ster!ng methdia-wi optimization problems,” if.999 IEEE Congress on Evolutionary Com-

out any manual inputs. Learning from historical data makes putation vol. 3, 1999, pp. 1875-1882.

the AMP robust to solve problems, and continuously giving®] J- Branke, T. KauRler, C. Schmidth, and H. Schmeck, "A tmul

feedback to the datab hel the AMP brod reci population approach to dynamic optimization problem,4th Interna-

eedback 1o the database helps the produce precise ijona| Conference on Adaptive Computing in Design and Mactufing,

solutions. 2000, pp. 299-308.
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