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Introduction
Aims, Goals, and Scope of Review
The manufacture, storage, distribution, and
release to the environment of xenobiotic sub-
stances worldwide are controlled and regulated
at local, national, and international levels.
Control and regulation of chemical substances
are mandated by legislation and implemented
by regulatory agencies and authorities. To regu-
late the use of chemicals successfully, authori-
ties require reliable data to be produced on the
effects and fate of chemicals in the environ-
ment. Traditionally, these data have been pro-
vided by testing chemical substances by a
number of well-defined protocols. However,
until the passage of the Toxic Substances
Control Act (TSCA 1976) in the United States
and similar legislation elsewhere, such data
were publicly available for only a fraction of
industrial chemicals. Since the enactment of
TSCA and creation of the TSCA Interagency
Testing Committee (ITC 2002), the ITC has
recommended testing for hundreds of chemi-
cals, the U.S. Environmental Protection
Agency (U.S. EPA) has implemented these rec-
ommendations, and the producers of these
chemicals have conducted more than 900 tests
for these chemicals (Walker 1993a, 1993b).
The development of these data, in response to
the ITC’s recommendations, proved advanta-
geous for subsequent nonstatutory programs
designed to encourage the voluntary develop-
ment of data. For example, the Organisation
for Economic Cooperation and Development’s
(OECD) Screening Information Data Set
(SIDS) and the U.S. EPA High Production
Volume (HPV) Challenge programs benefited
because most of the chemicals in the early
phases of those programs had already been rec-
ommended for testing by the ITC (Walker

1993a). However, even with the creation of
these nonstatutory programs, there are poten-
tially thousands of non-HPV industrial chemi-
cals that will continue to go untested.
Prioritization of these industrial chemicals for
screening and testing needs the development
and validation of standard methods to predict
the ecologic effects and environmental fate of
chemicals using quantitative structure–activity
relationships (QSARs) (Russom et al. In press).
Guidelines have been published for developing
and using QSARs [Walker. In press (a); Walker
et al. In press (a)] and for predicting ecologic
effects (Bradbury et al. In press). Nonetheless,
further development and validation of standard
QSAR methods is needed to gain widespread
acceptance by the regulatory and regulated
communities.

The aim of this article is to review the
worldwide regulatory use of QSARs for pre-
dicting the ecologic effects and environmental
fate of chemical substances (the regulatory use
of QSARs for predicting human health effects
forms the basis of a second review; Cronin
et al. 2003). The use of QSARs by a number
of regulatory agencies to prioritize chemicals
for testing and to fill data needs is described.
Although QSARs are applied by agencies
worldwide, this review focuses on their use in
North America and by the European Union
(EU) and their member states. It should be
emphasized that the purpose of this article is
not to provide an extensive review of the use of
QSARs per se but to review their regulatory
application; further details on this complex
and evolving topic may be obtained from a
recent review by Walker et al. (2002) and a
web-based database developed by the OECD
(2002). QSARs themselves have been the sub-
ject of a number of excellent recent reviews

[Boethling and Mackay 2000; ECETOC
1998; Karcher 1995; Lyman et al. 1990;
Nendza 1997; Walker 2003, In press (a–e);
Walker and Schultz 2002].

Regulatory Use—Europe
European Union. Risk assessment of the eco-
logic effects of chemicals is well described by
van Leeuwen and Hermens (1995). The
potential application of QSARs in this process
is described in Nendza and Hermens (1995),
Comber (In press), and Comber et al. (In
press). In the EU, risk assessment of chemical
substances is driven by the requirements of
Commission Directive 93/67/EEC on Risk
Assessment for New Notified Substances and
Commission Regulation (EC) No. 1488/94
on Risk Assessment for Existing Substances
(EEC 1993a, 1994; Joint Research Centre
1998). To ensure consistency of application of
the environmental risk assessment (ERA)
process, in 1996 the EU produced a compre-
hensive technical guidance document (TGD)
to support the Directive on New Substances
and the Regulation on Existing Substances
(EEC 1996). This document includes a sub-
stantial chapter providing guidance on the use
of QSARs in the ERA process in terms of
where they should be used, how they should
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be used, and which ones should be used. Four
specific uses for QSARs in ERA are identified
in the EU TGD, and these are presented in
more detail below.

Data Evaluation

Acceptable QSARs may be used as a support-
ing tool to evaluate the adequacy of the avail-
able experimental data, for example, when the
validity of the test data is not obvious. This
may occur when incomplete data are available
on the test and/or the test differs in some way
from current methods, for example, OECD
test guidelines.

Decision for Further
Testing/Testing Strategies
In those cases where a predicted environmental
concentration (PEC)/predicted no effect con-
centration (PNEC) ratio, established using test
data, is greater than 1, there will be a require-
ment to determine whether additional testing
is needed to allow a refinement of the
PEC/PNEC ratio. To facilitate this decision,
all available test data should be reconsidered
along with estimates established using accept-
able QSARs. If PEC/PNEC ratios derived
using the QSARs suggest that further testing is
required, then generally a chronic test should
be conducted on the species that showed the
lowest estimated no-observable-effect concen-
tration (NOEC).

Establishing Specific
Parameters
Acceptable QSARs can be used for the estima-
tion of specific (input) parameters used in the
risk assessment, particularly in the exposure
assessment when no measured data are avail-
able to enable derivation of the PEC.

Identifying Data Needs on
Effects of Potential Concern
Acceptable QSARs can be used for preliminary
assessment of endpoints that are not part of the
base set of data and for which information is
not available.

Thus QSARs are used to estimate missing
physicochemical parameters in environmental
exposure assessment. Rules for the use of
QSARs in environmental effects assessment are
also provided in the TGD. These simply state
that a QSAR is considered to be acceptable for
a particular use with the risk assessment process
if a) the QSAR applied has been validated by
an appropriate process, and b) the estimate
possesses the necessary accuracy for the
intended use.

At the time of our writing this article, the
TGD is nearing the end of a major revision
that, among other things, will incorporate a risk
assessment of the marine environment into the
process. This will include manual comparison
of persistent, bioconcentration, and toxicity

properties against specific criteria; the use of
QSARs is allowed where experimental data are
not available. This is an implementation of the
European Commission’s interim strategy for
management of persistent bioaccumulative and
toxic substances (PBTs) and very persistent,
very bioaccumulative substances (vPvB) (CEC
2001b), and the criteria used are shown in
Table 1.

The Convention for the Protection of the
Marine Environment of the Northeast
Atlantic DYNAMEC prioritization of haz-
ardous substances. The Commission for the
Protection of the Marine Environment of the
Northeast Atlantic (OSPAR Commission) has
developed a strategy regarding hazardous sub-
stances that involved the development and
application of a dynamic selection and prioriti-
zation mechanism (DYNAMEC) to produce
an updated list of chemicals for priority action.
The prioritization mechanism was based on
persistence, toxicity, and bioaccumulation
properties of chemicals and was applied to a
data set of more than 180,000 substances
(OSPAR Commission 2000). For many of the
chemicals, no experimental test data were avail-
able, and the data used for the prioritization
exercise were generated using QSARs, includ-
ing the Syracuse Research Corporation (SRC,
Syracuse, New York, USA) BIOWIN model
for the prediction of persistence, KOWWIN
and BCFWIN for bioaccumulation, and
ECOSAR for toxicity.

REACH initiative. The European
Commission (CEC 2001b) has recently pub-
lished a white paper setting out a “strategy for a
future chemicals policy,” which discusses the
registration, evaluation, and assessment of
chemicals—the so-called REACH initiative—
for new and existing chemical substances mar-
keted in quantities of more than 1 metric ton/
enterprise/year. The 30,000 existing substances
affected will be processed on a phased basis
over a period of 11 years (ending 2012), start-
ing with those marketed in the highest vol-
umes, as well as those with very high hazard
(once data have been registered). There is a
desire to decrease the time taken to assess the
risk of thousands of existing chemicals that are
in current use. An important part of this chem-
icals policy is the fostering of research on devel-
opment and validation of testing methods as

alternatives to animal testing, including QSAR
models. This theme has been taken up by the
European Parliament (2001a, 2001b), which
has requested the use of screening procedures
based on simplified risk assessment using data
modeling, for example, QSARs and use pat-
terns, to prioritize substances of possible con-
cern “in order to speed up risk assessments”
(European Parliament 2001a). In addition, the
European Commission (CEC 2001c) has
recently published an “Interim Strategy for
Management of PBT and vPvB Substances,”
which states that the identification and verifica-
tion of PBTs and vPvBs among new and exist-
ing substances will use QSAR models “where
experimental data do not exist.” The Danish
Environmental Protection Agency (Danish
EPA) have proposed that their QSAR database
be used for this purpose.

EU Scientific Committee on Toxicity,
Ecotoxicity and the Environment. The EU
Scientific Committee on Toxicity, Ecotoxicity
and the Environment (CSTEE) recom-
mended, in their general data requirements for
regulatory submissions, that QSAR data may
also be used. However, they cautioned that for
predictions, chemicals should be assessed not
only to ensure they are of similar structure, but
also to ensure that they are operating by a simi-
lar mode of action as the chemicals used to
elicit the QSAR. Moreover, in order to take
into account the higher level of uncertainty of
predicted data compared with experimental
data, different rules (i.e., stricter application of
safety factors and triggers) should be applied to
QSAR information.

Danish self-classification of dangerous
substances. The Danish EPA (2001) devel-
oped an advisory list for self-classification of
dangerous substances using QSAR models. Of
approximately 47,000 substances that were
examined, 20,624 substances were identified as
requiring classification for one or more of the
following dangerous properties: acute oral toxi-
city, sensitization by skin contact, mutagenic-
ity, carcinogenicity, and danger to the aquatic
environment. The Danish EPA stated that “the
[QSAR] models used here are now so reliable
that they are able to predict whether a given
substance has one or more of the properties
selected with an accuracy of approximately
70–85%” (Danish EPA 2001). With regard to
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Table 1. Criteria for identification of PBT and vPvB substances.

Criterion PBT criteria vPvB criteria

P Half-life > 60 days in marine water or > 40 days Half-life > 60 days in marine water or fresh water 
in fresh watera or half-life > 180 days in marine or > 180 days in marine or freshwater sediment
sediment or > 120 days in freshwater sedimenta

B BCF > 2,000 BCF > 5,000
T Chronic NOEC < 0.01 mg/L or CMR or Not applicable

endocrine-disrupting effects 

Abbreviations: B, bioaccumulative; CMR, carcinogenic, mutagenic, reprotoxic; P, persistent; T, toxic.
aFor marine environment risk assessment, half-life data in fresh water and freshwater sediment can be overruled by data
obtained under marine conditions.



environmental effects, specific endpoints pre-
dicted included bioconcentration, biodegrada-
tion, and fish acute toxicity.

Danish QSAR database. The Danish EPA
has made extensive use of QSARs and has
developed a QSAR database that contains pre-
dicted data on more than 166,000 substances
(OSPAR Commission 2000). A recent publi-
cation from the Danish EPA (Tyle et al. 2001)
reports the use of QSARs for identification of
potential PBT and vPvB substances from
among the HPV and medium–production-
volume chemicals used in the EU.

German use of QSARs. Lange and
Vormann (1995) of the German Umweltbun-
desamt (UBA) have reported on the use of
well-designed QSARs both to fill missing data
needs and to give some assurance of the quality
of the available experimental test data. They
described how the German Regulatory
Authority developed a QSAR-based software
system to assess the validity of predictions
made for data supplied with newly notified
chemicals. The system predicted a wide range
of fate and effect endpoints, including fish and
Daphnia acute toxicity. However the authors
explained that for 64% of the substances
assessed, some of the QSARs were not applica-
ble because the substances were ionic, con-
tained heavy elements, hydrolyzed rapidly, or
were reaction mixtures. Generally, the German
UBA uses these QSAR approaches and soft-
ware within the framework of the assessment
of chemicals.

Use of QSARs in the Netherlands. Many
of the applications of QSARs in The
Netherlands are reported by van Leeuwen and
Hermens (1995). An approach was developed
to classify environmental pollutants according
to mode (or mechanism of action) and subse-
quently to make predictions of toxicity
(Verhaar et al. 1992, 1996, 2000). The
approach allows for the calculation of a “base-
line” toxicity and then a classification scheme
for four classes of toxicity: class 1 (inert chemi-
cals, baseline toxicity, typically nonpolar narco-
sis), class 2 (relatively inert chemicals, typically
polar narcosis), class 3 (reactive chemicals, typi-
cally compounds capable of covalent elec-
trophilic and nucleophilic interactions with
biological macromolecules), class 4 (specifically
acting chemicals such as pesticides). The classi-
fication approach was applied to predict the
toxicity of HPV chemicals (Bol et al. 1993;
Verhaar et al. 1994). For inert toxicants (i.e.,
nonpolar narcotics), QSARs were published for
the no-observable-effect concentration values
for 19 different species of bacteria, algae, fungi,
protozoa, fish, amphibians, and other inverte-
brates (van Leeuwen et al. 1992). The informa-
tion from the QSARs was used to calculate
hazard concentrations for 5% of the species,
with a low probability of having an effect at the
ecosystem level (van Leeuwen 1995).

Regulatory Use—United States
ITC. The ITC is not a regulatory organization;
however, many of the 16 U.S. government
organizations represented on ITC have regula-
tory responsibilities. The ITC was created under
section 4(e) of TSCA as an independent advi-
sory committee to the U.S. EPA administrator
(U.S. EPA 2002e). The ITC was created to
identify industrial chemicals in need of testing
and to add them to the priority testing list in
May and November reports to the U.S. EPA
administrator (Walker 1993a). The ITC has a
statutory responsibility to use SARs to identify
these chemicals (Walker 2003). U.S. govern-
mental organizations represented on the ITC
that apply QSARs include the U.S. EPA,
Agency for Toxic Substances and Disease
Registry (ATSDR), and the U.S. Food and
Drug Administration (U.S. FDA) (Walker
2003).

U.S. EPA. The U.S. EPA has received
about 38,000 premanufacture notifications
(PMNs) for new chemicals and currently
receives about 2,000 per annum. Because
TSCA does not require testing before submis-
sion of a PMN, SARs and QSARs are used to
predict the environmental fate and ecologic
effects (Walker 2003)

To assess the risk of a new chemical, the
U.S. EPA makes predictions concerning
chemical identity, physical/chemical proper-
ties, environmental transport and partition-
ing, environmental fate, environmental
toxicity, engineering releases to the environ-
ment, and environmental concentrations. The
agency uses a variety of methods to make pre-
dictions that include SARs, nearest analogue
analysis, chemical class analogy, mechanisms
of toxicity, chemical industry survey data, and
professional judgment. The agency uses these
methods to fill data gaps in an assessment and
to validate submitted data in notifications
(Nabholz 2001). Predictions are made by the
U.S. EPA Office of Pollution Prevention and
Toxics (OPPT) under TSCA (Zeeman et al.
1995). The OPPT has routinely used QSARs
to predict ecologic hazards, fate, and risks of
new industrial chemicals, as well as to identify
new chemical testing needs, for more than
two decades.

OPPT (Q)SARs for physical/chemical
properties used for new chemical assessments
are available (U.S. EPA 2002b). Many of the
QSARs applied by the U.S. EPA to make pre-
dictions are based on estimates of the loga-
rithm of the octanol–water partition coefficient
(log Kow). Log Kow is predicted by the
KOWWIN software that is available within
the EPIsuite software (which can be down-
loaded from the OPPT website; U.S. EPA
2002b). Additional sources of information
regarding U.S. EPA activities are provided. For
example, validation studies of OPPT SARs
used in the new chemical program are available

(U.S. EPA 2002f) as well as a database of
aquatic toxicity values from the literature (U.S.
EPA 2002a).

Regulatory Use—Canada
The Canadian Environmental Protection Act
(1999) requires that the 23,000 substances on
the Canadian Domestic Substance List (DSL)
(MacDonald et al. 2002) should be categorized
and screened for persistence or bioconcentra-
tion and inherent toxicity. To assist with the
categorization process, Environment Canada
formed a technical advisory group (TAG) in
December 1998. The TAG consists of scien-
tific and technical experts from government,
industry, environmental organizations, and
consultant groups and was formed to act as a
resource to Environment Canada for identify-
ing and resolving scientific and technical issues
that emerge from the implementation of the
categorization program (Environment Canada
2002). As recommended by the TAG, an
international workshop on QSARs hosted by
Environment Canada was held in Philadelphia
in November 1999 to establish “rules of
thumb” for predicting properties and effects of
the structurally diverse DSL chemicals
(MacDonald et al. 2002).

Regulatory Use—Australia
Use of SARs and QSARs by Australian govern-
ment organizations has been described previ-
ously (Walker et al. 2002). Australian
regulatory authorities do not currently use
QSARs in relation to the listing of chemicals
on the Australian Inventory of Chemical
Substances (http://www.nicnas.gov.au/obliga-
tions/aics.htm). With regard to new chemical
assessments, limited use may be permitted in
the National Industrial Chemicals Notification
and Assessment Scheme (http://www.nicnas.
gov.au) . For example, data from chemical ana-
logues may be used from structurally similar
chemicals if toxicologic and ecotoxicologic data
are unavailable on the notified chemical. From
the analogue data, conclusions may be drawn
on the health and environmental effects of the
notified chemical. However, Australian author-
ities do not routinely accept SAR predictions
without support from actual test data, for
example, physicochemical properties and eco-
toxicologic effects.

Regulatory Use—Japan
Japanese regulatory authorities do not currently
make predictions of ecologic effects and envi-
ronmental fate using QSARs. However, this sit-
uation is under review by the Japanese Ministry
of the Environment (Walker et al. 2002).

Organizations Involved with the
Validation of QSARs
Despite not being formal regulatory agencies,
two bodies, the European Centre for
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Validation of Alternative Methods (ECVAM)
in the EU and the Interagency Coordinating
Committee on the Validation of Alternative
Methods in the United States, have responsi-
bility for the validation of alternative methods
to the use of animals in the safety evaluation of
chemical substances. Alternative methods
include in vitro tests as well as QSARs and
other computer modeling techniques.
ECVAM has evaluated the development and
the potential for the validation of expert sys-
tems, including those using QSARs for pre-
dicting toxicity (Dearden et al. 1997).

The OECD has also been involved in the
assessment of QSARs to predict toxicity and
physicochemical properties. Workshop reports
made recommendations for the use of QSARs
in aquatic toxicity prediction (OECD 1992)
and for physicochemical properties (OECD
1993a) and biodegradation (OECD 1993b).
Many of these recommendations were incor-
porated into the EU TGD. The recommenda-
tions of the 1993 report for aquatic toxicity
prediction have been updated recently
(OECD 2000).

The OECD was also responsible for collat-
ing the results from a tripartite (United States,
EU, Japan) assessment of QSARs to predict
toxicity (Comber and Feijtel 1997; Feijtel
1995; Karcher et al. 1995; OECD 1994a,
1994b; U.S. EPA 1994a). This study com-
pared ecologic effects, physical properties, and
environmental fate predictions made by the
U.S. EPA with the EC’s minimum premarket
data (MPD) for 144 chemicals. The results of
the study were quite useful in judging many of
the strengths and weaknesses of the U.S. EPA
approach, as well as determining the utility of
MPD-type data in improving the U.S. EPA
predictive methods. There were some limita-
tions to the exercise; namely, only small data
sets were available, the endpoints used for com-
parison were limited to the tests included in
the MPD data set, different approaches were
used to ascertain certain parameters, and indi-
rect measurement in some MPD data sets was
used for one or more physical/chemical proper-
ties (i.e., extrapolation), which may or may not
give a “true” result [for more details on this
comparative study, refer to U.S. EPA (2002f)].

QSARs to Predict Acute Aquatic
Toxicity

QSARs Based on Chemical Classes

Toxicologic QSARs were based originally on
congeneric series of chemicals (Schultz et al.
2003). Such QSARs are based on the assump-
tion that compounds with the same functional
group (e.g., an aliphatic alcohol) have the same
mode of action. It can be limited, however by
the identification of the correct class for chemi-
cals with more than one functional group and
more than one mode of action. The ecotoxicity

structure activity (ECOSAR) database
developed by the U.S. EPA (2002b) includes
more than 150 QSARs for more than 50
chemical classes. These chemical classes are
listed in Table 2.

QSARs Based on Modes of Action
QSARs based on mode of action represent an
alternative to QSARs for classes of chemicals.
Several modes of action have been predicted
based on fish toxicity studies (Russom et al.
1997). These predicted modes of action
have been incorporated into the U.S. EPA
Assessment Tools for the Evaluation of Risk
(ASTER) system, which links two empirical
databases: the Aquatic Toxicity Information
Retrieval (AQUIRE) database (Pilli et al.
1989) component of the U.S. EPA ECOTOX
database (U.S. EPA 2002a), and the physical/
chemical properties database (Russom et al.
1991). Further tools exist for classifying com-
pounds according to mechanisms of action,
including nonpolar and polar narcosis reactive
and specific categories (Boxall et al. 1997;
Verhaar et al. 1992, 1996, 2000).

Expert Systems
A number commercially available QSAR-based
“expert systems” have been developed to pre-
dict different toxicity endpoints. For general
reviews of expert systems, the reader is referred
to Dearden et al. (1997) and Hulzebos et al.
(1999).

TOxicity prediction by Komputer-Assisted
Technology (TOPKAT). TOPKAT contains a
suite of predictive models for both environ-
mental and human health effects. It is mar-
keted currently by Accelrys Inc. (Cambridge,
UK). It has two models suitable for the predic-
tion of acute toxicity. These ecotoxicity models
are based on the fathead minnow and Daphnia
magna toxicity data. The TOPKAT methodol-
ogy is based on the collation of the toxicity
data for large, chemically heterogeneous groups
of chemicals. The chemicals may then be sub-
divided into any number of groups on the basis
of chemical structure (e.g., aromatic, aliphatic,
heterocyclic compounds), and then QSARs
can be developed for each group. The QSARs
are typically developed using topological, or
atom-based, descriptors. An integral part of the
prediction is an assessment of whether the
chemical for which the prediction is made falls
within the optimum prediction space (OPS) of
the model (Gombar 1999). This is the “cover-
age” of the model as determined by the physic-
ochemical descriptors from which it was
derived. Predictions for compounds that fall
outside of this range should be discarded.

The Fathead Minnow LC50 module of the
TOPKAT package is composed of eight statis-
tically significant and cross-validated quantita-
tive structure–toxicity relationship (QSTR)
models, and the data from which the models

are derived. Each QSTR model assesses acute
median lethal concentration (LC50) to fathead
minnows in weight/volume units for a specific
class of chemicals. The Daphnia magna mod-
ule of the TOPKAT package is composed of a)
four statistically significant and cross-validated,
QSTR models, and b) a database of 252 uni-
form experimental acute median effective con-
centration (EC50) values selected after critical
review of the open literature and the AQUIRE
database.

Computer-automated structure evaluation
(CASE) methodology. CASE methodology, and
all its variants, has been developed by Klopman
colleagues (Klopman 1992; Klopman and
Rosenkranz 1991). There are a multitude of
models available for a variety of endpoints and
hardware platforms [more details are available
from the manufacturer: MultiCASE Inc.
(2002)]. The CASE technique is based on the
development of regression-type models after the
analysis of the toxicity of a large and chemically
heterogeneous data set. The technique splits the
molecules into all possible fragments and seeks
to find those two-dimensional fragments that
are associated with (either by promoting or
reducing) toxicity. A regression model is then
developed from those fragments normally with-
out the use of electronic or three-dimensional
structural descriptors. There are many forms of
the CASE models; the software is variously
called CASE, MultiCASE (MCASE), CASE-
TOX, and TOXALERT [MultiCASE Inc.
(2002)], depending on the endpoint being
modeled and the hardware platform. For the
successful prediction of acute toxicity, the
baseline activity identification algorithm
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Table 2. Classes of chemicals for which toxicity
models exist in ECOSAR.

Acid chloride/halide
Acrylamides
Acrylates
Aldehydes
Aliphatic amines
Anilines (amino-meta)
Anilines (amino-ortho)
Anilines (amino-para)
Aromatic amines
Aziridines
Benzotriazoles
Benzyl alcohols
Benzyl amines
Benzyl halides
Diazoniums
Diepoxides
Diketones
Dinitro aromatic amine
Dinitrobenzenes
Epoxides
Esters
Esters (phosphate)
Haloacetamides
Hydrazines
Imides
Isocyanates
Malononitriles
Methacrylates

Neutral organics
Peroxy acids
Phenols
Phenols (dinitro)
Propargyl alcohols
Propargyl ethers
Quinone
Salicylates
Salicylic acid
Schiff bases
Silamines
Silanes (alkoxy)
Surfactants, anionic
Surfactants, cationic
Surfactants, nonionic
Thiazolidinones
Thiazolinone (iso-)
Thiocyanates
Thiols (mercaptans)
Thiophenes
Triazines
Ureas (substituted)
Vinyl/allyl alcohols
Vinyl/allyl ethers
Vinyl/allyl halides
Vinyl/allyl ketones
Vinyl/allyl sulfones



(Klopman 1998) simulates the “baseline” effect
of narcosis. In this manner, CASETOX models
have been developed for the fathead minnow
on the basis of 479 test values (Klopman et al.
2000) and for the guppy on the basis of 219
test values (Klopman et al. 1999).

Optimized approach based on structural
indices set (OASIS). OASIS is a shell system for
screening chemical inventories for physico-
chemical and toxic endpoints accounting for
conformational flexibility of chemicals. It was
developed and defined by Mekenyan et al.
(1990, 1994). The OASIS Forecast software
(designed for personal computers with
Microsoft Windows; Laboratory of
Mathematical Chemistry, University “Prof. As.
Zlatarov,” Bourgas, Bulgaria) is an interfacing
program providing screening of chemicals by
making use of QSAR models. Presently, models
are available for bioavailability, log Kow, acute
toxicity, phototoxicity, estrogen and androgen
binding affinity, and mutagenicity. The system
is flexible in terms of its ability to be employed
as an expert-system shell for implementing sub-
sequently derived QSARs or QSARs derived by
other laboratories. QSAR models are described
as logistical decision trees that consist of multi-
ple hierarchically ordered rules based on para-
meter ranges that comprise reactivity patterns
associated with toxic or physicochemical end-
points. These patterns could be expressed by
steric, electronic, and two-dimensional (frag-
ment) structural requirements. Boolean logic
operators are used to establish “rules” in the
decision tree. If the value of a parameter calcu-
lated for a conformer of a chemical is found in
a range of the molecular descriptors defined by
certain confidence limits, it is assumed that a
chemical meets the specific requirement for
eliciting the endpoint with a certain probability.
OASIS Forecast is unique in terms of account-
ing for conformational flexibility of chemicals
during the screening. It provides two
approaches for that purpose. When applied to
large databases of three-dimensional structures
where a chemical is represented by a single con-
former, one can use the “tweak” algorithm,
which is based on the directed conformational
search aiming to render the distance between
the fragments into the specified limits. In fact
the rotatable bonds of the structures are
adjusted to produce a conformation that
matches as closely as possible a given three-
dimensional requirement. The second alterna-
tive, to account for conformational flexibility of
the screened molecules, employs the recently
developed method for conformational coverage
based on a genetic algorithm. The generation of
sets of energetically reasonable conformers, pro-
viding coverage of conformational space, how-
ever, requires subsequent quantum chemical
assessment of their electronic structures. Hence,
the second alternative is evaluated to be much
more time-consuming then the directed

(tweak) conformational analyses. The confor-
mational analysis and subsequent quantum
chemical calculations are performed on the fly
during the screening process.

The OASIS expert system has been
developed for the prediction of acute aquatic
toxicity of noncongeneric chemicals using a
two-step SAR approach (Karabunarliev et al. In
press). It employs a) a computerized rule-based
discrimination of chemicals and b) correlative
QSARs using log Kow and quantum-chemical
descriptors. The Duluth database (Russom et
al. 1997) of acute toxicities to fathead minnow
for about 660 organic chemicals served as the
data source to develop an explicit rule-based
discrimination scheme and QSARs for the sep-
arate chemical categories. The OASIS system
has been assessed for its capabilities to predict
fish toxicity (Moore et al. In press).

CATABOL. CATABOL is a mechanistic
modeling approach for quantitative assessment
of biodegradability. The system generates the
most plausible biodegradation products and
provides quantitative assessment for their solu-
bility and toxic endpoints. The core of
CATABOL is the biodegradability simulator
including a library of hierarchically ordered
individual transformations (catabolic steps).
The catabolic steps are derived from a set of the
most plausible metabolic pathways predicted by
experts for each chemical from the Japanese
Ministry of International Trade and Industry
(MITI) database training set. The data in the
training set agreed well with the calculated bio-
logical oxygen demands (r2 = 0.90) in the entire
range; that is, a good fit was observed for readily
degraded, intermediate degraded, and difficult-
to-degrade chemicals. After introducing 60%
theoretical oxygen demand as a cutoff value, the
model predicted correctly 98% readily
biodegradable structures and 96% not readily
biodegradable structures. Cross-validation by
leaving out 25% of the data and recalculating
the model 4 times resulted in Q2 = 0.88
between observed and predicted values.

CATABOL is a hybrid of a knowledge-
based expert system for predicting biotransfor-
mation pathway, working in tandem with a
probabilistic model that calculates probabilities
of the individual transformations and overall
biological oxygen demand and/or extent of
CO2 production. The novelty of the model is
that the biodegradation extent is assessed on
the basis of the entire pathway and not, as with
all other models, on the parent structure alone.
The second novelty is that CATABOL explic-
itly considers effects of adjacent fragments
before executing each transformation step.
CATABOL was described in detail by
Jaworska et al. (2002).

Substructure-based computerized chemical
selection expert system (SuCCSES). After years
of recommending chemical classes based on
SARs, the ITC determined that a computerized

system was needed to use historical information
and expert opinions to facilitate the ITC’s
review of large groups of chemicals with similar
substructures (and modes of action, if avail-
able). Historical information and expert opin-
ions used to identify ecologic and health effects
associated with chemicals were captured in
SuCCSES. Historical information was obtained
from the ITC scoring exercises 1, 2, 3, 4 and 5
that were convened from 1978 to 1983
(Walker 1993a, 1993c, 1995). For each work-
shop the ITC invited expert toxicologists, phar-
macologists, oncologists, geneticists, and
ecologists to score (within their discipline) sev-
eral hundred chemicals using criteria or thresh-
olds for potential to cause acute, subchronic,
mutagenic, carcinogenic, developmental, or
reproductive effects to humans or acute effects
to aquatic organisms, and for bioconcentration
potential (Walker 1995).

Expert opinions were based on SARs,
empirical data, and professional judgment.
Opinions were developed by first convening
separate panels of health effects experts and
ecologic effects experts. These experts were
asked to identify chemical substructures that
were associated with chemicals likely to cause
health or ecologic effects, respectively. Each
panel was instructed to a) identify appropriate
toxicologic endpoint categories for health
effects or ecologic effects that could be used to
classify chemicals with identical substructures
and similar modes of toxic action, b) describe
chemical substructures that could be associated
with toxicologic endpoint categories for health
effects or ecologic effects, c) develop a ques-
tionnaire that could be sent to health effects or
ecologic effects experts to solicit their opinions
on the reliability of the toxicologic endpoint
categories and associated chemical substruc-
tures, and d) provide names of health effects or
ecologic effects experts to whom the question-
naire then could be sent. Additional informa-
tion on health effects that are coded in
SuCCSES is provided in the companion article
(Cronin et al. 2003).

For ecologic effects, numerous international
experts were sent a questionnaire listing more
than 100 different chemical substructures and
asked to predict (based on their field of exper-
tise related to ecologic effects and knowledge of
modes of action) the potential for chemicals
containing any of the substructures to cause
effects to algae, aquatic invertebrates, birds, fish,
mammals, microorganisms, plants, or terrestrial
invertebrates. Opinions from these ecologic
effects experts were converted to codes that
identified chemical substructures and indicated
potential of chemicals containing one or more
substructures to cause effects to the previously
listed organisms.

SuCCSES is a relational database with
fields indexed on Chemical Abstract Service
(CAS) Registry numbers. It was created using
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Molecular Design Limited Information
Systems’ Integrated Scientific Information
System. For chemicals in SuCCSES, chemical
formulas, molecular weights, two-dimensional
chemical structures, and simplified molecular
input line entry system (SMILES) notations
(Weininger 1988; Weininger et al. 1989) are
provided. Features of SuCCSES promote sub-
structure searching to identify structurally
related chemical classes of chemicals and their
potential ecologic or human health effects. For
each record in SuCCSES, a computer screen
displays fields for CAS Registry number, mole-
cular weight, molecular formula, SMILES
notation, two-dimensional chemical structure,
chemical name, predicted mode of action, and
potential health or ecologic effects. SuCCSES
is not available to the public because it contains
confidential business information.

SuCCSES is used to facilitate the ITC’s
review of large groups of chemicals (Walker
1991, 1995; Walker and Brink 1989). The
aldehyde substructures in SuCCSES that were
associated with potential to cause acute effects
to aquatic organisms were included in recent
publications (Walker and Printup In press;
Walker et al. In press (b)]. A forthcoming book
chapter summarizes the development of
SuCCSES and its applicability to the ITC’s
statutory mandate to use SARs before recom-
mending chemicals for testing in May and
November reports to the U.S. EPA administra-
tor (Walker and Gray. In press).

Other approaches to toxicity prediction.
Other approaches to predict toxicity include
those for predicting water quality objectives
(Vighi et al. 2001). This was a multivariate
QSAR approach that involved the assessment
of water quality objectives for a set of 125
chemicals [derived from the European priority
list in compliance with Directive 76/464/EEC
(EEC 1976)]. Predictions from classification
models (based on algae, Daphnia, and fish toxi-
city values) were shown to perform satisfacto-
rily compared with the classifications using
literature toxicity data.

EU Regulatory Use
Technical guidance documents. In Europe,
data obtained from QSARs can be used
according to the guidance on the use of
QSARs for specific groups of substances found
in Part IV of the TGD (EEC 1996). The
TGD provides recommendations for the use of
QSARs to predict acute toxicity to fish (96 hr
LC50), Daphnia (48 hr EC50) and algae (72- to
96-hr EC50). In particular, QSARs are provided
for chemicals acting by nonpolar narcosis and
polar narcosis mechanisms of action. No
QSARs have been recommended for substances
that act by more specific modes of action.

Danish EPA. Tyle et al. (2001) reported
that toxicity is considered only for substances
with a bioconcentration factor (BCF) between

2,000 and 5,000. For such compounds, the
QSAR predictions of the Danish EPA are used.
The Danish EPA also used the MCASE fathead
minnow model to predict acute aquatic toxicity
of substances. The toxicity predictions were
then used to assign EU risk classifications (e.g.,
R50, R51, and R53) (CEC 2001a)

U.K. Department of Environment, Food,
and Rural Affairs (DEFRA). In the United
Kingdom, DEFRA has established a Chemical
Stakeholders Forum (CSF) (DEFRA 2001),
which gives a voice to those in society with an
interest in chemicals and their effects on the
environment and, through the environment,
on human health. The CSF has established cri-
teria for identifying chemicals of concern based
on specific persistence, bioaccumulation, and
toxicity values. The approach recommended
by the CSF implies that appropriate QSARs
can be used for estimation of persistence,
bioaccumulation, and toxicity properties where
experimental data are lacking. The proposed
approach has been endorsed by DEFRA’s
Advisory Committee on Hazardous Substances
(ACHS 2001), which also has agreed that
appropriate QSAR models can be used to fill
data gaps. The Environment Agency has car-
ried out an initial screen of the International
Uniform Chemical Information Database
(Heidorn et al. 2003) for substances that fulfill
the CSF PBT criteria and reported the initial
findings from this study to the ACHS in
September 2001 (ACHS 2001).

German Umweltbundesamt (UBA). A
QSAR-based software system has been devel-
oped by the UBA (Lange and Vormann 1995).
Its use is intended both to fill missing data
needs and to give some assurance of the quality
of the available experimental test data. The sys-
tem is capable of predicting a wide range of
fate and effect endpoints, including fish and
Daphnia acute toxicity.

North American Regulatory Use
U.S. EPA. The OPPT SARs for aquatic toxic-
ity are used for new chemical assessments and
are available from U.S. EPA (2002b). An envi-
ronmental toxicity profile may consist of the
following effects:
• Freshwater organisms (SARs and analogues):

acute toxicity to fish, daphnid, and green
algal species; fish, daphnid, and green algal
chronic values (ChV)

• Saltwater organisms (SARs and analogues):
fish, mysid shrimp, and green algal acute tox-
icity; fish, algal, and green algal ChV

• Benthic or sediment-dwelling organisms
(analogues)

• Terrestrial plants (analogues)
• Terrestrial soil, including earthworms (SARs

and analogues) and insects (analogues)
• Birds (analogues): mallards, quail, raptors
• Wild mammals (human health effects profile

and analogues): marine and terrestrial

• Terrestrial insects (analogues)
The ECOSAR software is used to make pre-
dictions for these effects.

Environment Canada. Environment
Canada recently funded a study to assess and
evaluate six modeling packages to predict
acute toxicity, with particular application to
prioritizing chemicals within the Canadian
DSL (Moore et al. In press). The six packages
assessed were ECOSAR, TOPKAT, a proba-
bilistic neural network (PNN) model, a com-
putational neural network model, the QSAR
components of the ASTER system, and the
OASIS system. Of these, the PNN model pro-
vided the best predictions on the basis of an
external test set of compounds. The TOPKAT
model also provided excellent predictions, but
only for compounds classified as falling within
the OPS of the model.

QSARs to Predict Chronic
Aquatic Toxicity

QSARs

In general few QSARs for chronic toxicity have
been published. Those available are generally
for unreactive, narcotic chemicals.

EU Regulatory Use
Technical guidance documents. The TGD pro-
vides recommendations for the use of QSARs
to predict long-term toxicity to fish (NOEC,
28 days) and to Daphnia (NOEC, 21 days). In
particular QSARs are provided for chemicals
acting by nonpolar narcosis and polar narcosis
mechanisms of action. No QSARs have been
recommended for substances that act by more
specific modes of action.

North American Regulatory Use
U.S. EPA. The U.S. EPA uses the chronic
toxicity QSARs from the ECOSAR system.

QSARs to Predict Estrogen
Receptor Binding
The issue of identifying chemicals that may
elicit endocrine disruption has grown immea-
surably in importance in the last decade.
Interest in the prediction of endocrine disrup-
tion by QSAR methods has also been increased
by the lack of historical data for this endpoint.
This has made the need to screen the databases
of existing chemicals a priority. The fact that
endocrine disruption is an effect that could be
initiated by a receptor-binding event, as well as
being an immensely complex response that
may be brought about by a number of interac-
tions (e.g., interactions with estrogen, andro-
gen hormones, etc.), has changed the
challenges faced by modelers. There are thus
two predictions that should be made: the first
is whether a compound has the capability to
elicit a response; the second is the magnitude
of that response. With these challenges in
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mind, modelers in the environmental field
have turned to many of the techniques tradi-
tionally used in drug design and optimization.
It should be noted that “endocrine disruption”
covers a broad range of physiologic effects in
vivo and may result in a number of events such
as estrogenicity, androgenicity, and so forth
(Zacharewski 1997). QSARs for predicting
estrogen receptor binding affinity of struc-
turally diverse chemicals have recently been
reviewed (Schmieder et al. In press).

QSARs for Classes
Given that a compound has the capability for
binding at a receptor site, altering the structure
of the compound should alter its affinity for
the binding site. This phenomenon has been
well demonstrated by a number of researchers;
for instance, ltz et al. (2000) demonstrated that
the binding of a series of phenols to the human
estrogen receptor was related to the size of the
phenol. Binding to this receptor is known to
require a relatively bulky, hydrophobic group.
These types of models provide an accurate pre-
diction of potency but are not applicable out-
side the training set.

Pattern Recognition Techniques 
Common reactivity pattern (COREPA).
Pattern recognition methods are statistical
techniques that enable the classification and
prediction of activity. Schmieder et al. (2000)
reported the successful application of
COREPA [implemented in Mekenyan’s
OASIS software; Mekenyan et al. (1990,
1994)]. COREPA has been used to predict a
chemical’s potential to bind to the estrogen
receptor (Mekenyan et al. 2002) or androgen
receptor (Serafimova et al. 2002).

Comparative Molecular Field Analysis
Much of the early progress in the prediction of
estrogenicity was spawned as an offshoot of
pharmaceutical studies. The study of Waller
et al. (1996) indicated that three-dimensional
techniques such as comparative molecular field
analysis (CoMFA) were able to predict potency
of estrogens. These techniques are limited to
series of similar compounds (most commonly
congeneric series), such as is often observed in
classic drug optimization studies. As such, they
are limited in their applicability outside of the
training set. CoMFA techniques also still
remain controversial regarding the success, or
otherwise, of the fitting (molecular overlaying)
of the compounds. Nevertheless, they have
been used to predict estrogen receptor binding
affinity (Hong et al. 2002; Shi et al. 2002).

Tiered Assessment Approach
The Integrated 4-Phase model was developed
at the U.S. FDA’s National Center for
Toxicological Research (Hong et al. 2002; Shi
et al. 2002). The Integrated 4-Phase model is

composed of four sequential phases. Phase I
employs two rejection filters; that is, if the
molecular weight is less than 94 or greater
than 1,000, and if there is no ring structure, it
significantly, and with high confidence, elimi-
nates those chemicals extremely unlikely to
bind to the estrogen receptor (Shi et al.
2002). Phase II chemicals pass through phase
I and are assigned as yes/no for estrogen
receptor binding using 11 models using three
different methods: three structural alerts,
seven pharmacophore searching methods, and
one classification model (Shi et al. 2002).
These 11 models are complementary and
were designed to distinguish active from inac-
tive chemicals. Only chemicals identified as
inactive by all 11 models were eliminated
from further evaluation in phase III. In phase
III, three-dimensional chemical structure
assessments and molecular alignment were
used to develop a CoMFA model (Shi et al.
2001). Chemicals with higher predicted bind-
ing affinity are given higher priority for
further evaluation in phase IV.

Phase IV is a knowledge-based system that
can be used to foster definitive decision making
and facilitate priority assessments of chemicals
with high predicted estrogen relative binding
affinities (Perkins et al. In press).

EU Regulatory Use
TGD. The TGD makes no recommendations
for the use of QSARs for endocrine disruption.

North American Regulatory Use
U.S. EPA. The U.S. EPA established the
Endocrine Disruptors Screening and Testing
Advisory Committee (EDSTAC). EDSTAC
was chartered in October 1996, under the
Federal Advisory Committee Act (Federal
Advisory Committee Act 1972). The EDSTAC
developed a conceptual framework to screen
and test chemicals for endocrine disruption.
The Endocrine Disruption Priority Setting
Database (EDPSD1) was developed by
Walker et al. [In press (c)] for EDSTAC as a
hierarchical database. Details of EDPSD1 and
QSARs to predict estrogen receptor binding
have been described elsewhere [Walker et al.
In press (c)].

After the development and implementa-
tion of EDPSD1, EDPSD2 was created with
substantially more resources [Walker. In press
(e)]. EDPSD2 is a decision support tool that
will be used to select chemicals for endocrine
disruption screening assays.

QSARs for Predicting
Degradation (or Persistence)
The persistence of a chemical is a vital area in
establishing the ecologic effects and environ-
mental fate of chemicals. A compound that is
not persistent is generally considered to pro-
vide less risk than a persistent chemical with a

similar toxic profile. However, persistence in
the environment is a complex phenomenon to
model because it depends on chemical struc-
ture, environmental conditions and, for
biodegradation, the ability of available micro-
organisms to degrade a chemical. A number of
excellent reviews have been published recently
in the general area of biodegradation (Raymond
et al. 2001; Jaworska et al. 2002, In press).
General models of persistence are also provided
by Gramatica et al. (1999, 2001)

Biodegradation
QSARs for classes. The vast majority of pub-
lished quantitative structure–biodegradation
relationships (QSBRs) rely on octanol–water
partition coefficients (Kow), van der Waal’s
radii, alkaline (abiotic) hydrolysis rate con-
stants, and various molecular connectivity
indices. Classes of chemicals covered by such
models include chlorophenols and chloro-
anisoles, n-alkyl phthalates, alcohols,
(2,4-dichlorophenoxyacetic acid) esters, para-
substituted phenols, meta-substituted anilines,
esters, carbamates, ethers, and ketones
(Howard 2000; Howard and Banerjee 1984;
Howard et al. 1987). Generally, the correla-
tion coefficients between physical/chemical
properties or molecular descriptors and
biodegradation rates have been good, but
overall these models have not seen much use.
Their applicability was limited to a very spe-
cific class, and it was inappropriate to predict
biodegradation rates for chemicals outside of
that class. These models were reviewed by
Howard (2000) and Raymond et al. (2001).

Generally applicable QSARs. A number of
multivariate QSAR approaches, including lin-
ear and nonlinear regression, partial least
squares, and neural networks, have been
applied to predict biodegradability. These were
reviewed recently by Raymond et al. (2001)
and Jaworska et al. (2002, In press).

Expert systems. The most recently devel-
oped class of QSBRs consists of expert sys-
tems that represent artificial intelligence
approaches. These so-called knowledge-based
expert systems tend to act as a repository of
expert knowledge about phenomena or a
process that, like biodegradation, can be
described by a set of rules. The library of rules
or transformations is organized in a hierarchy
that orders the rules by their likelihood of
being executed. Because they predict (or
attempt to predict) the biodegradation path-
way, such models are clearly mechanistic.
Expert systems are qualitative in nature, but
they can be linked to other models to provide
a quantitative assessment. Most recently, an
expert system, CATABOL (described previ-
ously) was developed (Jaworska et al. 2002).
The available expert systems to predict
biodegradation have been reviewed by
Jaworska et al. (2002).
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Other Persistence Endpoints
Methods to predict the persistence of chemi-
cals are well reviewed, for example, for the oxi-
dation (Canonica and Tratnyek. In press) and
reduction of chemicals in water (Tratnyek
et al. In press)

Expert Systems That May Be Applied
to Predictions of Persistence
SRC Software. SRC’s BIODEG (Biodegrada-
tion Probability Program for Windows,
BIOWIN) program. BIOWIN calculates the
probability that a chemical under aerobic con-
ditions with mixed cultures of microorganisms
will biodegrade rapidly or slowly. It uses frag-
ment constants developed using multiple linear
and nonlinear regressions and data from SRC’s
database of evaluated biodegradation data
(Howard et al. 1992). The previous version
(version 3) of the program added new expert
survey data. The model uses a slight revision of
the previous fragments and molecular weight to
a) calculate the probability of rapid biodegrada-
tion from the experimental data and b) estimate
the primary and ultimate biodegradation times
for complete degradation (days, weeks, months,
longer) using the evaluations of 200 chemicals
by 17 biodegradation experts. A description is
available in Boethling et al. (1994).

SRC’s BIOWIN (version 4.00). BIOWIN
version 4 adds two new predictive models for
assessing a chemical’s biodegradability in the
MITI biodegradation test. The new models
use an approach similar to the linear/nonlinear
regression models already included in
BIOWIN. A description of the MITI
biodegradation models is available (Tunkel et
al. 2000). Under its Chemical Substances
Control Law (CSCL 1973), the Japanese have
tested approximately 900 discrete substances
using the MITI test. This protocol, which
determines ready biodegradability, is among six
guidelines officially approved by the OECD. A
total data set of 884 chemicals was compiled to
derive the fragment probability values that are
applied in this MITI biodegradability method.
The data set consists of 385 chemicals critically
evaluated as “readily degradable” and 499
chemicals critically evaluated as “not readily
biodegradable.”

BIOWIN produces two separate MITI
probability estimates for each chemical. The
first estimate is based upon the fragments
derived through linear regression. The second
estimate is based upon the fragments derived
through nonlinear regression. 

Other SRC models. SRC’s atmospheric
oxidation program. The Atmospheric
Oxidation Program for Microsoft Windows
(AOPWIN) estimates the rate constant for the
atmospheric, gas-phase reaction between pho-
tochemically produced hydroxyl radicals and
organic chemicals. It also estimates the rate
constant for the gas-phase reaction between

ozone and olefinic/acetylenic compounds. The
rate constants estimated by the program are
then used to calculate atmospheric half-lives
for organic compounds on the basis of average
atmospheric concentrations of hydroxyl radi-
cals and ozone. The estimation methods used
by the Atmospheric Oxidation Program are
based upon the SAR methods developed by
Atkinson and colleagues (Atkinson 1987;
Atkinson and Carter 1984; Kwok and
Atkinson 1995; Kwok et al. 1996). In addi-
tion, SRC has derived some new fragment and
reaction values from new experimental data.
The AOPWIN program is described by
Meylan and Howard (1993). AOPWIN comes
with a database of experimental values for 780
chemicals for reaction rates with hydroxyl radi-
cals, ozone, and nitrate radicals.

SRC’s HydroWIN Program. The
HydroWIN program calculates the hydrolysis
rate constant for esters, carbamates,
halomethanes, alkyl halides, and epoxides
using a method developed by the U.S. EPA
OPPT. It calculates a second-order acid- or
base-catalyzed hydrolysis rate constant at 25°C.
Acid- and base-catalyzed half-lives are calcu-
lated for pH 7 and/or pH 8. The prediction
methodology was developed for the U.S. EPA
and is outlined by Mill et al. (1987). 

TOPKAT. The Aerobic Biodegradability
Module of the TOPKAT package is a single,
self-contained module, consisting of four struc-
turally based submodels. A single study that
reported the biodegradability of 894 com-
pounds, as assessed by the Japanese MITI test
protocol, was used to develop these models.
The discriminant models compute the proba-
bility of a submitted structure being capable of
aerobic biodegradation (probability > 0.7) or
incapable of being degraded aerobically (proba-
bility < 0.3). Probability values between 0.3
and 0.7 refer to an indeterminate region in
which decisions should not be made except in
special circumstances or under further analyti-
cal assessments.

MultiCASE. There are two (aerobic and
anaerobic) MCASE models to assist in the pre-
diction of biodegradability. The anaerobic
biodegradation model was developed based on
only 79 chemicals, and its applicability is lim-
ited. The aerobic biodegradation model is
combined with an expert system that predicts a
biodegradation pathway. It was developed on
the training set of 200 chemicals.

EU Regulatory Use
TGD. For persistence, the TGD recommends
two of the SRC BIOWIN models, namely,
the BIOWIN2 nonlinear model and the
BIOWIN3 survey model for ultimate bio-
degradation. The exact cutoff points for these
models have been “calibrated” on the basis of
the model score for 1,2,4-trichlorobenzene,
a substance that is known to be relatively

persistent under environmental conditions.
In model terms the cutoff values for identify-
ing potentially persistent substances are
[BIOWIN2] < 0.5 and [BIOWIN3] < 2.2.

The European Commission (2000)
reported the use of QSARs to predict persis-
tence for compounds that were to be assessed
for endocrine disruption capability.

Selection of “high–production-volume”
chemicals was based on the HPV list from
Regulation (EEC) No. 793/93 (EEC 1993b),
of chemicals with a production volume of
more than 1,000 metric tons per year. For
selection of persistent chemicals the SRC
Biodegradation program is used as a first indi-
cation of the persistence of a substance. Two
SRC models were used: the linear regression
method and the ultimate degradation method.
The linear regression method leads to the defi-
nition of classes of biodegradation probability.
The ultimate degradation model predicts the
time for ultimate degradation (complete min-
eralization) of a substance. This model is based
on the results of a survey of 17 biodegradation
experts who were asked to evaluate 200 chemi-
cals in terms of the time required to achieve
ultimate biodegradation. The substances were
rated to time units: 5 = hours; 4 = days; 3 =
weeks; 2 = months; 1 = more than months.
The results were averaged per substance and
formulated to 36 fragments and a molecular
weight parameter as with the probability esti-
mation on linear regression. Substances that
take more than months (level 1) to biodegrade,
combined with a biodegradation probability of
< 0.1, are considered highly persistent.
Substances not fulfilling both criteria are not
considered to be highly persistent.

Danish EPA. A recent publication from
the Danish EPA (Tyle et al. 2001) reports the
use of QSARs for identification of potential
PBTs and vPvBs from among the HPV and
medium–production-volume chemicals used
in the EU. Proposals are made on which
QSAR models should be used for persistence
(the nonlinear BIOWIN model). The SRC
BIOWIN program was used to assist in the
advisory classification of substances according
the EU risk phrase R53 (may cause long-term
effects to the aquatic environment).

OSPAR. The briefing document on the
OSPAR DYNAMEC exercise (OSPAR
Commission 2000) describes how two of the
models incorporated in the SRC BIOWIN
software were used to provide information on
persistence for those substances for which
experimental data were not available. The
models used were those for estimating that a
substance is not rapidly biodegradable in the
environment and for estimating the likely time
scale of ultimate biodegradation in the envi-
ronment. The cutoff point was “calibrated” on
the basis of experimental data for 1,2,4-
trichlorobenzene because it is a substance that
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is known to be rather persistent under
environmental conditions.

North American Regulatory Use
U.S. EPA. The U.S. EPA has routinely applied
the BIOWIN software as well as other SRC
software in the assessment of persistence of
substances submitted for marketing approval.

Bioaccumulation

The ability of a chemical to bioaccumulate
is also an important part of an ERA.
Bioaccumulation is usually assessed by mea-
surement of the BCF. On the whole, this has
been assumed to be a simple passive accumula-
tion process driven by the thermodynamic
capability to leave an aqueous environment
and enter the lipid tissue of an aquatic species.
Because of this, many, if not most or all,
QSARs for estimating bioaccumulation have
been based upon estimates of hydrophobicity.

General QSARs
A number of general models for bioaccumula-
tion have been proposed, including linear and
nonlinear approaches (Meylan et al. 1999;
Dimitrov et al. 2002a, 2002b, 2003).
Generally, because bioaccumulation has been
considered to be a partitioning process into an
organism, there has been considerable empha-
sis on the use of log Kow.

Expert Systems: SRC’s BCFWIN
Program 
BCFWIN estimates the BCF of an organic
compound using the compound’s log Kow. The
estimation methodology (developed at SRC in
conjunction with the U.S. EPA) is described by
Meylan et al. (1999). Measured BCF data and
other key experimental details were collected for
694 chemicals. Log BCF was then regressed
against log Kow and chemicals with significant
deviations from the line of best fit were ana-
lyzed by chemical structure. The resulting algo-
rithm classifies a substance as either nonionic or
ionic, the latter group including carboxylic
acids, sulfonic acids, and their salts, and quater-
nary nitrogen compounds. Log BCF for non-
ionics is estimated from log Kow and a series of
correction factors if applicable; different equa-
tions apply for log Kow 1.0–7.0 and > 7.0. For
ionics, chemicals are categorized by log Kow and
a log BCF in the range of 0.5–1.75 is assigned.
Organometallics (tin and mercury), nonionics
with long alkyl chains, and aromatic azo com-
pounds receive special treatment. The correla-
tion coefficient (r 2 = 0.73) and mean error
(0.48) for log BCF (n = 694) indicate that the
new method is a significantly better fit to exist-
ing data compared with other methods.

EU Regulatory Use
Hansen et al. (1999) reported the use of a log
Kow–based QSAR to predict bioaccumulation

factors of chemicals for use within the EU with
regard to priority setting for environmental
exposure of existing methods.

TGD. For bioaccumulation, BCF values
may be estimated from Kow using QSAR mod-
els where experimental data are not available.
For highly hydrophobic substances, for exam-
ple, with log Kow > 6, substances the available
BCF models can lead to very different results.
Hence, an assessment must be done on a case-
by-case basis taking into account what is
known about the BCF QSAR models and the
specific properties of the substance, in particu-
lar, what is known to affect uptake and the
potential for metabolism in aquatic organisms.

Danish EPA. The Danish EPA reported
the use of SRC BCFWIN software to assist in
the classification of chemical substances. A
recent publication from the Danish EPA (Tyle
et al. 2001) reports the use of QSARs for iden-
tification of potential PBTs and vPvBs from
among the HPV and medium–production-
volume chemicals used in the EU. Proposals
are made on which QSAR models should be
used for bioaccumulation (the SYRACUSE
BCFWIN model). Because the report shows
that toxicity is only relevant for substances with
BCFs between 2,000 and 5,000, it is suggested
that available experimental and QSAR data be
examined and expert evaluation made on a
case-by-case basis. Hasse diagrams were used to
prioritize 50 PBTs identified by the Danish
EPA based on their PBT characteristics
(Carlsen and Walker 2003).

North American Regulatory Use
U.S. EPA. The U.S. EPA routinely applies the
SRC BCFWIN software for risk assessment
purposes of chemicals.

Soil and Sediment Sorption

Soil and sediment sorption is a further funda-
mental property to assess with regard to risk
assessment of xenobiotic chemicals in the
environment. The main approaches used pre-
dict the organic carbon partition coefficient
(Koc; the ratio of the chemical adsorbed per
unit weight of organic carbon in the soil or
sediment to the concentration of the chemi-
cal in solution at equilibrium), which is
widely used, in conjunction with the frac-
tional organic carbon content, to model the
partitioning of organics to sediments and
soils.

General QSARs
As with bioaccumulation, soil sorption is a
physical process that involves the partitioning
of chemicals between soil and sediment, water,
and the other organic fractions. It is assessed
with measures such as the soil or sediment
adsorption coefficient (Koc). Models for Koc
based on log Kow have normally been developed
for separate chemical classes (Sabljic et al.

1995). Other general models for the prediction
of Koc are also available (Gramatica et al. 2000).

Expert Systems: SRC’s PCKOC
Program 
The PCKOC program calculates the soil or
sediment adsorption coefficient from a corre-
lation to the first-order molecular connectiv-
ity indices and a series of statistically derived
fragment contribution factors for polar
compounds.

EU Regulatory Use: TGD 
The TGD discusses a number of QSARs to
predict soil and sediment sorption coefficients.
In total 19 QSARs based solely on log Kow are
reported. These QSARs are for distinct chemi-
cal classes and were taken from the article by
Sabljic et al. (1995).

North American Regulatory Use
U.S. EPA. The U.S. EPA routinely uses the
PCKOC program to estimate soil sorption
coefficients.

Physicochemical Properties

Physicochemical properties are important in
the ERA of chemicals, both in their own right
(for registration purposes for specific purposes,
e.g., explosivity, etc.) and as descriptors in
QSARs. There are numerous software pro-
grams to predict physicochemical properties
(Lyman et al. 1982). Those described below
are provided by the SRC and have been devel-
oped in collaboration with the U.S. EPA.
Although these programs may not be the most
accurate available, they are provided free of
charge to interested parties (U.S. EPA 2002b)
and are probably the most widely applied in a
regulatory framework. Detailed compilations of
descriptor software are discussed in individual
sections above.

n-Octanol–Water Partition Coefficient
(Kow)
Kow is a physical property used extensively to
describe a chemical’s lipophilic or hydrophobic
properties. It is the ratio of a chemical’s concen-
tration in the octanol phase to its concentration
in the aqueous phase of a two-phase system at
equilibrium. Because measured values range
from < 10–4 to > 108 (> 12 orders of magni-
tude), the logarithm (log Kow) is commonly
used to characterize its value. Log Kow is a valu-
able parameter in numerous QSARs that have
been developed for the pharmaceutical, envi-
ronmental, biochemical, and toxicologic
sciences.

As a consequence of the widespread use of
log Kow values, there are probably more models
available for predicting log Kow than for any
other endpoint. This is of fundamental impor-
tance because log Kow is essential for many of
the QSARs described in this review. A number
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of recent reports have assessed the capabilities
of the various methods to predict log Kow (cf.
Buchwald and Bodor 1998; Mannhold and
Dross 1996). The comparisons of methods
tend to suggest that fragment-based methods
[e.g., KOWWIN and ClogP (BioByte Corp.,
Claremont, CA, USA] perform better than
atom-based and conformation-dependent
approaches.

SRC’s KOWWIN program. The
KOWWIN program estimates log Kow of
organic chemicals using an atom/fragment
contribution method (Meylan and Howard
1995). The KOWWIN program has a unique
feature that allows the user to adjust the esti-
mation using an experimental Kow from a
structurally related chemical compound.

Water Solubility
The prediction of water solubility is closely
related to prediction of log Kow. However,
there are fewer practical approaches to water
solubility prediction than for the prediction of
log Kow. Solubility remains an important prop-
erty to estimate, especially for determining cut-
offs for acute toxicity and for risk assessment to
aquatic species in general.

SRC’s WsKow program. WsKow esti-
mates the water solubility of an organic com-
pound using its log Kow. The estimation
methodology is described by Meylan et al.
(1996). A total of 1,450 compounds (941
solids/509 liquids) that had measured values
for Kow, melting point, and water solubility
were used in the development of the linear
regressions used by WsKow. The correlation
coefficient for the method was 0.93, with a
mean error of 0.47. The method was evalu-
ated using a separate validation set of 817
chemicals (482 solids, 335 liquids) with mea-
sured water solubilities and estimated log Kow
values (from SRC’s LogKow program), with a
resulting correlation coefficient of 0.90 and a
mean error of 0.48.

Henry’s Law Constant
Henry’s law constant (HLC) is essentially an
air–water partition coefficient. As such, it is an
essential parameter for understanding and mod-
eling the distribution of chemicals throughout
the environment. Methods for the estimation
of HLC have been reviewed recently by
Dearden and Schüürmann (In press).

SRC’s Henry program. This program cal-
culates HLC using both the group contribu-
tion and the bond contribution methods of
Hine and Mookerjee (1975). SRC has updated
and expanded the bond and group contribu-
tion methods by developing new fragment
constants from experimental data. The
methodology is described by Meylan and
Howard (1991). Henry version 3 extends the
methodology to allow estimation of HLCs
over a temperature range (0–50oC). In

addition, version 3 includes an experimental
database of HLC values for 1,350 compounds.
The Henry program also allows the user to
adjust the estimation using an experimental
HLC from a structurally related chemical
compound.

Other Physicochemical Properties
Methods to predict melting point, boiling
point, and vapor pressure are well reviewed by
Dearden (In press).

SRC’s MPBPVP program. This program
estimates the melting point, boiling point, and
vapor pressure of organic compounds. The
estimation methodology for boiling point is an
adaptation of the Stein and Brown (1994)
method. Melting point is estimated by two dif-
ferent methods; the first is an adaptation of the
Joback group contribution method described
in detail by Dearden (1999), and the second is
a method that correlates melting point to boil-
ing point. The two melting points are then
weighted according to chemical structure and
magnitude of the difference between the two
estimates to yield a preferred (suggested) melt-
ing point. For a description of methods to pre-
dict melting point, the reader is referred to the
excellent review by Dearden (1999). Vapor
pressure is estimated by three methods, all of
which use the normal boiling point: the
Antoine method, the modified Grain method,
and the Mackay method (Neely and Blau
1985). The MPBPVP program will then select
or calculate a preferred (suggested) vapor pres-
sure (e.g., the Grain method is recommended
for solids).

Regulatory Use of Estimation Methods
for Physicochemical Properties
European Union. Many regulatory agencies
will accept predicted values for physicochemi-
cal properties, especially log Kow. The use of
reliable and well-validated methods such as
KOWWIN are preferred over less well-known
methods.

United States. The U.S. EPA and other
agencies will accept predicted values for log
Kow. In addition, the SRC software described
above is used routinely by the U.S. EPA to cal-
culate the physicochemical properties of new
chemical substances for PMNs.

Prediction for Mixtures

The use of QSARs to make toxicity predic-
tions for mixtures has been reviewed
recently by Altenburger et al. (In press).
Generally speaking, the making of predic-
tions for mixtures or for different formula-
tions is still in its infancy. QSARs are little
applied to mixtures by regulatory agencies
and the possible additive and/ or synergistic
effects occurring from mixtures are not
taken into account in risk assessment in a
formal manner.

Use of (Q)SARs to Predict the
Ecologic Effects and
Environmental Fate of HPV
Chemicals

Under the U.S. EPA HPV Chemical
Challenge Program (Challenge Program) the
chemical industry is being challenged to volun-
tarily compile a SIDS for chemicals on the
U.S. HPV list (U.S. EPA 2002c). The SIDS,
which has been internationally agreed to by
member countries of the OECD, provides
basic screening data needed for an initial assess-
ment of the physicochemical properties, envi-
ronmental fate, and human and environmental
effects of chemicals. The information used to
complete the SIDS can come from either exist-
ing data or from new tests conducted as part of
the Challenge Program. The Challenge
Program chemicals list, available online (U.S.
EPA 2002d), consists of about 2,800 HPV
chemicals reported under the TSCA’s 1990
and 1994 (http://www.epa.gov/opptintr/iur/)
inventory update rules. Because of the large
number of chemicals on the list, it is important
to reduce the number of tests to be conducted,
where this is scientifically justifiable. SARs may
be used to reduce testing in at least three differ-
ent ways: First, by identifying a number of
structurally similar chemicals as a group, or
category, and allowing selected members of the
group to be tested with the results applying to
all other category members. Second, by apply-
ing SAR principles to a single chemical that is
closely related to one or more better character-
ized chemicals (analogues). The analogue data
are used to characterize the specific endpoint
value for the HPV candidate chemical. Third,
a combination of the analogue and category
approaches may be used for individual chemi-
cals, for example, searching for a “nearest
chemical class” as opposed to a nearest single
chemical analogue to estimate a SIDS end-
point. Such an approach is used in ECOSAR,
a SAR-based computer program that generates
ecotoxicity values.

The U.S. EPA has developed a guidance
document to assist sponsors and others in con-
structing and supporting SAR arguments for
potential application in the Challenge
Program. The guidance will draw on experi-
ence from the OECD SIDS program, the U.S.
EPA PMN program, and other sources avail-
able in the literature. OECD guidance on the
use of QSARs is also available (OECD 2001).

Scope and Application of (Q)SARs in
the U.S. HPV Challenge Program
The environmental fate and aquatic toxicity
SARs rely heavily on physicochemical proper-
ties as inputs and are similarly structured in
terms of models, chemical classes, and regres-
sion equations. However, “accepted QSARs”
(cases in which ample data are available for a
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given chemical class) are not available for
certain chemical classes for either ecotoxicity
endpoints estimated using ECOSAR or
biodegradation endpoints estimated using
BIOWIN.

The use of SAR/QSAR in the HPV
Challenge Program is expected to decrease the
number of new tests that will be required to
develop a SIDS for each HPV chemical. Their
use, by either the category or individual chem-
ical approach, will necessarily be limited by
the nature of the SIDS endpoint, the amount
and adequacy of the existing data, and the
type of SAR/QSAR analysis performed.
Measured data developed using acceptable
methods are preferred over estimated values.
The development and use of SAR/QSAR in
the Challenge Program will be different for
each of the major categories of SIDS (Table
3). It has been suggested that data from HPV
chemicals be used to develop and validate
QSARs to make predictions of base-set data
endpoints for non-HPV chemicals (Walker
et al. 2003c).

Physicochemical properties. It is anticipated
that melting point, boiling point, vapor pres-
sure, Kow, and water solubility data will be
available for most HPVs. In some cases, this
will be in the form of values taken from stan-
dard reference books [e.g., the Merck Index
(O’Neil et al. 2001) and the CRC Handbook of
Chemistry and Physics (Lide 2002)]. In the
event that neither measured data nor reference
book values are available, estimations using an
appropriate model will be accepted for all
physicochemical endpoints.

Environmental fate. Acceptable estimation
techniques are available for photodegradation
and hydrolysis, whereas biodegradation models
are less available and less well accepted. The
fourth SIDS endpoint in this category is a
model (fugacity models to estimate transport/
distribution), and so there is no measured data
requirement to fulfill. Thus, estimations will be
acceptable in lieu of photodegradation and
hydrolysis tests but not for biodegradation.

Ecotoxicity. ECOSAR is an established
QSAR program that estimates toxicity to fish,
invertebrates, and algae. Even though this
approach represents a screening-level character-
ization, it is of a higher order than either
physicochemical or environmental fate tests.
This is not to diminish the importance of
physicochemical/environmental fate tests, but

there are layers of complexity not present in
these endpoints when toxicity is the entity
being measured/estimated. Therefore, some
measured data must be available to strengthen
the use of ECOSAR to characterize aquatic
toxicity for an HPV chemical in the Challenge
Program. For example, if an ECOSAR (or
other aquatic toxicity SAR) estimation proce-
dure is to be presented for any one endpoint, it
must be accompanied by experimental data on
that endpoint with a close analogue.

SARs for Individual Chemicals
For individual chemicals, SAR is applied in
two ways: a) by the use of (usually quantita-
tive) predictive models based on well-validated
data sets (QSAR); or b) by comparing the
chemical with one or more closely related
chemicals, or analogues, and using the ana-
logue data in place of testing the chemical. In
the case of models, the comparison has essen-
tially been incorporated into the model.

In developing a SAR, proposers need to
consider the following steps for each HPV
chemical they are interested in sponsoring:
• Step 1: Conduct literature search
• Step 2: Determine data adequacy by SIDS

endpoint
• Step 3: Identify data gaps by SIDS endpoint
• Step 4: Use SAR or perform test by SIDS

endpoint

SARs by SIDS Endpoints
Physicochemical estimation techniques.
Methods exist for estimating most of the
physicochemical properties required to develop
a basic understanding of the behavior of a
chemical released to the environment and its
potential environmental exposure pathways.
Some of the methods require input as simple as
chemical structure, whereas others require
much less readily available information such as
water solubility values, Kow, and so forth.
Estimation methods for key physicochemical
properties have been reviewed by Howard and
Meylan (1997) and are discussed briefly below.

Boiling point, melting point, and vapor
pressure. Most comprehensive estimation
methods for boiling point, melting point, and
vapor pressure are “group contribution” meth-
ods, where values assigned to atoms, bonds,
and their placement in a molecule are used to
estimate their contribution to the inherent
physicochemical properties of that molecule.

The Stein and Brown (1994) method for esti-
mating boiling points was developed and vali-
dated on a large database (> 10,000 chemicals)
and has been integrated into a computer pro-
gram (MPBPVP) used by OPPT. In contrast,
melting points are not very well estimated by
this method, so the group contribution
method is combined with an algorithm that
relates melting point with boiling points to
estimate melting point. This method is used in
MPBPVP. Recently, attempts have been made
to use molecular symmetry (Simamora and
Yalkowsky 1994; Krzyzaniak et al. 1995), but
the methods have not been well documented
or validated.

A limited number of methods are available
for estimating vapor pressure. Most rely on
estimating the vapor pressure from the boiling
point and use melting points when the chemi-
cal is a solid at room temperature, which is the
method used by OPPT in MPBPVP.

Octanol–water partition coefficient. The
literature contains many methods for estimat-
ing log Kow. The most common are classified as
“fragment constant” methods in which a struc-
ture is divided into fragments (atom or larger
functional groups), and values of each group are
summed together (sometimes with structural
correction factors) to yield the log Kow estimate
(Meylan and Howard 1995; Hansch and Leo
1979, 1995; Hansch et al. 1995). The OPPT
KOWWIN model is based on the fragment
constant method. General estimation methods
based upon molecular connectivity indices
(Niemi et al. 1992), UNIFAC-derived activity
coefficients (Banerjee and Howard 1988), and
properties of the entire solute molecule (charge
densities, molecular surface area, volume,
weight, shape, and electrostatic potential)
(Bodor et al. 1989; Bodor and Huang 1992;
Sasaki et al. 1991) have also been developed.

Water solubility. Water solubility is a
determining factor in the fate and transport of
a chemical in the environment as well as the
potential toxicity of a chemical. Yalkowsky and
Banerjee (1992) have reviewed most of the
recent literature on aqueous solubility estima-
tion and concluded that, at present, the most
practical means of estimating water solubility
involves regression-derived correlations using
log Kow. OPPT uses the log-Kow–based
WsKow model to estimate water solubility.
Recently, direct fragment constant approaches
to estimating water solubility have been devel-
oped (Kuhne et al. 1995; Myrdal et al. 1995).

Environmental fate estimation techniques.
Biodegradation. Biodegradation (i.e., complete
mineralization, or conversion to carbon diox-
ide and water) is an important environmental
degradation process for organic chemicals.
Prediction of biodegradability is severely lim-
ited because of the lack of reproducibility of
biodegradation data (Howard et al. 1987) as
well as the numerous protocols that have been

Mini-Monograph | Cronin et al.

1386 VOLUME 111 | NUMBER 10 | August 2003 • Environmental Health Perspectives

Table 3. Use of SARs in the U.S. HPV Challenge Program.

Approach SIDS endpoint Comment

Category All Assemble information on all endpoints for all category 
members to determine whether trends exist that would 
allow adequate characterization

Nearest chemical Ecotoxicity, degradation Depends upon the placement of the HPV candidate chemical
class in an existing chemical class that is part of a QSAR

Other QSAR Physicochemical Estimations based on chemical bonds and where located 
in the candidate chemical



used for biodegradation tests (Howard and
Banerjee 1984). As a result, quantitative pre-
diction of biodegradation rates has only been
attempted on very limited numbers of struc-
turally related chemicals (Howard et al. 1992).
A number of comprehensive approaches using
fragment constants have been attempted to
qualitatively predict biodegradability. Many of
the models have used a weight-of-evidence
biodegradation database (BIODEG) that was
specifically developed for structure–biodegrad-
ability correlations (Howard et al. 1986).
Boethling et al. (1994) used the experimental
BIODEG database as well as results of an
expert survey to develop foµr models (these
models are in the OPPT program BIOWIN).

Hydrolysis rates. Hydrolysis is the reaction
of a substance with water in which the water
molecule or the hydroxide ion displaces an
atom or group of atoms in the substance.
Chemical hydrolysis at a pH normally found
in the environment (i.e., pH 5–9) can be
important for a variety of chemicals that have
functional groups that are potentially hydrolyz-
able, such as alkyl halides, amides, carbamates,
carboxylic acid esters and lactones, epoxides,
phosphate esters, and sulfonic acid esters
(Neely 1985). Only a method to predict
hydrolysis rate constants for esters, carbamates,
epoxides, and halogenated alkanes has been
developed using linear free energy relationship
(Taft and Hammett constant) methodology. A
computer program (HYDROWIN) that uses
this methodology is available and is used by
OPPT. Also, Ellenrieder and Reinhard (1988)
have developed a spreadsheet program that
allows hydrolysis rates to be calculated at differ-
ent pH values and temperatures if adequate
data are available in the companion database.

Atmospheric oxidation rates. For most
chemicals in the vapor phase in the atmos-
phere, reaction with photochemically gener-
ated hydroxyl radicals is the most important
degradation process (Atkinson 1989). Methods
for estimating reactivity with hydroxyl radicals
have generally relied on fragment constant
approaches or molecular orbital calculations.
The method validated on the largest number
of chemicals (641) is the Atkinson fragment
and functional approach method (the method
used in AOPWIN, the model used by
OPPT), although molecular orbital methodol-
ogy gives promising results on a much more
limited number of chemicals (Meylan and
Howard. In press).

Ecologic endpoint estimation techniques.
(Q)SARs for aquatic toxicity to fish, aquatic
invertebrates, and algae have been developed
and used by OPPT since 1979 (U.S. EPA
1994b, 1994c). These (Q)SARs have been
incorporated into a software program
(ECOSAR) available free from the U.S. EPA.
ECOSAR uses molecular weight and struc-
ture and log Kow to predict aquatic toxicity.

The predictions are based on actual data of at
least one member of a chemical class. The
data (measured toxicity values) are correlated
with molecular weight and log Kow to derive a
regression equation that may be used to pre-
dict aquatic toxicity of another chemical that
belongs to the same chemical class. ECOSAR
contains equations for many chemical classes
(> 50; the full list is shown in Table 2) that
can be categorized into the following areas of
the chemical universe (Nabholz JV. Personal
communication):
• Neutral organics that are nonreactive and

nonionizable
• Organics that are reactive and/or ionizable

and that exhibit “excess toxicity” (toxicity
beyond narcosis associated with neutral
organic toxicity)

• Surfactants, which are further divided by
charge: nonionic, cationic, anionic, and
amphoteric

• Polymers, which are further divided by
charge: nonionic, cationic, anionic, and
amphoteric

• Dyes, which are further divided by charge:
nonionic, cationic, anionic, amphoteric

• Inorganic compounds, which are separated
from organometallics; inorganics are divided
into classes via the periodic table; organo-
metallics are also divided into classes via the
periodic table

ECOSAR is being constantly updated and
so is only partially programmed for these
chemical classes. For instance, SARs for classes
with excess toxicity are added as they become
available; surfactants are only partially pro-
grammed; polymer SARs are not yet pro-
grammed but will be as they become available;
dyes are not yet programmed, although

neutral dyes are assessed with SARs for neutral
organics or excess toxicity as their structure
dictates; inorganics are not yet programmed,
but many SARs have been developed and
await to be programmed; organometallics are
not yet programmed, but many SARs have
been developed and await to be programmed:
the first step in assessing organometallics will
be reactivity, either pyrophoric and/or hydro-
lysis. Stable organometallics will be assessed on
the basis of predicted log Kow. To make pre-
dictions, ECOSAR now has a programmed
decision tree based on SMILES, which selects
the SAR that U.S. EPA experts would select.
This decision tree is continually refined to
reflect how OPPT/U.S. EPA performs new
chemical assessments (Nabholz JV. Personal
communication).

Therefore, to use ECOSAR for a particular
chemical, an appropriate SAR is selected based
on the following: chemical structure, chemical
class, predicted log Kow, molecular weight,
physical state, water solubility, number of car-
bons, ethoxylates or both, and percentage of
amine nitrogen or number of cationic charges
or both, per 1,000 molecular weight. Because
the regression equations are chemical specific,
and because they may vary by species (fish vs.
daphnids vs. algae), the most important factor
is the identification of the chemical class
(U.S. EPA 1994b).

The following presents some guidance on
the approach for evaluating the aquatic toxicity
(to fish, plants, and invertebrates) of a candi-
date HPV chemical using ECOSAR:
• Identify the chemical structure and convert it

to SMILES notation
• Identify appropriate physicochemical proper-

ties: physical state, melting point, water

Mini-Monograph | Regulatory use of QSARs for ecologic effects and environmental fate

Environmental Health Perspectives • VOLUME 111 | NUMBER 10 | August 2003 1387

Table 4. Summary of SAR models used by the U.S. EPA for each SIDS endpoint.

SIDS category SIDS endpoint SAR modela Model availability

Chemical and physical properties Melting point MPBPVP http://esc.syrres.com/~esc1/
Boiling point
Vapor pressure
Log Kow KOWWIN
Water solubility WsKow

Environmental fate and pathways Photodegradation AOPWIN
Stability in water HYDROWIN
Biodegradation BIOWIN

Ecotoxicity tests Acute toxicity to fish, aquatic ECOSAR www.epa.gov/opptintr/newchems
invertebrates, and algae

aRequired input: CAS no. and/or SMILES notation.

Table 5. Framework of QSARs used by regulatory agencies for prediction of ecologic fate and environmental
fate.a

Aquatic Benthic Atmospheric
Organization toxicity toxicity Koc Kow MP VP WS HLC oxidation BCF Biodegradation Hydrolysis

ATSDR Q
U.S. EPA Q Q Q Q Q Q S
ITC Q S Q Q Q Q Q Q Q Q S Q
Danish EPA Q Q Q
Health Canada Q Q Q Q
EU (TGD) Q Q Q

Abbreviations: Q, QSARs; S, SARs. aData from Walker et al. (2002).
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solubility, vapor pressure, and Kow are
required to predict effect concentrations (i.e.,
EC50). If a chemical is highly water reactive
(e.g., a hydrolysis half-life < 1 hr), consider
estimating toxicity for the hydrolysis products

• Decide what ECOSAR chemical class best
fits your chemical

• Run the ECOSAR program to develop an
aquatic toxicity profile for the candidate
chemical

Table 4 provides a summary of the SAR models
discussed above.

Conclusions

Main Findings

The use of QSAR for regulatory purposes has
been growing steadily and a framework of
QSARs has been established by regulatory
agencies worldwide (Table 5). By far the great-
est use and application of QSARs has resulted
from the TSCA and the efforts of the U.S.
EPA. The regulatory use of QSARs in Europe
and elsewhere in the world is less widespread
and formalized. Within the EU, the use of
QSARs is underpinned by the TGD and is
being developed and encouraged by some of
the EU environmental protection agencies.
Generally, QSARs have been applied by regu-
latory agencies in two main ways: priority set-
ting for existing chemicals and classification for
new chemicals.

Future Outlook
The future will almost certainly bring an
increased use of QSARs by regulators for esti-
mating the ecologic effects and environmental
fate of chemical substances. Such activities may
include the prioritization of existing chemical
databases (the examples of the Danish and
Canadian authorities are pertinent in this
regard). In such cases, well-designed strategic
use of QSARs may be capable of flagging com-
pounds of concern. It should also be noted that
there will be an increasing requirement for the
use of alternative methods, including QSARs,
if the EU REACH initiative is to be successful.

The increase in the use of QSARs for the
registration of new chemicals will also con-
tinue, particularly spurred on by legislation and
public pressure against animal testing, and the
cost of environmental assessment. However, in
the foreseeable future, for the assessment of
new chemicals a great reliance will continue to
be placed on the use of experimental data.

Wider application and acceptance of the
use of QSARs for regulatory purposes will
require further development and more thor-
ough validation and assessment of their use.
There must be greater appreciation of QSAR
“quality” and the appropriateness of their use,
both in terms of the chemical domain
described, and in terms of the precision of the
estimates that are produced.
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