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ABSTRACT: In this study, Taguchi design was used to determine optimal parameters for the preparation of bovine serum albumin
(BSA)-loaded nanoparticles (NPs) using a biodegradable polymer poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL). NPs were
prepared, using BSA as a model protein, by the double emulsion evaporation process followed by spray-drying from leucine to form
nanocomposite microparticles (NCMPs). The effect of various parameters on NP size and BSA loading were investigated and dendritic cell
(DC) uptake and toxicity. NCMPs were examined for their morphology, yield, aerosolisation, in vitro release behaviour and BSA structure.
NP size was mainly affected by the polymer mass used and a small particle size ≤500 nm was achieved. High BSA (43.67 ± 2.3 µg/mg)
loading was influenced by BSA concentration. The spray-drying process produced NCMPs (50% yield) with a porous corrugated surface,
aerodynamic diameter 1.46 ± 141 µm, fine particle dose 45.0 ± 4.7 µg and fine particle fraction 78.57 ± 0.1%, and a cumulative BSA
release of 38.77 ± 3.0% after 48 h. The primary and secondary structures were maintained as shown by sodium dodecyl sulphate poly
(acrylamide) gel electrophoresis and circular dichroism. Effective uptake of NPs was seen in DCs with >85% cell viability at 5 mg/mL
concentration after 4 h. These results indicate the optimal process parameters for the preparation of protein-loaded PGA-co-PDL NCMPs
suitable for inhalation. C© 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci
Keywords: nanoparticles; biodegradable polymers; polymeric drug delivery systems; particle size; pulmonary delivery; protein delivery
and formulation; spray-drying

INTRODUCTION

Pharmaceutical research has recently focussed on developing

delivery systems for macromolecules such as proteins, peptides

and antigens as they become the preferred therapeutics be­

cause of their greater selectivity, lower disruption of normal bi­

ological processes and reduced clinical development time with a

shorter United States Food and Drug Administration approval

period.1 However, to reach a therapeutic level most of these

macromolecules must be administered repeatedly in an inva­

sive manner.2 The pulmonary delivery of macromolecules is a

viable alternative because of the attractive physiological prop­

erties of the lungs; the pulmonary epithelium is more perme­

able and lower enzymatic activity than the gut. In addition, it

Abbreviations used:: BCA, bicinchoninic acid; BSA, bovine serum albumin;
CLSM, confocal laser scanning microscopy; CD, circular dichroism; DMSO,
dimethyl sulfoxide; DCM, dichloromethane; DCs, dendritic cells; DL, drug
loading; DPIs, dry powder inhalers; EAP, external aqueous phase; FITC, flu­
orescein isothiocyanate; FPD, fine particle dose; FPF%, fine particle fraction
percentage; HDL, high drug loading; IAP, internal aqueous phase; MTT, 3­(4,5­
dimethylthiazol­2­yl)­2,5­diphenyltetrazolium bromide; MEM, minimum essen­
tial medium; MMAD, mass median aerodynamic diameter; NCMPs, nanocom­
posite microparticles; NGI, next­generation impactor; NPs, nanoparticles; OP,
organic phase; PBS, phosphate buffer saline; PGA­co­PDL, poly(glycerol adipate­
co­T­pentadecalactone); PLGA, poly(lactic­co­glycolic acid); PVA, poly(vinyl alco­
hol); SDS­PAGE, sodium dodecyl sulphate poly(acrylamide) gel electrophoresis;
S/N, single­to­noise ratio; SPS, smaller particle size; SEM, scanning electron
microscopy; TGA, thermogravimetric analysis; w/o/w, water­in­oil­in­water.
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has a large surface area that is highly vascularised with thin

epithelium in the alveolar lung tissue.3 In addition, the pul­

monary epithelium has many immunological properties.2 Most

organisms causing respiratory infections attack the host via

the mucosal membrane. Consequently, the non­invasive pul­

monary delivery of antigens can provide protection to mucosal

membranes at the site of infection and potentially provides

a first­line defense against invading microorganism.4 The ex­

tensive dendritic cell (DC) networks that line the respiratory

epithelium are considered an ideal target to initiate a strong

immune response.2 Moreover, pulmonary delivery reduces the

risk of cross contamination due to the reuse of needles and sy­

ringes, and eliminates needle stick injuries, in both patients

and medical personnel.4

Nanoparticles (NPs) are a useful delivery system for pul­

monary macromolecules because of their potential for target­

ted drug delivery, sustained release and reduced dosing fre­

quency, hence improving patient compliance and convenience.5

They provide an additional advantage for antigen delivery

systems, with studies suggesting NPs of about 500 nm or

less were optimal for DCs uptake.6,7 A most common method

for the encapsulation of water­soluble drugs such as pro­

tein, peptides and antigens in biodegradable polymer­based

NPs is the water­oil­water (w/o/w) double­emulsion solvent

evaporation method.2 Biodegradable poly(glycerol adipate­co­

T­pentadecalactone, PGA­co­PDL) has previously been inves­

tigated as a novel delivery system of small molecule, for ex­

ample, dexamethasone phosphate,8 model drugs, for example,

ALFAGIH ET AL., JOURNAL OF PHARMACEUTICAL SCIENCES 1



Author Proof
2 RESEARCH ARTICLE – Pharmaceutical Nanotechnology

ibuprofen9 and sodium fluorescein,10 and macromolecules, for

example, DNase I,11 via dry powder inhalation (DPIs). However,

particles smaller than 1 :m show poor lung deposition and are

likely to be exhaled because of their low inertia, whereas parti­

cles larger than 5 :m cannot pass the oropharynx effectively.12

Hence, to achieve particle deposition in the respirable region of

the lung, the particles should be in the size range 1–5 :m. NPs

can be formulated into microparticle carriers with an aerody­

namic diameter between 1 and 5 :m to form nanocomposite

microparticles (NCMPs) as DPIs by spray­drying.13–16

Spray­drying is a process where the formulation is presented

as a feed solution, suspension or emulsion and converted into

fine droplets, followed by exposure to rapid hot air­stream re­

sulting in dry respirable­sized powders. In addition to the com­

position of the feed formulation, several operational parame­

ters greatly affect the quality and quantity of the final formula­

tion such as inlet temperature, air flow, aspiration capacity and

feed rate.17–20 Biocompatible excipients (carbohydrates, amino

acids and lipids) are typically added to the formulation feed to

afford dry powders with bulk and to promote the production

of a desirable aerodynamic particle size which upon inhala­

tion allows rapid release of NPs in the lung fluid.10,13,17,21–23

In addition, the excipients can protect the NPs and encapsu­

lated agents against the extreme spray­drying process condi­

tions such as high temperatures and shear forces.24 Delivering

these microparticle carriers as DPIs via the pulmonary route

offer many advantages such as not requiring trained medical

personnel, eliminates cold­chain requirements and offers in­

creased physical and chemical stability of macromolecules in

comparison with liquid formulations.4

The Taguchi design is a useful method for studying a large

number of parameters and interactions as it has the ability to

optimise many parameters simultaneously and extract quanti­

tative data from only a few experiments compared with the

traditional factorial design.25,26 For example, a single repli­

cate of four parameters and three level experiments would re­

quire 81 runs for a full factorial analysis. However, using the

Taguchi method will require only nine runs. The Taguchi ap­

proach has previously been used in the improvement of dosage

forms.25 Moreover, the Taguchi design concentrates on product

robustness against uncontrollable (noise) factors. It employs a

signal­to­noise (S/N) ratio to quantify variations. These ratios

are meant to be used as measures of the effect of noise (un­

controllable) factors on performance characteristics. S/N ratios

take into account both amount of variability in response data

and closeness of average response to the target (1). In Taguchi

design, S/N ratio can be defined as the measure of the deviation

of the response from the desired value. So, ‘signal’ presents the

mean value and ‘noise’ presents the SD. It means that lower

variability in the process is ensured through maximising the

S/N ratio (2). The variability of a characteristic is due to the

noise factor such as environmental factors. Thus, optimising

process parameters by the Taguchi design leads to bringing the

average quality near to the target value, and also to simulta­

neously decrease the variation in quality (3). The experimental

condition having the maximum S/N ratio is considered the opti­

mum condition, as the variability of characteristics is in inverse

proportion to the S/N ratio (4).

In this study, we have formulated PGA­co­PDL NPs encap­

sulating bovine serum albumin (BSA), a model protein, using

Taguchi design to optimise NPs size and drug loading (DL)

for effective uptake by DCs. The PGA­co­PDL NPs were then

incorporated into L­leucine microparticle carriers via spray­

drying using condition optimised using Taguchi design to pro­

duce NCMPs carriers suitable for pulmonary delivery via DPIs,

maintaining BSA structure and activity.

MATERIALS AND METHODS

Materials Q1

Poly(glycerol adipate­co­T­pentadecalactone) (MW of 16.7 kDa)

polymer was synthesised and characterised in our laboratory

as previously described by Thompson et al.27 BSA was obtained

from (MW 67 kDa) Avenchem, UK. Poly(vinyl alcohol) (PVA;

MW of 13–23 kDa, 87%–89% hydrolysed) was obtained from

Clariant GmbH, Frankfurt, Germany. Dichloromethane (DCM)

was purchased from BDH, Laboratory Supplies, UK. QuantiPro Q2
bicinchoninic acid (BCA) protein assay kit, L­leucine, phosphate

buffer saline tablet (PBS; pH 7.4), 3­(4,5­dimethylthiazol­2­yl)­

2,5­diphenyltetrazolium bromide (MTT), RPMI­1640 medium

with L­glutamine and sodium hydrogen carbonate (NaHCO3),

tween 80, albumin tagged with fluorescein isothiocyanate

(FITC­BSA) were purchased from Sigma–Aldrich, UK. Min­

imum essential medium (MEM) alpha­nucleosides were ob­

tained from Gibco by Life Technologies, UK. 75 cm2/tissue cul­

ture flask (vented cap), 96­well flat bottom plates, acetone, an­

tibiotic/antimyotic solution (100×), dimethyl sulfoxide (DMSO)

and paraformaldehyde were purchased from Fisher Scientific,

UK. CVS10D omniPAGE vertical gel electrophoresis system,

protoGel stacking buffer, protein molecular weight markers

in the range 10–220 kDa, protein loading buffer blue (2×)

[0.5 M Tris–HCl (pH 6.8), 4.4% (w/v) SDS, 20% (v/v) glyc­

erol, 2% (v/v) 2­mercaptoethanol and bromphenol blue in dis­

tilled/deionised water], Tris–glycine–sodium dodecyl sulphate­

polyacrylamide gel electrophoresis (SDS­PAGE) buffer (10×)

containing 0.25 M Tris base, 1.92 M glycine and 1% (w/v) SDS

were purchased from Geneflow Limited, UK. 4­Nitrophenyl ac­

etate esterase substrate (NPAES) was purchased from Sigma–

Aldrich. Heat inactivated foetal calf serum (FCS) was pur­

chased from Biosera, UK. Adenocarcinomic human alveolar

basal epithelial cell line, A 549 (CCL­185TM) and immature

DCs; monocyte, mouse, JAWS II (CRL­11904TM) were pur­

chased from American Type Culture Collection (ATCC); 4′,6­

diamidino­2­phenylindole, dihydrochloride (DAPI) and Wheat

Germ Agglutinin Texas RedR­X conjugate (WGA TR) were pur­

chased from Invitrogen, Ltd., UK.

Experimental Design and NP Preparation

Taguchi design L36 orthogonal array was constructed through

Minitab 16 Statistical Software R© (Minitab Inc., Pennsylvania).

It was composed of eight variables set at two levels or three

levels (Table 1). This design was used to identify the important

parameters that would influence the NP size and BSA load­

ing. A high signal­to­noise (S/N) ratio indicated the optimum

conditions. The signal factor (S) was the outcome, that is, par­

ticle size or BSA loading and noise factors (N) included room

temperature, humidity, experience of researcher and so on. Op­

timisation of the particle size and BSA loading was performed

using the Taguchi’s ‘smaller­is­better’ and ‘larger­is­better’ cri­

terion, respectively.28

Bovine serum albumin­loaded PGA­co­PDL NPs were pre­

pared using a (w/o/w) double emulsion/solvent evaporation

method. Briefly, BSA solution containing PVA (internal aque­
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Table 1. Double Emulsion Solvent Evaporation Processing Variables, Units and Levels for BSA­Loaded PGA­co­PDL NPs

Code Variables Unit Levels

1 2 3

A IAP volume mL 0.25 0.5 –
B OP volume mL 1 2 –
C BSA concentration % 50 100 200
D Polymer mass mg 50 100 200
E PVA concentration % 1 5 10
F Sonication time IAP s 5 10 15
G Sonication time EAP s 10 15 30
H Sonication amplitude % 30 45 65

IAP, internal aqueous phase; OP, organic phase; EAP, external aqueous phase.

ous phase, IAP) was emulsified in DCM (organic phase, OP)

containing PGA­co­PDL, using a probe sonicator (VC X 500

Vibra­CellTM; Sonics & Materials, Inc., Newtown, Connecticut;

13 mm probe) over an ice bath. The resulting single emulsion

was emulsified into 25 mL of a PVA solution (1%, w/v) (ex­

ternal aqueous phase, EAP) using the same probe sonicator

to form a w/o/w double emulsion. The DCM was evaporated

by magnetically stirring the double emulsion for 2 h at room

temperature. The NPs were collected by centrifugation (Sigma

3–30k; SIGMA Laborzentrifugen GmbH, Germany) at 40,000g

for 1 h at 4◦C, and washed twice with distilled water. Control

NPs were prepared using the same method without BSA.

Experimental Design and NCMPs Preparation

A second design was constructed using an L27 orthogonal array

design through Minitab 16 Statistical Software R© (Minitab Inc.).

It composed of five variables each set at three levels (Table 2).

Optimisation of yield% was undertaken using the Taguchi’s

‘larger­is­better’ criterion.

Spray­drying was used to incorporate the PGA­co­PDL NPs

into NCMPs using L­leucine as a carrier. NPs (control and BSA

loaded) were suspended in an aqueous L­leucine solution at a

polymer­to­carrier ratio of 1:1.5 (w/w) and spray­dried with a

Büchi B­290 mini­spray dryer (Büchi Labortechnik, Switzer­

land) containing a standard two­fluid nozzle (0.7 mm diam­

eter). The dried powder (PGA­co­PDL/L­leucine NCMPs) was

separated from the air stream using a high­performance cy­

clone (Büchi Labortechnik), collected and stored in a desiccator

at room temperature prior to further investigations.

NP Characterisation

Particle Size, Polydispersity Index and Zeta Potential.

Samples were analysed by laser diffraction (Zetasizer Nano

ZS; Malvern Instruments Ltd., UK). Briefly, 200 :L aliquot of

the double emulsion sample was diluted with deionised water

(8 mL), and placed into a cuvette with the measurements con­

ducted at ambient temperature (25◦C) (n = 3).

Protein Loading of NPs.

The amount of protein loaded in the NPs was determined by

measuring the amount of protein remaining in the supernatant

and wash after centrifugation using a QuantiPro BCA protein

assay kit (n = 3), by UV spectroscopy at 562 nm (Genesys 5

spectrophotometer; Thermo Fisher Scientific Inc., Waltham,

Massachusetts). A calibration curve was obtained with BSA

standard solutions (2.5–30 :g/mL) and the DL was calculated

according to Eq. 1:

DL =
actual amount of encapsulated BSA (:g)

actual amount of nanoparticles (mg)
(1)

NCMPs Characterisation

Particle Size and Morphology.

To ensure the recovery of NPs from NCMPs, 5 mg of NCMPs

was suspended in 10 mL deionised water and measurements

performed as described in section 1.5.1 (n = 3). Q3
Scanning electron microscopy (SEM) (FEI—QuantaTM 200

ESEM, Holland) was used to visualise the morphology of

NCMPs. Spray­dried NCMPs samples were placed on alu­

minium stubs (pin stubs, 13 mm) covered with a conductive

carbon tab and coated (EmiTech K 550X Gold Sputter Coater,

25 mA) with palladium (10–15 nm) for 3 min.

Yield of Spray-Dried NCMPs.

The percentage yield of dry powder NCMPs was calculated as

the mass of expected total powder (n = 3) according to Eq. 2:

%Yeild =
Weight of powder collected after spray drying

Weight of total dry mass used for the preparation
× 100(2)

Moisture Content.

Thermogravimetric analysis (TGA Q50, UK equipped with TA

universal analysis 2000 software) was used to evaluate the

moisture content of dry powder NCMPs after spray­drying. Ap­

proximately 10–15 mg of NCMPs was placed in a platinum

pan and heated between 25◦C and 650◦C at a purged with ni­

trogen at 20 mL/min and a scanning rate at 10◦C/min. The

moisture content was analysed for data collected between 25◦C

and 120◦C.

Powder Density and Primary Aerodynamic Diameter.

The tapped density of selected NCMPs was determined by in­

serting approximately 0.2 g of powder into a 5 mL graduated

cylinder and recording the initial volume. Tapped density mea­

surements were then performed until no change in volume was

observed (n = 3). The data obtained from geometric particle size

(d) and tapped density (D) was used to determine the theoretical

aerodynamic diameter (dae) according to Eq. 3.

dae = d

√

D

D1 D1=1 g/cm3

(3)
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Table 2. Spray­Drying Processing Variables, Units and Levels for BSA­Loaded PGA­co­PDL NCMPs

Code Variable Unit Level

1 2 3

A Air flow L/h 400 535 670
B Inlet temp C 50 75 100
C Aspirator % 50 75 100
D Feed rate % 5 10 15
E Concentration mg/mL 12.5 6.25 4.17

In Vitro Aerosolisation Investigations.

The aerosolisation studies of the NCMPs were evaluated using

the next­generation impactor (NGI). Optimum NCMPs formu­

lations (n = 3) were filled into capsules (hydroxypropyl methyl­

cellulose, size 3. 4 capsules each corresponding to 10 mg spray­

dried powder) and aerosolised via a Cyclohaler R© (Teva Pharma)

into NGI. The capsules were punctured using the actuator of

the Cyclohaler R© prior to inhalation at a flow rate of 60 L/min for

4 s.29 The samples were collected using DCM/0.15 M NaCl mix­

ture (2:1) to extract the BSA from the polymer, which was then

analysed by the QuantiPro BCA protein assay as mentioned

above. The fine particle dose (FPD) was determined as the to­

tal mass of powder deposited in NGI stages with aerodynamic

diameters less than 4.5 :m, the fine particle fraction (FPF%)

was determined as the fraction of emitted dose deposited in the

NGI with aerodynamic diameters less than 4.5 :m, and the

mass median aerodynamic diameter (MMAD) was calculated

from log­probability analysis.

In Vitro Release Studies.

Nanocomposite microparticles samples (10 mg) were placed in

microtubes and dispersed in 1.2 mL of PBS (pH 7.4), and in­

cubated at 37◦C, rotating at 20 RPM in a sample mixer (Hu­

laMixer, Invitrogen Dynal AS, Life Technologies). At predeter­

mined time intervals up to 48 h, samples were centrifuged

(13,000 rpm for 30 min) and 0.5 mL of the supernatant re­Q4
moved and replaced with fresh buffer. The supernatant was

analysed by QuantiPro BCA protein assay as mentioned above

(n = 3). The percentage cumulative BSA released was calcu­

lated according to Eq. 4.

%Cumulative protein released

=
cumulative protein released

actual protein loaded
× 100 (4)

The % cumulative protein release was assessed using zero or­

der, first order and Higuchi’s square root plot release models.30

The correlation coefficient was calculated from the following

graphical representations, zero order: % cumulative protein re­

lease versus time; first order: log% cumulative protein remain­

ing versus time; Higuchi: % cumulative protein release versus

square root of time.

Protein Characterisation

Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis.

The primary structure of released BSA from NPs and NCMPs

was characterised by SDS­PAGE performed on a CVS10D om­

niPAGE vertical gel electrophoresis system with 9% stacking

gel prepared using ProtoGel stacking buffer containing 0.4%

of SDS. Protein samples and standard were treated with pro­

tein loading buffer blue (2×) (0.5 M Tris–HCl (pH 6.8), 4.4%

(w/v) SDS, 20% (v/ v) glycerol, 2% (v/v) 2­mercaptoethanol and

bromphenol blue in distilled/deionised water) in a ratio 1:1

(v/v) buffer­to­sample for 3 min at 95◦C. The protein molec­

ular weight marker, standard and samples were loaded into

the wells (25 :L per well). Electrophoresis was performed with

Tris–glycine–SDS­PAGE buffer (10×) [0.25 M Tris base, 1.92 M

glycine, 1% (w/v) SDS] at a constant voltage of 100 V for 2.3 h.

Coomassie Brilliant Blue was used to stain the gel followed

by destaining in distilled water for 24 h. Gel scanner (GS­700

Imaging Densitometer; Bio­Rad) equipped with Quantity One

software was used for the gel imaging and documentation.

Circular Dichroism.

The secondary structure of standard BSA (as a control), and

BSA released after 48 h from NCMPs in PBS was determined

via circular dichroism (CD) using a J­815 spectropolarimeter

(Jasco, UK) at 20◦C as reported previously.31 Five scans were

recorded per sample using a 10 mm path­length cells at far­

UV wavelengths from 260 to 180 nm at a data pitch of 0.5 nm,

band width of 1 nm and a scan speed 50 nm/min. Far­UV CD

spectra were collated for standard BSA and BSA released in

PBS after 48 h, and the baseline acquired without the sample

was subtracted.32 The secondary structure of the samples was

estimated using the CDSSTR method33 protein reference set 3

from the DichroWeb server.34,35

Determination of BSA Activity.

A freshly prepared NPAES solution36 (15 :L of a 5 mM solution

in acetonitrile) was added to the released BSA sample (1.2 mL

in PBS, 50 :g/mL) and incubated for 1 h (HulaMixerTM Sample

Mixer). The absorbance of the sample mixture was measured

at 405 nm with standard BSA (50 :g/mL) used as a positive

control and PBS buffer alone as a negative control. The BSA

relative residual esterolytic activity was determined as the ra­

tio of absorbance between the released BSA to standard BSA.

The esterolytic activity for standard BSA was considered as

100%.

Cell Viability Studies.

A549 cells were cultured in RPMI­1640 medium containing

10% FCS/1% antibiotic/antimycotic solution (complete growth

medium—i). DCs were cultured in MEM alpha medium con­

taining ribonucleosides, deoxynucleosides, 4 mM L­glutamine,

1 mM sodium pyruvate 2 mM, supplemented with 20% FCS,

5 ng/mL murine growth GM­CSF and 1% antibiotic/antimycotic

solution (complete growth medium—ii).

The toxicity profiles of NPs and NCMPs were assessed

over 24 h in A549 and of NPs only over 4 h in DCs using

MTT assay. Cells were cultured in 96­well plates with 100 :L

ALFAGIH ET AL., JOURNAL OF PHARMACEUTICAL SCIENCES DOI 10.1002/jps.24681
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(2.5 × 105 cells/mL) complete growth medium i and ii, respec­

tively, at 37◦C and 5% CO2. Then, complete growth medium

(100 :L) containing NPs (0–5 mg/mL) (n = 3) and 10% DMSO

as a positive control were added to the wells and incubated for a

further 4 h with DCs or with NPs and NCMPs (0–1.25 mg/mL)

(n = 3) for 24 h in A549 cells. This was followed by the addition

of 40 :L MTT solution (5 mg/mL in PBS, pH 7.4) to each well

and incubated for 2 h. The medium was then gently removed

(for DCs the 96­well plate was centrifuged at 1300g for 7 min

at 4◦C to pellet the suspended cells), and any formazan crystals

generated were solubilised with 100 :L of DMSO and the ab­

sorbance measured using a microplate reader (Epoch, BioTek

Instruments Ltd., UK) at 570 nm. The % cell viability was cal­

culated as the absorbance ratio between NPs or NCMPs­treated

and untreated control cells.

In Vitro NPs Uptake into DCs.

Dendritic cells uptake of FITC­BSA NPs was visualised using

confocal laser scanning microscopy (CLSM) (Carl Zeiss lsm 710,

UK) and image analysis was performed using Zeiss LSM soft­

ware The DCs (2 × 105 cells/400 :L) were plated into an eight­

well chambered borosilicate cover glass system, and incubated

at 37◦C and 5% CO2 for 48 h prior to treatment with NPs. The

FITC­BSA NPs (40 :g/40 :L) were placed in the wells and in­

cubated as above for 1 h. The suspensions from each well were

removed and washed using PBS. Cells were fixed for 15 min

with 300 :L of 4% paraformaldehyde in PBS followed by wash­

ing with PBS. The cell membranes were counterstained with

WGA TR and the nuclei were counterstained with DAPI added

to each well and incubated as above for 10 min, followed by

washing with PBS. The cells were examined using a CLSM

placed on a computer­controlled inverted microscope (Axiovert

200 M BP). Cells were imaged by excitation at a wavelength

of 595 nm (red channel for WGA TR), 358 nm (blue channel

for DAPI), 488 nm (green channel for FITC­BSA), with a Plan

Neofluar 63×/0.30 numerical aperture objective lens.

Statistical Analysis.

Minitab 16 Statistical Software R© (Minitab Inc.) was employed

for all statistical analysis and graph plotting. The data ob­

tained were analysed statistically by one­way ANOVA with the

Tukey’s comparison using Minitab 17.1 Statistical Software R©

(Minitab Inc.). Statistical significant difference was noted when

p < 0.05. Data are stated as the mean ± SD.

RESULTS

Optimisation of the BSA-Loaded NPs using Taguchi Design

The Taguchi L36 orthogonal array design required 36 runs to

be performed to ascertain the important factors influencing

the NP size and DL and to produce the optimum conditions

for each variable to achieve the smallest particle size NPs

(SPS NPs), and highest DL NPs (HDL NPs). Table 3 shows

the L36 orthogonal array and the measured NP size and DL.

Analysis of the results indicated particle sizes ranging from

216.2 ± 39.9 to 2168.9 ± 1553 nm and DL ranging from 0.8 ± 0.6

to 26.8 ± 5.8 :g/mg were obtained (Table 3).

Figures 1 and 2 show the mean S/N graph of the NP size and

DL of BSA, respectively, for each parameter level. The factor

with the largest range and corresponding rank (indicating the

Figure 1. Mean signal­to­noise (S/N) graph for particle size response.

Letters (A–H) indicate the experimental parameters and numeric value

indicates the parameter levels, ♦ indicates maximum S/N value. A,

IAP volume; B, OP volume; C, BSA concentration; D, polymer mass; E,

PVA concentration; F, IAP sonication time; G, EAP sonication time; H,

sonication amplitude.

Figure 2. Mean signal­to­noise (S/N) graph for BSA loading response.

Letters (A–H) indicate the experimental parameters and numeric value

indicates the parameter levels, ♦ indicates maximum S/N value. A,

IAP volume; B, OP volume; C, BSA concentration; D, polymer mass; E,

PVA concentration; F, IAP sonication time; G, EAP sonication time; H,

sonication amplitude.

relative importance compared with other factors) was consid­

ered as the significant factor influencing the size or DL.

The optimum conditions, based on the range, rank and

S/N graph (Fig. 1), for producing SPS NPs according to the

Taguchi’s ‘smaller­is­better’ criterion in Minitab R© 16 statisti­

cal software was A2B2C3D1E1F1G2H2. When this optimised

run was performed the measured particle size obtained was

203.0 ± 5.4 nm, which was lower than the minimum parti­

cle size of 216.2 ± 39.9 nm prepared using run 29. It is also

worth mentioning that the measured BSA loading of SPS NPs

was 35.9 ± 2.4 :g/mg. For the production of HDL NPs (Fig. 2)

using the Taguchi’s ‘larger­is­better’ criterion, the optimal con­

ditions were A2B1C3D1E1F3G3H2 which produced a DL of

43.67 ± 2.3 :g/mg. This was higher than the maximum DL of

26.8 ± 5.8 :g/mg obtained using run 24. The particle size of

HDL NPs was 287 ± 24.4 nm.

Optimisation of the Spray-Drying Process using Taguchi Design

Spray­drying was employed to encompass selected NP formu­

lations into NCMPs using L­leucine as a carrier and to enhance

powder dispersion. The Taguchi L27 orthogonal array design

required 27 runs to be performed to produce the optimum condi­

tion for each factor to achieve the highest yield % of dry powder.

Table 4 shows the structure of the Taguchi L27 orthogonal ar­

ray design and the measured dry powder yield % which ranged

from no yield to 49.8 ± 0.2%.
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Table 3. The Experimentally Measured Values of Particle Size (PS), Polydispersity Index (PI) and Drug Loading (DL) of NPs

Run A B C D E F G H PS (nm) PI DL (:g/mg)

1 1 1 1 1 1 1 1 1
574.4 ± 120.6 0.395 ± 0.15

3.6 ± 0.2

2 1 1 2 2 2 2 2 2
648.5 ± 10.5 0.209 ± 0.1

6.9 ± 0.4

3 1 1 3 3 3 3 3 3
1165.9 ± 337.9 0.181 ± 0.2

7.0 ± 0.1

4 1 1 1 1 1 1 2 2
498.7 ± 4.6 0.311 ± 0.01

2.4 ± 0.4

5 1 1 2 2 2 2 3 3
1032.9 ± 41.9 0.185 ± 0.3

5.7 ± 0.5

6 1 1 3 3 3 3 1 1
1534.7 ± 1484.00.172 ± 0.2

4.9 ± 3.4

7 1 1 1 1 2 3 1 2
577.8 ± 107.4 0.236 ± 0.1

4.1 ± 0.6

8 1 1 2 2 3 1 2 3
550.4 ± 93.9 0.146 ± 0.2

4.6 ± 0.9

9 1 1 3 3 1 2 3 1
1836.4 ± 864.0 0.273 ± 0.2

9.3 ± 0.2

10 1 2 1 1 3 2 1 3
357.5 ± 102.0 0.159 ± 0.03

0.8 ± 0.6

11 1 2 2 2 1 3 2 1 349 ± 68.9
0.124 ± 0.1

6.4 ± 0.9

12 1 2 3 3 2 1 3 2 325 ± 73.3
0.162 ± 0.03

4.3 ± 0.9

13 1 2 1 2 3 1 3 2
270.8 ± 81.0 0.133 ± 0.004

1.4 ± 0.5

14 1 2 2 3 1 2 1 3
416.4 ± 100.8 0.083 ± 0.1

3.9 ± 0.3

15 1 2 3 1 2 3 2 1
319.7 ± 41.9 0.142 ± 0.002

5.0 ± 4.0

16 1 2 1 2 3 2 1 1
493.1 ± 36.1 0.243 ± 0.06

1.9 ± 0.2

17 1 2 2 3 1 3 2 2
443.6 ± 47.0 0.135 ± 0.1

4.3 ± 0.2

18 1 2 3 1 2 1 3 3
230.7 ± 46.7 0.100 ± 0.01

15.7 ± 4.8

19 2 1 1 2 1 3 3 3
420.8 ± 75.9 0.081 ± 0.1

5.0 ± 0.1

20 2 1 2 3 2 1 1 1
1375.8 ± 392.2

0.005 ± 0 7.1 ± 0.1

21 2 1 3 1 3 2 2 2
467.3 ± 104.4

0.005 ± 0 19.2 ± 5.9

22 2 1 1 2 2 3 3 1
1204.7 ± 450.6 0.342 ± 0.1

5.6 ± 0.04

23 2 1 2 3 3 1 1 2
2168.9 ± 1553.00.003 ± 0.002

20.4 ± 0.7

24 2 1 3 1 1 2 2 3 267 ± 10.2
0.061 ± 0.07

26.8 ± 5.8

25 2 1 1 3 2 1 2 3
554.1 ± 88.7 0.111 ± 0.09

2.8 ± 0.1

26 2 1 2 1 3 2 3 1
468.2 ± 50.0 0.005 ± 0.0

15.8 ± 0.3

27 2 1 3 2 1 3 1 2
493.1 ± 104.0 0.046 ± 0.05

24.5 ± 3.1

28 2 2 1 3 2 2 2 1
535.1 ± 3.4 0.175 ± 0.1

2.7 ± 0.02

29 2 2 2 1 3 3 3 2
216.2 ± 39.9 0.104 ± 0.04

15.5 ± 0.9

30 2 2 3 2 1 1 1 3
343.4 ± 54.3 0.194 ± 0.03

17.7 ± 1.2

31 2 2 1 3 3 3 2 3
729.9 ± 54.6 0.269 ± 0.05

2.2 ± 0.4

32 2 2 2 1 1 1 3 1
246.5 ± 32.2 0.103 ± 0.02

18.8 ± 1.2

33 2 2 3 2 2 2 1 2
316.7 ± 59.8 0.212 ± 0.02

18.1 ± 0.1

34 2 2 1 3 1 2 3 2
430.1 ± 207.8 0.233 ± 0.1

3.1 ± 0.2
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Table 3. Continued

Run A B C D E F G H PS (nm) PI DL (:g/mg)

35 2 2 2 1 2 3 1 3
301.5 ± 19.6 0.095 ± 0.12

21.5 ± 1.9

36 2 2 3 2 3 1 2 1
463.5 ± 123.4 0.246 ± 0.03

19.2 ± 2.1

SPS 2 2 3 1 1 1 2 2
203.0 ± 5.4 0.201 ± 0.03

35.9 ± 2.4

HDL
2 1 3 1 1 3 3 2

287.0 ± 24.4 0.122 ± 0.05
43.7 ± 2.3

Data represent as mean ± SD, n = 3.

Note: A, IAP volume; B, organic phase volume; C, BSA concentration; D, polymer mass; E, PVA concentration; F, sonication time IAP; G, sonication time EAP; H, sonication

amplitude; DL, BSA loading; SPS, smallest particle size NPs; HDL, highest drug loading NPs.

Table 4. Spray­Drying Processing Variables for NCMPs Using Taguchi Design and Corresponding Yield%

Runs A B C D E Yield (%)

1 1 1 1 1 1 34.1 ± 2.2
2 1 1 1 1 2 30.5 ± 4.5
3 1 1 1 1 3 27.8 ± 0.3
4 1 2 2 2 1 26.5 ± 3.9
5 1 2 2 2 2 37.7 ± 0.7
6 1 2 2 2 3 29.4 ± 7.9
7 1 3 3 3 1 43.1 ± 2.4
8 1 3 3 3 2 41.9 ± 2.1
9 1 3 3 3 3 37.0 ± 1.0
10 2 1 2 3 1 0
11 2 1 2 3 2 0
12 2 1 2 3 3 0
13 2 2 3 1 1 49.8 ± 0.2
14 2 2 3 1 2 41.2 ± 0.1
15 2 2 3 1 3 40.8 ± 3.5
16 2 3 1 2 1 38.2 ± 1.2
17 2 3 1 2 2 33.3 ± 0.8
18 2 3 1 2 3 26.6 ± 1.2
19 3 1 3 2 1 48.6 ± 2.5
20 3 1 3 2 2 35.8 ± 2.7
21 3 1 3 2 3 35.7 ± 3.1
22 3 2 1 3 1 0
23 3 2 1 3 2 0
24 3 2 1 3 3 0
25 3 3 2 1 1 38.0 ± 1.1
26 3 3 2 1 2 21.9 ± 0.9
27 3 3 2 1 3 24.0 ± 1.5
H 1 3 3 2 1 50.9 ± 2.3

Data represent mean ± SD, n = 3.

Note: A, air flow; B, inlet temperature; C, aspirator%; D, pump rate; E, feed concentration. Numeric values 1–27 indicate experimental run number, H indicate optimum

spray­drying condition that produce highest yield%.

Figure 3 presents the mean S/N graph of the yield % for

each factor level. The factor with the largest range and cor­

responding rank (indicating the relative importance compared

with other factors) was regarded as the significant factor influ­

encing the yield %. Optimum specifications were determined

by high S/N ratios. Based on the range, rank and S/N response

graph, production of highest dry powder yield % according to

the Taguchi’s ‘larger­is­better’ criterion in Minitab 16 statis­

tical software suggested combinations A1B3C3D2E1 (run H—

Table 4). When run H was performed the dry powder yield %

was 50.9 ± 2.3%.

Figure 4 represents the SEM photomicrographs of NCMPs

and run H regarding the shape and surface morphology, which

was irregular and porous microparticle carriers. The selected

HDL NPs and SPS NPs were spray­dried using run H param­

eters (because it produced the highest yield% of powder ∼50%)

to produce NCMPs. The formulations were given the following

Figure 3. Mean signal­to­noise (S/N) graph for yield % response. Let­

ters (A–E) indicate the experimental parameters and numeric value

indicates the parameter levels, ♦ indicates maximum S/N value. A,

airflow; B, inlet temperature; C, aspirator %; D, feed rate %; E, feed

concentration.

DOI 10.1002/jps.24681 ALFAGIH ET AL., JOURNAL OF PHARMACEUTICAL SCIENCES



Author Proof
8 RESEARCH ARTICLE – Pharmaceutical Nanotechnology

Figure 4. SEM images of NCMPs prepared by different spray­drying

conditions (numeric values 1–27 indicates run experimental number,

H: NCMPs spray­dried with run H (HDL H NCMPs), L: L­leucine alone

spray­dried with run H. The scale bar represents 1 :m.

codes: HDL H NCMPs, and SPS H NCMPs. Formulations SPS

H NCMPs and HDL H NCMPs were carried out for further

investigations. The NCMPs had a residual moisture content of

0.2 ± 0.03% (w/w).

Primary Aerodynamic Diameter and In Vitro Aerosolisation
Studies for NCMPs

There was no significant difference between NCMPs formula­

tions regarding geometric particle size (HDL: 3.89 ± 0.37 and

SPS: 4.69 ± 0.77 :m) (p > 0.05). However, significant difference

(p < 0.05) was observed between the NCMPs formulations with

respect to tapped density and carr’s index. The theoretical aero­

dynamic diameter (dae) was calculated from both these param­

eters and ranged from 1.45 ± 0.14 and 1.71 ± 0.32 :m (Table 5)

indicating the suitability for pulmonary delivery, but no signif­

Figure 5. Cumulative in vitro release of BSA from NCMPs in PBS

buffer at 37◦C. (Data represent mean ± SD, n = 3.)

icant difference (p ? 0.05). BSA deposition data obtained from

NCMPs (Table 6) indicated there was no significant difference

in FPD and MMAD (p ? 0.05), but HDL H NCMPs achieved a

significantly higher FPF (p < 0.05) between the formulations

examined.

In Vitro Release Studies

In vitro release studies comparing SPS H NCMPs and HDL

H NCMPs formulations were performed (Fig. 5) and showed

a biphasic release profile. An initial burst release was ob­

served up to 4 h with BSA release from HDL H NCMPs

(18.46 ± 0.92%) significantly greater than SPS H NCMPs

(9.09 ± 3.4%) (p < 0.05) followed by a continuous release over

48 h. A significant difference (p < 0.05) was noted in the release

profile (24–48 h) between HDL H NCMPs and SPS H NCMPs,

with HDL H NCMPs achieving 38.77 ± 3% release after 48 h

compared with 20.84 ± 4.2% for SPS H NCMPs .

In this study, BSA was released from SPS H NCMPs

and HDL H NCMPs following the Higuchi diffusion model

(r2 = 0.981 and 0.955, respectively) with a release rate constant

(k1, h−
1
/2) of 2.7021 and 5.3653, respectively (Table 7). Hence,

the release of BSA from NCMPs seems to be a diffusion­limited

process. Accordingly HDL H NCMPs was selected for further

investigation in this study.

Investigation of BSA Structure and Activity

The primary structure of BSA released from NPs and NCMPs

was analysed by SDS­PAGE (Fig. 6). The BSA standard and

molecular weight marker shown in lanes 1 and 5, respectively,

revealed a clear band at about 66 kDa. The BSA released from

HDL NPs (lane 2) and from HDL H NCMPs (lanes 3 and 4),

showed similar clear banding patterns to the BSA standard

(Fig. 6). The single lines in the gels provided evidence that the

BSA released did not undergo significant covalent aggregation

or fragmentation during the formulation methods used. The

residual esterolytic activity of the BSA sample was evaluated

to be 74.98 ± 5.8% relative to standard BSA.

The secondary structure of BSA was analysed using CD spec­

troscopy (Fig. 7). The structure of standard BSA and BSA re­

leased, indicated minima at 221–222 and 209–210 nm and a
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Table 5. The Geometric Particle Size, Tapped Density and Theoretical Aerodynamic Diameter of Spray­Dried NCMPs

Formulation Particle size (:m) Tapped density (g/cm3) Carr’s Index d ae (:m)

% Flowability

SPS H NCMPs 4.69 ± 0.77 0.132 ± 0.007* 36.21 ± 1.5* Very poor 1.71 ± 0.32
HDL H NCMPs 3.89 ± 0.37 0.145 ± 0.002 31.25 ± 1.7 Poor 1.46 ± 0.14

Data represent mean ± SD, n = 3.

*p < 0.05, ANOVA/Tukey’s comparison.

Table 6. The Fine Particle Dose (FPD), Percentage Fine Particle Fraction (FPF) and Mass median Aerodynamic Diameter (MMAD) of NCMPs

Formulation FPD (:g) FPF (%) MMAD (:m)

SPS H NCMPs 38.04 ± 2.80 64.32 ± 1.6* 1.49 ± 0.13
HDL H NCMPs 45.00 ± 7.40 78.57 ± 0.1 1.71 ± 0.10

Data represent mean ± SD, n = 3.

*p < 0.05, ANOVA/Tukey’s comparison.

Table 7. Release Parameters of BSA from NCMPs

Formulation Zero Order First Order Higuchi

r 2 k o (h−1) r 2 k 1 (h−1) r 2 k 1 (h−
1

/2)

HDL H NCMPs 0.842 0.72 0.886 −0.004 0.955 5.3653
SPS H NCMPs 0.881 0.366 0.899 −0.0018 0.981 2.7021

Figure 6. SDS­PAGE behaviour of BSA released for the assessment

of BSA stability. Lanes represent, BSA standard (1), BSA released from

HDL NPs (2), BSA released from HDL H NCMPs (3, 4), and molecular

weight (MW) standard markers, BSA (MW 66,000), (5). Difference in

band intensity was due to different loading.

maximum at 195 nm for both samples, which is typical for "­

helical structure. In support of these data, structural analysis

showed that BSA was predominantly helical displaying 51.5%

helicity (Table 8), which is in good agreement with Zhang et

al.37 Structural analysis of BSA released displayed double min­

ima at 210 and 222 nm and a further spectra analysis showed

Figure 7. The CD spectra of BSA released from HDL NPs (grey) and

BSA standard (black).

a reduced level of "­helical conformation (circa 48.5% helical)

(Table 8). Furthermore, a comparison of BSA released with

standard BSA showed that the "­helical content decreased by

3%.

Cell Viability Studies and NPs Cellular Uptake by DCs

The unloaded NPs and NCMPs appeared to be well tolerated

by the A549 cell line, with a cell viability of 84.63 ± 5% for NPs

and 75.7 ± 4% for NCMPs (Fig. 8) at 1.25 mg/mL concentration

after 24 h exposure. In addition, the unloaded NPs displayed a

cell viability of 86.38 ± 5.5% at 5 mg/mL concentration after 4 h

exposure in DCs, indicating good cell viability with increasing

NP concentration (Fig. 9).

Figure 10 shows the intracellular localisation of FITC­BSA­

loaded NPs inside DCs after 4 h incubation. The cell wall of the

DCs was stained with WGA TR, the nucleus was stained with

DAPI and the NPs loaded with FITC­BSA were observed under

red, blue and green channels, respectively. The green fluores­

cence was observed inside the DCs confirming the presence of

NPs.
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Table 8. The Percentage of Secondary Structure Conformation for BSA Released from the Selected Formulation and BSA Standard

Sample Helix Strands Turns Unordered

BSA standard 51.5 ± 0.007 21.50 ± 0.007 9.0 ± 0 17.50 ± 0.007
BSA released 48.50 ± 0.007 25.0 ± 0 6.50 ± 0.007 19.5 ± 0.007

Data represent mean ± SD, n = 3.

Figure 8. A549 cell viability measured by MTT assay after 24 h ex­

posure to NPs and NCMPs. (Data represent mean ± SD, n = 3.)

Figure 9. DCs viability measured by MTT assay after 4 h exposure

to NPs. (Data represent mean ± SD, n = 3).

DISCUSSION

Preparation and Characterisation of NPs

The loading capacity of NPs is a critical aspect for delivery as

high loading results in greater bioavailability of drug per parti­

cle absorbed.38 A successful drug delivery system should have

a high loading capability which will decrease the amount of

drug and excipients used for manufacturing the delivery sys­

tem. Analysis of the results from the Taguchi design indicated

that the DL of NPs was influenced by different parameters in

the following order: BSA concentration > IAP volume > poly­

mer mass > PVA concentration > OP volume > EAP sonication

time and IAP sonication time > sonication amplitude; whereas

the influence on the particle size of NPs had the following or­

der: polymer mass > OP volume > sonication amplitude > sur­

factant concentration > EAP sonication time IAP sonication

time > IAP volume > BSA concentration.

Bovine serum albumin concentration (rank 1; Fig. 2) had

the greatest influence on the DL which increased profoundly as

the BSA concentration increased from 0.2% to 1%. This was ex­

pected from predictions based on Eq. 1 in which DL is positively

proportional to the amount of BSA38 and can be seen comparing

run 7 (4.1 ± 0.6 :g/mg) and run 18 (15.7 ± 4.8 :g/mg). However,

increasing the BSA concentration to large levels (1%) is not nec­

essarily beneficial; this trend has been explained by the mass

of polymer used being insufficient to completely encapsulate

the BSA.38 Furthermore, higher concentrations of BSA provide

a higher concentration in IAP droplets and thus increase the

concentration gradient between the IAP droplets and the EAP,

resulting in an increased amount of BSA transported into the

EAP.39,40 IAP volume (rank 2; Fig. 2) plays an important role

on DL, such that, the larger volume of the IAP the higher the

BSA loading, as seen in run 13 (1.4 ± 0.5 :g/mg) and run 19

(5.0 ± 0.1 :g/mg) (Table 3). This effect has been reported38,41

and is thought to be due to a decrease in the concentration

gradient between IAP and EAP.

The third factor affecting DL was the polymer mass (rank

3; Fig. 2). DL decreased substantially with increasing poly­

mer mass from 50 to 200 mg, as predicted based on Eq. 1,

in which DL is inversely proportional to the polymer mass.42

This trend can be seen in run 22 (5.6 ± 0.04 :g/mg) and run 25

(2.8 ± 0.1 :g/mg). In addition, the results showed that reducing

the OP volume (rank 5; Fig. 2) increased DL. This was associ­

ated with the high viscosity of the OP resulting in enhanced

primary emulsion stabilisation and minimising the diffusion

rate of BSA through the OP.41

The fourth factor affecting DL was PVA concentration, with

1% PVA resulting in higher BSA loading as seen comparing run

19 (5.0 ± 0.1 :g/mg) and run 22 (5.6 ± 0.04 :g/mg) (Fig. 2).

A possible explanation was that at this concentration PVA

was adequate to completely cover the partition interface (or­

ganic/aqueous) and subsequently resulting in reduced leaching

of BSA. Consequently, any further increase in PVA concentra­

tion (5% and 10%) resulted in decreased DL because of the

enhanced partitioning of BSA into the aqueous phase during

emulsification. This was attributed to the solubilisation and

emulsification effect of PVA.43

Sonication time of the EAP and IAP exerted similar effects

on DL where increasing the sonication time of IAP and EAP

resulted in higher DL.44 The factor that had the least effect

was sonication amplitude. Increasing the sonication amplitude

(30% to 45% to 65%) had almost no beneficial effect on the BSA

loading. This effect has been reported previously and has been

associated with BSA precipitation within the sonication probe

due to high pressure and increased fluid cavitations during

sonication.45,46

Analysis of results following the Taguchi design indicated

that the particle size of NPs was influenced by different param­

eters in the following order: polymer mass > OP volume > soni­

cation amplitude > surfactant concentration > EAP sonication

time and IAP sonication time > IAP volume > BSA concen­

tration. It can be seen that the polymer mass followed by the

OP volume (rank 1 and 2; Fig. 1) had the greatest effect on

NPs size. An increase polymer mass resulted in an enhanced

NP size, with run 3, 6, 9, 20 and 23 achieving the largest NPs

size (Table 3). This was demonstrated by the observation that

PGA­co­PDL mass was the primary parameter accountable for

the variation in NPs size. A similar observation has also been

noted by Bilati et al.38 investigating PLGA NPs encapsulated
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Figure 10. Confocal microscopic image of FITC­BSA NPs uptake by DCs. (a) DCs incubated without NPs at 20×, (b) DCs incubated with

FITC­BSA NPs at 20×, (c) DCs incubated with FITC­BSA NPs at 63×, red channel for WGA TR, blue channel for DAPI and green channel for

FITC­BSA.

with protein prepared using a double emulsion solvent evap­

oration method or with microparticles. The effect of polymer

mass on the particle size has also been attributed to the in­

creased viscosity and subsequent less proficient stirring of the

OP leading to an greater NPs coalescence.47

Poly(vinyl alcohol) concentration was directly proportional

to size with a trend of 1 < 5 < 10% PVA (rank 4; Fig. 1).

This was associated with an increase in viscosity with increase

in PVA concentration in the IAP corresponding to a reduced

shear stress, decreased diffusion rate and consequently in­

crease in NP size. This can be seen comparing run 4 (1% PVA,

498.7 ± 4.6 nm) and run 7 (5% PVA, 577.8 ± 107.4 nm) (Table 3).

Furthermore, additions of more PVA lead to an enlargement in

NPs size because of the buildup of surplus molecules at the

surface leading to bridging between the primary particles.43

BSA concentration and IAP volume had minimum effect on the

particle size of NPs which has also previously been reported in

literature.38

The rate of size reduction decreased considerably when son­

ication was carried out beyond the duration of 5 s for IAP (rank

6) or 15 s for EAP (rank 5) or beyond the amplitude (rank 3)

of 45% (Fig. 1). Increasing amplitude lead to more fluid cavi­

tation, this inhibits the efficiency of energy transmission and

decreased ultrasonic effect.48 This can be seen in run 10 and

29 (Table 3) which differ in amplitude (65% and 45%, respec­

tively), sonication time for IAP (10 and 15 s, respectively) and

EAP (10 and 30 s, respectively)

Precise adjustment of the numerous formulation and pro­

cessing factors is important to attain the desired NPs size

and BSA loading. In this study, a particle size of ≤500 nm

was desired to facilitate uptake of NPs by DCs.6,7,49 A high

S/N ratio suggested optimum conditions such that, the larger

the S/N ratio, the less variance of particle size and BSA load­

ing from the desired value. When the suggested optimized run

was carried out, the measured particle size (SPS NPs) obtained

203 ± 5.4 nm was considered suitable for DCs uptake.50–52

NCMP Characterisation

Spray­drying was utilised to encompass the selected NPs into

NCMPs with L­leucine as a carrier and to enhance powder

dispersion. Majority of the spray­drying process parameters

achieved low yields because of the condensation inside the dry­

ing chamber and collecting vessel resulting in the dry particles

sticking to the walls.53 Utilising the Taguchi design revealed

that the feed rate, aspirator capacity, air flow and inlet tem­

perature had the greatest effects on the yield% of dry powder,

whereas the change in the concentration of total solid in the

spray­dried suspension had no effect in the yield% of dry pow­

der.

The most important factor was feed rate (rank 1; Fig. 3) with

a negative effect on powder yield. At high feed rates 15%, it

is difficult for the atomized air to penetrate the liquid stream.

Consequently, insufficient atomisation and drying will result

with large NCMPs deposition and sticking to the walls in the

drying and cyclone chambers.53

The second important factor was aspirator flow (rank 2;

Fig. 3) with a positive effect on powder yield% (rank 2). A high

aspirator flow rate created greater centrifugal force leading to

an increase in the collection efficiency.54 Airflow had a negative

effect on powder yield% (rank 3; Fig. 3). Higher spray flow pro­

duced smaller droplets which were collected less efficiently by

the centrifugal force in the cyclone.54

The inlet temperature (rank 4; Fig. 3) of drying air ranged

from 50◦C to 100◦C, typically resulting in an outlet tempera­

ture of approximately 22◦C to 46◦C. It was noticed that as the

inlet temperature increased from 50◦C to 100◦C there was an

increase in powder yield%. It has been reported that a high

inlet temperature can reduce the drying time and inhibit par­

ticle aggregation.55 Furthermore, a higher inlet temperature

promotes a decrease in residual moisture by enhancing water

evaporation resulting in less particles sticking in the drying

chamber.56

The results obtained from spray­drying regarding runs 10,

11, 12, 22, 23 and 24 produced no yield. They all shared the

predominant factor (Feed Rate, rank 1; Fig. 3) affecting yield

although they differed in other factors (aspirator capacity, air

flow and inlet temperature) (Table 4). The feed rate was 15%,

and at this high rate the atomising air may not be able to

break the flow of the suspension. Furthermore, the high feed

rate was accompanied by low level of aspirator capacity (50%

and 75%), high level airflow (535 and 670 L/h) and low level

of inlet temperature (50◦C and 75◦C), which all had negative

effect on yield as explained above. When these parameters were

adjusted to their positive level in run 7, 8 and 9 (Table 4) the

yield increased up to 43%.
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Photomicrographs showed irregular and porous NCMPs.

This has been associated with vapour pressure that builds up

during the removal of water throughout spray­drying and is

prevalent with L­leucine and other hydrophobic amino acids,

resulting in improved aerosolisation.57 Furthermore, photomi­

crographs of NCMPs were similar irrespective of different pro­

cessing conditions. High residual moisture content can pro­

mote particle aggregation leading to a variation in particle size

distribution.58 The low moisture content reported from the TGA

thermogram presents a good drying efficiency therefore the dry

powder formulations are likely to show good storage stability.

In Vitro Release and Aerosolisation Studies

Aerosolisation deposition data of NCMPs formulations indi­

cated a similarity in FPD. The significantly higher FPF% of

HDL H NCMPs compared with SPS H NCMPs was attributed

to powder aggregation which was demonstrated by the large

Carr’s index, ≥32, implying the flow of SPS H NCMPs was very

poor. In addition, SPS H NCMPs had a significantly smaller

MMAD indicating possibility of aggregation and

In vitro release studies comparing SPS H NCMPs and HDL

H NCMPs formulations were performed, with our results in­

dicating a diffusion­limited process according to the Higuchi

diffusion model. The observed change in release profile at 24 h

following the initial burst release could be attributed to the dis­

tribution of BSA within NPs and/or alteration in degradation

rate due to changed surface porosity.24

Stability of BSA and Cell Viability Studies

The primary structure of BSA released from HDL NPs and

HDL H NCMPs showed similar clear banding patterns to the

BSA standard provided evidence that the released BSA did not

suffer significant covalent aggregation or fragmentation during

the preparation methods used.

The secondary structure of BSA released was analysed using

CD spectroscopy, a valuable technique in analysing the protein

structure.31 The spectra confirmed the presence of "­helix in

the BSA released samples although this was decreased in com­

parison with standard BSA.

Bovine serum albumin has an enzyme­like activity and is

able to hydrolyse substrates such as p­nitophenyl esters.36

When compared with standard BSA, the released BSA sample

maintained approximately 74% of relative residual esterolytic

activity, which was higher than 60% obtained by Abbate et al.36

The reduction seen in this study was possibly due to the en­

capsulation process which resulted in a reduction in helicity

as evaluated by CD (Fig. 7 and Table 8), and hence BSA ac­

tivity. However, a 74% retention in activity achieved using this

delivery system is still promising for further investigation of

macromolecule delivery including proteins for vaccine.

The influence of NPs and NCMPs on cell viability studies

were performed on the A549 and JAWS II DC lines. The NPs

and NCMPs appear to be well tolerated by both cell lines. Al­

though a decrease in cell viability was observed with increasing

NPs and NCMPs concentration in both cell lines (A549: >75%

at 1.25 mg/mL and DC: >85% at 5 mg/mL concentration), a

high DL was obtained, which indicates lower doses could be

delivered, hence negating the potential toxicity at high doses.

Moreover, the dose delivered would be distributed throughout

the lung and not localise within specific sites at these high

concentrations.59

The uptake of NPs by JAWS II DC type was confirmed by

CLSM. Thus NPs are efficiently ingested by DCs and could be

applied for the delivery of antigens to DCs.

CONCLUSIONS Q5

The PGA­co­PDL NPs with appropriate size (203 ± 5.4 nm) to

target DCs and BSA loading (43.67 ± 2.3 :g/mg) were success­

fully prepared using the Taguchi L36 orthogonal array design

of experiment method. Selected NPs formulations were incor­

porated into NCMPs using L­leucine as a carrier. The highest

yield% of dry powder (50%) was obtained using the Taguchi L27

orthogonal array design of experiment. The NCMPs had irreg­

ular and porous surface. The in vitro release studies indicated

BSA maintains its primary and secondary structure. Further­

more, aerosolisation deposition data (FPF 78.57 ± 0.1% and

MMAD 1.71 ± 0.1 :m) indicate deep lung deposition. In addi­

tion, the NPs and NCMPs had a relatively high cell viability

(A549: >75% at 1.25 mg/mL and DC: >85% at 5 mg/mL concen­

tration) at high concentrations. This study suggests that PGA­

co­PDL NCMPs could be further investigated for pulmonary

delivery of macromolecules, including the possibility for vac­

cine delivery via the pulmonary route.
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