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Abstract 

Consideration of all chemicals that we are exposed to on a daily basis is a daunting task, which 

has been traditionally assessed through animal testing procedures. However, the ethical and 

financial considerations associated with such testing has long been a topic of concern, with 

the desire to pursue alternative methods evident. Towards this, the vision of 21st century 

toxicology actively promoted the use of new approach methodologies (NAMs) that avoid the 

usage of animal testing, as well as fostering a more efficient means for toxicological 

assessment. Captured within these NAMs are in silico methods which include a range of in 

silico (or computational) approaches, one of the most popular being Quantitative Structure-

Activity Relationships (QSARs). Although it is acknowledged that the majority of these in silico 

methods are by no means novel, it is the consideration of such within regulatory decision-

making frameworks that is. Whilst these methods are being promoted for usage within 

regulatory settings, fundamental issues regarding assessment of confidence as well as 

knowledge sharing need to be addressed to further promote acceptance. 

Therefore, the aim of this thesis was to provide detailed analysis of methods for in silico model 

validation, and knowledge-sharing efforts that incorporate the state-of-the-art practices, 

which could potentially bolster their acceptance within regulatory settings. Recently 

developed uncertainty assessment criteria for the evaluation of QSARs were analysed with a 

particular focus on how they can be employed to demonstrate fitness-for-purpose. These 

uncertainty assessment criteria were subsequently developed further, with considerations of 

challenges in QSAR, such as mixture assessment and machine learning (ML) approaches. To 

facilitate this, a review was conducted of the key characteristics of QSAR methods applied to 

mixtures, using the knowledge gathered to identify areas for additional consideration within 

the criteria. ML approaches were studied, with six models developed to address ML-specific 

considerations within the criteria. The concept of model sharing has been promoted through 

the application of the FAIR (Findable, Accessible, Interoperable, Reusable) principles to in 

silico methods. Outcomes from each chapter and the overall thesis promote the advancement 

of regulatory acceptance of QSAR models and predictions, through development of improved 

reporting strategies and sharing methodologies. The thesis additionally benefits the field 



through thorough considerations of the most challenging aspects of QSARs, and how these 

subfields, such as mixture assessment and ML approaches, can gain credibility.
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Chapter 1. Introduction 

1.1. Background 

Throughout our daily lives, we are continually exposed to a multitude of chemicals, the 

potential effects of most of these are not yet fully understood. As such, schemes for 

addressing the dangers chemicals present to both individuals and the environment have been 

in place for almost a century (Hartung, 2009). During this time, it has been estimated that 

between 10-20,000 substances, such as pharmaceuticals, pesticides and many other 

products, have been tested. However, only a small proportion of the total number of 

substances can be considered to be well-studied and thoroughly assessed, with many of these 

receiving such focus due to possible health concerns (Krewski et al., 2019). Historically, 

chemicals that have been subjected to thorough testing are those that have been identified 

to be of significant health concern, for example carcinogens and, more recently, endocrine 

disrupting chemicals (EDCs) (Hartung, 2009). EDCs are an example of one of the significant 

issues faced by chemical safety assessment. Initial research into these substances was 

conducted in the mid-twentieth century following a study where researchers linked prenatal 

exposure, to a later defined EDC, with cancer of the cervix (Herbst et al., 1971). Similarly, a 

more recent issue that has become a focus of chemical risk assessment is that of per- and 

polyfluoroalkyl substances (PFAS). PFAS, otherwise referred to as forever chemicals, due to 

their lengthy persistence within the environment, have come under scrutiny due to their vast 

prevalence causing global health effects worldwide (Fenton et al., 2021). Both EDCs and PFAS 

represent a small handful of chemicals that can cause a breadth of effects to both humans 

and the environment that have, and will continue to be, a focus of research for the 

foreseeable future. However, there still exists a great need for information for millions of 

other chemicals that we are exposed to with unknown effects (Krewski et al., 2019). 

1.2. Chemical legislation and animal testing 

Determining the potential risk of exposure to chemicals not only for humans, but also the 

environment has been undertaken through various regulatory bodies governed by 

legislations; with the earliest systems for determining such hazards being introduced as far 

back as almost a century ago (Hartung, 2009). Since conception, there now exists over 40 
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pieces of key chemical legislation globally such as the Registration, Evaluation, Authorisation 

and Restriction of Chemicals (REACH) within the EU and the Toxic Substances Control Act 

(TSCA) in the US. Specifically in the EU, legislation is fronted by REACH and Classification, 

Labelling and Packaging (CLP), which is supported by individual policies for specific groups of 

chemicals such as biocides, pesticides, pharmaceuticals, and cosmetics (Mahony et al., 2020). 

Designed as the major policy to protect both human health and the environment, REACH 

places strict requirements for hazard assessment upon chemicals that are produced or 

imported into the EU in quantities exceeding one tonne, which understandably applies 

pressure on the usage of animal testing. Throughout traditional risk assessment the 

underlying assumptions have been that whole animal testing is a sufficient predictor of 

adverse effects towards human/environment (Knight et al., 2021). Nevertheless, animal 

studies alone are unlikely to fully capture the scope of adverse effects caused, with the 

relevance of such results towards humans also being arguable. Thus, the reliance upon animal 

testing alone is ultimately outdated, with such methods simply not able to test all existing 

chemicals, whilst also being costly, time-consuming, and highly ethically debatable. 

Therefore, REACH, along with other EU legislations, actively promote the usage of alternative 

approaches, with there being an evident desire for new, non-animal approaches within safety 

assessment. 

1.3. 21st Century Toxicology and NAMs 

The field of toxicology is a continually progressing and developing practice, with 

advancements in human biology and tools for determining adverse effects of chemicals, and 

other stressors, growing exponentially. Ensuring that such new technologies are actively 

being employed within the field motivated the US National Research Council (NRC) to publish 

a landmark report over a decade ago labelled Toxicity Testing in the 21st Century (US NRC, 

2007; Krewski et al., 2020). This report provided a vision for the future of toxicology forming 

a long-term strategy designed specifically to take advantage of newly introduced 

technologies; thus, increasing the efficiency of testing procedures enabling acceleration of 

the rate at which chemicals could be considered (US NRC, 2007). Reducing the reliance upon 

animal testing understandably plays a pivotal role within the strategy, shifting dependence 

towards animal alternatives and promoting the usage of new approach methodologies 
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(NAMs). NAMs represent any technology, methodology, approach, or combination of 

approaches that produces information avoiding the usage of animals. Captured within the 

NAMs terminology include approaches such as in vitro systems as well as in silico methods 

(the latter being the focus of the current thesis). These may not be novel themselves, 

however, their application within regulatory decision-making processes and replacement of 

traditional testing is a newer development (van der Zalm et al., 2022). 

This need for updating chemical safety assessment practices at a regulatory level has long 

been understood, with the EU also adopting policies that reduce dependencies upon animal 

testing with the adoption of the Directive 2010/63/EU on the protection of animals used for 

scientific purposes being firmly rooted in the 3Rs principles (replacement, reduction, and 

refinement) (European Parliament and Council, 2010). Reflecting upon the EUs priorities to 

reduce animal testing has additionally been demonstrated by the substantial funding 

contributed towards various research programmes, such as SEURAT-1, EU-ToxRisk, eTOX, and 

eTRANSAFE (http://www.seurat-1.eu/; http://www.eu-toxrisk.eu/; 

http://www.etoxproject.eu/; https://etransafe.eu/). Similar efforts are also being undertaken 

outside of Europe, with the toxicology in the 21st century (Tox21) consortium being formed 

through a collaborative effort between US regulatory agencies (https://tox21.gov/). Support 

from such research initiatives has undoubtedly accelerated the growth of animal alternative 

approaches, i.e., NAMs, in both in silico and in vitro disciplines (EPA, 2018). 

Replacing animal studies in safety assessment on a case-by-case basis would present an ideal 

scenario, but with the understanding of NAMs being somewhat in their infancy this approach 

is currently not feasible. Thus, combining data from a variety of approaches in a weight-of-

evidence manner presents a logical and robust strategy for utilisation of NAMs (Mahony et 

al., 2020; Laroche et al., 2019). Though such work can provide short term gains towards the 

further implementation of NAMs, broader considerations must be undertaken to update 

current regulatory practices (Knight et al., 2021). Shifting from supporting information 

towards a more direct replacement indeed requires greater acceptance in risk assessment, 

which may only be facilitated through the revision of relevant legislation. Amending 

legislation is a cumbersome and slow process, and is additionally hampered where 

approaches lack scientific validity (Eskes and Whelan, 2016). Evidently, for NAMs, greater 

effort needs to be placed into further maturing the approaches. Recent workshops held by 
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The European Partnership for Alternative Approaches to Animal Testing (EPAA) identified key 

challenges, as shown in Table 1.1, that need to be addressed in order to promote acceptance 

(Westmoreland et al., 2022; Mahony et al., 2020). Therefore, to capitalise upon the vast 

research effort and investments that have progressed the development of NAMs, it is 

essential that such acceptance issues are addressed; thus, encouraging a re-assessment of 

the current safety paradigm (Cronin et al., 2021). 

Table 1.1. Overview of the key challenges hindering acceptance of NAMs identified during 

EPAA collaborative workshops (adapted from (Westmoreland et al., 2022; Mahony et al., 

2020). 

Area of challenge toward NAMs Description 
Legislation There is a clear lack of experience validating NAMs, 

with no one agreed upon approach being employed in 
regulatory science. The potential utility of NAMs in a 
safety assessment framework are not fully realised. 

Data Sharing Adherence to a unified approach for data sharing and 
management needs to be upheld. Acknowledgement 
that the Findable, Accessible, Interoperable, and 
Reusable (FAIR) principles should be applied. 

Computational Approaches There is apprehension in shifting from traditional 
modelling paradigms towards state-of-the-art 
technologies. The uptake of ML and AI methods 
should be promoted. 

Decision Making Frameworks Confidence towards a prediction or model are at best 
unclear hindering the acceptance. Addressing the 
acceptable level of uncertainty and scenarios that the 
expectations may be lowered and deemed acceptable 
for purpose should be defined. 

Acceptance The understandings of NAMs as a whole are lacking, 
severely impeding acceptance of their models and 
respective data in regulatory decisions. Further 
confusion arises from the issues of demonstrating 
fitness-for-purpose, the lack of consistent 
performance standards, and how NAMs can be 
utilised.  
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1.4. Quantitative Structure-Activity Relationships 

One of the most fundamental NAMs that may be employed within 21st Century Toxicology, 

and previously alluded to within Section 1.3, are in silico methods. In silico methods refer to 

experimentation through the usage of computational means, with the procedures 

additionally being referred to as computational methods within literature (Ekins et al., 2007). 

Included within this field are a plethora of methods, such as read-across, physiologically based 

pharmacokinetic (PBPK) models, and quantitative adverse outcome pathways (qAOPs) to 

name a few. However, the focus of research throughout this thesis is related to Quantitative 

Structure-Activity Relationships (QSARs) (Ram et al., 2022). QSARs are a well-established in 

silico modelling technique that was originally popularised by the seminal work published by 

Hansch et al. (1962). Since conception, the value of QSARs as a predictive technique has been 

well proven, especially within scenarios dealing with toxicity predictions and data gap filling 

(Cronin and Yoon, 2019). By definition, a QSAR model is able to make predictions in the 

absence of data through defining the relationship between chemical descriptors (such as 

molecular structure and physicochemical properties) and the toxicological endpoint (Cronin 

et al., 2019). In general, the workflow of QSAR modelling can be outlined following its three 

fundamental requirements: data, descriptors, and statistical technique (Madden et al., 2020). 

Curation of a dataset with a “defined endpoint” for a series of related chemicals of good 

quality is crucial, where model validity may become flawed by erroneous data (De et al., 

2022). Predefined endpoints can be categorised as: physico-chemical properties, such as the 

octanol-water partition coefficient (log P), environmental fate parameters, such as 

bioaccumulation, ecotoxic effects, such as acute toxicity, and human health effects, such as 

skin sensitisation (ECHA, 2008). 

Molecular descriptors are the second core requirement for QSAR modelling, with a vast 

number of different types being available that provide detailed information concerning 

chemical structure and properties. In essence, molecular descriptors enable molecules’ 

properties to be expressed as a mathematical representation, with these numerical values 

being employed to quantitatively describe both physical and chemical information 

(Chandrasekaran et al., 2018). Acknowledged as one of the most crucial aspects of QSAR 

modelling, information that is captured by descriptors is largely dependent upon either the 

molecular representation or algorithm used for calculation. A broad classification of the 
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different types of descriptors can be seen in Table 1.2. Within these different classifications 

exists a vast quantity of descriptors, which require careful pruning, during the modelling 

process, to ensure the removal of redundant, noisy, and irrelevant information that may 

affect model performance (Xia et al., 2019). Selection of the descriptors to be used is largely 

dependent upon the intended use case of the model. In general, easily interpretable 

descriptors are preferred for risk assessment, whereas descriptors solely based upon 

statistical correlation are traditionally utilised in screening procedures (Madden et al., 2020). 

Table 1.2. Description of the different categories of molecular descriptors (adapted from 

Danishuddin and Khan, 2016). 

Descriptor classification Overview 
Physicochemical Physical and chemical information from a molecule 

that can be determined through examination of its 
2D structure. 

Constitutional Simplistic representations of molecular composition 
without the use of topological information. 

Topological 2D descriptors utilising molecular graphs that 
capture compounds’ internal atomic arrangement. 

Geometrical Determined from a given molecule’s three-
dimensional coordinates based upon all atoms. 

Thermodynamic Relationship between the chemical structure and 
chemical behaviour observed. 

Electronic Description of electronic properties of either the full 
molecule, atomic bonds, or molecular fragments. 

  

The statistical technique that is employed to express the relationship between the selected 

molecular descriptors and endpoint of interest is the last requirement of QSAR modelling. As 

the field of QSAR has matured over the years, owing to progress in computational power, 

data availability and chemoinformatics, so too has the complexity of statistical techniques 

(such as machine learning methods) used (Cherkasov et al., 2014). This is discussed further in 

Chapter 4. Such statistical methods employed in modelling can be separated depending upon 

the expected output variable. Regression-based models are used in the prediction of 

continuous values (quantitative), whereas classification-based methods categorise data into 

different groups, such as active and inactive (qualitative) (Roy et al., 2015). Some of the most 

commonly used statistical methods for regression include multiple linear regression (MLR) 

and partial least squares (PLS). Classification modelling is traditionally performed using 
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principal component analysis (PCA) and hierarchical cluster analysis (HCA) (Pirhadi et al., 

2015). However, many machine learning algorithms, such as random forest, support vector 

machines, and neural networks, are unspecific and so may be used for the prediction of either 

output (Roy et al., 2015). Irrespective of the model developed, it is crucial that the 

performance of the selected technique is sufficiently evaluated. To this end, it is essential to 

define the difference between model fit and predictive performance, otherwise referred to 

as internal and external validation, respectively. Firstly, model fit reports the ability of the 

model to mathematically reproduce the output of the training set, which due to the model 

being developed using known data can be arbitrarily manipulated, with enough free 

parameters, to provide seemingly perfect predictive scorings (Eriksson et al., 2003). Unlike 

goodness of fit, predictive ability enables a measurement of how well data not previously 

seen by the algorithm can be estimated. This measurement is typically reported as a goodness 

of prediction parameter (such as q2) and may be evaluated from a variety of proposed 

validation methodologies, although ultimately will provide an evaluation of the same 

outcome – external validation (Chirico and Gramatica, 2011). Parameters utilised within these 

validation strategies differ depending upon the type of QSAR developed. Regression-based 

QSARs are assessed based upon considerations such as standard error of estimate, 

determination coefficient, and explained variance (Roy and Kar, 2015). Whereas, 

classification-based can be evaluated depending on the sensitivity and specificity, which 

express the model’s ability to predict a true positive or a true negative, respectively (Walker 

et al., 2003). 

1.5. Acceptance of QSAR models and predictions 

For a chemical to achieve regulatory acceptance it is imperative that the underlying risks 

associated with it are fully understood. To assist with this, a multitude of regulatory 

programmes have been conceived that enable the assessment and management of chemicals 

based upon a vast amount of chemical information, such as physiochemical, environmental 

fate, as well as adverse effects on human and environmental species (Worth, 2010). In 

particular, the information required for chemicals has been detailed in various legislation such 

as REACH and TSCA in the EU and US, respectively. Although the types and quantity of 

information required for these chemical safety assessment programmes vary, satisfying all 
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requirements with available data from traditional approaches is highly unlikely. Therefore, 

the use of alternative approaches such as QSAR modelling offer a potential replacement for 

traditional testing, this may be as a support to priority setting procedures, supplementation 

to experimental data in weight-of-evidence approaches, or as a stand-alone replacement to 

experimental data (Worth, 2010). 

Whilst using information obtained from QSARs in a supporting manner may only impact the 

outcome of an assessment indirectly, resulting in greater flexibility in the confidence of the 

models required, fully substituting experimental data undoubtedly requires greater certainty. 

Yet, with REACH actively advocating the use of QSARs, a framework to enable the acceptance 

of data from such methods has been devised. In essence, this framework can be summarised 

as: the model being proven to be scientifically valid, the model demonstrating applicability to 

the chemical(s) of interest, the prediction being shown to be adequate for the purpose, and 

lastly the method and result are suitably documented. Satisfying all such requirements will 

inherently provide confidence in the use QSARs as direct replacements of experimental data, 

while at the same time flexibility is possible, at the discretion of relevant judgement, in 

scenarios whereby the data are instead used in supporting roles. 

Fulfilling these considerations to ensure the quality of a QSAR requires appreciation of the 

prerequisite information, statistical procedures, and mechanistic basis used to develop the 

model (Cronin et al., 2019). This awareness resulted in the definition of an initial six principles 

for the validation of QSARs, that were later condensed to five once adopted by the OECD 

Principles for the Validation of QSARs for Regulatory Use (OECD, 2007). These principles aim 

to facilitate the use of a QSAR model for regulatory applications, with these requirements 

being defined as: 

1. Associated with a defined endpoint. 

2. Developed using an unambiguous algorithm. 

3. Boundaries of limitation outlined using a defined domain of applicability. 

4. Performance of the model determined using appropriate statistical measures such as 

goodness-of-fit, robustness and predictivity. 

5. Mechanistic interpretation to be provided (where possible) between the descriptors 

employed and the endpoint modelled. 
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Employing these principles as a framework, particularly in context when applied using the 

QSAR Modelling Reporting Format (QMRF), can enable conclusions of validation in terms of 

regulatory acceptance to be drawn. The usage of such reporting procedures has served the 

wider QSAR community well. However, the field of QSAR has developed exponentially since 

these initial frameworks were developed, with significantly more complex models now being 

produced. Fully evaluating such models using traditional frameworks may give an indication 

of validity but can no longer be assumed to be sufficient. Additionally, within toxicology a shift 

towards the use of weight-of-evidence based approaches, coinciding with an emphasis on 

defining uncertainty has occurred in recent years. Presenting data with defined levels of 

uncertainty can be highly beneficial due to their intrinsic diagnostic nature, enabling 

information deficits of the model to be addressed (Patterson and Whelan, 2017).  

Acknowledging this need to update QSAR evaluation approaches, a recent study by Cronin et 

al. (2019) developed a framework enabling the uncertainties associated with QSAR models 

and predictions to be fully characterised. Within this framework a list of 49 assessment 

criteria were defined accounting for uncertainties arising throughout the entire development 

of a QSAR – including uncertainties in data, modelling approach, description and application. 

Organising information in this manner not only enabled adequacy towards the intended 

purpose to be defined, based upon semi-quantification of uncertainty, but additionally 

provided an opportunity for developers to identify issues that could be rectified using 

mitigation strategies. The layout of the framework undoubtedly provided a route towards the 

assessment of more complex QSAR approaches. As such, an opportunity exists to 

demonstrate such applicability following targeted case studies that capture these current 

challenges. 

1.6. Research aims and contributions to knowledge 

The field of QSAR is continually growing in interest, bringing rapid expansion within the 

approaches utilised, as well as the predictive problems faced. Evaluating this expanding field 

using traditional assessment procedures is limited, requiring further considerations to be 

addressed. The recently developed QSAR uncertainty framework by Cronin et al. (2019) 

provides a flexible foundation that can sustain the active growth. As such, this thesis aimed 

to expand upon the current framework, as well as further develop it in regard to issues such 
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as chemical mixtures and ML. The objectives to achieve this aim were addressed in the 

following chapters: 

Chapter 2: Determine fitness-for-purpose of QSARs through the usage of the 

uncertainty assessment criteria. 

• This involved the definition of ten components, through grouping of the original 

49 assessment criteria. Components were then related to the phases of QSAR 

development used to assess QSARs’ fitness-for-purpose with the proposal of 

mitigation strategies.  

Chapter 3: Review current practices in developing QSARs for mixtures, mapping key 

characteristics and challenges within the approaches onto the uncertainty assessment 

criteria. 

• This involved performing a review of studies related to QSARs and mixtures, 

curating a list of relevant literature. Characteristics of each QSAR studied were 

identified and discussed, which were later mapped onto the original uncertainty 

assessment criteria improving mixture-specific considerations.  

Chapter 4: Investigate common ML methods within QSAR and determine how these 

can be addressed using the uncertainty assessment criteria. 

• This involved the development of six models using the most frequently employed 

QSAR ML algorithms. Assessment of the models with respect to the uncertainty 

criteria was then conducted, bolstering the criteria with ML-specific 

considerations. 

Chapter 5: Apply the FAIR (Findable, Accessible, Interoperable, Reusable) principles, 

to in silico predictive models. 

• This involved the identification of FAIR principles that enable the FAIRification of 

in silico methods. The principles were later applied to the previously developed 

ML models from Chapter 4. 

Through the completion of research outlined above, the thesis aims to advance current 

uncertainty analysis schemes for the assessment of QSARs. Such contributions are observed 

through the initial utilisation of the uncertainty assessment criteria as a tool to enable the 

definition of fitness-for-purpose following the grouping of components. Subsequent studies 
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further expand the knowledge within this field, through the identification of model- and 

approach-dependent considerations. Lastly, the thesis provides direction to the improvement 

of model sharing through the definition and interpretation of FAIR principles. As such, 

utilisation of the information gained throughout the thesis will enable for improved 

assessments of QSARs, irrespective of complexity, promoting the usage of such models within 

their respective applications.  
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Chapter 2. Determination of “fitness-for-purpose” of quantitative 

structure-activity relationship (QSAR) models to predict (eco-

)toxicological endpoints for regulatory use 

Preface: 

This work has been published in: Belfield SJ et al., (2021). Determination of “fitness-for-

purpose” of quantitative structure-activity relationship (QSAR) models to predict (eco-

)toxicological endpoints for regulatory use. Regul. Toxicol. Pharmacol. 123: 104956. doi: 

10.1016/j.yrtph.2021.104956 

This was a multi-author paper. Belfield led the work and analysis in this study as recognised 

in the CRediT authorship contribution statement: Conceptualization, Methodology, 

Validation, Formal Analysis, Investigation, Data Curation, Writing – Original Draft, 

Visualization. 

2.1. Introduction 

Computational approaches are at the heart of 21st century toxicology and, with the increase 

in data availability, they are becoming easier to create and utilise. They also offer the 

possibility of linking new “big” data resources to chemical safety assessment and new 

methods of modelling, e.g. machine learning technologies (Worth, 2020). Modelling data 

serves many purposes, and in chemical safety assessment much of the focus has been to 

predict hazard and exposure, with particular applications in product development and 

regulatory assessment. Other purposes include the interrogation of, and learning from, data, 

as well as evaluation of (structure-activity) hypotheses. For specific purposes, notably 

regulatory applications, there are varied uses such as data gap filling, classification and 

labelling, screening and prioritisation, amongst others. Whilst the number, type and 

application of models has steadily grown in the past few years, means of their evaluation has 

not developed at the same pace. At the current time models for chemical safety assessment 

are evaluated using the same criteria, such as the OECD Principles for the Validation of QSARs 

(2007), regardless of purpose. However, there is an opportunity to update our way of thinking 

by considering the purpose of a model, use of new approaches to understand what type of 
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model is appropriate for a particular application and how best to assess model fitness-for-

purpose (Patterson and Whelan, 2017; Patterson et al., 2021).  

This Chapter focusses on understanding the purpose of, and evaluating, quantitative 

structure-activity relationships (QSARs) that can be used to predict toxicity. Broadly speaking, 

QSAR models define the relationship between factors relating to chemical structure and/or 

molecular descriptors of a series of chemicals to their properties e.g. activity or toxicity. As 

such, they offer the possibility of making predictions of toxicity directly from chemical 

structure or using knowledge derived from similar chemical(s). Many such computational 

models have been developed; for ecotoxicological endpoints QSARs may be based upon well-

established mechanisms of action (Cronin 2006; 2017; Cronin et al., 2002) whilst for human 

health effects, mechanistically-interpretable models may be less feasible due to the 

complexity of the endpoints (Madden et al., 2020). It is also noted that the approaches 

described in this paper could additionally be applied to quantitative structure-property 

relationships (QSPRs), although this was not the focus of this study. 

There are many potential roles for QSARs in toxicology. For the purposes of this investigation 

the applications are considered to be broadly related to “industrial” or “regulatory” use. 

Other uses of QSARs include data investigation such as in-house model development (e.g. for 

preliminary screening of inventories) and education, however, these do not require such 

rigorous model evaluation. Table 2.1 summarises some of the main use case scenarios for in 

silico models to predict toxicity, focusing on industrial and regulatory use but also data 

investigation, knowledge creation and for education. It is acknowledged that this is not a 

comprehensive list of uses but is illustrative of the range of uses in in silico toxicology. In this 

context, industrial uses may be the development of new substances, as well as the evaluation 

of existing ones for potential use as ingredients. Regulatory uses of QSARs are in response to 

legislation and may be undertaken by the registrant, i.e. the manufacturer, as part of a dossier 

presented to a regulatory agency, or they may be utilised by the governmental (regulatory) 

agency itself for a variety of purposes. Whilst a complete description of all potential uses of 

QSARs is beyond the scope of this chapter, it is true to say that in some cases broadly 

applicable models will suffice, whereas for others more localised or bespoke models for a 

given purpose are required. These differing requirements and applications contrast with the 

historical culture of a “one size fits all” for QSAR development, with the expectation that one 
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model can serve multiple purposes. This contradiction has been exacerbated by the lack of 

clarity concerning the requirements to establish the validity of in silico models for specific 

purposes. 

Table 2.1. Potential use case scenarios and characteristics of in silico models to predict toxicity 

Use Brief Description Desirable characteristics 
of the model 

Proposed level 
of uncertainty 
in a model and 
/ or prediction 

considered 
acceptable 

Data Investigation 
Investigation of 
“small”, or 
“local” data sets  

E.g. analysis of 
congeneric series to 
determine 
mechanisms  

Transparent, with a small 
number of mechanistically 
relevant descriptors 

High 

Investigation of 
“big data” sets 

Investigation of 
chemical space, global 
QSAR models  

Rapid and suitable for 
machine learning 
approaches 

High 

Education, 
training and 
capacity building 

Any type of modelling 
for educational and 
other purposes  

Any model is appropriate High 

Development of 
new approaches 

Investigation of data 
sets, in a comparative 
manner to illustrate 
the performance of a 
new modelling 
approach, descriptors 
etc.  

Wide range of models 
applicable  

High 

Industrial Use 
Screening of lead 
compounds 

Identification of 
potential toxicity in 
candidate compounds 
through the screening 
of very large 
inventories  

Rapid / automated 
application. Broad 
coverage  

High 

Evaluation or 
optimisation of a 
lead compound 
or ingredient 

Assessment of the 
safety of an individual 
Ingredient or 
development of a new 
compound with 
improved safety 
profile 

Specific mechanistically 
based and justified models  

Low 

Safety/ hazard 
assessment of a 

Assessment of the 
safety of an 

Specific mechanistically 
based and justified models  

Low 
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compound in a 
product 

established or new 
compound in a 
product or 
formulation 

Regulatory Use 
Prioritisation Prioritisation of 

compounds for testing 
according to 
legislative needs, e.g. 
Canadian Domestic 
Substance List 

Rapid / automated 
application. Broad 
coverage 

High 

Classification and 
Labelling  

Identification of 
hazard to allow for 
classification, e.g. EU 
Classification, 
Labelling and 
Packaging (CLP) 
Regulation 

Broadly applicable. 
Capable of rapid hazard 
characterisation  

Moderate 

Risk assessment  Risk assessment of the 
safety of a substance, 
e.g. EU REACH 

Specific mechanistically 
based and justified 
models. Transparent and 
well documented 

Low 

 

In order to have confidence in the use of a QSAR model, its fitness for the purpose intended 

must be established. This is especially true where QSAR predictions are used to inform 

regulatory decisions. Generally speaking, there are three key regulatory uses for QSAR 

predictions: hazard identification informing risk assessment; classification and labelling; and 

prioritisation and screening (Cronin et al., 2003). The exact definition and implication of each 

of these depends on the legislation under which they are implemented. In terms of assessing 

whether a model is “fit for purpose”, there is no method of assessment that is globally 

applicable, especially in terms of differentiating between the requirements of the different 

use cases. The most commonly applied approach to determine whether a QSAR can be used 

for regulatory applications, is to understand whether a model (and hence its predictions) can 

be considered valid. The OECD Principles for the Validation of (Q)SARs were established as a 

means to evaluate (Q)SARs (OECD 2007). These have been utilised for over 15 years and, on 

the whole, have served the scientific community very well. They have provided a framework 

by which to evaluate QSAR models for toxicity according to their characterisation through 

documentation, performance, applicability domain and mechanistic interpretation. They 
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have also formed the basis by which to record requisite information for QSAR models and 

predictions, such as the QSAR Model Reporting Format (QMRF) and QSAR Prediction 

Reporting Format (QPRF) respectively, which may be used for regulatory submissions (Worth, 

2010).  

Whilst the OECD Principles for the Validation of QSARs have been applied widely, various 

shortcomings have become apparent. The principles were not developed with new statistical 

methods, such as machine learning, in mind. They are often used to evaluate a QSAR for a 

specific purpose, rather than assisting in the assessment of the strengths and weaknesses of 

the model in a particular context. In addition, since their conception, the sciences of 

toxicology and risk assessment have developed greater appreciation of how uncertainties 

influence decision making (Thomas et al., 2019). Specifically, the Principles do not assign a 

particular level of confidence, neither do they address the relevance for a particular purpose, 

such that may be required for a regulatory application, to demonstrate whether it is fit for a 

regulatory use. Patlewicz (2020) has raised this as a challenge, relating in part to how 

informatics will be applied to larger datasets; embracing this challenge requires consideration 

of a more holistic approach to evaluating the whole life of a QSAR from its conception to 

implementation. 

In addition, whilst useful, the implementation of the OECD QSAR Principles only provides a 

binary classification of whether they are met or not for a particular model, the judgement of 

which, in itself, can be subjective. As such, they are not entirely appropriate for consideration 

of whether a model is fit for a purpose or, indeed, relevant for a specific application. The 

situation is made more complex as there is no formal definition of fitness-for-purpose for an 

in silico model. However, a fit-for-purpose model can be taken as one that has been 

appropriately developed and is transparent, suitably documented and, as required, compliant 

with the OECD Principles (Cronin et al., 2019). Supplementing this there are proposals for 

Good Computer Modelling Practice (Judson et al., 2015), proposals for the use of Artificial 

Intelligence to assist in chemical risk assessment (Wittwehr et al., 2020), as well as protocols 

for the development of in silico models being developed for various toxicological endpoints 

(Myatt et al., 2018; Hasselgren et al., 2019; Johnson et al., 2020). As well as no formal 

definition, currently the concept of an in silico model being fit-for-purpose is poorly 

developed. However, it is acknowledged, if seldom explicitly stated, that different levels of 
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confidence are required for different regulatory uses (Dent et al., 2018; Kulkarni et al., 2016; 

Taylor and Rego Alvarez, 2020). This is easier to consider in terms of the uncertainty 

associated with a model, for instance, risk assessment where a prediction may provide 

information to assist in the replacement of an in vivo animal test, requires low uncertainty, 

whereas classification may accommodate moderate uncertainty; for screening and 

prioritisation higher levels of uncertainty may be tolerated. Thus, when considered in terms 

of relative uncertainty, a model and its predictions may be fit-for-purpose for one application 

(e.g. prioritisation), but not necessarily for another (e.g. risk assessment). 

With the need to better evaluate QSARs for potential regulatory, and other, uses, Cronin et 

al. (2019) developed a scheme to evaluate the uncertainty, variability and areas of bias of a 

QSAR model. The purpose of this scheme was not to provide a definitive conclusion as to 

whether the model was validated or not validated, rather it was to identify areas of 

uncertainty in a QSAR. Identifying areas of uncertainty enables them to be addressed, either 

by seeking additional information to reduce the uncertainty, hence increasing confidence 

(and regulatory applicability) of the model, or ensuring that any residual uncertainty is clearly 

communicated and use of the QSAR for a given purpose is appropriate. The scheme centred 

around 49 aspects of a model, broadly focusing on its creation, characterisation and 

application. The development of criteria for the evaluation of QSARs was informed by recent 

progress and guidance from IPCS (2014), EFSA (2018) and elsewhere (Sahlin 2013, Pestana et 

al., 2021). Whilst two exemplar QSAR studies were evaluated using the scheme (Cronin et al., 

2019), its full applicability has not yet been demonstrated and this will be required if such an 

approach could have broad regulatory application. In addition, it may be considered that 

assessing 49 criteria is both unwieldy and unlikely to provide a succinct evaluation of the key 

areas of uncertainty in a QSAR. These disadvantages mean that, in the format proposed by 

Cronin et al. (2019), the scheme is unlikely to provide insight into the characteristics of a QSAR 

that are required or desirable for a particular purpose.  

The aim of this study was, therefore, to demonstrate how the scheme previously reported by 

Cronin et al. (2019) could be utilised to assess an in silico model, such as a QSAR, to determine 

whether it is fit for a specific purpose. To achieve this the 49 criteria were rationalised into 

higher level “assessment components” which were subsequently linked to one of the three 

phases of QSAR development – creation, characterisation, and application. The assessment 
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components were then mapped onto three potential regulatory uses to determine a) the 

levels of uncertainty that may be acceptable and b) the possible characteristics of a model for 

a particular purpose. Finally, 12 QSARs for (eco-)toxicological endpoints, recently published 

in the open scientific literature, were evaluated according to the assessment criteria to 

demonstrate the uncertainties within such models and provide strategies so that, in 

accordance with the assessment components, they could be improved and potential 

regulatory uses (if required) could be identified.  

2.2. Methods 

2.2.1. Evaluation of the previously published scheme for its potential to assess the 

fitness-for-purpose of in silico models for regulatory use 

The 13 main areas of concern, made up of the 49 criteria in the scheme for the evaluation of 

QSARs proposed by Cronin et al. (2019), were consolidated into ten distinct assessment 

components that characterise in silico models. Each assessment component (referred to 

herein as “components”) was aligned to one of the three phases in the development of a 

QSAR.  

2.2.2. Mapping of the QSAR components onto potential regulatory use 

The QSAR components were considered in terms of the acceptable levels of uncertainty, 

variability or bias that would be appropriate for different regulatory uses. This enabled the 

QSARs selected to be considered in terms of their potential regulatory applicability, both 

before and after application of strategies to reduce uncertainty, variability and bias (Sections 

2.2.3 and 2.2.4). As part of this process, the needs of regulatory users were considered in the 

context of what may make the QSARs fit for this purpose. 

2.2.3. Selection and initial assessment of QSAR models to be analysed using the 

QSAR components 

From the outset, it should be appreciated that the purpose of the assessment of published 

QSARs was not to be critical or attempt to validate a particular model. All models had been 

published in the scientific literature, will have undergone peer review and it is, therefore, 

implicit that the models are sufficiently robust. The current investigation was undertaken in 
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order to identify any areas associated with greater uncertainty, variability or potential bias 

and to propose strategies to reduce these, or where appropriate, to ameliorate these issues, 

such that the models’ fitness-for-purpose for regulatory applications could be enhanced. 

QSAR models were selected for analysis based on the following criteria: 

- Available in a peer-reviewed publication published in 2018 or 2019 

- Relating to (eco-)toxicity 

- Representing a variety of approaches 

To identify suitable QSARs, publications were searched for in Web of Science using two 

keywords “QSAR” and “toxic*” as part of the “topic”. The publications for analysis were 

selected manually. In order to assist in the selection of QSARs, models were pre-screened 

initially to characterise them in terms of: 

- Species 

- Protocol (e.g., duration of study, endpoint, etc.) 

- Number and type of chemicals (multi-constituent substances were omitted) 

- Descriptors included in the QSAR 

- Statistical method applied in the QSAR 

- Potential mechanistic basis 

Twelve publications were chosen to represent QSARs for (eco-)toxicological endpoints with a 

variety of modelling approaches, chemicals, data set sizes, descriptors and mechanisms of 

action.  

The criteria to evaluate QSARs, as defined by the scheme for the evaluation of uncertainty, 

variability and areas of bias (Cronin et al., 2019) and summarised in Appendix I, were applied 

to the QSAR models identified. This was performed by expert analysis of the information 

provided in the publications associated with the QSARs, as well as other relevant information, 

e.g. retrieval of source information. Expert analysis was undertaken by a lead researcher, with 

subsequent verification by another researcher. At the time of undertaking the analysis the 

developers of the QSARs were not contacted for further information or clarification; if this 

process is to be more widely applicable it is essential that analysis can be carried out without 

recourse to model developers. 
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The questions set out within the scheme defined within Cronin et al. (2019) were used to 

assess each of the QSARs. Responses were reported using a semi-quantitative scale of 1, 2 or 

3, (representing low, moderate and high uncertainty respectively) or not applicable (N/A). All 

scores and associated comments were reported using the templates provided in Cronin et al. 

(2019).  

2.2.4. Recommendations for strategies to reduce uncertainty, variability and areas 

of bias of the selected QSARs and identification of possible regulatory use 

Potential strategies to reduce areas of significant uncertainty, variability and potential areas 

of bias of the selected QSARs were proposed. The purpose of the strategies was to provide a 

structured means to reduce the uncertainty associated with a QSAR. In certain circumstances, 

the toxicological data used in the QSARs were re-evaluated from a mechanistic perspective 

to reduce uncertainty in this component e.g. the inclusion of mechanistically based 

descriptors, such as the logarithm of the octanol-water partition coefficient (log P) for acute 

ecotoxicological effects (Könemann, 1981a). The levels of uncertainty associated with the 

components, as well as the characteristics, of the QSARs were compared against those 

proposed for regulatory purposes in an attempt to identify any regulatory use.   

2.3. Results 

2.3.1. Scheme for “Components of QSARs” on the basis of criteria for reducing 

uncertainty, variability and bias. 

Evaluation of the scheme for assessing in silico models published by Cronin et al. (2019) 

allowed for the establishment of an overview of the types of uncertainty, variability and bias 

(summarised as “variability” herein) observed across QSAR models; the uncertainty criteria 

were grouped into components as shown in Figure 2.1. In this way the components 

summarise the original assessment criteria into logical groupings that can be used to identify 

the main characteristics of a QSAR. The ten components represent the main areas required 

for consideration of fitness-for-purpose of an in silico model for toxicity prediction. Each 

component is associated with one of the three phases of QSAR development - creation, 

characterisation and application. The components are described in Table 2.2, with details of 

the individual uncertainty criteria, represented within each component, being denoted in 
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Appendix I Table S1. As well as being functional to evaluate QSARs, they can also be applied 

to help assess the qualities of a model that may be required for a particular purpose.  The 

components cover all aspects of the creation, characterisation and application of QSAR 

models, they are designed to be flexible and updateable as required. Certain criteria 

(Appendix I Table S1) within the components may not be required for a particular model, 

depending on the purpose of the model/endpoint under consideration.  

 

 

Figure 2.1. Scheme summarising the ten “components” of QSAR models required to be 

considered for toxicity prediction purposes. The components, denoted in the rectangular 

boxes, are linked to the phases, denoted in the oval shapes and defined for each of the three 

broad areas of QSAR uncertainty, variability and bias. 

Table 2.2. Key features of the proposed ten components for QSARs. 

Component Key Features Used to Assess the Components 
Model Creation 

1. Data Quality of individual studies within the data set and the data set overall 
that was used for modelling 

2. Structures Accuracy of the reported chemical structures in the training (and, if 
applicable, test) set used for modelling 

3. Descriptors Appropriate use and adequate definition of the descriptors used for 
modelling (including how and where sourced) 

Model Characterisation 
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4. Modelling The appropriateness of the modelling approach for the endpoint with 
regard to complexity of the endpoint and potential use of the model 

5. Performance Adequate statistical fit, predictivity and appropriate reporting 
6. Mechanisms Definition and interpretation of the mechanistic significance of the 

model to allow for the definition of appropriate domains 
7. Toxicokinetics Appropriate consideration of metabolism and toxicokinetics in the 

model 
Model Application 

8. Description Appropriate documentation, reporting and transparency of the model 
9. Usability Implementation of the model; accessibility of required software (e.g. 

commercial, freely available, sustainable sources)  
10. Relevance Relevance of the model to its intended purpose and use 

 

2.3.2. Mapping components of QSARs to define fitness-for-purpose for specific 

regulatory uses 

In silico models for toxicity prediction have a number of potential industrial and regulatory 

uses. Whilst it is acknowledged that certain types of in silico model are more suited for some 

purposes than others, it has not yet been established how the suitability can be qualified in 

terms of the acceptable level of uncertainty. Using the components of QSARs as an 

investigative tool provides an opportunity to identify areas of uncertainty, variability or bias 

that, if reduced, would lead to greater acceptability of the models for a given regulatory 

purpose. 

It is also important to consider which components of an in silico model may be associated 

with higher or differing levels of uncertainty depending on the purpose of the model. In terms 

of regulatory use, an attempt can be made to identify the different levels of uncertainty in 

the different components that may be associated with models for different uses. Figure 2.2 

summarises the possible levels of uncertainty that may be associated with different 

regulatory uses of QSARs to predict toxicity – acceptable levels of uncertainty require 

discussion and debate before being implemented. Whatever the exact levels of uncertainty 

required, the lowest would be expected for hazard identification informing risk assessment, 

with all components expected to show low uncertainty. This would inevitably restrict the use 

of many types of QSARs for risk assessment and favour those local models based on a clear 

mechanistic basis with transparency a key factor in the model. As other regulatory uses are 

considered, going from classification and labelling to screening and prioritisation, greater 
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uncertainty maybe acceptable in terms of being able to develop models that are usable for 

the purpose intended, i.e. models that can be rapidly applied to large numbers of molecules. 

In particular, models are likely to be automated for rapid use and have broad chemical 

coverage across various chemical and mechanistic domains i.e. they are global in nature. As 

such, it would be unrealistic to expect that the characteristics of these models would all have 

low uncertainty, e.g. to have a full mechanistic basis due to their inherent difficulty in 

definition, although mechanisms of action underpinning the model could be proposed. 

Likewise, less appreciation of toxicokinetics would be expected and greater flexibility in the 

modelling approach acceptable. It would be expected, however, that the performance of the 

model would be reported and that it is appropriate for the quality of the data set, regardless 

of the approach taken for modelling. With regard to the components associated with the 

application of the model, certain aspects such as description of the model, may be associated 

with moderate uncertainty for screening and prioritisation i.e. the full definition of a model 

based on machine learning may not be possible.  

  

 
Figure 2.2. Levels of uncertainty considered acceptable for QSAR components associated with 

different regulatory uses; green indicates low uncertainty; yellow indicates moderate 

uncertainty and blue indicates high uncertainty. 
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2.3.3. Application of the components and criteria for assessment of published 

QSARs to assess their fitness-for-purpose 

The literature search identified 150 papers in Web of Science published 2018-2019 that 

contained the words “QSAR” and “toxic*” as part of the topic. This represents the full diversity 

of papers now published in this area, emphasising the importance for proper evaluation. The 

scope of the papers included a wide spectrum of environmental and human health endpoints 

as well as methodological papers and opinions. The papers were screened manually using 

expert judgement to identify twelve publications for analysis in this study. The data sets and 

modelling techniques from the twelve selected recent publications are summarised in Table 

2.3. They were chosen on the basis of representing a range of both environmental and 

human-health endpoints. In addition, they were chosen to include representative dataset 

sizes and methodological variety of QSARs. No inference, positive or negative should be 

implied by the inclusion or exclusion of QSAR studies in this investigation. Several of the 

studies implied they were compliant with the OECD QSAR Principles, but no studies stated 

which specific regulatory, or other, uses they could address. The datasets represent the 

results of toxicity tests to a variety of aquatic species including an alga, an invertebrate, an 

amphibian, fish and endpoints relevant to human health. Two publications (#3. de Morais e 

Silva et al., (2018) and #4. Toropova and Toropov (2018)) analysed the same data set, or parts 

of it, using different approaches and methods. The data sets generally contained fewer than 

100 compounds and were made up of small molecules representative of industrial chemicals, 

however, some larger datasets were available for human health endpoints comprising drug-

like molecules; one dataset was for nanoparticles. Descriptors utilised were mainly calculated 

directly from molecular structure by the authors of the publications, predominantly 

representing hydrophobicity and electronic properties, as well as topological and steric 

parameters to a lesser extent. The statistical analyses published ranged from multiple linear 

regression to partial least squares and neural networks.
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Table 2.3. Summary of QSAR data sets assessed in this study. 

Study Endpoint Species Number and 
type of 

chemicals 

Descriptors 
included in the 

QSAR 

Statistical method applied in 
the QSAR 

Reference 

1 40 hour 
inhibition of 
growth 

Ciliated protozoan 
(Tetrahymena 
pyriformis) 

160 substituted 
aromatic 
compounds  

Various calculated 
properties, e.g. log P 
and molecular 
descriptors 

Multiple linear regressions 
(MLR) in comparison to Radial 
Basis Function Neural 
Networks (RBFNN) 

Luan et al., 2018 

2 96 hour LC50 Fathead minnow 
(Pimephales 
promelas) 

15 substituted 
benzenes 

Log P and 
electrophilicity index 
and squared terms 

Linear regression Pal et al., 2018 

3 Acute aquatic 
toxicity 

Fish (species not 
defined) 

61 compounds 
associated with 
non-polar 
narcosis 

Theoretical Volsurf 
molecular 
descriptors 

Partial Least Squares de Morais e Silva 
et al., 2018 

4 Acute aquatic 
toxicity 

Fish (species not 
defined) 

111 compounds CORAL descriptors Monte Carlo optimisation of 
target functions 

Toropova and 
Toropov, 2018 

5 Inhibition of 
growth 

Tadpoles (Rana 
temporaria) 

110 “small” 
organic 
molecules 

Theoretical 
molecular 
descriptors 

Multiple linear regression, 
partial least squares, support 
vector regression 

Wang et al., 
2019a 

6 96-h 20% and 
50% inhibitory 
concentrations, 
Lowest and No 
Observed Effect 
Concentration 
(LOEC and 
NOEC) 

Alga (Chlorella 
vulgaris) 

67 substituted 
phenols and 
anilines 

Theoretical / 
molecular orbital 
descriptors 

Multiple linear regression Yan et al., 2019 
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7 Hepatotoxicity Not stated 1,254 “unique” 
compounds 

Topological 
geometry and 
physicochemical 
descriptors 

Naïve Bayes, k-nearest 
neighbor, Kstar, AdaBoostM1, 
Bagging, decision tree, 
random forest, and 
Deeplearning4j 

He et al., 2019 

8 Reproductive 
toxicity 

Not stated 1,823 organic 
compounds 

Molecular 
fingerprints 

Artificial neural network, C4.5 
decision tree, k-nearest 
neighbour, naïve Bayes, 
support vector machine, and 
random forest 

Jiang et al., 2018 

9 Activity, activity 
score, potency, 
and efficacy 

Androgen receptor 10,273 drug 
molecules 

Various properties 
calculated with 
PaDEL 

Random forest, decision tree, 
neural network, and linear 
model 

Gupta and Rana, 
2019 

10 50% inhibitory 
concentration 

Oestrogen receptor 55 persistent 
organic 
compounds 

2D topological based 
descriptors 

Genetic function algorithm Ibrahim et al., 
2019 

11 Mutagenic 
potency 
logTA100 

Salmonella 
typhimurium TA100 
strain 

48 
nitroaromatic 
compounds 

Theoretical and 
molecular orbital 
descriptors 

Genetic algorithm and 
multiple linear regression 

Hao et al., 2019  

12 Cytotoxicity, cell 
viability (%) 

Human breast cancer 
cell line MCF-7, 
human fibrosarcoma 
cell line HT-1080, 
human liver 
carcinoma cell line 
HepG2, human colon 
carcinoma cells HT-
29, and rat adrenal 
pheochromocytoma 
cell line PC-12 

8 metal oxide 
nanoparticles 

CORAL descriptors Monte Carlo optimisation of 
target functions 

Ahmadi, 2020 
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2.3.4. Strategies to reduce uncertainty, variability and areas of bias of the selected 

QSARs and identification of possible regulatory use 

The evaluation of each model, by application of the assessment criteria, highlights which of 

the components are associated with higher uncertainty and therefore reduce the suitability 

of the model for regulatory purposes associated with the most stringent criteria. The results 

of this analysis are summarised in Figure 2.3 and described in detail in Appendix I Table S2. 

The overall levels of uncertainty for the 12 QSAR studies provided in Figure 2.3 are intended 

to be illustrative, rather than definitive and, as such, they highlight key areas of uncertainty 

for the different models. Clear areas of high uncertainty can be established across all QSARs, 

regardless of the endpoint and type of model. For instance, Figure 2.3 shows that aspects of 

the biological data, or their description, are associated with high uncertainty. This is a useful 

finding as it would suggest that no model with high uncertainty for these characteristics would 

be suitable for any regulatory use (as defined in Figure 2.2). Further areas routinely associated 

with high uncertainty are the mechanistic interpretation of the models, incorporation or 

appreciation of the toxicokinetic properties required to correctly predict toxicity and their 

relevance for regulatory endpoints. Other criteria associated with higher uncertainty included 

the unambiguous identification of chemical structures in the model, the overall description 

of the model such that it could be repeated and its potential usability. Areas where models 

showed low uncertainty typically were with regard to the description and/ or the availability 

of descriptors in the model and the stated performance of the model.  
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Figure 2.3. A summary of the levels of uncertainty associated with QSAR components for the 

12 QSAR studies evaluated; green indicates low uncertainty for component, yellow moderate 

uncertainty and blue high uncertainty. A full breakdown on the uncertainty associated with 

each component is provided in Appendix I Table S3. 

As previously noted, the purpose of the evaluation of uncertainties is not to suggest that a 

specific model could not be used, but to understand its potential limitations allowing the 

developer and/or user to reduce uncertainties. For instance, the uncertainty of many of the 

areas of QSARs identified as high by the assessment components could be rapidly reduced 

through the provision of extra information. A summary of the possibilities to enhance the 

suitability of the models is given in Table 2.4. Thus, where the description of the biological 

data was a significant uncertainty, this could be addressed by better reporting in the methods, 

etc. Likewise, for the incorporation of mechanistic and toxicokinetic information, uncertainty 

could often be reduced by appropriate discussion and evaluation of the model. In addition, 

areas of good practice within model development can be highlighted through components 

with low uncertainty.  

Table 2.4 also describes the potential regulatory use for the QSAR once the uncertainties have 

been reduced. In order to illustrate this concept, QSAR Study #2 was assessed here as having 

higher uncertainties in relation to chemical structures description of the data and mechanistic 

interpretability and usability (component analysis summarised in Table 2.4). The uncertainty 

in the published model makes it unsuitable for regulatory use in its current form. However, 
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regulatory suitability could be enhanced by reducing the uncertainty associated with these 

aspects as described in Appendix I Table S4. In terms of the biological data, these are from a 

well-established data resource, i.e. for the fathead minnow (Russom et al., 2007). The 

chemical structures can be defined definitively and a full mechanistic interpretation can be 

applied, i.e. the role of non-polar narcosis. Thus, one possibility is to provide a mechanistic 

interpretation of the QSAR in terms of how the descriptors relate to the underlying molecular 

initiating event and, for a well-studied mechanism such as non-polar narcosis, place this 

model in the context of existing knowledge, e.g. the role of hydrophobicity (Könemann, 

1981a).
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 Table 2.4. The potential suitability for regulatory use before and after implementation of strategies to reduce uncertainties as identified by the 

components for the 12 QSARs evaluated in this study. 

Study Scope of 
Model: 
Local vs 
Global 

Potential 
Mechanistic 

Interpretability 

Summary of Key 
Uncertainties in 

Publication 

Key elements of strategy to 
reduce uncertainty to enhance 

acceptability 

Potential regulatory use 
of QSAR following 

enhancements 

1 Global Low Biological data not 
described / evaluated. 
Descriptors not provided. 
Complex models. Lack of 
mechanistic interpretation. 

Provide details on biological data 
and descriptor set. Apply 
mechanistic interpretation (if 
possible). 

Screening 

2 Local High Biological data not 
described / evaluated. 
Descriptors not provided. 
Complex models. Lack of 
mechanistic interpretation. 

Provide details on biological data. 
Ensure mechanistic interpretation 
and context of model reported. 

Hazard assessment 

3 Local High Biological data not 
described / evaluated. 
Descriptors not provided. 
Replicate values present in 
both training and test sets.  

Provide details on biological data 
and descriptor set. Remove 
duplicates from the training and 
test sets. 

Classification and 
Labelling 

4 Global Low Biological data not 
described / evaluated. 
Descriptors not provided. 
Replicate values present in 
both training and test sets. 
Lack of mechanistic 
interpretation. 

Provide details on biological data 
and descriptor set. Remove 
duplicates from the training and 
test sets. Apply mechanistic 
interpretation (if possible). 

Screening 
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5 Global Low Chemical structures not 
defined. Biological data not 
described / evaluated. 
Descriptors not provided. 
Lack of mechanistic 
interpretation. 

Supplementation of unambiguous 
chemical structures. Provide 
details on biological data and 
descriptor set. Apply mechanistic 
interpretation. 

Screening 

6 Local High Chemical structures not 
defined. Biological data not 
described / evaluated. Lack 
of mechanistic 
interpretation. 

Supplementation of unambiguous 
chemical structures. Provide 
details on biological data. Apply 
mechanistic interpretation. 

Hazard Assessment 

7 Global Low Biological data not 
described / evaluated. 
Descriptors not provided. 
Models are not 
transparent. Lack of 
mechanistic interpretation.  

Provide details on biological data 
and descriptor set. Inclusion of 
each models’ algorithms. Apply 
mechanistic interpretation. 

Screening 

8 Global Low Biological data not 
described / evaluated. 
Calculated parameters not 
completely described. 
Models are not 
transparent. Lack of 
mechanistic interpretation. 

Provide details on biological data 
and calculated parameters. 
Inclusion of each models’ 
algorithms. Apply mechanistic 
interpretation. 

Classification and 
Labelling 

9 Global High Chemical structures not 
defined. Biological data not 
described / evaluated. 
Physicochemical properties 
not provided. Highly 
imbalanced data set. Lack 

Supplementation of unambiguous 
chemical structures. Provide 
details on biological data and 
physicochemical properties. 
Balance actives vs inactives in 

Classification and 
Labelling 
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of mechanistic 
interpretation. 

data set. Apply mechanistic 
interpretation. 

10 Global High Biological data not 
described / evaluated. 
Descriptors not provided. 
Descriptor calculation 
methodology not 
complete. Lack of 
mechanistic interpretation. 

Provide details on biological data 
and descriptor set. Fully describe 
all process employed throughout 
development. Apply mechanistic 
interpretation. 

Classification and 
Labelling 

11 Local High Biological data not 
described / evaluated. 
Descriptors not provided. 
Lack of pharmacokinetic 
interpretation. 

Provide details on biological data 
and descriptor set. Apply 
pharmacokinetic interpretation. 

Hazard and risk 
assessment 

12 Local Low Chemical structures not 
defined. Biological data not 
described / evaluated. 
Descriptors not provided. 
Lack of mechanistic 
interpretation. 

Describe nanoparticles following 
ECHA guidance (ECHA, 2017a). 
Assess usage of various cell lines 
for single model. Provide details 
on biological data and descriptor 
set. Apply mechanistic 
interpretation. 

Possible Classification 
and Labelling 
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2.4. Discussion 

As computational modelling becomes commonplace in toxicology, there is a strong and 

increasing need to demonstrate the quality, usefulness and fitness for particular purpose of 

any model. This is amplified by the breadth of models now available in terms of complexity, 

endpoints, numbers of compounds and modelling technique. The aim of this study was to 

gain a greater understanding of fitness-for-purpose of in silico models for regulatory 

adoption, and how this could be assessed. The scheme, described herein, was evaluated for 

its applicability to models for ecotoxicity and human health effects – although it is noted from 

the outset that these models did not claim any specific regulatory use. The analysis showed 

that the scheme was widely applicable, flexible and could be applied to different types of 

models, species, endpoints and chemical space coverage. Using the criteria noted above, it 

was possible to determine which aspects of the models were associated with the greatest 

uncertainties, variability and potential for bias and how all of these could be reduced. This 

does not constitute a formal validation process, but does provide information on how to 

assess the applicability, utility and potential for constructive modification of a particular 

model.  

2.4.1. “Components” of QSARs as the means to assess and reduce uncertainty, 

variability and bias. 

Analysis of the criteria in the scheme for the evaluation of QSARs proposed by Cronin et al. 

(2019) allowed for the identification of ten components as summarised in Figure 2.1 and 

summarised in Table 2.2. The components have rationalised the 49 original criteria into 

fundamental properties of an in silico model that will allow (semi-)quantification of 

uncertainty. The components are designed to be flexible and, as such, applicable to any type 

of model from a simple QSAR with a small number of components up to machine learning 

approaches based on large datasets. The components address all aspects of the three phases 

- creation, characterisation and application of an in silico model and allowed for uncertainty 

to be assigned to them.  

The consolidation of the original 49 criteria described by Cronin et al. (2019) into the general 

ten assessment components provides a much clearer and comprehensible overview of the 
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uncertainty in an individual QSAR (as shown in Figure 2.1). It is anticipated that this type of 

analysis will have at least two clear uses, as described below: a better understanding of the 

characteristics of a model for a particular purpose (here illustrated with reference to 

regulatory application); and for the assessment of an individual model from the problem 

formulation statement through to its application.  

2.4.2. Understanding fitness-for-purpose of QSARs for specific regulatory uses with 

the components 

The rationale behind of the creation of the components was to enable identification of areas 

of uncertainty such that uncertainty could be reduced to a level that would allow a model to 

be considered “fit-for-purpose”. One of the most demanding and pressing uses of a model is 

for regulatory application, thus fitness-for-purpose was evaluated for different regulatory 

uses. Figure 2.2 gives an indication of the levels of uncertainty that may be associated with a 

particular regulatory use. In addition to these, unspecified applications could also be assessed 

in the same manner through considered adjustment of the uncertainty requirements in 

particular areas. For instance, using a QSAR to investigate a data set to generate a hypothesis 

or gain mechanistic insight may allow for higher uncertainty in many areas e.g. performance 

may indeed not require any consideration of the Application-characteristics of the QSAR, as 

it would not be used for a particular predictive or regulatory purpose.  

Analysis of Figure 2.2 demonstrates the levels of uncertainty, variability and bias that may be 

acceptable for a particular regulatory purpose. From the trichrome components of screening 

and prioritisation through the dichrome components of classification and labelling to the 

monochrome components of risk assessment, several aspects become apparent. Firstly, both 

the Creation and Application phases allow no areas of high uncertainty, whilst only moderate 

uncertainty is permitted with regard to the descriptors used, documentation, transparency 

etc. of the model. To accomplish this, there should be a defined data set of high quality in 

terms of the description of chemical structures, biological data and descriptors, all of which 

must be unambiguous in any model, even if not completely transparent, regardless of the 

purpose (Young et al., 2008; Piir et al., 2018). Often, the uncertainty associated with these 

two components can be reduced with additional clarification, although the relevance of the 

endpoint to the stated purpose is definitive. Secondly, the greatest acceptability of variability 
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and bias is associated with the Characterisation phase of a QSAR. Flexibility, and an increase 

in uncertainty, is likely in the characterisation stage of modelling, most notably mechanistic 

interpretation which relates to all types of in silico models. While the performance 

component requires low uncertainty regardless of the purpose, the acceptable uncertainty of 

the other three Characteristics-related components are fit-for-purpose dependent. In the 

case of Mechanisms, Modelling and/or Toxicokinetics it is typically not possible to move to a 

more demanding fit-for-purpose application, i.e. reduce the uncertainty, without reverting to 

the Creation phase – essentially starting the development of a model again. 

Fundamentally, uses for in silico toxicology range from the need for the rapid screening of 

large inventories of chemical structures to detailed hazard identification of a single substance. 

Screening may require assessing structurally diverse inventories in the 10-100,000s or millions 

of compounds; in contrast, a detailed analysis of a single compound may only require 

assessing 10 or fewer highly similar substances. It is intuitive that the needs for the different 

types of applications will be different and thus, should be considered. When screening a large 

chemical inventory, a rapid automated approach is ideal and approaches using machine 

learning, with automated data entry, prediction and analyses are required. More detailed risk 

assessment of a single substance will require a detailed and mechanistically derived model, 

such as a local, transparent QSAR based on a small number of mechanistically interpretable 

descriptors. The use of highly localised models also explains the high level of use for read-

across for risk assessment (ECHA, 2020), whereas it finds little application for screening and 

prioritisation.  

In terms of acceptable uncertainties, it can be proposed that there are different levels of 

uncertainties that might be considered as being acceptable, dependent on the potential 

consequence of an inaccurate prediction. For instance, it could be possible that a model based 

around a machine learning method, optimised to identify toxic molecules, could be 

acceptable with a relatively high false positive rate if it were to be used in the screening of 

chemical inventories for lead identification. Such a scenario may allow for relatively high 

uncertainty to be associated with a model, on the proviso that it is fit for its stated purpose. 

At the other end of the regulatory use spectrum, risk assessment requires demonstrably low 

uncertainty in the in silico approach, which is likely to be characterised only by mechanistic 

models based on limited chemical domains, e.g. a defined chemical class or mechanism of 
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action, and is thus associated with the relatively high uptake and success of using read-across 

for toxicity prediction (ECHA, 2020).  

Figure 2.4 demonstrates how a data resource could be utilised according to the needs of 

regulatory use. Taking as an example a relatively large data source, such as may be extracted 

from a regulatory inventory or the ChEMBL database (https://www.ebi.ac.uk/chembl/), it is 

assumed that there would be a process of data curation to ensure the quality of chemical 

structures and biological data is high, i.e. low uncertainty. Following this, it is probable that 

initial analyses would be rapid and use machine learning approaches, possibly with many 

descriptors. The machine learning approaches should provide an indication of the feasibility 

of modelling the data and any inconsistencies in the data matrix, if they have not already been 

identified through the data curation. It is likely that there will be high uncertainties at this 

stage, especially in aspects such as mechanistic understanding and interpretation. Such 

models would be global in nature and thus, suited only to screening and prioritisation. 

 

 

Figure 2.4. Potential regulatory use of different types of QSARs and in silico models that could 

be derived from a “big” data set. Models range from global machine learning to read-across 

from close analogues. 
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Subsequent analysis of the complete data set would allow for consideration of chemical space 

and identification of structurally-limited areas, or chemical classes, that are well populated. 

Therefore enabling the construction of models with reduced uncertainty in the components 

of Descriptors, Mechanisms and Description (see Figure 2.2) that are suitable for the purpose 

of classification and labelling. Continuous development may also lead to models deemed 

sufficient for hazard assessment, potentially informing risk assessment. Even within these 

class- or mechanism-based QSARs further refinement could be achieved to identify one, or a 

small number, of analogues that may be suitable for read-across or trend analysis (Date et al., 

2020). Such high quality, mechanistically derived analogues can be considered to be of low 

uncertainty and thus useful for risk assessment. 

2.4.3. Application of the components and criteria for assessment of published 

QSARs to assess their fitness-for-purpose 

The assessment of the 12 QSARs selected using the components demonstrated that the 

criteria can be applied to a wide variety of models. The full analysis of individual QSARs 

(Appendix I Table S2) would be overwhelming, so the use of a reduced number of components 

to gain an overview, is valuable. Also illustrative is the summary of the uncertainties across 

all the QSARs analysed (Figure 2.3). Assignment of these uncertainties for each component 

have been based upon expert judgement, thus the occurrence of human bias throughout the 

procedure should be taken into account. Whilst this may be unnecessary to be considered for 

the purpose of this study, mitigation of this factor could be achieved through the use of 

external reviewers. This shows consistently high levels of uncertainty associated with four of 

the components, namely Data, Mechanisms, Toxicokinetics and Relevance. Whilst it is 

recognised that the QSARs assessed may not have been developed for the purpose of 

regulatory use, it is informative to consider them in more detail to investigate to which 

purpose they could be applied (Table 2.4) and what measures may be required to achieve this 

(Appendix I Table S4). Comparison of the summary of results in Table 2.3 with the suggested 

levels of acceptable uncertainty for different purposes clearly shows that none would be 

acceptable for these purposes as they are currently presented.  

As noted above, full data curation is likely to be a pre-requisite for any regulatory use of a 

model. Without knowledge of the data, transparency of the model cannot be demonstrated 
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and, more importantly, the domain of a model cannot be defined. More difficult to define is 

the mechanistic basis. There is a long-appreciated spectrum of models from purely 

mechanistic to statistical based, i.e. localised QSARs to machine learning (Enoch et al., 2008). 

As models become global in their applicability, this will require larger datasets with more and 

varied compounds. Accompanying this complexity in chemistry is the increased likelihood of 

multiplicity of probable and plausible mechanisms of action. The types of approaches capable 

of modelling such datasets often use many descriptors, typically without direct mechanistic 

interpretation. The compromise between the need for mechanistic interpretability and 

practical tools for largescale screening of compounds means that higher uncertainty, in terms 

of defining mechanisms, will need to be acceptable. There will also be greater uncertainty 

associated with assignment of mechanisms of action to chemicals, and this will need to be 

accepted. Taking acute environmental toxicity as an example, in reality it is very difficult to 

associate a mechanism of action definitively with a chemical. Historical attempts were made 

for a relatively small number of chemicals (approximately 40) using Fish Acute Toxicity 

Syndromes (McKim et al., 1987). These learnings have been extrapolated up to the full 

spectrum of industrial chemicals and, along with a variety of other evidence, are routinely 

used to categorise chemicals, for instance for the application of QSARs (Cronin, 2017). Until 

omics responses to support grouping are robust and understood, there is likely to be on-going 

uncertainty in the assignment of mechanisms of action for environmental effects. 

Mechanisms relating to human health effects also vary widely in their level of fundamental 

understanding, assignment to specific chemicals and relationship to chemistry. Whilst it is a 

gross oversimplification, it is true to say that regulatory endpoints such as skin sensitisation 

have a higher degree of mechanistic understanding than, for instance, chronic toxicity. Thus, 

with regard to modelling and QSARs in particular, we are better able to assign a compound to 

a mechanistic domain associated with skin sensitisation than we are able to define many 

mechanisms of organ level toxicity associated with chronic toxicity. Again, until we have a 

better grasp of using omics data and applying knowledge from Adverse Outcome Pathways, 

this uncertainty, at the mechanistic level, is likely to remain (Brockmeier et al., 2017; Cronin 

et al., 2017). 

Toxicokinetics, in other words the appreciation of (time-dependent) ADME properties 

affecting bioavailability, is also very difficult to address in in silico modelling of toxicity. The 
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toxicokinetics are normally part of the experimental data and would be provided as such, for 

instance whether there is significant metabolism of a compound, if this is consistent across 

the training set and if it is defined e.g. such that it can be assumed in an untested molecule 

for which a prediction is made. Toxicokinetics have also been shown to be an area of 

uncertainty in read-across (Schultz and Cronin, 2017). There is no easy solution to this issue, 

other than to acknowledge it as a significant area of uncertainty.  

Relevance of an endpoint, and hence prediction, although often overlooked by modellers, is 

vital for regulatory application. In order for a prediction from a model to be relevant it must 

address the endpoint of interest. From the outset it would be good practice for the modeller 

to identify the purpose of the model and undergo a suitable process of the problem 

formulation. As part of the problem formulation, an objective assessment of the level of 

acceptable uncertainty should be set out. For instance, if the purpose of the model was to 

provide predictions for a particular legislation, then the model should be capable of predicting 

a relevant endpoint. It should be noted that most relevant endpoints for regulatory use, with 

the exception of creating a Weight of Evidence, are OECD Test Guideline studies. Thus, a 

model would be fully relevant (and have low certainty) if it made a direct prediction of the 

relevant OECD Test Guideline Study. In terms of the QSARs investigated in this study, QSAR 

#7 (hepatotoxicity) may provide support to an overall decision on chronic toxicity, but is not 

a direct prediction of that endpoint and further information would be required e.g. for other 

organ level effects; QSAR #8 (reproductive toxicity) would not be sufficient to fill a data gap 

as it is not defined sufficiently; QSARs #9 and #10 (androgen and oestrogen receptor binding 

respectively) may support a decision on reproductive toxicity and/or endocrine disruption, 

but they do not replace the need for further information on this endpoint. QSAR #11 is for a 

regulatory endpoint (Salmonella typhimurium TA100), however as only a single strain it would 

not meet the requirements for in vitro mutagenicity which require, usually, five strains (such 

as TA1535, TA1537, TA97a or TA97, TA98) to be considered.  

2.4.4. Reducing uncertainty of QSARs using the assessment components 

Assessment of QSAR models in the manner described above provides an interesting insight 

into areas where model developers may wish to concentrate their efforts. For all of the QSARs 

considered, uncertainty could be reduced by easy to implement strategies (Appendix I Table 
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S4). For instance, there were a number of issues with the provenance of biological data 

utilised in the QSARs including: 1) a lack of clarity over the exact description of the data (i.e. 

protocols) that were utilised, 2) selection of small data sets from larger data compilations 

without full explanation, 3) a lack of assessment of the quality of the toxicity data utilised, 4) 

not assessing the relevance of data for regulatory purpose, as well as other related issues. All 

of these issues can be addressed easily in the QSARs assessed to an appropriate level to 

improve possible acceptance of the models.  

The scheme also highlighted issues relating to the component “Mechanisms”. While the 

correct identification of mechanism of action of a chemical and its associated applicability 

domain is the aim of this component, the reality is QSARs often deal with, at best, probable 

or plausible toxic mechanistic information. The level of mechanistic understanding needed to 

attain low uncertainty is often endpoint-specific and may vary with the experience, and even 

opinion, of the model developer. As noted above, there is also the current lack of knowledge 

of many mechanisms of toxic action – across species and effects – so pragmatism in model 

development and evaluation may be required in order to reduce the uncertainty associated 

with this component.   

It proves more difficult to reduce uncertainty relating to the toxicokinetics component. 

However, strategies could be put in place to determine whether metabolism is relevant – a 

good example, for instance, being with the metabolic component of the Ames Test model 

(QSAR #11). Relevance to regulatory endpoints is intrinsic to the endpoint and, obviously, 

cannot be changed. The analysis also highlighted the complexity of some models in 

comparison to the data being modelled, e.g. the use of highly multivariate statistical analysis 

to model relatively simple mechanisms of action. Thus, models could, in theory at least, be 

simplified to reduce this uncertainty (as demonstrated in Appendix I Table S4).  

Many issues with uncertainty will be overcome through adequate problem formulation in the 

development of a QSAR. The statement of problem formulation could be based around 

defined uncertainty criteria for the QSAR components, such that good modelling can be 

achieved from the outset. This will allow models to be designed, through the proper problem 

formulation, to be fit-for-purpose even before they are created. For instance, a modeller can 

apply the QSAR components to understand the characteristics of the model to be built e.g. 

the relevance and quality of the data, mechanistic understanding, coverage of descriptors etc. 
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This should not be an onerous process, however, it is one that can be completed before model 

creation. In this regard, the QSAR developer could incorporate this information easily into the 

documentation associated with the model. In this way, the model will be assured of 

appropriate levels of uncertainty relating to purpose for these components. For existing 

QSARs, models would need to be assessed against the criteria, whether by the developer or 

user to demonstrate fitness-for-purpose. Overall, the opportunity is for the modeller and user 

to investigate and hence define the relevance of a particular model for regulatory use as part 

of the development process.  

2.4.5. Using the components to improve acceptability of QSARs 

A fundamental aim of a QSAR is to provide a meaningful, relevant and robust in silico model 

that is fit-for-purpose. Table 2.1 indicates some of the uses of models, ranging from data 

investigation and knowledge generation, demonstration of new techniques or descriptors to 

specific use in industry or regulation. The use of a model could be considered against the 

requirements of a model to meet a particular purpose. As the spectrum of models increases, 

from the analogue approach to high level, multidimensional representations of big data, it is 

important to appreciate that few models are suitable for more than one purpose. Thus, there 

is a place for all types of models and a means is required to determine whether it is suitable 

for the purpose proposed (Richarz, 2020).  

If the purpose is for regulatory use, the QSAR must provide predictions that are acceptable 

according to predefined (often legislative rather than scientific) criteria. With regard to data 

gap filling, the most stringent criteria for the acceptable replacement of an animal test are 

likely to be required (shown as Risk Assessment in Figure 2.2). Due to the many uncertainties 

that may be present in a QSAR – as demonstrated in the analyses in this study – it has been 

increasingly difficult to gain acceptance of QSAR predictions, for regulatory purposes, and 

more fundamental and justifiable approaches, such as read-across, have been applied more 

commonly (ECHA, 2020).  

The application of the component scheme described in the study allowed for a better 

understanding of the requirements for different types of regulatory use of QSAR, 

demonstrated a realistic assessment of QSAR models, provided strategies for their 

improvement, and is a means of providing evidence to the user of good model development. 
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Future use of such components is foreseen from the very first stages of model design and 

data harvesting, through to the documentation of the final model.  

It is foreseen that the application of such criteria will not replace the use of OECD Principles, 

but will supplement the information and should be used hand-in-hand with reporting formats 

such as the QMRF and QPRF.   

2.5. Conclusions 

Ten assessment components have been described in this study which are designed to assess 

not only uncertainties, but also variabilities and areas of bias of QSAR models. These 

components rationalise and organise the original 49 criteria from Cronin et al. 2019 on which 

they are based. The ten components summarise the three key phases of in silico modelling – 

creation, characterisation and application. These components have been used to 

demonstrate and, to a certain extent, semi-quantify the key characteristics of uncertainty that 

need to be considered, when applying QSARs for regulatory purposes, and demonstrate that 

different types of models should be applied for different purposes.  

As a proof of concept, the components were applied to twelve recently published QSAR 

studies for various (eco-)toxicological endpoints. The purpose was to identify areas of 

potential uncertainty, variability or bias that may reduce a QSAR model’s applicability in a 

regulatory context. For the QSAR models considered, most uncertainties centred around four 

factors: 1) the quality and / or reproducibility of the toxicity data modelled, 2) transparency 

of the descriptors and the model, 3) the consideration of mechanisms of action and 

toxicokinetics and 4) relevance for regulatory use. The analysis of the 12 QSAR models 

demonstrated that they provide a means to assess uncertainty, identifying areas where 

strategies can be implemented to reduce uncertainty to an acceptable level. It is anticipated 

that this form of assessment could be initiated at the problem formulation stage of QSAR 

development to ensure the model is fit-for-purpose. In this way, the scheme provided a 

usable, practical and flexible means of evaluating a QSAR that extends the OECD Principles.  

As exemplified through this study, the uncertainty criteria serve as an extremely valuable tool 

that can not only improve models through the identification of shortcomings, but additionally 

provide supporting evidence that a model is fit for purpose. Whilst the current study 
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demonstrated the criteria were successful at determining the uncertainties associated with 

traditional modelling problems, the field of QSAR is ever-expanding with current state-of-the-

art approaches utilising AI techniques, as well as the utilisation of models to predict the 

adverse effects of complex mixtures. Such problems require careful consideration before 

acceptance can be achieved, which using traditional practices may be unfeasible; thus, the 

importance of the uncertainty criteria to provide supporting evidence for a constantly 

evolving field is deemed essential. As stated above, development and evaluation of QSAR 

models for mixtures, is associated with additional complexity. In the next chapter the state-

of-the-art of QSAR models as applied to assessment of toxicity for mixtures is investigated.  
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Chapter 3. A review of quantitative structure-activity relationship 

modelling approaches to predict the toxicity of mixtures 

Preface: 

This work has been published in: Belfield SJ et al., (2022). A review of quantitative structure-

activity relationship modelling approaches to predict the toxicity of mixtures. Comput. 

Toxicol. 25: 100251. doi: 10.1016/j.comtox.2022.100251 

This was a multi-author paper. Belfield led the work and analysis in this study as recognised 

in the CRediT statement: Conceptualization, Methodology, Investigation, Data Curation, 

Writing – Original Draft, Visualization. 

3.1. Introduction 

A significant proportion of toxicological and physicochemical analysis is performed upon 

single compounds, yet the scenario of one being exposed to a single chemical in isolation is 

unrealistic (Yang et al., 1998). In reality, both humans and environmental species face various, 

ever-changing mixtures of chemicals throughout daily life (European Commission, 2012a). 

Most, if not all, chemicals are encountered as mixtures, for instance specifically marketed 

formulated mixtures such as pesticides, food and feed additives and cosmetics (typically 

referred to as intentional mixtures). In addition, exposure to mixtures of chemicals that may 

interact is not limited to manufactured products. For example, co-administration of drugs 

may lead to drug-drug interactions and environmental pollutants may also present 

themselves unintentionally as mixtures from different sources (Kienzler et al., 2016; Palleria 

et al., 2013). The prevalence of exposure to mixtures, occurring either intentionally or 

unintentionally, is evidently large, although only partial regulation of intentional mixture is 

currently provided (Hassold et al., 2021).  

Chemical mixtures can be defined as combinations of two or more chemicals that retain their 

individual, unaltered chemical identities (European Commission, 2012a). In certain 

circumstances, mixtures may be more problematic when compared to single compounds; a 
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significant concern arises where the individual components are present in mixtures at 

concentrations where no effect would be anticipated e.g., lower than the no-observed-effect 

level (NOEL), yet in combination may have the potential to exert unexpected toxicological 

effects (European Commission, 2012b; Conley et al., 2021). In addition, one of the key actions 

of the European Union’s (EU’s) recent “Chemicals Strategy for Sustainability Towards a Toxic-

Free Environment” is to take account of the effects of chemical mixtures (European 

Commission, 2020). However, as the ability to assess the vast number of potential 

combinations of substances using traditional experimental toxicity testing is unfeasible 

(European Commission, 2012a), the value that predictive approaches can provide to mixture 

toxicity is anticipated to play an increasingly important role in toxicity assessment. Traditional 

approaches for hazard assessment of chemical mixtures may either consider the mixture as a 

whole (top-down), or contributions from the individual components (bottom-up). In general, 

assessments are typically driven by bottom-up frameworks, where the individual toxicities of 

all components are known and then modelled mathematically to predict the combined effect 

of a mixture (Hernández et al., 2017). In such bottom-up or component-based approaches, it 

is essential to consider the influence of interactions which may arise between individual 

components. Where it is presumed that each constituent compound does not impact upon 

the biological activity of the other, the combined toxicity of a mixture is estimated according 

to the principle of additivity (European Commission, 2012a; WHO 2017). Should components 

be understood to operate through similar modes of action, this is typically framed through 

application of concentration addition (CA) (Loewe and Muischnek, 1926). Alternatively, those 

with dissimilar modes may be modelled with the assumption of independent action (IA) (Bliss, 

1939). These have since been termed “first generation” techniques (Kim et al., 2013a). Whilst 

the decision on which procedure to adopt is dependent upon the nature of the mixture under 

examination, the enhanced conservatism inherent within CA has led to its emergence as the 

generic methodology particularly favoured by risk assessors (Belden et al., 2007, European 

Commission, 2009a; Kim and Kim, 2015). “Second generation” models, further accounting for 

variation in mode of action and in turn combining elements of both approaches (integrated 

addition) later emerged – with uptake generally restricted on account of the greater 

quantities of empirical data required in their training (Kim et al., 2013a). 



   
 

 46 

Deviations from the ideal of additivity may be noted in instances whereby inter-component 

interactions do occur. The prevalence of such non-additive effects must not be understated, 

with a recent literature review by Martin et al. (2021) observing such behaviours within 

almost half the experimental mixture studies they reviewed (n=1220). The term “synergy” 

describes the phenomenon through which mixture activity is observed as greater than that 

predicted by simple additivity, and “antagonism” the inverse in which it is less than that 

predicted (Ashford, 1981; Bopp et al., 2015; Hernàndez et al., 2017; Rodea-Palomares et al., 

2015). Neither CA nor IA is equipped to handle such eventualities, and as such the potential 

occurrence of either serves to contribute greatly towards uncertainty surrounding estimation 

of overall mixture toxicity – notably at very low exposure levels (Cedergreen, 2014; Hernàndez 

et al., 2017). Whilst the concept of the “funnel hypothesis” has been forwarded as a means 

of rationalising the observation that deviation from additivity is less common amongst multi-

component (greater-than-binary) mixtures (Warne 1995), the occurrence of both synergy and 

antagonism remains challenging to forecast.   

In order to assess the toxicity of a greater number and form of mixtures, both additive and 

non-additive, there is scope for the application of further modelling approaches. One such 

class of models are quantitative structure-activity relationships (QSARs). QSARs have been 

used widely in various industrial sectors to predict a range of toxicity endpoints, as well as 

enabling data gap filling (Madden et al., 2020). Predictions are formulated through identifying 

the correlation between quantifiable properties of the chemical, and the endpoint of concern 

– thus a model may allow for estimation of missing data by making use of structural 

information (Cronin et al., 2019). One of the earliest applications of QSARs towards mixtures 

was reported by Könemann (1981b), where it was recognised that the additive toxicity of 

mixtures could be predicted without use of empirical mechanism of toxic action data. 

Following this, much effort has been put into further development of related methods – since 

labelled “third generation”. Significant scope exists for utilisation of such approaches, on 

account both of their practicality and potential predictive power. Ready generation of input 

parameters through employment of computational techniques may allow for data generation 

and broadening of applicability domain.  

With regard to safety assessment, there is an ever-growing need for the harmonisation of 

approaches that address the effects of mixtures on human health and the environment. The 
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role of in silico methods within the determination of mixture toxicity is deemed essential yet 

requires careful consideration of the array of challenges and gaps that currently exist 

(Chatterjee and Roy, 2022).  For example, deficiencies in appreciation of realistic co-exposure 

scenarios, component interactions, mechanistic knowledge and grouping criteria may each 

impede progress (Bopp et al., 2018). Ensuring resolution of these issues will undoubtedly 

require “extensive strategic transdisciplinary initiatives”, and as such it is inevitable that in 

silico approaches will be of immense value within mixture safety assessment (Drakvik et al., 

2020). However, it is acknowledged that available QSAR workflows for the analysis of mixtures 

are insufficient (Muratov et al., 2012). To enable a better understanding of the state-of-the-

art, this study presents a narrative review of the different QSAR approaches to predict mixture 

effects within chemical safety assessment (i.e., toxicological studies). Knowledge identified 

from the review can be utilised to supplement current QSAR uncertainty assessment 

schemes. 

3.2. Materials and methods 

3.2.1. Collection of literature  

Literature relating to the use of QSAR for the assessment of mixture toxicity was identified 

using the Web of Science database. To ensure that all relevant work was captured, a broad 

search was conducted for studies from 1970 onwards. Keywords selected within the initial 

search (performed 25/10/2020) included “QSAR” and “mixture” – this returning 434 

publications. The search criteria used resulted in many articles not relevant to this specific 

topic being identified. These were removed following manual screening of abstracts. Only 

articles focusing on QSAR development for mixtures were retained, so reducing the list to 134 

taken forward for full text review (for graphical overview of workflow, please refer to Figure 

3.1). 

3.2.2. Compilation of information 

A detailed analysis of the publications identified was undertaken, resulting in a further 

reduction of the number of articles for reasons including: unavailability of key information, 

models developed for single chemicals, non-toxicological endpoints, studies on essential 

oils/nanoparticles, and mixtures predicted solely through either concentration addition or 
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independent action. Although CA and IA are both currently accepted methods used within 

regulatory approaches (European Commission, 2012a), the focus of the present study is upon 

QSAR protocols, and as such the decision was made to remove them. The final list comprised 

40 studies, with these being additionally characterised with regards to: mixture composition 

(number of components, e.g., binary), chemical classification, taxa or testing system, 

endpoint examined, descriptors adopted (both class of, and conceptual approach applied in 

generation of mixture descriptors), and finally modelling or statistical technique applied. 

Table 3.1 contains an overview of the standardised terminology adopted relating to this 

characterisation.  

 

Figure 3.1. Overview of workflow adopted in the recovery and screening of literature for 

inclusion within this study. 

Table 3.1. Summary of defined QSAR characteristics and the categories within 

QSAR Characteristics Categories 
Chemical classification Biocides, industrial, pharmaceuticals, priority pollutants 
Mixture composition Binary, ternary, quaternary, quinary, supra-quinary1 
Taxa or testing system Algae, amphibian, bacteria, cell line, embryos, insect 
Endpoint Acute, chronic, developmental, drug efficacy, growth 

inhibition, inhibition of reproduction 
Descriptor formulation 
(approach) 

Distribution coefficient, fragment non-additive, integral 
additive, integral non-additive, single variable component, 
structural similarity 

Descriptor formulation (class) Molecular docking, molecular fragment, molecular 
structure, physicochemical, quantum chemical 

Modelling or statistical 
technique 

CA and IA, CORAL, machine learning, partial order ranking, 
regression analysis, regression analysis (assumed) 
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1Mixtures containing greater than five components. 

3.3. Results and Discussion 

Evaluation of the literature resulted in identification of 40 relevant publications. As 

summarised in Table 3.2 and Figure 3.2, the majority of studies could be classified into 

groupings dependent upon methodology, endpoint, etc. The number of characteristics 

assigned for each grouping was not limited, with multiple classifications given where 

applicable. Further investigation of these characteristics has enabled the focus of current 

approaches to be outlined. 

3.3.1. Chemical classification 

Classes of chemicals considered in these articles could be classified broadly as belonging to 

one of four families: industrial chemicals (reported in 22 articles), pharmaceuticals (n=9), 

biocides (n=6) and priority pollutants (n=5). In general, the majority of articles related to 

environmental studies, including those for pharmaceuticals, with only a limited number of 

investigations considering human health effects. Future work into mixture assessments, 

therefore, should focus upon extending studies of the lesser examined groups, with a 

particular focus given to human health effects. Cell lines could provide a route towards 

realising this. 

3.3.2. Mixture composition  

Different varieties of mixtures were investigated, ranging from binary to complex. Binary 

mixtures made up the majority (n=38) of studies recovered, with comparatively few utilising 

multi-component combinations, i.e., ternary (n=10), quaternary (n=7), quinary (n=4) and the 

more realistic supra-quinary (n=3) – the latter term referring to those containing greater than 

five constituents. In addition to the number of components within the mixture, it is also 

important to consider the relative proportions of each, i.e., their ratios. Excluding supra-

quinary, there are ten articles that investigated multi-component mixtures. Most of these 

were of fixed ratio design with some exceptions allowing varied ratios (Kar et al., 2018; Qin et 

al., 2018; Wang et al., 2018b; Kim et al., 2014; Lu et al., 2009; Duchowicz et al., 2008; Wei et 

al., 2004; Huang et al., 2003). Fixed ratio designs have been demonstrated as favourable 

within mixture studies, allowing for the distribution of the effect concentration range to be 
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maximised, whilst additionally reducing number of experiments required (Kim et al., 2013b). 

Equitoxic ratios were most commonly used - this referring to mixtures where each component 

exists at the concentration that would result in identical effect if examined separately 

(Fulladosa et al., 2005). The likelihood of a mixture occurring naturally as equitoxic is very 

small, hence non-equitoxic ratios provide a more realistic representation (Warne, 2003). 

Additionally, it has been demonstrated, dependent upon the ratios of chemicals within a 

mixture, that the type of joint action observed can vary (Warne, 2003; Jin et al., 2014). As a 

result, studies involving the investigation into non-equitoxic mixtures can ensure that changes 

in joint action are captured.
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Table 3.2. Summary and main characteristics of QSARs used in the mixture toxicity studies identified. 

Chemical 
classification 

Mixture 
composition 

Taxa or 
test 

system 
Endpoint 

Molecular descriptor formulation Modelling or 
statistical 
technique 

Reference Conceptual 
approach 

Descriptor  
class 

Biocides Binary Insect Acute Fragment 
non-additive 

Molecular fragment CORAL Carnesecchi 
et al., 2020 

Priority 
pollutants 

Binary Cell line Acute Integral 
additive 

Molecular structure Regression analysis Hoover et 
al., 2019 

Industrial Binary Bacteria Acute Integral 
additive 

Molecular structure Regression analysis Chen et al., 
2019 

Industrial Binary Bacteria Acute Single 
variable 

component 

Molecular structure Regression analysis Zhang et al., 
2019 

Biocides Binary Bacteria Acute Integral 
additive 

Molecular structure Regression analysis 
and machine 

learning 

Wang et al., 
2018a 

Priority 
pollutants 

Binary and 
ternary 

Embryos Developmental Integral 
additive 

Molecular structure Regression analysis Kar et al., 
2018 

Pharmaceuticals 
and biocides 

Binary, ternary 
and quaternary 

Bacteria Acute Integral 
additive 

Molecular structure Regression analysis Qin et al., 
2018 

Pharmaceuticals Binary and 
ternary 

Bacteria Acute Integral 
additive 

Molecular docking Regression analysis Wang et al., 
2018b 

Pharmaceuticals Binary Bacteria Acute Integral 
additive 

Molecular docking Regression analysis Wang et al., 
2018c 

Pharmaceuticals Binary Bacteria Acute and 
chronic 

Integral 
additive 

Molecular docking Regression analysis Wang et al., 
2017 

Pharmaceuticals Binary Bacteria Acute Integral 
additive 

Molecular docking Regression analysis Long et al., 
2016 
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Pharmaceuticals Binary Bacteria Chronic Integral 
additive 

Molecular docking 
and physicochemical 

Regression analysis Fang et al., 
2016 

Priority 
pollutants 

Binary Cell line Acute Integral 
additive 

Molecular structure 
and physicochemical 

Regression analysis Gaskill and 
Bruce, 2016 

Industrial Binary Bacteria 
and algae 

Acute Integral 
additive 

Quantum chemical Regression analysis Chang et 
al., 2016 

Industrial Binary and 
ternary 

Cell line Organ-level 
effects 

Unclear Physicochemical Regression analysis Kim et al., 
2014 

Industrial Binary Bacteria Acute Single 
variable 

component 

Quantum chemical Regression analysis Jin et al., 
2014 

Biocides Supra-quinary Bacteria Acute Structural 
similarity 

Molecular structure Machine learning 
and CA and IA 

Kim et al., 
2013b 

Pharmaceuticals Binary Virus Drug efficacy Fragment 
non-additive 

Molecular fragment Machine learning Muratov et 
al., 2013 

Pharmaceuticals Binary Bacteria Chronic Integral 
additive 

Molecular docking 
and physicochemical 

Machine learning Zou et al., 
2013 

Industrial Binary Not Stated Chronic Integral 
additive 

Molecular structure 
and quantum 

chemical 

Regression analysis 
and machine 

learning 

Luan et al., 
2013 

Industrial Binary Bacteria Acute Single 
variable 

component 

Physicochemical and 
quantum chemical 

Regression analysis Su et al., 
2012 

Industrial Binary Bacteria Acute Fragment 
non-additive 

Molecular fragment CORAL Toropova et 
al., 2012 

Priority 
pollutants and 

industrial 

Binary Not Stated Acute Integral 
additive 

Molecular docking 
and physicochemical 

Assumed 
regression 

Wang et al., 
2012 
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Pharmaceuticals Binary Bacteria Acute and 
chronic 

Integral 
additive 

Molecular docking 
and quantum 

chemical 

Assumed 
regression 

Zou et al., 
2012 

Priority 
pollutants 

Binary Bacteria Acute Integral 
additive and 
distribution 
coefficient 

Physicochemical Assumed 
regression 

Wang et al., 
2011a 

Biocides Binary, ternary, 
quaternary and 

quinary 

Embryos Developmental Unclear Physicochemical Regression analysis Wang et al., 
2011b 

Industrial Binary Bacteria Acute Single 
variable 

component 

Physicochemical and 
quantum chemical 

Regression analysis Su et al., 
2010 

Industrial Binary, ternary 
and quaternary 

Bacteria Acute Integral 
additive 

Physicochemical and 
quantum chemical 

Regression analysis Lu et al., 
2009 

Industrial Binary Algae Growth 
inhibition 

Distribution 
coefficient 

Physicochemical Regression analysis Zeng et al., 
2008 

Industrial Binary, ternary, 
quaternary and 

quinary 

Bacteria Acute Distribution 
coefficient 

Physicochemical Partial order 
ranking 

Duchowicz 
et al., 2008 

Industrial Binary Algae Growth 
inhibition 

Integral 
additive 

Physicochemical and 
quantum chemical 

Regression analysis Wang et al., 
2008 

Industrial Binary Bacteria Acute Integral non-
additive 

Quantum chemical Regression analysis Zhang et al., 
2007 

Industrial Binary, ternary, 
quaternary, 
quinary and 

supra-quinary 

Bacteria Acute Integral 
additive 

Physicochemical Regression analysis Wang et al., 
2006 

Biocides Supra-quinary Algae Inhibition of 
reproduction 

Structural 
similarity 

Molecular structure CA and IA Mwense et 
al., 2006 
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Industrial Binary, ternary, 
quaternary and 

quinary 

Bacteria Acute Distribution 
coefficient 

Physicochemical Assumed 
regression 

Wei et al., 
2004 

Industrial Binary, ternary 
and quaternary 

Amphibian Acute Integral 
additive 

Physicochemical Regression analysis Huang et 
al., 2003 

Industrial Binary Bacteria Acute Distribution 
coefficient 

Physicochemical Regression analysis Lin et al., 
2003 

Industrial Binary Bacteria Acute Distribution 
coefficient 

Physicochemical Assumed 
regression 

Lin et al., 
2002 

Industrial Binary Bacteria Acute Single 
variable 

component 

Quantum chemical Regression analysis Yuan et al., 
2002 

Industrial Binary Bacteria Acute Distribution 
coefficient 

Physicochemical Regression analysis Yu et al., 
2001 



   
 

 55 

 

Figure 3.2. Quantification of features present amongst those parameters defining key QSAR 

characteristics. 

Binary mixtures studies are limited to predictions of only binary combinations, unless 

validated otherwise. It is acknowledged that they may serve as an imperfect representation 

of real-world exposure scenarios (Kim and Kim, 2015). As such, the importance of developing 

models that can predict the effects of not only binary, but more importantly multi-component 

mixtures, is crucial. Nevertheless, assessments of binary mixtures can provide invaluable 
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insights into methodology for modelling, as well as being utilised to gain information on mode 

of action (Hodges et al., 2006).   

3.3.3. Taxa or testing system 

A variety of species were used in the toxicological studies; however, the majority investigated 

bacterial-based bioassays (n=27). Within this group, use of bioluminescent bacterium 

Aliivibrio fischeri (formerly Photobacterium phosphoreum) predominated. Such tests are 

relatively inexpensive and enable large quantities of consistent data to be generated rapidly. 

Accordingly, they have been routinely employed as a first screening method within test 

batteries (Qu et al., 2013; Girotti et al., 2008). However, for these tests to effectively monitor 

an ecosystem, they must be used in combination with other biotests as well as chemical 

analysis (Girotti et al., 2008). 

Various species other than bacteria have nevertheless been subject to investigation. Data 

from algae, cell lines (mammalian and amphibian), embryos, insects, amphibians, and viruses 

have all been used to develop mixture QSARs. Algal bioassays make up the second most 

common grouping (n=4), with testing upon algae providing an important insight into the 

balance of aquatic ecosystems as a result of them being primary food producers (Luan et al., 

2020). Cell lines have been used in only a small number of studies, with such examinations 

potentially providing insight into specific simple mechanisms of interest. Cell line studies are 

an important testing procedure enabling the key processes towards a desired endpoint to be 

captured (Pistollato et al., 2020), however, the extrapolation of such information to entire 

organisms may prove difficult (Zucco et al., 1998). In general, QSAR models developed to 

investigate the toxicological effects of mixtures have focused upon environmentally-relevant 

species, with fewer considering human health. 

3.3.4. Endpoint 

The majority of toxicological endpoints for which mixture QSARs were developed related to 

acute effects. In total, 30 studies have investigated acute toxicity, in comparison to only a few 

chronic. Examination into the acute effects of chemicals can provide useful and fundamental 

information, with testing being comparatively simple, interpretable and high throughput. 

Moreover, such tests can enable underlying mechanisms of toxic action to be defined 

(Erhirhie et al., 2018). However, the use of acute toxicity data for QSAR modelling is not 
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without its limitations. Adverse effects can result from an array of physiological, biokinetic, 

cellular and molecular events that span different levels of biological organisation. Measuring 

such complex systems in isolation will inevitably result in a loss of information (Lapenna et al., 

2010). In comparison, toxicity following chronic exposure can better provide a realistic 

contribution to risk assessment of chemicals, particularly within environmental settings 

where organisms are exposed to the long-term effects of pollutants (Wang et al., 2017). 

However, knowledge of the chronic effects towards organisms of mixture exposure is sparse 

due to the intricacies of processes required for their determination – compounded by their 

duration and the costs of analyses (Zou et al., 2013). Accordingly, within the scope of this 

review, few studies utilised QSARs to predict chronic toxicity. However, a small number of 

successful applications have demonstrated that molecular docking based QSAR models may 

prove a valuable tool for predicting such endpoints (Zou et al., 2013; Fang et al., 2016; Wang 

et al., 2017). The current literature available for QSAR models for chronic mixture toxicity 

provides a solid foundation to be developed upon, with further research being required in 

areas of multi-component mixtures, as well as in higher-order species. 

3.3.5. Mixture descriptor formulation 

3.3.5.1. Conceptual approach 

A fundamental distinction between the handling of single compounds and chemical mixtures 

when constructing a QSAR model lies in the nature of the descriptors which must be 

employed for each purpose. Whilst generation of molecular descriptors relating to discrete 

organic substances is generally a trivial process, provision of equivalents suitable for 

characterising mixtures is an issue of greater complexity. A variety of approaches are attested 

to within literature, based upon differing assumptions regarding the nature and relevance of 

interactions between member substances (Muratov et al., 2012). 

3.3.5.1.1. Integral additive 

The single most popular approach amongst those studies recovered (present within 21 of 40) 

– formation of integral additive descriptors, rests upon the intuitive premise that the 

properties of a mixture may be determined simply through summing those of its individual 

components – accounting for their relative prevalence and assuming occurrence of no 

meaningful interaction between each.   
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𝑑!"# =	$𝑥"𝑑"  Equation 3.1. 

 

Where 𝑑!"#	is a mixture descriptor, 𝑑" 	the descriptor relating to chemical 𝑖, and 𝑥" 	the 

fraction of the mixture composed by chemical	𝑖. 

Application of the methodology in its simplest form is exemplified in the work of Huang et al. 

(2003), whereby toxicity of substituted phenol combinations is inferred solely through 

reference to a mixture octanol/water partition coefficient 𝑙𝑜𝑔$%&!"#	calculated via fractional 

addition of the 𝑙𝑜𝑔$%& 	belonging to each component. Versatility of the approach is such that 

there exist few limitations with respect to the nature of descriptors which may be used 

alongside it (refer to Section 3.3.5.2 and Table 3.3 for examples). Accordingly, its adoption is 

noted in investigations employing molecular docking and quantum chemical techniques.  

Despite widespread utilisation, shortcomings of this framework remain apparent. 

Disregarding of the potential impact of inter-component interactions (toxicodynamic, 

toxicokinetic or physicochemical) when inferring mixture adverse effects is most noteworthy 

amongst these. Such a limitation almost certainly renders it inapplicable for instances in which 

non-additivity is present – whilst in principle (despite favourable results) harming its capacity 

to model even general additive effects. 

3.3.5.1.2. Integral non-additive 

By contrast to the above, non-additive approaches envisage the mixture not merely as an 

agglomeration of mutually-inert components. Instead, they seek to integrate consideration 

of interactions existing between the molecules within – essentially modelling the mixture as 

a unit with bulk properties distinct to it (representing a more appropriate approximation of 

reality). Although appealing as a route towards addressing the issues inherent within additive 

methodologies, adoption has been limited.  

A single study (Zhang et al., 2007) employing an integral, non-additive approach was 

retrieved. Within, toxicity of a series of binary 1:1 combinations consisting of simple 

substituted benzenes was modelled through use of quantum chemical descriptors. Properties 

of a mixture were derived through direct calculation of parameters of the appropriate pooled 

molecular pair – thus allowing for influence of electronic interactions between members to 
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be accounted for. The rationale behind the lack of widespread uptake of this technique, 

despite conceptual promise, may lie in the restrictions placed upon its practical application: 

not only is scope of eligible mixtures constrained to those exhibiting 1:1 component ratio, but 

requirement to initiate unique calculations relating to each potential combination of 

substituents is potentially unwieldy.  

3.3.5.1.3. Fragment non-additive 

The non-additive principle is extended for application within fragment-based approaches to 

characterising activity of binary mixtures – forming the basis of three toxicologically-relevant 

studies. Whilst a thorough overview of core techniques is presented within Section 3.3.5.2.4, 

it is sufficient when considering generation of mixture descriptors to recognise the parallels 

which are present between this and “integral non-additive” methodology. In much the same 

manner, the molecular pair is treated as a unit. Individual fragments may incorporate atoms 

from either one or both components, and as such may provide descriptors relating both to 

individual compounds and to the unitary mixture. 

3.3.5.1.4. Distribution coefficient-based 

This approach remains suitable for instances in which activity of a mixture is modelled as a 

function of its partitioning between lipophilic and aqueous phases. Verhaar et al. (1995) 

reported derivation of a formula through which the distribution coefficient representing a 

mixture may be determined from those of its constituent chemicals. 

𝐾!"# =
𝑊
𝑉 ×

∑
𝑄&'()*,",

1 + ( 𝑊
𝑉𝐾-."

)
/
"01

∑ 𝑄&'()*,",/
"01 −∑

𝑄&'()*,",

1 + ( 𝑊
𝑉𝐾-."

)
/
"01

 Equation 3.2 

  

Where 𝐾!"# is the lipoid/water partition coefficient of the mixture (substances such as n-

octanol, chloroform and C18-Empore discs having been employed for this function), 𝑊 the 

volume of the aqueous phase, 𝑉 the volume of lipoid, 𝑄&'()*,"	, the initial amount of chemical 

𝑖 in water, 𝐾-." 	the partition coefficient of chemical 𝑖, and 𝑛 the total number of chemical 

components in the mixture. Seven relevant studies adopting this approach were retrieved, 
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with modifications to the methodology offered on occasion (please refer also to Section 

3.3.5.2.1). 

3.3.5.1.5. Single variable component 

Each of the aforementioned techniques seeks to characterise toxicity of mixtures through 

consideration of the contributions of all substances within. However, there exist several 

studies (five retrieved from literature) in which activity is instead inferred through reference 

to properties of only a single constituent. In all instances, sequences of binary combinations 

were examined, whereby one component was held in common and the other was varied. 

Typical is the examination by Su et al. (2010), within which electronic and physicochemical 

parameters of a selection of substituted phenols were alone employed in order to model the 

toxicity of its mixtures alongside elemental lead. Whilst the majority of investigations have 

focused upon metallic-organic combinations, it should be noted that an early study by Yuan 

et al. (2002) featured solely organic components. 

3.3.5.1.6. Similarity 

A minority of studies adopt QSAR models not as a means of directly inferring the toxic 

potential of a mixture from the properties of its components, but instead as a means of 

assessing the similarity of screened compounds against those for which experimental data 

are present. Both Mwense et al. (2006) and Kim et al. (2013b) have put forward variations on 

this theme. Such similarity-based approaches enabled the mixture’s components to be 

separated into clusters, which could then be subjected to CA and IA calculations (see Section 

3.3.6 for further information). 

3.3.5.2. Descriptor class 

Many different varieties of molecular descriptors exist, indicating the differing complexity 

levels of chemical structural representation (Cherkasov et al., 2014). In principle, any intrinsic 

molecular property appropriate for adoption as a descriptor within standard, single-

component QSAR is further amenable to application within the domain of the mixture. As 

such, the range of properties referenced explicitly across the following subsections (on 

account of appearance within the existing literature) should not be taken as exhaustive. 
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3.3.5.2.1. Physicochemical 

 Considering the modelling of mixture toxicity, physicochemical descriptors have been 

employed from the very earliest studies. Of particular prominence are those based upon 

quantitative expression of the distribution of a substance between aqueous and 

representative lipophilic phases – this in short owing to their applicability in modelling 

compounds which exhibit a narcotic mode of action. Exemplified by logarithm of the octanol-

water partition coefficient, these are acknowledged as being amongst the most effective 

general parameters to predict toxicity; having seen widespread use in many models for both 

single chemicals and mixtures (Kim and Kim 2015; Lin et al., 2002). It should be noted, 

however, that utility in handling toxicity mediated through means of chemical reactivity or 

receptor interaction may be diminished. 

Application to mixtures is typically facilitated through adoption of one of two techniques 

introduced within Section 3.3.5.1: the dedicated method of Verhaar et al. (1995), or the more 

general integral additive approach. Employing the former, models were successfully 

developed to predict mixture toxicity of non-polar narcotic (Yu et al., 2001; Lin et al., 2002) 

and polar narcotic (Lin et al., 2003) chemicals. Following on, Wei et al. (2004) reported 

formulation of a simplified model demonstrating strong predictive power for both polar and 

non-polar mixtures. The aforementioned approaches have been limited to bacterial toxicity 

with regression-based models. However, additional studies have validated the methodology 

within algae studies, as well as with Partial Order Ranking methodology (Zeng et al., 2008; 

Duchowicz et al., 2008). 

Considered by Roberts (1991) and by Altenburger et al. (2003), the employment of the 

integral additive approach towards formulation of mixture partition coefficients has since 

been demonstrated in various environmental studies (Huang et al., 2003; Wang et al., 2008; 

Lu et al., 2009; Wang et al., 2006). One of the few studies to compare both Verhaar and 

integral additive methodologies directly was completed by Wang et al. (2011a), in which the 

mixture toxicity of perfluorinated carboxylic acid was assessed. Results demonstrated that 

the equivalent Verhaar-adapted approach provided, in this instance, the better results for 

describing the hydrophobicity of mixtures. 
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3.3.5.2.2. Molecular docking 

Information gathered from molecular docking of chemicals into receptors has been used 

routinely, particularly as a drug discovery tool enabling the early identification of potentially 

active candidate molecules. These techniques facilitate the development of mechanism-

based models, with interactions between chemicals and receptors being simulated. 

Specifically, such studies could relate to receptor-mediated molecular initiating events 

(Cronin and Richarz, 2017). These simulations enable the interaction energy required for a 

chemical to bind to its target protein (𝐸3"/4"/5) to be determined (Rabinowitz et al., 2008). In 

each of the examples subsequently presented, 𝐸3"/4"/5	relating to individual components are 

summed to form mixture descriptors through adoption of the integral additive approach. 

Wang et al. (2012) were amongst the first to propose the use of binding energy descriptors in 

modelling mixture toxicity – examining the feasibility of substituting 𝑙𝑜𝑔 𝐾%&!"#	with the 

molecular docking descriptor	𝐸3"/4"/5, owing to the linear trend observed between the two. 

Zou et al. (2012) investigated both the acute and chronic toxicities of antibiotics from the 

sulfonamide family, alongside the sulfonamide potentiator trimethoprim. The study initially 

identified the receptors responsible for both their acute and chronic effects towards Aliivibrio 

fischeri; determining them to be luciferase, dihydropteroate synthase and dihydrofolate 

reductase. Models using the binding energies towards each protein, supplemented by pKa, 

were shown to successfully predict the toxicities of mixtures for both exposures. Further to 

this study, Zou et al. (2013), employed docking in order to curate a library of simulated 

antibiotic-receptor interactions, spanning several prominent mechanisms of action. Through 

this, the ready construction of mechanistically-grounded QSAR models relevant to a wide 

range of potential antibiotic combinations was facilitated.  

More recently, Wang et al. (2017) also investigated chronic effects of antibiotics. A 

mechanism-based QSAR model was developed whereby the chronic toxicity of sulfonamides, 

sulfonamide potentiators, and tetracyclines could be extrapolated from acute toxicity. Unlike 

previous extrapolation models, understanding of the differing toxic mechanisms between 

acute and chronic exposures was considered. In a variation from Zou et al. (2012), in which 

DHFR (Dihydrofolate reductase) served as the sole mediator of TMP (Trimethoprim) toxicity, 

the targets for the antibiotics reported in this study were represented by surrogate luciferase 
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proteins. Due to a specific target not being considered and instead characterised by 

surrogates, the model demonstrated promise in predicting the toxicity of chemicals for which 

mechanisms are unknown. 

Molecular docking studies have introduced new concepts to the field of QSAR mixture 

toxicity. Fang et al. (2016), Long et al. (2016) and Wang et al. (2018b) developed mechanistic 

models derived from binding energies of antibiotics towards target proteins from which they 

were able to theoretically identify the effective concentration of the mixtures. Wang et al. 

(2018b) also proposed equivalent findings but included ternary mixtures. Each study 

incorporated terms describing the extent to which each specific component contributed 

towards protein binding, i.e., the effective concentration. Wang et al. (2018b) further 

commented upon this, stating that such terms could be interpreted as representing the 

processes of a component passing through the cell membrane and reaching its target protein. 

Thus, the component which had a higher probability of interacting with its target protein 

could be identified depending upon the value of the coefficient attached to the term. The 

authors utilised this knowledge to enable calculation of the actual toxicity ratio – a value 

which was subsequently used to aid in determining which component had the greater 

contribution to toxicity.  

Wang et al. (2018c) further employed docking techniques in the investigation of mixture 

effects of the recently popularised antibiotic alternative - quorum sensing inhibitors (QSIs). 

However, current research remains largely focused upon simple binary mixtures of antibiotics 

– with only Wang et al. (2018b) extending examination into multi-component mixtures. It is 

further noted that existing studies have yet to integrate consideration of mixture 

toxicokinetics in a manner which would allow conclusions to be drawn regarding likely 

absolute exposure of targets to components. 

3.3.5.2.3. Molecular structure 

Structure-based descriptors (otherwise known as 2D or topological), provide simplistic, 

interpretable information about molecular structure, as well as being easy and quick to 

generate (Cherkasov et al., 2014). A variety of software is available to calculate these 

parameters, with DRAGON (previously available at: https://chm.kode-

solutions.net/pf/dragon-7-0/) used in several reported mixture studies. DRAGON software 
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calculated over 5,000 molecular descriptors, with these being organised into logical blocks. A 

range of different blocks exists, with these including, but not limited to: constitutional, ring 

descriptors, topological indices, walk and path counts, and connectivity indices. The DRAGON 

software was used to obtain descriptors in six studies identified in this analysis, as 

summarised in Table 3.3. Due to the range of chemical mixtures and species examined within, 

it is inevitable that a variety of descriptors, with varying degrees of mechanistical 

interpretability, were used. For example, Chen et al. (2019) and Zhang et al. (2019) both 

utilised edge adjacency indices derived from H-depleted molecular graphs. Both studies 

utilised toxicity data for bioluminescent bacteria, with Chen et al. (2019) investigating 

aromatic halogenated chemicals and Zhang et al. (2019) nitro-substituted benzenes and zinc. 

These parameters were successful in both instances, additionally proving their worth within 

mixtures of different mixing ratios (Zhang et al., 2019). Gaskill and Bruce (2016) further found 

that information indices were able to predict mixture toxicity. The authors developed various 

models to predict impact of polycyclic aromatic hydrocarbon mixtures towards liver cells, with 

additional topological descriptors being utilised. These topological descriptors, particularly 

with respect to planar PAHs (Polycyclic aromatic hydrocarbons), proved to be significant in 

predicting effects, highlighting the role planar characteristics and bond orientation play in 

causing toxicity. 
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Table 3.3. Descriptors calculated using DRAGON software, displayed within their respective blocks.  

Descriptor Title Block Publication 
piPC06 Molecular multiple path count of order 6 Walk and path counts Hoover et al., 

2019 
Mor12m Signal 12 / weighted by mass 3D-MoRSE descriptors Chen et al., 2019 
Mor13s Signal 13 / weighted by I-state 3D-MoRSE descriptors 
L/Bw Length-to-breadth ratio by WHIM Geometrical descriptors 
Eig08_EA(ed) Eigenvalue n. 8 from edge adjacency mat. weighted by edge degree Edge adjacency indices 
Eig09_EA(ed) Eigenvalue n. 9 from edge adjacency mat. weighted by edge degree Edge adjacency indices 
Eig09_AEA(dm) Eigenvalue n. 9 from augmented edge adjacency mat. weighted by dipole 

moment 
Edge adjacency indices 

RDF045s Radial Distribution Function – 045 / weighted by I-state RDF descriptors 
J_RG Balaban-like index from reciprocal squared geometrical matrix 3D matrix-based 

descriptors 
VE2_B(p) Average coefficient of the last eigenvector from Burden matrix weighted 

by polarisability 
2D matrix-based 
descriptors 

Zhang et al., 2019 

TIC3 Total Information Content index (neighbourhood symmetry of 3-order) Information indices 
Eig06_AEA(dm) Eigenvalue n. 6 from augmented edge adjacency mat. weighted by dipole 

moment 
Edge adjacency indices 

PJI2 2D Petitjean shape index Topological indices Kar et al., 2018 
2χν Valence connectivity index of order 2 Connectivity indices 
0χν Valence connectivity index of order 0 Connectivity indices 
RDF035m Radial Distribution Function - 035 / weighted by mass RDF descriptors Qin et al., 2018 
HATSs Leverage-weighted total index / weighted by I-state GETAWAY descriptors 
H-047 H attached to C1(sp3)/C0(sp2) Atom-centred fragments 
 Independent componentsa N/A Mwense et al., 

2006 
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3.3.5.2.4. Molecular fragments 

Fragment-based descriptors have been described as a promising method for the QSAR 

modelling of mixtures (Cherkasov et al., 2014). However, there are relatively few examples of 

their use in practice. Muratov et al. (2013), predicted combination effects of antivirals against 

poliovirus-1 through use of Simplex Representation of Molecular Structure (SiRMS) - a 

framework which enables molecular structures to be represented as a system of simplexes 

(tetratomic fragments), capable of capturing features at the topological level. Modifications 

to the approach were undertaken to enable extension for analysis of binary systems, 

generating descriptors applicable either to single components (bounded simplex), or else 

drawing elements from across both (unbounded simplex). The latter can be considered as 

structural descriptors of the mixture as a unit and as such “non-additive”.  Whilst this 

approach is highly desirable, that no other recent toxicological report has utilised this 

methodology suggests that it may only be applicable within certain cases.  

Other fragment-based descriptors were utilised by Toropova et al. (2012), who demonstrated 

the ability of the CORAL software (http://www.insilico.eu/coral) to again predict toxicity of 

binary mixtures. Molecular structures of components were represented by SMILES, using a 

disconnected approach with a marker (i.e., “.”) separating each string. Recently, Carnesecchi 

et al. (2020) further extended this approach, making use of expanded “quasi-SMILES”. In this 

case, the toxic units of each chemical in the binary mixture are incorporated. A classification 

model predicting potential for non-additivity (either synergism or non-synergism) was 

simultaneously reported. Results obtained indicated that consideration of toxic units not only 

enabled greater interpretability of the models, but also improved the statistical performance. 

In general, models developed by the CORAL software enable frequently occurring molecular 

features that cause binary mixture toxicity to be identified. However, studies thus far using 

these procedures (and SiRMS) have only been limited only to binary mixtures. 

3.3.5.2.5. Quantum chemical descriptors 

Quantum chemical descriptors are able to describe the electronic and geometric properties, 

and interactions, of molecules. Although potentially intensive as regards demands upon 

computational power and running time, they offer greater detail with respect to electronic 

effects than do traditional empirical methods (Karelson et al., 1996; Schüürmann, 2004). The 
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most commonly applied quantum chemical descriptors utilised for modelling mixture toxicity 

were the molecular orbital energies, with energy of the lowest unoccupied molecular orbital 

(𝐸6789), or slight adaptions, being routinely used. This metric accounts for the electrophilicity 

of a molecule (Schüürmann, 2004), correlated as it is to its electron affinity. Studies extended 

this parameter to multi-component mixtures (Lu et al., 2009), and the variation 𝐸6789 + 1 

(energy of the second lowest unoccupied molecular orbital), in combination with total charge 

weighted partial positive surface area (PPSA), have proven superior to previous 

hydrophobicity-dependent QSARs for non-polar narcotics (Luan et al., 2013). Additionally, the 

difference between the lowest and highest frontier molecular orbitals, i.e., 𝐸6789 − 𝐸:989, 

or vice versa, have been proven effective in mixture calculations. Wang et al. (2008) first used 

this parameter, which is able to determine the stability of the molecule, collectively within a 

traditional hydrophobicity-based model to enable better predictions of the joint toxicity of 

polar narcotics. 

In each of the aforementioned instances, orbital mixture descriptors were generated through 

integral additive means. Quantum chemical descriptors have, however, additionally found 

employment in a distinct collection of studies introduced within Section 3.3.5.1.5, under the 

heading “Single variable component”. A typical example is provided through Jin et al. (2014), 

whereby models are created considering the energy difference between molecular orbitals- 

a parameter termed the relative hardness index (𝐸:989 − 𝐸6789). Multi-pointwise 

toxicological models (i.e., approaches for mixtures predicting varying effect concentrations) 

are an under-researched area, although interestingly an additional report studying them, that 

of Su et al. (2012), did employ quantum chemical descriptors. Within the joint toxicity of 

nitroaromatics with copper at low, medium, and high concentrations was modelled. The 

results were similar to those of Jin et al. (2014), in that varying the concentrations of the 

components played a pivotal role on the joint effects within the mixture.  

Currently, the majority of literature describing use of quantum descriptors is focused 

exclusively on single mixture ratios - typically equitoxic. Realistically-encountered 

combinations of molecules are expected to deviate from this ideal, thus suggesting that a 

range of compositions would provide for stronger predictions. These studies, furthermore, 

concentrate almost exclusively upon industrial compounds – thus serving only a restricted 

area of chemical space. 
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3.3.6. Methods for model development 

A variety of statistical approaches were reported across the reviewed literature with 

regression analysis dominant. Comparatively simple to establish and interpret, regression has 

been the classical approach in QSAR modelling since its inception. It is, however, not without 

limitations, with consideration of parameter collinearity required in order to ensure that 

robust models are developed (Lo et al., 2018). As an alternative, machine learning approaches 

permit nonlinear relationships to be better modelled, which is attractive in mixture toxicity 

due to the varying nature of underlying combination effects. Two studies developed models 

using both regression and machine learning, enabling direct comparisons between the 

performance of both. Results suggested that machine learning approaches, specifically radial 

basis function neural networks, enable improvements in statistical fit (Luan et al., 2013; Wang 

et al., 2018a). Although, machine learning is a current trend in the area of in silico prediction, 

it is not without its limitations: ensuring that models are well established typically requires a 

high volume of data. Potential for overfitting must be taken into account, and difficulties in 

interpretation, owing to their black box nature, typically hinder derivation of mechanistic 

knowledge (Lo et al., 2018). 

Whilst studies incorporating exclusively either CA or IA (first generation) are considered 

beyond the scope of this review, a small quantity of second-generation models are eligible 

for inclusion on account of their integration of QSAR methodology. Each of the following 

techniques may be distinguished by the conditional adoption of CA or IA in modelling of inter-

component interactions, dependent upon the extent of similarity either in molecular 

structure or mode/mechanism of action between substances. As such, the combined toxicity 

of like compounds is determined through the principle of CA, and dissimilar through IA – with 

ultimate mixture effect being derived from the contributions of both. Mwense et al. (2004) 

introduced an approach termed INtegrated Concentration Addition-Independent action 

Model (INFCIM), whereby this similarity was determined using computed molecular 

descriptors. The following equation was employed to calculate overall toxicity: 

𝐸𝐶#,!"# = 𝜔; ∙ (𝐶𝐴) + 𝜔< ∙ (𝐼𝐴) Equation 3.3. 

 

where coefficients 𝜔;	and 𝜔< are the weightings for the contributions of CA and IA. 
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Although this initial model had no theoretical capabilities to provide predictions that would 

exceed concentration addition, the model was later revised in order to address these 

limitations (Mwense et al., 2006). Analogously, Kim et al. (2013b) developed an approach 

which incorporated both CA and IA known as a two-stage prediction model. Unlike previous 

two-stage prediction models which relied on knowledge of modes of toxic action for all 

components, the authors utilised machine learning clustering techniques to group the 

constituents – employing CA within-group (stage 1) and IA between-group (stage 2) in 

determination of absolute mixture effect. Excellent performance against realistic 

environmental mixtures was reported, highlighting the possibility of success even in the 

absence of mechanistic information. Such models, however, remain at present limited to non-

interacting mixtures. 

3.3.7. Uncertainty criteria and assessment for mixture studies 

The assessment of chemical mixtures by means of QSAR methodologies is continually 

generating greater interest. In ensuring that such work is up taken in regulatory settings, it is 

essential that potential uncertainty associated with models are defined. Cronin et al., (2019) 

recently developed a set of criteria that enabled the full assessment of QSAR models from 

conception to application, facilitating all aspects of uncertainty to be defined and scored. This 

was further expanded upon by Belfield et al. (2021), where it was demonstrated that the 

criteria could also be employed to determine fitness-for-purpose. Although these criteria 

have been developed in order to account for all potential usages of QSAR, completion of the 

present literature review has elucidated further areas of consideration specifically relevant to 

construction of QSAR models for prediction of mixture effects. As such, areas have been 

identified that can be bolstered with lessons learnt to improve the assessment of QSARs for 

mixtures. Specifically, it can be defined that these additional considerations relate to chemical 

description, descriptor calculation, and statistical performance. These are discussed below 

and reported in Table 3.4 – with accessory detail provided in Appendix II.  

Firstly, worthy of note is that within the current structure of the QSAR uncertainty criteria, 

the consideration of chemical mixtures is approached (as clearly defined under criterion 1.1b 

– “Assessment of significant impurities or mixtures”). However, unambiguous guidance ought 

to be provided for the assistance of users unfamiliar with mixture handling. To ensure that 
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scorings are assigned correctly, further information on what is to be expected is suggested 

within the comment section, as seen in Table 3.4. Not only is it vital that all components within 

mixtures are fully identifiable, but additionally that the proportion represented by each must 

be reported. Clearly, measured endpoints will be dependent upon the ratio at which mixtures 

are investigated, but such information is additionally required to enable accurate calculation 

of mixture descriptors. Omission of mixture ratios will therefore restrict external 

reproducibility. Further to this, and in a similar vein (although not discussed further in the 

present review), guidance to correct reporting techniques for substances of Unknown or 

Variable composition, Complex reaction products or Biological materials (UVCB) as detailed 

by the European Chemicals Agency (ECHA) are provided (ECHA, 2017b).   

Arguably, the most important aspect that changes from modelling single chemicals to 

mixtures is the handling of descriptors. An entire section of the original uncertainty criteria 

has been devoted to the consideration of the varieties of descriptors a user may employ (this 

being 1.3 – “Measurement and/or Estimation of Physico-Chemical Properties and Structural 

Descriptors”), yet methodologies to convert such features into mixture descriptors are 

needed. As reviewed in Section 3.3.5 many approaches are used to define mixture 

descriptors. Selection of the correct method in characterising these is not only dependent 

upon the type of descriptors chosen (such as fragment-based, compared to physicochemical), 

but additionally by the interaction effects within the mixture. Capturing such complex 

processes and concerns by updating comment guidance to existing criteria would clearly be 

insufficient; thus, an additional topic must be supplied to fulfil the need. The current structure 

of the criterion 1.3 enables all plausible descriptors to be considered, relying upon user 

discretion to evaluate only relevant features that have been employed. As such, 

supplementing a new point into this section will not alter the validation process, but instead 

extend applicability of models that may be evaluated. A further criterion 1.3d (“Calculation of 

mixture descriptors, if utilised”) is proposed that will enable the uncertainty level of mixture 

descriptors to be defined. The main aspect needed to satisfy this recommended criterion is 

that the selected approach has been derived through thorough consideration of potential 

interaction effects. Calculating these effects is a topic well studied, with a variety of methods 

alluded to in the comments for user guidance.  
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The final section that would benefit from further guidance relates to external validation. 

Within QSAR modelling, exhaustive validation is required to ensure that predictive 

performance is correctly evaluated. However, compared to that of traditional QSAR 

procedures, validation methods for mixtures require further deliberation. Mixtures present 

further challenges whereby the same components may exist inside different mixtures. 

Splitting the dataset without consideration of this fact will undoubtedly result in datapoints 

from the same mixture appearing within both training and testing sets, thus resulting in over-

optimistic estimations (Muratov et al., 2012). To combat such occurrences, various strategies 

have been developed, namely: “points out”, “mixtures out”, “compounds out”, and 

“everything out” (for detailed discussion of these, please refer to Oprisiu et al., 2012 and 

Muratov et al., 2014). Validating mixture models without consideration of these facts will 

certainly affect the legitimacy of predictions, as well as the associated uncertainty. As 

selection of appropriate validation methods is already well defined within criterion 2.2a 

(“Statement of statistical fit, performance and predictivity”), providing further guidance 

under the “comment or other information” heading will ensure that mixture strategies can 

be fully considered. 

 Table 3.4. Specific assessment points from the uncertainty criteria (previously discussed in 

Section 3.3.7 and originally presented in Cronin et al., 2019) that require further guidance for 

the assessment of mixture-based studies and their proposed updated guidance. Updates to 

text under heading “comment or other information” are displayed in italics. Please refer to 

Appendix V for presentation in context of unabridged scheme.  

ID Assessment criteria Comment or other information 
1.1b Assessment of 

significant impurities or 
mixtures 

If mixtures are being modelled, each component needs 
to be fully identified and defined with respect to 
concentration present. For substances of Unknown or 
Variable composition, Complex reaction products or 
Biological materials (UVCBs) see European Chemicals 
Agency (2017b).  

1.3d Calculation of mixture 
descriptors, if utilised 

Interaction effects can be identified through various 
methods (TU etc.) with this aiding in developing 
appropriate mixture descriptors for the model 

2.2a Statement of statistical 
fit, performance and 
predictivity 

The use of appropriate validation methods and/or 
external test sets should be demonstrated, different 
metrics may be required for different models. In regard 
to the assessment of mixtures, external validation must 
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consider more rigorous strategies such as: “points out”, 
“mixtures out”, or “compounds out” (Muratov et al., 
2012) 
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3.4. Key Findings  

The purpose of the current review was not only to identify current trends in QSAR mixture 

modelling, but also to determine whether existing modelling practices are sufficient to 

accurately address issues that mixtures present. Regardless of the source of the model or 

modelling approach, a number of commonalities can be identified. These form a general 

appraisal, or overview, of the state-of-the-art of QSAR mixture modelling: 

3.4.1. Need for QSAR models 

- Modelling is a vital approach to assess the toxicity of mixtures. It is inconceivable that all 

possible combinations of chemicals (and at varied ratios) can be experimentally 

measured. Therefore, there needs to be a much greater emphasis on modelling 

approaches for mixture toxicity. A particular direction of interest for the modelling of 

mixtures would be through the employment of graph neural networks (GNNs). Such 

methods have gained recent popularity due to their ability to learn molecular 

representations in the form of graphs bypassing the need to manually generate 

descriptors (Wang et al., 2023). Utilising GNNs to model mixtures therefore would enable 

the opportunity to incorporate molecular interactions within the model architecture 

itself, avoiding the need to generate mixture descriptors (Qin et al., 2023). 

3.4.2. Need for proper problem formulation 

- Much of the current modelling of mixture toxicity has been performed on an ad hoc basis. 

There needs to be greater organisation of these modelling studies to make them realistic 

of real-life exposures and able to address the problems associated with ensuring 

environmental and human safety. Utilising the uncertainty criteria proposed by Cronin et 

al. (2019), with guidance previously suggested, would provide a rational foundation for 

addressing such issues. 

3.4.3. Availability of data for modelling 

- This review has demonstrated the paucity of data available for mixtures. Repositories such 

as PubChem (https://pubchem.ncbi.nlm.nih.gov/), ChEMBL 

(https://www.ebi.ac.uk/chembl/), DrugBank (https://go.drugbank.com/), IPCheM 
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(https://ipchem.jrc.ec.europa.eu/) and ChemTHEATRE (https://chem-theatre.com/)  have 

been postulated to resolve this issue, yet collating a reliable dataset from such sources is 

currently unfeasible (Muratov et al., 2012). As such, gathering a larger dataset would likely 

be reliant upon literature, with the current review highlighting a breadth of publications 

containing compatible information. It is evident that not only is more data required, but 

that a more systematic means of storing, distributing and retrieving these data is also 

essential.  

3.4.4. Understanding data relevance and quality 

- There must be greater appreciation of what types of study are useful to assist in 

environmental risk assessment and will assist in the characterisation of real-life exposure 

scenarios. Linked to this is the lack of assessment of data quality, with few of the studies 

being performed to OECD Guidelines or Good Laboratory Practice. If future testing 

materialises, then there should be a greater emphasis on determining the relevance of 

experimental studies and ensuring that their quality is suitable for all purposes, including 

regulatory adoption.  

3.4.5. Identification and incorporation of interaction effects into QSAR models 

- As yet, there is no consensus on how to approach the inclusion of interaction effects, 

where they exist, into QSAR models. A better and more complete understanding is 

required of whether we need to go beyond the typical additive approach. One place 

where such knowledge could be identified and compiled is via a more extensive review 

and compilation of drug interaction effects. In addition, there could be a greater 

understanding and application of our knowledge of mechanisms of toxic action, 

particularly for acute environmental toxicities. Linked to this, there are obvious 

opportunities to incorporate knowledge and understanding from Adverse Outcome 

Pathways (AOPs) into our schemes (Cronin and Richarz, 2017). In particular, the insight 

gained from the structure of AOPs can supplement the understanding of how mixture 

components interact. This knowledge can then be used to identify specific key events of 

interest, or alternatively, provide better informed mixture approaches that are to be 

employed (Lambert, 2023; Nelms et al., 2018). 
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3.4.6. Modelling approach (descriptors and statistical methods) 

- Models identified within this review used the full range of QSAR descriptors from 

physicochemical properties to 2D and quantum chemical calculations. There is no ideal 

descriptor for use in a mixture QSAR study, but those chosen should be pragmatic and 

give credibility to the model, notably by allowing full mechanistic interpretation. Ideally 

such descriptors should be simple, unambiguous and easy to calculate. Likewise, there is 

no consensus on how descriptors can be formalised to account for the mixture 

contributions and constitution. 

- Statistical approaches applied in development of models for mixture toxicity range from 

simple regression analyses to machine learning. No ideal technique can be recommended 

at this time. It is appreciated that as the mixtures become more complex, there is likely to 

be a greater need to adopt machine learning approaches. Whilst rapid and potentially 

accurate, these typically lack transparency and interpretability, in turn hindering uptake 

and acceptance. 

- A possibility that has yet to be explored fully in terms of mixture toxicity modelling is use 

of read-across such that effects and even potency may be established from similar or 

analogous mixtures. Such approaches have seen great acceptance for single chemicals 

and are increasingly being considered for botanical substances, natural products and 

UVCBs. 

3.4.7. Towards a unified approach to model meaningful effects for realistic 

environmental and other mixtures 

- Many currently available mixture toxicity QSAR models have limited practical application 

towards realistic exposure scenarios. Despite this, they have provided a wealth of 

knowledge on which we can build new frameworks and approaches to model such 

endpoints. Given the possibilities and the appreciated challenges associated with 

modelling toxicity, there is a great need to develop a unified approach to understanding 

its application towards mixtures, alongside practical means to developing, evaluating and 

applying such models to realistic environmental exposures of relevant chemical 

combinations. 
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3.5. Conclusion 

The present review has provided a detailed analysis of the differing approaches that have 

been used throughout QSAR model development to predict the effects of mixtures. In 

general, reoccurring trends presented themselves throughout toxicological-based 

publications, in which binary mixtures at a single concentration ratio have been examined in 

an additive manner. In addition, molecular descriptors have commonly been employed to 

describe the mixtures using molar weightings, and resulting QSAR models are traditionally 

developed using regression analysis. The overwhelming majority of research on mixtures has 

been conducted for environmental effects, while other fields, for instance human health, 

have been understudied. It is expected that to increase the uptake of QSAR predictions, 

greater respect for potential interaction effects should be considered, although firstly, it is 

imperative that current modelling practices are to be extended enabling the assessment of 

realistic mixture scenarios. In general, research up to the current time has provided an 

excellent foundation, where future work that addresses current limitations may not only 

improve uptake of predictions, but additionally increase our knowledge in the field of mixture 

studies. Expanding upon this, the viability of the uncertainty criteria to evaluate QSAR models 

for the prediction of mixtures has been shown. Inclusion of supplementary considerations 

have demonstrated the ease and flexibility of the criteria to be able to capture the additional 

areas that a mixture study presents enabling a thorough assessment. Whilst the current study 

has proven the ability of the uncertainty criteria (introduced in Chapter 2) to be extended to 

various types of data, it has also highlighted that there is a need for more complex modelling 

procedures, such as AI; this is the subject of the next chapter. 
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Chapter 4. Good practice for machine learning methods in 

predictive toxicology 

Preface: 

This work has been published in Belfield SJ et al., (2023). Guidance for good practice in the 

application of machine learning in development of toxicological quantitative structure-

activity relationships (QSARs). PLoS ONE. 18: e0282924. https://doi.org/10.1371/journal. 

pone.0282924 

This was a multi-author paper. Belfield led the work and analysis in this study as recognised 

in the CRediT authorship contribution statement: Conceptualisation, Data Curation, 

Investigation, Methodology, Visualisation, Writing – Original Draft. 

4.1. Introduction 

The use of computational approaches to predict adverse effects in toxicology, to support 

chemical safety assessment, has become standard practice. Quantitative structure-activity 

relationships (QSARs) are one of the most well-established methods within the field of in silico 

toxicology and, as such, have been used extensively to identify hazard and predict potency 

(Cherkasov et al., 2014). QSAR models attempt to formalise the relationship between 

descriptors calculated from chemical structures or physico-chemical properties and the 

desired endpoint (Madden et al., 2020). Traditional QSAR modelling was predominantly based 

around regression analysis, however as far back as the 1980s a variety of other multivariate 

statistical approaches were being applied (Wold and Dunn, 1982), with the uptake of neural 

networks in the early 1990s (Rose et al., 1991). The past decade has seen a much greater shift 

towards machine learning (ML) strategies to develop models in predictive toxicology. There 

is no one reason for the increased use of ML, but increased availability of data, more easily 

accessible informatics and statistics tools, as well as greater computational power have all 

contributed. 

ML methods originated in the early to mid-20th century from mathematical considerations of 

data matrices. More recently, ML approaches are considered to be a subset of artificial 

intelligence (AI), which broadly refers to computational systems that are able to mimic human 
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intelligence (Robinson and Akins, 2021). Since their conception, ML techniques have been 

developed within the field of computer science and have been identified as one of the most 

vital and rapidly evolving areas in chemoinformatics (Varnek and Baskin, 2012). Emerging 

from pattern recognition studies and the concept of computational learning, ML algorithms 

can learn and adapt without being explicitly programmed to do so, thus, in turn, improving 

the accuracy of generated predictions (Barros et al., 2020). ML methods can be broadly 

separated into two classes, either supervised or unsupervised. In this regard the majority of 

QSAR applications apply supervised learning approaches, where the data are labelled such 

that both the chemical information and investigated property are known, in contrast to 

unsupervised techniques in which patterns are identified from unlabelled data (Gini and 

Zanoli, 2020; Lo et al., 2018). Many ML approaches have been applied, with the main 

strategies in QSAR reviewed by Lo et al. (2018), ML methods that have been employed in 

QSAR are summarised in Figure 4.1, and described in more detail in Section 4.2. Of these 

approaches, it is deep learning (DL) that has captured the imagination and has been identified 

as one of the most exciting ML strategies of the past few years, with these utilising multiple 

layers of interconnected neural networks to self-train (Robinson and Akins, 2021; Muratov et 

al., 2020). DL has widespread applications in many areas of research, such as computer vision, 

speech recognition among many others (Hochreiter et al., 2018; Mater and Coote, 2019). 

Although the concepts of DL have been around for many years, applications to QSAR mainly 

began after the approaches were employed to win the Merck Molecular Activity Challenge in 

2012 (Merck, 2012). As a result of the team’s usage of DL to outperform other methods in the 

QSAR challenge, a renewed interest in the approaches was observed (Muratov et al., 2020; 

Dahl et al., 2014). 
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Figure 4.1. General approaches encompassed within the umbrella of AI and ML that are 

relevant to predictive toxicology. 

There are many potential uses for in silico approaches to predict toxicity. These range from 

the rapid screening of large chemical libraries and inventories to the identification of potential 

hazards contributing to risk assessment of individual compounds by either providing a 

replacement for a test or contributing to a weight of evidence. A key aspect of the use of 

QSAR models to predict toxicity is the acceptance of the predictions for a particular purpose, 

with different characteristics of QSAR models being associated with different uses (Belfield et 

al., 2021). Regarding the legal interpretation of legislation such as EU Regulation on 

Registration, Evaluation, Authorisation (restriction) of Chemicals (REACH), there is a strict 

requirement that the prediction should provide the same information as the test it is replacing 

(the so-called process of adaptation of a testing requirement). To achieve this, amongst other 

criteria, the model must be shown to be “scientifically valid”. This is currently achieved using 

approaches to evaluate QSARs, such as the OECD Principles for the Validation of QSARs 

(OECD, 2007). However, ML models of toxicity can be difficult to evaluate with these 

principles as they are perceived to lack: 1) a defined and transparent algorithm as compared 
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to regression analysis (OECD Principle 2), 2) mechanistic interpretability (OECD Principle 5) 

and 3) conclusive documentation. Specific issues regarding the application of ML to predict 

toxicity for regulatory use also includes overfitting (Ying, 2019). These may have a significant 

impact on the acceptance of models and their predictions.  

To further support the growth of ML in the field of QSAR, considerations of the challenges 

faced need to be addressed. Recent work on uncertainty assessment of QSARs, which is based 

around the OECD QSAR Principles, could provide a different insight into ML models for toxicity 

prediction (Cronin et al., 2019). The use of uncertainty was intended to be applied to provide 

assessment schemes to enable authors/users to understand strengths and limitations of 

predictive toxicology models. Although the current scheme provides applicability for a vast 

range of QSAR modelling practices, additional supplemental guidance for the specific 

consideration of ML methods will undoubtedly provide greater confidence in such inherently 

“difficult to interpret” models.  

The aim of this investigation was to identify good practice in ML methods for predictive 

toxicology with a view to improving their acceptance. To achieve this, two toxicity datasets 

with potency data of varying complexity and quality were modelled. Modelling was 

undertaken using differing ML algorithms that had been produced with state-of-the-art 

optimisation and interpretability techniques. Good practice for ML modelling in predictive 

toxicology was identified following evaluation of the models, supplemented through 

consideration of the key uncertainties which were characterised according to, and thus in turn 

extending, the scheme published by Cronin et al. (2019).  

4.2. Methods 

4.2.1. Data curation 

Two data sets were assessed in this analysis. With regard to QSAR modelling, the datasets 

represent relatively large compilations with one for a cytotoxicity endpoint in an aquatic 

ciliated protozoan and the second acute rodent toxicity.  
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4.2.1.1. Inhibition of growth to Tetrahymena pyriformis dataset 

The Tetrahymena pyriformis dataset was harvested from Ruusmann and Maran (2013). This 

publication collated and curated data relating specifically to the acute toxicity of compounds 

towards the aquatic ciliated protozoan Tetrahymena pyriformis as performed and reported in 

a plethora of publications by Prof Terry Schultz, University of Tennessee, Knoxville TN, USA (a 

general description of the method is provided by Schultz (1997)). Explicitly, the toxicity 

endpoint used was Tetrahymena pyriformis population growth inhibition, expressed as the 

inverse logarithm on the millimolar concentration that caused 50% growth inhibition after 40 

hours (log 1/IGC50). In total, data for 2,072 substances were retrieved from Ruusmann and 

Maran (2013). These data were reduced to 1,995 substances following the removal of 

duplicates. Lastly, SMILES for the compounds were obtained and canonicalised using the 

OpenBabel software (v. 2.4.0; O’Boyle et al., 2011; http://openbabel.org), with salts and 

secondary fragments excluded. 

4.2.1.2. Rat oral acute toxicity dataset 

8,448 substances with 50% acute (24 hour) oral lethality data (LD50) (expressed in 

mmol/kgbw), originally sourced from the NTP Interagency Centre for the Evaluation of 

Alternative Toxicological Methods (NICEATM) and United States Environmental Protection 

Agency (US EPA), and presented in Gadaleta et al. (2019) were utilised. This number of 

substances was then reduced to 8,186 substances following removal of duplicates, mixtures, 

polymers, inorganics and organometallics. SMILES were obtained and canonicalised through 

OpenBabel, with salts and secondary fragments being excluded. For the purpose of modelling, 

LD50 values were logarithmically transformed.  

4.2.2. Molecular descriptors 

4.2.2.1. Calculation of molecular descriptors 

Physico-chemical and structural descriptors for the chemicals in both datasets were acquired 

using the PaDEL software (v. 2.21; http://www.yapcwsoft.com/dd/padeldescriptor/; Yap, 

2011). In total, 1,441 descriptors were calculated that represented 1D and 2D structure. 

Redundant descriptors were removed that were uninformative. Descriptors that contained 

missing outputs were removed firstly, followed by features of low-variance (<0.01) using 
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VarianceThreshold from the feature selection function in the Python sci-kit learn library. 

Subsets of the original dataset were then curated through the exclusion of collinear 

descriptors, with descriptors that surpassed a specific pairwise correlation coefficient being 

removed. Pairwise correlation coefficient values used to limit collinearity and create the 

subsets were: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3. The descriptor of the pair that reported the 

weakest correlation to the target was omitted. Lastly, when modelling using non-decision tree 

algorithms, feature values were standardised. This was achieved using the StandardScaler 

from the preprocessing function in the Python sci-kit learn library, by removing the mean and 

scaling to unit variance. 

4.2.3. Modelling algorithms 

This analysis allowed for the comparison of a variety of well-used ML QSAR modelling 

techniques ranging from decision tree-based algorithms to neural networks. Regression 

models (mathematical methods for the prediction of a continuous outcome) for both datasets 

were built using six ML algorithms in Python (v. 3.7.6; https://www.python.org/). Random 

Forest, Support Vector Machine, and K-Nearest Neighbours were developed using the sci-kit 

learn library (v. 0.22.1; Pedregosa et al., 2011), Extreme Gradient Boosting with the package 

xgboost (v. 1.2.1; Chen and Guestrin, 2016), and Neural Networks and Deep Neural Networks 

by the open-source libraries keras (v. 2.4.0; Chollet, 2015) and tensorflow (v. 2.3.1; Abadi et 

al., 2015). The optimiser Adam (Kingma and Ba, 2014) and activation function Rectified Linear 

Units (ReLU) (Agarap, 2018) were employed within Neural Networks. Each individual method 

is introduced briefly below.  

4.2.3.1. Random Forest 

A Random Forest (RF) is an ensemble learning model that is based upon decision trees 

(Breiman, 2001). Decision trees work by allocation of data into nodes through conditional 

rules. Beginning at the root node, data are then partitioned into internal nodes that are 

continually split (until variance is sufficiently reduced) concluding in leaf nodes where the 

outcome is determined. Within RF, each decision tree is constructed independently from a 

random subset of available features. Once all trees are trained, predictions are achieved 

through the aggregation of the outputs of each individual decision tree, with these being 

grown through bootstrap sampling. Dissimilar and uncorrelated decision trees are produced 
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through the random nature of the algorithm achieving superior robustness, comparatively, to 

single decision trees (Polishchuk et al., 2009). 

4.2.3.2. Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is a progression of gradient boosting techniques. Unlike 

RF, gradient boosting combines a series of shallow trees sequentially that are tasked with 

correcting the errors produced by their preceding trees (Sheridan et al., 2016). XGBoost 

improves upon the standard gradient boosting framework through innovations in 

regularisation, parallel processing, and tree-pruning techniques. Such developments enable 

loss functions to be reduced and model complexity to be penalised – achieved in particular 

through the incorporation of L1 and L2 regularisation that punishes large coefficients (Chen 

and Guestrin, 2016). 

4.2.3.3. Support Vector Machine 

A Support Vector Machine (SVM) is a technique that fits a hyperplane that best separates 

data points from two different classes, with the hyperplane being positioned at the point that 

maximises the margin, which refers to the distance between the nearest data points from 

each class and the hyperplane itself (Cortes and Vapnik, 1995). To enable nonlinear data to 

be dealt with, SVMs utilise what is known as a kernel function. Such kernel functions (e.g., 

linear, polynomial, and radial basis function) allow for the linear separation of nonlinear data 

through the mapping of input data into higher-dimensional spaces (Ivancius, 2007). Whilst 

this method was initially developed for classification problems, the same concepts can be 

applied in regression tasks. In such scenarios, the objective instead is to identify a function 

that best fits the data, whilst reducing the error within a specified margin. 

4.2.3.4. K-Nearest Neighbours 

K-Nearest Neighbours (KNN) is a simple distance learning approach where the activity value 

of a target object is classified dependent upon its nearest neighbours in the training set. The 

space between neighbours is measured by an appropriate distance metric which calculates 

the similarity. The target is then classified to the group that the majority of neighbours belong 

to (Zheng and Tropsha, 2000; Gunturi et al., 2008). 
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4.2.3.4. Neural Network 

Neural Networks (NNs) are a machine learning method that were inspired by the function and 

structure of the human brain. NNs are comprised of a collection of interconnected nodes, 

otherwise referred as neurons or units, consisting of three essential components: node 

character, network topology, and learning rules (Darnag et al., 2017). Specifically, node 

character defines how data are processed by the node, with this including information 

regarding the quantity of input and outputs and their respective weights associated with the 

node, as well as the activation function utilised. Next, the network topology refers to how 

nodes are organised, with these typically being structured into layers including an input layer, 

hidden layer(s), and an output layer. Lastly, learning rules are utilised to train the network 

itself, with these processes being responsible for how the weights are initialised and 

subsequently adjusted throughout training (Zou et al., 2008). Error correction methods are 

among the most commonly employed learning approaches, with these typically consisting of 

a back-propagation algorithm that aims to minimise the loss function through the adjustment 

of weights and biases (Freeman and Skapura, 1991). 

4.2.3.5. Deep Neural Network 

Deep Neural Networks (DNNs) are conceptually similar to NNs, although contain multiple 

hidden layers between the input and output. The resultant architecture enables the raw 

inputs, that can be thought of as level representations, to be transformed into higher-level 

concepts. For example, in image classification lower layers may identify the edges from a pixel 

array, whilst higher layers could combine such information into familiar objects, such as facial 

features. Therefore, aspects of the input that are important are amplified within the higher 

levels, and so maximising the accuracy (LeCun et al., 2015; Mansouri et al., 2019). 

4.2.4. Model optimisation 

Hyperparameters (parameter values that are set prior to training that govern the learning 

process) of all six ML algorithms were optimised for the reduced descriptor subset of the T. 

pyriformis dataset, TH_90 (See Section 4.3.1 for subset selection rationale and Table 4.1 for 

further information). Definitions of all the hyperparameters used, as seen in Table 4.1, can be 

found in the official documentation for each algorithm (https://scikitL-

learn.org/stable/supervised_learning.html; 
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https://xgboost.readthedocs.io/en/stable/parameter.html). Hyperparameters for each 

algorithm were initially optimised manually, followed by the randomised search algorithm 

from the model selection function in sci-kit learn, and finally by the Bayesian optimisation 

software optuna (v.  2.2.0; Akiba et al., 2019). Implementation of all strategies and resulting 

optimum hyperparameters was evaluated using cross-validation with metrics including the 

mean squared error (MSE) and coefficient of determination (R2) additionally sourced from sci-

kit learn. The range of hyperparameter values used within each algorithm are provided in 

Table 4.1. A manual search was conducted first, where each hyperparameter was evaluated 

in a stepwise manner. Hyperparameter spaces that resulted in significant performance drop-

offs were used to update the ranges inputted into the autonomous approaches. A total of 50 

trials was conducted during both automated strategies, with Bayesian optimisation being 

evaluated through error minimisation. Graphical plots of hyperparameter ranges evaluated 

by cross-validation measures for each strategy were produced and visually inspected to 

combat overfitting.
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Table 4.1. Information relating to hyperparameters applicable in each algorithm. Title of parameter is listed, alongside the default quantities 

present within the adopted training software. Value ranges examined during processes of manual and automated optimisation (where 

appropriate) are listed – as are their preferred quantities, as identified through each tuning approach. 

 

Modelling 
approach Hyperparameter Default 

quantities 

Quantity ranges examined Optimised quantities 

In manual  
optimisation 

In automated 
optimisation Manual 

Automated 
Random 
search Optuna 

RF 

max_depth Automaticb 1 - 50 10 - 30 15 30 27 
n_estimators 100 50 - 500 100 - 500 490 490 499 
min_samples_splita 2 2 - 20 - 3 - - 
min_samples_leafa 1 1 - 100 - 1 - - 
max_leaf_nodesa Automaticb 2 - 202 - Automatic - - 
max_samplesa Automaticb 0.1 - 0.99 - 0.99 - - 

SVM 
gamma scaled 0.0001 - 0.01 0.0012 - 0.003 0.00168 0.0012 0.00121 
Cc 1 0.5 - 50 1 - 10 5 8.58 9.39 
Epsilon 0.1 0.001 - 1 0.001 - 0.02 0.418 0.018 0.00852 

k-NN 
n_neighbors 5 1 - 20 1 - 15 6 3 3 
p 2 1 - 5 1 - 3 1 1 1 

XGB 

eta 0.3 0.005 - 0.5 0.1 - 0.15 0.107 0.1 0.103 
min_child_weight 1 1 - 20 1 - 10 7 4 2 
max_depth 6 1 - 50 2 - 8 4 4 5 
gamma 0 0 - 3 0 - 0.3 0.103 0.1 0.00145 
n_estimators 100 50 - 500 100 - 250 250 250 205 
subsample 1 0.1 - 1 0.8 - 1 1 0.8 0.816 
colsample_bytree 1 0.1 - 1 0.5 - 1 0.6 0.9 0.962 
max_delta_stepa 0 0 - 10 - 0 - - 
lambdaa 1 0 - 1 - 0.778 - - 
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alphaa 0 0 - 10 - 3 - - 

NNe 

neurons 512 50 - 1000 50 - 1000 400 550 601 
dropout_rate 0 0 - 0.5 0 - 0.5 0.1 0.2 0.444 
epochs 100 50 - 500 50 - 500 100 250 236 
batch_sizef 128 32 - 512 32 - 512 64 64 197 
learn_rate 0.001 0.0001 - 0.003 0.0001 - 0.001 0.001 0.0003 0.000376 

DNNg 

neurons (hidden layer 1) 512 50 - 1000 50 - 1000 750 650 944 
neurons (hidden layer 2)h 512 50 - 1000 50 - 1000 750 50 784 
dropout_rate (hidden layer 
1) 0 0 - 0.5 0 - 0.5 0.2 0.3 0.161 

dropout_rate (hidden layer 
2)h 0 0 - 0.5 0 - 0.5 0.2 0.4 0.494 

epochs 100 50 - 500 50 - 500 100 500 498 
batch_sizef 128 32 - 512 32 - 512 64 32 75 
learn_rate 0.001 0.0001 - 0.003 0.0001 - 0.001 0.001 0.0003 0.000321 

a. Parameters not subject to automated optimisation. 

b. Value of parameter defined by algorithm should the term “None” be entered (please refer to official scikit-learn documentation, linked within 

Section 2.5). 

c. Within automated procedure, range 1 - 10 applicable to randomised search only (1 - 20 instead examined in Optuna). 

d. Value of parameter defined automatically by algorithm (please refer to official scikit-learn documentation, linked within Section 2.5). 

e. Incorporates single hidden layer. 

f. Within automated procedure, range 32 - 512 applicable to randomised search only (10 - 500 instead examined in Optuna). 

g. Incorporates two hidden layers. 

h. For each iteration of manual optimisation (only), parameter value adopted at layer 2 is identical to that corresponding in layer 1 (within 

automated protocols, the two are each fully independent).
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4.2.5. Statistical performance and model validation 

Model performance was evaluated using the metrics R2, MSE, RMSE and MAE, which are 

defined in Table 4.2. These metrics were sourced from the model selection function in sci-kit 

learn. Cross-validation of results and processes was employed to limit overfitting. A number 

of folds (K) 2 to 25 were individually assessed for each ML algorithm (prior to optimisation, 

i.e., using default hyperparameter values) on the TH_90 subset. Cross-validated scorings with 

increasing number of folds were then visually inspected for each algorithm to identify the K 

value that best balanced the bias-variance trade-off. This optimal K value was then used in all 

future modelling procedures. 

Table 4.2. Definition of error metrics used to evaluate models, where 𝑦= is the predicted value 

of 𝑦, and 𝑦> is the mean value of 𝑦. 

Evaluation metric Abbreviation Equation 
Coefficient of determination R2 

1 −
∑(𝑦" − 𝑦=)=

∑(𝑦" − 𝑦>)=
 

Mean Squared Error MSE 1
𝑁$

(𝑦" − 𝑦=)=
>

"01

 

Root Mean Squared Error RMSE 

@
1
𝑁$

(𝑦" − 𝑦=)=
>

"01

 

Mean Absolute Error MAE 1
𝑁$

|𝑦" − 𝑦=|
>

"01

 

 

4.2.6. Model interpretation 

Interpretations of how each ML algorithm related the descriptors to the modelled endpoint 

was determined through feature importance methods, identifying the contributions of 

descriptors to the outcome. Descriptors that had the strongest impact on model performance 

were then used to infer mechanistic rationales; thus, providing an insight into how each 

model arrived at their respective outcomes. These inspections were carried out by the 

methods of permutation feature importance from the permutation importance function in 

sci-kit learn, and the SHAP (SHapley Additive exPlanations) method implemented using the 

shap Python package (v. 0.39.0; Lundberg and Lee, 2017). With regards to SHAP, both decision 
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tree-models were determined using the model-dependent Tree SHAP algorithm, whilst the 

model-independent approach Kernel SHAP was employed for the remaining ML models. 

4.2.6.1. Permutation feature importance 

Permutation feature importance is a model inspection technique that is model agnostic, thus 

enabling the calculation of descriptor importance for all ML algorithms. In this method, a 

single feature is randomly shuffled with the decrease in model performance observed being 

defined as the permutation feature importance (Breiman, 2001). In other words, the 

relationship between the feature and outcome are separated, therefore the reduction in 

performance can be indicative of the feature dependence upon the model. 

4.2.6.2. Shapley additive explanations 

SHapley Additive exPlanations (SHAP) is a recently developed method at the cutting-edge of 

model interpretability originating from the Shapley values of cooperative game theory 

(Lundberg and Lee, 2017). Shapley values provide a unique method to attribute a model’s 

outputs towards feature contribution, and therefore guarantees the satisfaction of the three 

important properties: local accuracy, missingness, and consistency (Rodríguez-Pérez and 

Bajorath, 2020). SHAP values are assigned for each feature for individual predictions, with 

these representing their respective influence. These values can be calculated by removing a 

particular feature and comparing the performance difference of the model to when it was 

present (Wojtuch et al., 2021). A positive SHAP value indicates that the specific feature 

increases the model’s output, with the opposite being true for a negative value. As such, the 

greater the absolute SHAP value the more impactful that feature is upon the model prediction 

(Ding et al., 2021). 

Kernel SHAP is an extension of Local Interpretable Model-agnostic Explanations (LIME), with 

this approach aiming to train local surrogate models to explain individual predictions (Ribeiro 

et al., 2016). Specifically, feature contributions are approximated as Shapley values, whilst 

the locality of an instance to be explained is defined by LIME. A weighted linear regression 

model can then be trained as an explanation model, where the coefficients are the SHAP 

values determining feature importance (Rodríguez-Pérez and Bajorath, 2020). Comparatively, 

Tree SHAP is a variant of SHAP explicitly for decision tree-based models which boast a 
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significantly reduce computation time, additionally employing a polynomial time algorithm 

that enables exact Shapley values to be calculated (Molnar, 2019; Lundberg et al., 2020).  

4.2.7. Evaluation of uncertainty scheme towards ML methods  

The scheme for the evaluation of QSARs models developed by Cronin et al. (2019), comprising 

of 49 uncertainty assessment criteria, was applied to the models of each ML method. 

Furthermore, criteria within the scheme that related specifically to ML development and 

understanding were identified. The ability of such criteria to effectively evaluate all aspects 

of uncertainty of the developed ML models was then addressed. Criteria were grouped into 

three categories specifically important for ML assessment – reproducibility, interpretability, 

and generalisation. Scorings for all criteria within each category were determined for ML 

models as a whole. Following the evaluation, supplementary guidance for each criterion was 

then proposed. It must be stressed that such suggestions do not aim to discredit the ability of 

the scheme for the evaluation of QSAR models in its current state to evaluate ML models, 

instead they provide recommendations for further analysis that ensures all aspects of model 

uncertainty are understood by both the developer and user. 

4.3. Results and Discussion 

This investigation has developed a series of ML models for two toxicity datasets, with a view 

to evaluating the models in terms of statistical performance and interpretability. The models 

have also been evaluated in terms of their associated uncertainties. From the evaluation of 

the models, criteria for good practice of ML modelling in predictive toxicology are reported in 

Section 4.4.  

4.3.1. Analysis of datasets  

The ML models were developed initially on two datasets. The datasets differ in terms of their 

size, coverage, consistency and probable quality.  

The Tetrahymena dataset was curated by Ruusmann and Maran (2013) following a rigorous 

workflow ensuring correctness of data and so minimising errors present. Furthermore, the 

quality of the original data themselves has been reported to be highly reliable, utilising a 

single cell assay, following standardised procedures, and performed solely in one laboratory 
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with experimental variability considered to be between 0.2 - 0.5 log units (Hewitt et al., 2011). 

The dataset has been developed on a mechanistic basis with a strong emphasis on the 

narcosis and reactive modes of action. It contains few, or no, specifically acting compounds 

such as pesticides and pharmaceuticals.  

In comparison, the LD50 dataset has been compiled from a wide array of data sources, where 

in part due to the scale of the dataset, irrelevant, noisy, and redundant data are still present, 

these issues are discussed in detail for rat acute oral toxicity data by Karmaus et al. (2022). 

Further, Karmaus quantified a margin of uncertainty of ±0.24 log units (mg/kg) for discrete in 

vivo rat acute oral LD50. The LD50 dataset covers a broad range of chemical classes, including 

specifically acting substances, such as pesticides, although there is limited knowledge on the 

modes of action within the data set.  

This inherent difference in quality of data modelled (i.e., the associated error for each 

datapoint) is strongly correlated to the performance of the ML algorithms as reported below, 

confirming the essential requirement of data cleaning and preparation before modelling 

(Cocu et al., 2008). 

4.3.2. Descriptor selection  

Over 1,000 descriptors were calculated very rapidly in this study, as is common with most ML 

models for toxicity prediction. It is known that descriptor selection can have an effect on 

model performance, with too many descriptors potentially introducing noise into a dataset 

and/or masking the influence of important descriptors (Ghafourian and Cronin, 2005). The 

descriptor selection process initially eliminated descriptors that contained no or little 

information or were otherwise redundant. This identified 936 significant descriptors for the 

Tetrahymena dataset, and 1,087 descriptors for the LD50 dataset, the datasets are available 

on GitHub (https://github.com/LJMU-Chemoinformatics/Best-Practice-Supplementary). The 

data were further reduced into seven individual subsets developed following stricter 

exclusion of descriptors based upon collinearity. Identifiers for each subset were labelled with 

either TH or LD, referring to either the Tetrahymena or rat acute datasets respectively, 

followed by the suffix of either ‘Full’ or a numerical value. ‘Full’ indicates that the subset has 

undergone no collinear descriptor removal, whilst a numerical value references the 



   
 

92 
 

percentage threshold at which collinear descriptors were removed for that particular set. 

Table 4.3 provides the number of descriptors contained within each subset. 

Table 4.3. Algorithm performance presented by cross-validated R2 Test (k = 10) using default 

ML algorithm hyperparameters for each reduced descriptor subset for both the Tetrahymena 

and LD50 datasets. 

Subset Number of 
Descriptors 

R2 Test 
RF SVM KNN XGBoost NN DNN 

Tetrahymena 
TH_Full 936 0.751 0.758 0.681 0.757 0.767 0.800 
TH_90 447 0.750 0.746 0.660 0.778 0.792 0.806 
TH_80 256 0.748 0.742 0.652 0.776 0.779 0.802 
TH_70 150 0.740 0.726 0.618 0.758 0.748 0.781 
TH_60 101 0.726 0.716 0.613 0.748 0.731 0.768 
TH_50 69 0.722 0.720 0.625 0.748 0.745 0.767 
TH_40 35 0.719 0.700 0.609 0.725 0.709 0.732 
TH_30 18 0.600 0.552 0.513 0.585 0.528 0.569 

LD50 
LD_Full 1087 0.567 0.559 0.511 0.549 0.517 0.583 
LD_90 546 0.563 0.562 0.508 0.546 0.507 0.583 
LD_80 353 0.567 0.565 0.517 0.538 0.502 0.578 
LD_70 231 0.563 0.556 0.508 0.537 0.492 0.577 
LD_60 141 0.564 0.547 0.506 0.530 0.475 0.565 
LD_50 98 0.542 0.519 0.482 0.520 0.444 0.544 
LD_40 59 0.504 0.450 0.435 0.467 0.370 0.470 
LD_30 30 0.381 0.316 0.304 0.349 0.281 0.290 

 

The performance of each modelling algorithm trained on the full datasets, as well as the seven 

subsets, for both Tetrahymena and LD50 are also reported in Table 4.3. The general results 

from the analysis demonstrate that in all cases models for the Tetrahymena dataset 

outperformed those for the LD50 dataset. Furthermore, specifically focusing upon the 

individual algorithms, it was found that the highest performing models for both datasets were 

produced using DNN, while the poorest performing with KNN. As demonstrated in Figure 4.2 

for both datasets, the performance of all models increases dependent upon the number of 

descriptors available to be modelled. However, this growth plateaus once the number of 

descriptors passes 200, and there is no gain in including further descriptors. Although the 
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trends observed between the two datasets remain the same, prominent differences in 

performance separate the results. Such notable differences can be accredited to the contrast 

in quality of both datasets from their respective sources.  

In the case of the Tetrahymena dataset, optimal performance of RF, SVM, and KNN was 

reported at TH_Full, while XGBoost, NN, and DNN peaked at TH_90 (collinearity 

threshold=>0.9). Similar results were achieved for the LD50 dataset where optimal 

performance for all algorithms can be observed where more descriptors are used, while the 

plateauing of model performance is also seen. 
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Figure 4.2. Performance of the ML methods for the Tetrahymena and LD50 datasets of each 

reduced descriptor subset.   

With regard to the selection of descriptors, calculation of collinearity between sets of 

descriptors with the pairwise correlation coefficient is a standard approach, yet the decision 

of which descriptor to remove from the pair may cause difficulty. Removal of the descriptors 

with least correlation towards the output is the most logical approach. However, the potential 

to remove descriptors that individually are not as statistically relevant to the outcome, but 

have a greater impact when modelling utilising the entire dataset, may still occur (Dormann 

et al., 2013). 

As can be seen in Figure 4.2, irrespective of the dataset used, DNN gave the greatest 

predictive performance and KNN the poorest, and most of the other algorithms produced 

similar results. The NN models showed differential performance, with NN models of the 

Tetrahymena dataset demonstrating strong performance for all subsets (see Table 4.3) 

irrespective of whether shallow or deep networks were created in comparison to other 

algorithms. However, this trend was not seen for the LD50 dataset, where the performance 

of the shallow NN was as poor as the worst performing algorithm, KNN, while DNN still 

remained as the optimal ML algorithm. Due to the additional hidden layer and nodes present 

in the DNN, it is possible that complex and more variable data, such as the LD50 dataset, can 

undergo further combinations and transformations as a result of the depth provided; thus, 

translating to greater performance in comparison to shallow networks (Winkler and Le, 2017). 

The ability of ML algorithms to handle large amounts of data with little feature selection is 

evident. For instance, the results demonstrated within the subsets where no removal of 

collinear descriptors has occurred (i.e., TH_Full and LD_Full), similar performance to those 

models with feature selection. However, inclusion of redundant descriptors in the sets that 

provide no contribution to model performance is impractical and may even serve to hinder 

interpretability. A certain degree of feature selection is therefore likely to be beneficial, often 

leading to improvements on prediction accuracy, although rigorous selection procedures 

inevitably will introduce errors – where irrelevant descriptors are selected while omitting 

descriptors that are relevant (Khan and Roy, 2018; Hawkins, 2004). In order to draw more 

detailed conclusions about the modelling approaches the TH_90 dataset was selected for 
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model optimisation. This dataset has excluded features with greater than 0.9 collinearity and 

demonstrated strong performance with all ML methods. 

4.3.3. Evaluation of cross-validation approaches 

Cross-validation is an essential tool in the development of all QSAR models for toxicity 

prediction (Gramatica, 2007), and for ML modelling in particular. As part of the cross-

validation of ML models, an analysis of the number of folds (i.e., how many smaller sets the 

original dataset has been split into) was also undertaken. Folds ranging from 2 to 25 were 

investigated with each ML algorithm. Figure 4.3 shows the R2 against the number of folds.  

For all ML methods, cross-validation demonstrated that the performance of all models was 

poorer with a low number of folds i.e., up to five. When more than five folds were utilised, 

the performance of all algorithms improved and approached the average observed. Since the 

initial folds are considered in the mean R2 score, the score is skewed slightly low, hence the 

latter results generally performed slightly better than the mean. The largest difference that 

can be noted from increasing the number of folds is the variation, as denoted by the blue bars 

in Figure 4.3, between each rising significantly.
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Figure 4.3. Sensitivity analysis of cross-validation for each algorithm dependent upon number of folds. Error bars are indicated in blue. 
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Splitting a dataset into folds needs to satisfy two essential criteria, these being that the 

evaluation set is large enough so that randomness in the prediction assessment is accounted 

for and that the diversity of the full set is reflected in the reduced sample size. Achieving this 

requires careful balancing of the conflicting directions (Zhang and Yang, 2015). The results 

from this study indicate that 10-fold (i.e., k = 10) validation is optimal for the assessment of 

the performance of all ML models, as shown by the plateauing of performance and relatively 

low variance in Figure 4.3. Ten-fold cross-validation is known to provide a strong middle 

ground, with not only demonstrating low variance across all algorithms, but also being 

commonly employed in literature due to its traditionally statistically unbiased results 

(Vakharia and Gujar, 2019). Thus, confirming that the results conform to the trends of existing 

knowledge, ten folds were selected to be used throughout the study as the means of cross-

validation. 

4.3.4. Parameter optimisation 

Optimisation of model hyperparameters was undertaken using three different methods, with 

default values providing a baseline for performance. Firstly, the individual parameters were 

explored manually, followed by randomised search, and concluded with a Bayesian approach. 

The complexity of each method increases in comparison to the previous, although the time 

required, and expert judgment reduces. The performance of each algorithm with 

hyperparameters identified from the various approaches are reported in Table 4.4. Worthy 

of note, even though precautionary efforts to limit the effects of overfitting were employed 

(i.e., cross-validation) results reported within Table 4.4 demonstrate that the majority of 

models almost perfectly replicated the training set suggesting overfitting has occurred. Whilst 

further efforts to reduce overfitting could be employed, such as decreasing model complexity, 

the main focus of this investigation is upon the parameter optimisation procedures. 

Table 4.4. Cross-validated statistical performance (k = 10) of each algorithm using optimal 

parameters identified from each approach upon the TH_90 subset. 

Approach Statistical 
Performance 

Model 
RF SVM KNN XGBoost NN DNN 

Default 

R2 Train 0.964 0.902 0.782 1.000 0.953 0.968 
R2 Test 0.750 0.746 0.660 0.778 0.792 0.806 
MSE 0.271 0.276 0.368 0.241 0.225 0.209 
RMSE 0.521 0.526 0.606 0.490 0.475 0.458 
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MAE 0.378 0.363 0.441 0.354 0.339 0.317 

Manual 

R2 Train 0.962 0.974 0.787 0.974 0.963 0.967 
R2 Test 0.753 0.794 0.694 0.800 0.785 0.816 
MSE 0.268 0.223 0.332 0.216 0.234 0.199 
RMSE 0.518 0.472 0.576 0.465 0.483 0.446 
MAE 0.376 0.326 0.416 0.335 0.329 0.312 

Random 
Search 

R2 Train 0.966 0.973 0.845 0.986 0.981 0.987 
R2 Test 0.753 0.804 0.696 0.808 0.800 0.822 
MSE 0.268 0.213 0.328 0.208 0.217 0.193 
RMSE 0.517 0.461 0.573 0.456 0.466 0.440 
MAE 0.375 0.319 0.410 0.326 0.320 0.306 

Optuna 

R2 Train 0.966 0.977 0.845 0.995 0.968 0.992 
R2 Test 0.753 0.804 0.696 0.811 0.809 0.829 
MSE 0.268 0.213 0.328 0.205 0.208 0.186 
RMSE 0.517 0.461 0.573 0.453 0.456 0.431 
MAE 0.375 0.319 0.410 0.324 0.314 0.301 

 

The results of the hyperparameter optimisation demonstrate that approaches which utilise 

more computational dependencies reported notably stronger performances. Although, it can 

be observed that algorithms which were tuned on a lower number of hyperparameters, such 

as RF and KNN, benefitted less than others due to the lower quantity of parameter 

combinations. On the other hand, algorithms that require a larger quantity of 

hyperparameter tuning can be seen as benefiting from such mathematically-informed 

approaches such as Bayesian, where the number of combinations increases exponentially. 

Overall, the general result for all algorithms demonstrates that Bayesian optimisation 

approaches reported the strongest performance, whilst also enabling reduced computational 

times and greater interpretability; as such, input values obtained through this procedure were 

selected to represent the optimal values for all ML algorithms. Further information regarding 

the optimisation procedure can be found in Appendix IV. 

4.3.5. Feature importance 

Providing some understanding of the mechanistic basis of a QSAR model for predictive 

toxicology is crucial to not only provide confidence, but additionally demonstrate quality 

through interpretability. Descriptors utilised within the model should therefore reflect the 

mechanisms by which toxicity is brought about. Although this may be a relatively simple 

process where there are few descriptors, such as in linear regression, current ML algorithms 
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are able to incorporate a large number of features. Therefore, without integrating features 

known to support mechanistic justification, reporting potential mechanistic drivers may be 

unfeasible. Identification of potential mechanistic relevance therefore requires 

understanding of which features are providing the greatest value to each algorithm. Hence, 

gathering this information requires the calculation of the importance of features. 

4.3.5.1. Permutation feature importance 

Permutation feature importance randomly shuffles the values of a single descriptor whilst 

monitoring the difference in model performance. Thus, the importance of the feature can be 

determined dependent upon the change in predictive accuracy (Breiman, 2001). Due to the 

feature importance rankings provided being sensitive to model parametrisation, 

identification of descriptors of greatest importance was conducted post-development. Figure 

4.4 shows the ten highest scoring descriptors for each algorithm on the TH_90 dataset as 

identified through implementation of the permutation feature importance function in sci-kit 

learn. The findings demonstrate that both ensemble methods equally reported the Burden 

Modified Eigenvalue, SpMax2_Bhm (largest absolute eigenvalue of burden modified matrix – 

n 2/weighted by relative mass), to be the most influential descriptors during the modelling 

process. Additionally, the five highest ranking descriptors ZMC1, MW, XLogP, and GATS3m, 

are additionally present in both RF and XGBoost, with the ordering remaining nearly identical. 

Investigations into the remaining four models show that electrotopological state indices are 

routinely present within the top rankings. Accordingly, electronic and topological information 

regarding each chemical is therefore crucial to model performance. Although the plots 

reported in Figure 4.4 are useful to provide an insight into the behaviour of models, little is 

known about how each feature affects toxicity. Furthermore, a recent report by Hooker and 

Mentch (2019) advocated against traditional permutation importance methods, finding that 

they can give rise to misleading results particularly while dealing with correlated features. 

Therefore, to unearth stronger results, associated with greater confidence for interpretability, 

an additional approach defined as Shapley Additive exPlanations (SHAP) was undertaken.
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Figure 4.4. Plots of the ten greatest mean decreases in accuracy (measured by mean squared error) for the descriptors in each optimised ML 

model on the TH_90 subset as identified by their permutation feature importance score. 
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4.3.5.2. Shapley Additive exPlanations 

Given the inherent issues with permutation feature importance scores when dealing with 

correlated features, an alternative approach was undertaken to provide results with greater 

confidence for the interpretation of descriptor importance. Shapley Additive exPlanations 

(SHAP) is a unified theory, where several algorithms (defined as Local Interpretable Model-

agnostic Explanations (LIME), DeepLIFT, layer-wise relevance propagation, classic Shapley 

value estimation, Shapley sampling values, and Quantitative input influence) that have 

previously been used to interpret ML models have been combined (Lundberg and Lee, 2017). 

Individual predictions can be examined through SHAP, where impacts from each feature on 

the predicted value are processed as an additive combination (Carlsson et al., 2020). 

Calculated SHAP values are established from Shapley values that originate from coalitional 

game theory. This method enables the pay-out (i.e., the prediction) to be fairly distributed 

among the players (descriptors); thus, allowing the contribution each presents to be 

quantified (Molnar, 2019).
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Figure 4.5. Beeswarm plots of the ten highest ranked descriptors and their impact distributions for each ML algorithm based upon their 

importance as determined via SHAP values. 
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Ranking of the highest performing descriptors for each model as determined by SHAP is 

illustrated in Figure 4.5. Each individual point within the plots corresponds to a single 

prediction and the impact that feature had upon the model’s prediction based upon the SHAP 

value; thus, the relationship between the feature and output can also be determined. 

Rankings of each descriptor can be determined by the order, where the highest descriptor 

refers to the most impactful on the model. Both ensemble models, and to a certain extent 

the DNN model, reported similar results to that obtained through permutation feature 

importance, whilst all other algorithms discovered alternative descriptors to be of the highest 

importance. As seen in Figure 4.5, features of greatest importance for both ensemble 

methods are clearly defined with each descriptor impacting the outcome. On the other hand, 

although being identified as of the greatest importance for non-ensemble algorithms (i.e., 

SVM, KNN, NN, and DNN), features were only typically utilised in a handful of predictions with 

the majority having no impact. Due to descriptors not always being employed in predictions 

for non-ensemble methods, it was hypothesised that modelling on a reduced set of 

descriptors would inherently provide greater clarity.



   
 

107 
 

 

 



   
 

108 
 

 
Figure 4.6. Beeswarm plots of the ten highest ranked descriptors and their impact on distributions for each ML algorithm based upon their 

importance as determined via SHAP values using the dataset TH_50. 
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Figure 4.6 illustrates the ranking of the top ten features as determined by SHAP, although in 

this scenario the subset TH_50 that contains only 69 descriptors in comparison to the original 

447 was modelled. By reducing the number of descriptors, aiding in the limitation of 

overfitting, clear distributions of each descriptor can be observed – with features 

demonstrating a greater engagement in all predictions. As such, as a trade-off for prediction 

accuracy (see Section 4.3.1), reducing the quantity of descriptors used to generate models 

has been shown to improve the interpretability of the model. Contrary to Figure 4.5, results 

from Figure 4.6 illustrate that each ML model’s most impactful features agree with one 

another. Particularly, the extended topochemical atom descriptor ETA_Alpha (sum of alpha 

values of all non-hydrogen vertices of a molecule) in all cases was found to have the greatest 

impact, where increasing this feature was continually found to be related to increasing 

toxicity. Similarly, nHBAcc (number of hydrogen bond acceptors) which measures hydrogen 

bonding capacity, was continually identified as a top contributing descriptor. Mechanistically, 

ETA_Alpha is associated with hydrophobicity, specifically characterising the average 

molecular polarisability, which historically has been demonstrated to be fundamental in the 

prediction of toxicities (Zhu et al., 2020; Zhao et al., 2010; Cronin and Dearden, 1995). 

Likewise, nHBAcc can also be shown to reflect the polarisability of compounds, although most 

notably it describes the hydrogen bonding ability, with greater number of acceptors present 

resulting in an increase in toxicity (Wang et al., 2019b). 

The dichotomy between the reporting of feature importance and mechanistic interpretation 

is very striking in this example. The techniques applied allow for significant descriptors to be 

identified, but mechanistic relevance requires knowledge of the mechanisms and why such 

descriptors are related to mechanisms of action. The descriptors noted above are likely to be 

associated with hydrophobicity, which is widely acknowledged as being a key determinant in 

toxic potency to Tetrahymena (Cronin, 2006; Enoch et al., 2008). However, none of these 

descriptors are likely to capture excess toxicity brought about by electrophilic reactivity 

(Schultz et al., 2002).  

4.3.6. Assessment of the uncertainty of ML models 

Identifying and characterising the uncertainty associated with QSARs for toxicity prediction 

will assist demonstrating their acceptability for a particular purpose (Belfield et al., 2021; 
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Sahlin, 2013). The uncertainty criteria developed by Cronin et al. (2019) were applied to ML 

models. The uncertainty criteria were grouped into ten components that summarise the main 

characteristics of a QSAR relating to its creation, characterisation, and application. Using 

knowledge gained throughout the study and development of six ML models, the current state 

of the ten components and their relevance to ML models can therefore be addressed. ML 

modelling presents a range of challenges that may potentially impact each of the phases of 

QSAR development, which may not currently be fully considered by these criteria. Notably, 

throughout the development of models, three distinctive areas which required careful 

attention were encountered, these being: reproducibility, interpretability, and generalisation. 

Each of these aspects is likely to affect multiple components within the current criteria and 

need to be addressed to ensure validity.  

4.3.6.1. Reproducibility 

At the heart of the validity and reliability of any experimental process is the assurance that 

the entire experimental procedure can be repeated, with both results and conclusions 

replicable (Pineau et al., 2020). However, detailed reporting of methods and results is often 

ignored within ML and AI, with such issues only recently gaining attention in broader uses 

(Gundersen, 2020). ML presents its own set of unique challenges that need to be fulfilled to 

achieve reproducibility. By their nature, ML models contain a large number of parameters 

that are learnt or manually decided upon by the modeller, and that even if left at default for 

each algorithm may vary between users dependent upon versions of software libraries being 

employed (Beam et al., 2021). In addition, intrinsic to many ML models is the use of 

randomness during training, especially for neural networks where weights are assigned 

stochastically (Scardapane and Wang, 2017), which without being controlled through the use 

of a pseudorandom number generator will result in models that are impossible to replicate. 

Thus, to develop a ML QSAR model more information is required to be reported to ensure 

reproducibility which, without incorporation into consideration by the uncertainty scheme, 

may lead to an incorrect evaluation of uncertainty. 

To ensure reproducibility, developed models need to have been sufficiently documented and 

reported, requiring the definition of all the components that made up the QSAR to be stated. 

For non-ML QSARs, provision of descriptors, statistical values, and algorithms utilised is 

sufficient, although specifically with respect to the models currently developed 
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hyperparameter values and ranges would be also required. Withholding such information will 

undoubtedly result in models that are irreproducible by another user (Sugimura and Hartl, 

2018), and therefore this needs to be assessed within this criterion.  

Confirming that all ML models can be reproduced effectively, provision of the original source 

code, software (including version), and computational hardware is required. Assessment of 

uncertainty related to reproducing predictions was not scored in this assessment – due to no 

attempt to reproduce the models being made within the current work, yet the inclusion of 

relevant information present in the manuscript would certainly enable this to be done, for 

instance the recalculation of the predictions for the training and test sets. The models and 

predictions could be replicated by implementing the random seed to initialise the random 

number generator. Due to the randomness associated with many ML algorithms, neglecting 

to include a random seed would undoubtedly make it impossible to replicate results 

(Sugimura and Hartl, 2018).  

4.3.6.2. Interpretability 

Sound interpretation of results obtained from QSAR models is by no means a novel concept, 

with mechanistic interpretations making up one of the five original OECD Principles for the 

Validation of QSARs for Regulatory Use (OECD, 2007). The term mechanistic interpretation 

refers to directly defining the causality between the chemicals and endpoint (Thoreau, 2016). 

Explainable performance is essential for model trustworthiness, where the behaviour of ML 

algorithms may be accepted and understood by humans (Wu et al., 2021). Certain ML 

methods, such as decision trees and KNN, which researchers have used exhaustively, may 

already be classified as interpretable, where the logical algorithm structure enables feature 

importance to be deduced (Molnar, 2019). However, many ML methods are inherently 

labelled “black box”, where the inner workings are hidden to the user resulting in an 

opaqueness in the understanding on how the system makes predictions (Carvalho et al., 

2019). Interpretation of ML techniques may be differentiated into two types of categories 

being either of global or local interpretability. Global interpretability ensures that a user can 

understand how a model works through inspection of the layout and parameters, thereby 

illuminating the inner workings and so increasing transparency. Whereas local interpretability 

considers the impact each feature has on a specific prediction, thus in a toxicological 

assessment chemical features can be causally related towards the outcome (Du et al., 2019). 
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Hence, for a QSAR model that has been developed using a ML technique, both concepts of 

interpretability need to be addressed. 

In the current study, a range of algorithms was employed which inherently have varying levels 

of interpretability – for example RF is far easier to interpret than NNs. However, to enable all 

ML models to be interpreted, feature importance methods have been employed. Through 

this, descriptors have been scored where the greatest contributors towards the endpoints are 

defined, with these being causally related towards the outputs. However, worthy of note was 

the difficultly of interpreting non-ensemble algorithms, where the inclusion of a large 

descriptor pool overshadowed the relative importance of descriptors leading to greater 

complexity in interpreting the results. For these specific algorithms, only when the descriptor 

pool had been sufficiently reduced, could clear interpretations be gathered. As such, this 

criterion was only scored as to contain moderate uncertainty, as each ML model can be 

reasonably interpreted externally by another human. However, a clear drawback in 

interpreting models following this methodology is that only the highest scoring features are 

being related to the endpoints, whereas descriptors of lower importance are ignored. 

Unlike a traditional QSAR model, vast numbers of descriptors may be used within a ML 

algorithm, therefore relating all of these to the potential mechanisms of action would be 

impractical. As such, through the usage of feature importance methods, descriptors that 

demonstrated the greatest importance to the model were mechanistically related towards 

the endpoint. Thus, in this sense, these descriptors can be thought of as mechanistic drivers. 

Although, as previously mentioned, this does not account for all the descriptors used 

throughout the study, and instead only the most impactful features. As a result of only a 

fraction of the features employed in the model reporting some mechanistic rationale, only 

moderate uncertainty can be accredited to this criterion. In general, it must be noted that 

these methods of identifying descriptor importance specifically enable the model 

interpretability to be defined, which in turn can be used to relate to a predefined mechanistic 

rationale and support mechanistic understandings. Yet a strong advantage of such methods 

is in dealing with scenarios where no mechanistic knowledge is available, for instance global 

datasets, and so enabling mechanistic rationales to be postulated through the information on 

descriptors’ importance.  
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4.3.6.3. Generalisation 

The final aspect of ML that requires greater consideration from the uncertainty criteria is the 

ability of the model to generalise well to unseen data, i.e., how well the model can adapt and 

predict unseen data outside of the training set. A fundamental flaw within supervised ML is 

overfitting, where the model has been trained too well on training data resulting in noise and 

specifics of the set being memorised (Jabbar and Khan, 2014). Therefore, overfitting limits the 

model’s ability to generalise well on both the observed data within the training set and 

unseen data in the testing set. Large deviations of the predictive scorings between the training 

and testing set are a common indication that a model suffers from weak generalisation, 

leading to the validity of external predictions to be questioned (Dexter et al., 2020). Although 

the causes of overfitting may be complex, the sources of the phenomenon were classified 

into three types by Ying (2019). Firstly, through the learning of noise, or irrelevant 

information, within the training set, whereby specific trends within the training data later act 

as a basis for predictions. Next, dependent upon complexity of the hypothesis (i.e., the 

compromise between variance and bias) such that when a model contains too many features, 

the accuracy may increase at the sacrifice of lower average consistency due to the increase in 

model complexity. Lastly from the usage of multiple comparison procedures, which are 

ubiquitous to induction and AI algorithms, where scores from an evaluation function are 

compared for multiple items with the maximum score being selected. However, items that 

achieve the highest scoring are not guaranteed to improve model performance and may even 

reduce accuracy. The complex issue of capturing all areas of a ML algorithm that result in 

overfitting models may not be accurately reported, therefore issues of uncertainty within 

performance will undoubtedly be raised. 

4.3.6.4. Extending the uncertainty assessment criteria to better evaluate ML models 

Development of QSAR models through the use of ML techniques inherently presents its own 

set of additional issues that affect the validity and uncertainty of predictions. The assessment 

of these challenges has demonstrated that the current uncertainty scheme and related 

criteria require further development to ensure that ML models can be evaluated accurately. 

As shown in Figure 4.7, these concerns have widespread implications upon all phases of QSAR 

development, affecting a multitude of components. Therefore, to ensure that the assessment 

criteria are suitable for a variety of modelling approaches, extension, and improvement of the 



   
 

114 
 

relevant assessment points, as reported in Table 4.5, are suggested. To achieve this, 

knowledge gained throughout development of ML algorithms and literature has been 

incorporated into the supplementary information of the criteria. 

Figure 4.7. Summary of the additional considerations for ML and AI (shown in red text) and 

their respective components of QSAR uncertainty that they affect. 

Concerns of reproducibility and generalisation are well considered within the current criteria 

and may only require small amendments to enable all potential areas of uncertainty to be 

captured. With regards to reproducible ML, much research has been conducted into this 

topic, leading to the development of reporting schemes from many disciplines (Pineau et al., 

2020; Heil et al., 2021; McDermott et al., 2019). The knowledge provided from these reporting 

formats is universally relevant, hence has been incorporated within the applicable criteria to 

fill gaps that have been overlooked. Similarly, the occurrence of overfitting is a well-

documented drawback of ML methods and, as such, a breadth of information to avoid such 

phenomena occurring have been suggested (Ying, 2019; Dietterich, 1995; Ghojogh and 

Crowley, 2019). Declaration and employment of the various methods (i.e., cross-validation, 

regularisation, and early-stopping) that are globally or locally available to ML models should 

therefore be encouraged, not only as a means of good modelling practice but additionally to 

reduce uncertainty. 

Interpretability is the final aspect that has been updated, although considerable discussion is 

still required with varying opinions regarding the quality of interpretation techniques. 

Comparatively, the interpretability of ML and traditional QSAR modelling practices are 
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undoubtedly equivocal. Linear regression models are by their nature model-based 

techniques, which are heavily reliant upon a priori statistical statements (Gao et al., 2018). 

Specifically, the underlying process that results in the observations is modelled, and so 

explanatory power is inherently possessed as well as predictive ability (Guha, 2008). Whereas 

ML algorithms can be defined as model-free methods, which react to the intrinsic data 

characteristics without being restricted to prior knowledge and are limited to fewer 

assumptions (Gao et al., 2018). A plethora of explanation methods and techniques are 

available for ML interpretability, with these initially being separated into two categories: 

model-specific and model-agnostic. Model-specific interpretations are limited to specific 

classes and can be interpreted from the inner workings of the algorithm. Whereas model-

agnostic techniques are applicable to any model and are applied post hoc (Molnar, 2019). 

Interpretability methods can also be separated dependent upon the results that they 

provided, being either: feature summary, model internals, data point, or surrogate 

intrinsically interpretable model (Carvalho et al., 2019). However, for QSAR models these 

approaches are typically separated into either feature-based or structural interpretation. 

Whereby definition, feature-based strategies achieve interpretability through the importance 

of individual descriptors, in comparison to structural interpretations that directly outline 

particular chemical motifs (Matveieva and Polishchuk, 2021). As can be seen, the field of 

interpretation techniques and methodology within ML is vast, and the identification and 

application of all such methods within the realms of QSARs is out of the scope of the current 

work. However, it is worthy of note that such interpretation strategies are yet to demonstrate 

their applicability to interpretation of QSAR models with no suitable benchmarks currently 

being available (Matveieva and Polishchuk, 2021). In addition, feature-based approaches may 

only provide an overview without sufficiently detailing the structure-activity relationship that 

has been encoded by the model (Guha, 2008). Despite this, with the inevitable rise of ML 

approaches within the field of QSAR research into the improvement of interpretability is 

certainly expected to follow. Thus, it is essential that such techniques are to be appreciated 

within the uncertainty criteria that enable ML models to be explained from which mechanistic 

rationales can be derived. 

Table 4.5. List of those assessment criteria for individual areas of uncertainty, variability or 

bias within toxicity-prediction QSAR (as presented by Cronin et al., 2019) updated in light of 
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consideration of concerns specific to application of ML. Each is grouped in accordance with 

its relevance either to the reproducibility, interpretability or generalisability of models. 

Updates to text under heading “comment or other information” are displayed in italics. Please 

refer to Appendix V for presentation in context of unabridged scheme. 

ID Assessment criteria* Comment or other information 
Reproducibility  

2.1a 
Definition and description 
of model (related to 
assessment criterion 3.1a) 

All terms e.g., descriptors, statistical values, 
hyperparameters and ranges, algorithms should be 
defined. The QMRF is a possible reporting format. 

2.1c Transparency of the model 
A transparent model can be reproduced, and the 
model output is (reasonably) interpretable, i.e., user 
can understand the causation of a prediction. 

3.1a 
Reproducibility of the 
model or QSAR (related to 
assessment criterion 2.1a) 

To determine reproducibility, the model is assumed 
to be transparent (see assessment criterion 2.1c). 
Source code should be provided, with computational 
infrastructure detailed. 

3.1b Reproducibility of the 
QSAR prediction 

To obtain reproducible predictions, all parameters 
(descriptors) need to be available and controllable. 
Seeds to control randomisation for certain algorithms 
need to be specified. 
Interpretability 

2.1c As above As above 

2.4c Relevance of descriptors to 
mechanism of action/AOP 

Feature importance techniques should be used for 
algorithms that employ large quantities of 
descriptors, relating highest scoring descriptors to the 
mechanism. 
Generalisability 

1.5a 

How appropriate is the 
modelling approach for 
the endpoint and to deal 
with the complexity/non-
linearity of the data 

This requires a pragmatic and subjective assessment, 
e.g., a data set based on one mechanism with a single 
overriding descriptor can be modelled more simply 
than a more complex scenario. If applicable, both the 
optimisation procedure and the sufficiency of 
resulting approach complexity should also be 
considered. 

2.2a 
Statement of statistical fit, 
performance and 
predictivity 

The use of appropriate validation methods, 
resampling techniques, and/or external test sets 
should be demonstrated, different metrics may be 
required for different models. 

2.2b 

Interpretation of statistical 
fit etc with respect to 
biological measurement 
error and variability 

The use of strategies to limit overfitting (e.g., early-
stopping, pruning, regularisation) may be required for 
certain algorithms. 
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4.4. Good practice in the ML modelling of toxicity 

The evaluation of ML for toxicity prediction, and their associated uncertainties, has enabled 

the identification of areas of good practice that are required in order to improve the 

acceptability of ML models, particularly to support chemical safety assessment. 

• The biological data to be modelled should be evaluated in terms of their quality, 

consistency, coverage of mechanisms etc.  

• The outcome of the evaluation of the biological data to be modelled should be used 

to assist in problem formulation, particularly to provide realistic (and not-overly 

optimistic) performance targets. 

• Well performed feature selection is required to reduce noise and collinearity. Fewer 

descriptors are also likely to assist in interpretability. If feature selection is not 

included, then some rationale should be stated.  

• Descriptors must be appropriate to model the effect, i.e., they must relate in some 

way to the putative mechanisms of action. It is accepted for large datasets, full 

definition of mechanisms of action is unlikely, but the model and descriptors utilised 

should be justified and interpreted as best possible.  

• Once modelling is complete, use all approaches to evaluate models including model 

performance, interpretability and uncertainties. 

• 10-fold splitting, or thereabouts, is optimal for cross validation. Beneath this, model 

performance tends to be understated – a greater number, by contrast, adds little 

value. 

• Relate model performance to data quality i.e., to ensure the model does not overfit 

the data beyond its limitations.  

• Hyperparameters tuned during the optimisation procedure should be declared, with 

the approach undertaken being sufficient for the quantity of hyperparameters. 

• Appropriate algorithm selection may be based upon performance metrics, although 

complexity and interpretability should be considered depending upon the intended 

purpose. 

• Interpretability of the model is crucial, important descriptors can be identified – SHAP 

is a useful approach for doing this.  
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• Identification of important descriptors is not the same as mechanistic interpretability 

which requires the direct relationship between a descriptor and how the molecule 

causes toxicity to be demonstrated. 

• Provide full documentation of the model and demonstrate the good practice 

described above.
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Chapter 5. Making in silico predictive models for toxicology FAIR 

Preface: 

This work has been published in: Cronin et al., (2023). Making in silico predictive models for 

toxicology FAIR. Regul. Toxicol. Pharmacol. 140: 105385. doi: 10.1016/j.yrtph.2023.105385 

This was a multi-author paper. Belfield co-authored the work and contributed to the 

analysis in this study as recognised in the CRediT authorship contribution statement: 

Conceptualization; Writing - Review & Editing. 

Belfield carried out further analysis to extend the study described in the paper; this 

additional work is presented in Section 5.5. 

5.1. Introduction 

The FAIR (Findable, Accessible, Interoperable, Reusable) principles have been universally 

accepted for sharing data and have become fundamental to data storage since their 

publication in 2016 (Wilkinson et al., 2016). They are based around good practice for data 

management and stewardship relating to scientific data, such that data may be discovered 

and re-used for downstream investigations.  The aim is to enshrine good practice of data 

capture, curation and storage such that they may be available for future researchers thus 

saving time and resources (Briggs et al., 2021). Regarding chemical safety assessment, access 

to data relating to the intrinsic hazards of a chemical, as well as its exposure, is highly 

desirable. As such, areas such as toxicology are increasingly investigating the FAIR principles 

to make historic and newly determined data more readily available. There are numerous 

reasons to capture all these data, not only to avoid unnecessary repetition of animal tests and 

support the implementation of the 3Rs principles (Russell and Burch, 1959), but also due to 

the cost of testing and possible legal reasons for the avoidance of testing (e.g., including, but 

not limited to, EU Regulation, EC N°1223/2009 (European Commission, 2009b)). 

Chemical safety assessment also relies increasingly on computational modelling. Predictive 

models in computational toxicology are applied for a variety of purposes in approaches such 

as Next Generation Risk Assessment (NGRA) and Integrated Approaches to Testing and 

Assessment (IATA). The models are frequently used to fill data gaps where information may 
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be missing, i.e., a test has not been performed, as well as to provide lines of evidence to 

support an overall weight of evidence for a particular decision (Mahony et al., 2020). There 

are a great variety of endpoints and properties that may be predicted, ranging from physico-

chemical properties to the prediction of toxicological effects themselves (e.g., regulatory 

endpoints) or mechanistic information (e.g., binding to a receptor) as well as properties 

relating to internal exposure such as Absorption, Distribution, Metabolism and Excretion 

(ADME).  

There are a very broad range of predictive models that require consideration. These are often 

based around a form of quantitative structure-activity relationship (QSAR) model to predict 

physico-chemical and ADME properties and toxicological effects. More detailed 

physiologically-based kinetic (PBK) and related models are also available to describe internal 

exposure. Whilst QSAR was founded in transparent regression analysis models in the 1960s, 

there is now an enormous diversity to the modelling approaches applied (Madden et al., 

2020). This study will focus on “knowledge-based” methods that may support chemical safety 

assessment. In this context, this implies that the methods are characterised by the fact that 

they start from a defined piece of knowledge (for example a series of compounds of known 

biological properties) from which an empirical model (a set of rules that describe a regularity 

between the properties of the objects) is derived. Such methods have common elements 

(e.g., a training set of compounds, a computational algorithm, predictive quality parameters) 

and may be used in QSAR or PBK modelling. These may incorporate a variety of computational 

algorithms from regression analysis to machine learning approaches. Thus, for the purposes 

of this study and defining the FAIR principles in the toxicological context, the term “in silico 

predictive model” is used; this is assumed to be any knowledge-based computational 

algorithm that will assist with the prediction of properties relating to chemical safety 

assessment. Further detail on the components of predictive models for toxicology is given in 

Section 5.1.1. 

The total number of published, or publicly available, QSARs, PBK and other computational 

models that could support chemical safety assessment is unknown; a conservative estimate 

would be 10,000+ models. Likewise, the vast majority of endpoints and chemistries for which 

QSARs have been developed are currently only sparsely and heterogeneously documented, 

and not easily searchable. This makes the task of finding a usable model for a particular 
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purpose very difficult. There has been a concomitant growth in the use of software 

programmes which are freely or commercially available. The reality is that we may be missing 

out on the opportunity to use potentially valid and useful models, simply due to their lack of 

accessibility and findability (Worth, 2020). In addition, there is often very poor documentation 

of existing models, and the existing documentation often contains errors, such that even 

when a QSAR may be found, it may not be possible to reproduce it (Patel et al., 2018; Piir et 

al., 2018), a problem being particularly noted in the artificial intelligence community (Knight, 

2022).  

The aim of this chapter was to set out a vision for the full diversity of in silico toxicology models 

that may be suitable for chemical risk assessment to be FAIR. This was done by assessing the 

requirements for making predictive models FAIR in in silico toxicology, considering the current 

initiatives to share such models, and how the FAIR principles that are currently aligned for 

data sharing could be adapted for predictive models. Application of the FAIR principles to 

previously developed models was also investigated. However, this study did not intend to 

provide an in-depth methodology of how FAIRification of models may be achieved, but to 

highlight the topic and make recommendations for the steps forward to be made to increase 

the availability and sharing of predictive models.  

5.1.1. Anatomy of an in silico predictive model for toxicology 

For the purposes of this study, a more detailed description of what we understand by a 

“model” is provided in this sub-section. In particular, it is important to identify the model 

components and analyse how they are generated, in addition to whom may own their 

intellectual property. Once this is established, it becomes easier to determine which 

components of a model can be shared and how this may be achieved. 

Knowledge-based, predictive models result from training a certain “modelling engine” with a 

collection of objects, often called a “training series” in the QSAR field. The training results in 

the identification of regularities between properties and annotations of the training series, 

which are captured in a collection of rules, mathematical functions, or a mixture of both. The 

outputs are analysed to interpret and understand the relationships between the object 

properties and the annotations. Characteristic of the models is the expectation of their ability 

to be applied to new objects so that they can predict annotations from the object properties. 
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In this generic description of models, the modelling engine describes a component of a 

predictive workflow, including all the algorithms required to reduce the object properties and 

annotations to a collection of mathematical variables (descriptors), normalise and scale them 

appropriately and apply machine learning algorithms. This workflow should have a software 

implementation to be functional and thus be able to build a model from a training series and 

predict object annotations for new objects, starting from a previously built model. In this 

description, we therefore identify the constitutive elements of the models which must be 

considered in this study: 

- The training series 

- The modelling engine 

- The model  

This general description is shown schematically in Figure 5.1 using a simple illustration. In 

Figure 5.1 a toxicity value is related by regression analysis to a single molecular property, 

namely the logarithm of the octanol-water partition coefficient (log P), a property that is 

strongly related to toxicity (Cronin, 2006). In reality, the types of models that may be created 

could comprise one of many different “modelling engines” with potentially very high 

dimensionality in property space. The derived model can be used to predict an unknown 

toxicity for a new compound providing the property value(s) are provided. The latter function, 

i.e., use of the model, is utilised by the end-user, as noted below this is now often wrapped 

in a workflow for ease of application. Figure 5.1 also confirms that the modelling engine 

cannot produce predictions on its own before it is applied to a training series to produce a 

model. Moreover, the same modelling engine can be used to train an unlimited number of 

models.  
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Figure 5.1. A schematic representation of a simple in silico predictive model for toxicity, 

namely a regression analysis on one descriptor (logarithm of the octanol-water partition 

coefficient (log P)), showing the interrelationship between the components of the model and 

the workflows for training the model and making predictions (the data for the new chemical 

may flow either into the analysis, e.g. for normalisation, or the model itself).  

As a consequence of the complexity of what comprises a model, the model can be shared in 

different ways. For example, a modelling engine connected to a collection of models can be 

made available online, thus allowing users to predict the annotations of new compounds. This 

shared model does not require any access to be given to the model itself, which is only visible 

via the modelling engine. Moreover, access to the modelling engine can be limited to using 

pre-built models for prediction or allowing other functionalities, such as retraining existing 

models or developing new ones. Examples of this method are online modelling servers 

including oCHEM (Sushko et al., 2011) or the QSAR DB (Ruusmann et al., 2015). 

Other means of model sharing include the distribution of the pre-built models in 

computational formats that locally installed instances of modelling engines can use (the so-

called workflow in Figure 5.1). This method requires access to the modelling engines, ideally 

as open source. Examples of this method are models distributed as KNIME workflows 

(Steinmetz et al., 2015) or models developed using Flame (Pastor et al., 2021). 

Regarding ownership of the model and intellectual property rights, it is also essential to 

consider the model components. Model developers own the results of the modelling, i.e. the 



   
 

124 
 

model itself. When sharing models using an online server, the model owner can limit access 

to the prediction functionality on a per-model basis. When a proprietary modelling engine is 

used for model building, the modeller owns the resulting model even if the use of these 

models for carrying out a prediction could require access rights to the prediction functionality 

of the modelling engine.  

5.2. Need for FAIR in silico predictive models for toxicology  

In silico predictive models in toxicology are typically built on data for chemicals (with defined 

structure) adding value by creation of predictive capability. The data may represent any 

aspect of chemical safety assessment, but mainly are based on the endpoints needed to make 

a safety assessment decision, e.g., the endpoint required for a regulatory submission. The 

numbers of compounds used to train the model may vary from as few as 5-10, up to the 1000s 

or even more. As such, a number of different types of modelling algorithms have been 

applied, with machine learning approaches being seen as the solution to the largest data 

matrices. The models are based on the properties, or calculated structural descriptors, of 

molecules that should, in theory at least, be responsible for the biological effect and, where 

assessed, potency (Madden et al., 2020; Cronin et al., 2022). As noted above, this study 

concentrated on knowledge-based models.  

There are many uses for in silico models in chemical safety assessment, ranging from the rapid 

screening of toxicity in chemical libraries through to acting as surrogates for tests in regulatory 

submissions. For the latter, protocols have been established to provide means to evaluate a 

model with a view to making predictions from them acceptable for a particular purpose, e.g., 

the OECD Principles for the Validation of (Q)SARs (OECD, 2007) and criteria for the 

characterisation of uncertainties (Cronin et al., 2019). These principles have enabled 

frameworks to capture QSAR models – notable being the QSAR Model Reporting Format 

(QMRF) (Worth, 2010). However, there are no standardised means or requirement to share 

the models. The current lack of model sharing policies constitutes a clear argument for 

advancing towards the definition of a FAIR models’ policy.  

It is clear that making models FAIR will assist in the capture, discovery and sharing of QSAR 

and PBK models and numerous other approaches. It also provides an opportunity to develop 

and standardise the documentation of models. In addition, making models FAIR will support 
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the independent verification of models which will, in turn, improve trust in models. This will 

allow for greater use of models to make predictions and encourage global harmonisation of 

models and modelling approaches. It will also ensure greater reproducibility of models, the 

lack of which has been highlighted as a fundamental issue (Patel et al., 2018; Piir et al., 2018), 

enabling the replication or re-use of data. Progress in toxicology is already underway with 

efforts to standardise approaches and improve collaboration (Martens et al., 2021). Likewise, 

there has been recent progress in the FAIR Principles for Research Software, the so-called 

FAIR4RS principles (Chue Hong et al., 2022). There will be a mutual benefit in aligning the FAIR 

principles for in silico models for toxicology with the FAIR4RS principles.  

It is not only essential that researchers can find models easily and efficiently, but also to 

support regulatory submissions from modellers. With regard to regulatory submission, the 

IMI2 eTRANSAFE (Enhancing TRANslational SAFEty Assessment through Integrative 

Knowledge Management) project, building on the foundations of the IMI1 eTOX (Integrating 

bioinformatics and chemoinformatics approaches for the development of expert systems 

allowing the in silico prediction of toxicity) project, has developed a variety of in silico models 

to support the safety assessment of pharmaceuticals (Pognan et al., 2021), including a 

framework for a cooperative development of predictive models and their usage (Pastor et al., 

2021). Previous work in these projects has developed a scheme to demonstrate verification 

of models and reproducibility of predictions (Hewitt et al., 2015). Such a scheme, to provide 

evidence that a model is FAIR, will subsequently increase confidence in the models and their 

predictions, and in particular regarding the use of predictions in regulatory submission. 

5.3. Current initiatives to share in silico toxicology models 

There have been several prior attempts to support the sharing of in silico models for 

toxicology. A non-exhaustive selection of these resources is summarised in Table 5.1. It is 

noted that not all the resources listed in Table 5.1 are for sharing models directly - it also 

includes protocols and general information resources. The resources offered in Table 5.1 

represent a wide variety of approaches ranging from commercial to publicly available, those 

offering a predictive capability (i.e., a chemical structure can be entered to obtain a 

prediction) and those without this capability, as well as formats and approaches to capture 

models and other resources. Of the resources identified in Table 5.1, it is arguable that the 
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QSAR DB goes the furthest to achieving FAIR principles for the sharing of models, with 

reference to making QSAR FAIR made on their website. There also exists a huge number of 

databases containing information that may support the generation of in silico models (Pawar 

et al., 2019), with these acknowledged but not summarised in this section. 
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Table 5.1. A selection of resources available to assist in the sharing of in silico models for toxicology 

Resource Description Source Reference(s) and / or URL 
Databases and other compilations of models, with predictive capability 

C-QSAR A licensable collection of over 18,000 
regression based QSARs for a large number 
of endpoints 

BioByte Corp., Covina 
CA, USA 

http://www.biobyte.com/bb/prod/cqsarad.html; 
Kurup (2003) 

COSMOS NG A freely-available knowledge hub with 
predictive capability and links to in silico 
models and profilers 

MN-AM, Nürnberg, 
Germany; Columbus 
OH, USA 

https://www.ng.cosmosdb.eu/; Yang et al., 
(2021) 

Danish QSAR 
Database   

A freely-available on-line repository of QSAR 
model estimates for more than 600,000 
substances including physico-chemical 
properties, environmental fate, 
bioaccumulation, eco-toxicity, absorption, 
metabolism and toxicity 

Danish Technical 
University, National 
Food Institute, 
Copenhagen, 
Denmark 

https://qsar.food.dtu.dk/; Chinen et al. (2020) 

eTRANSAFE A collaborative project aiming at collecting 
and sharing drug safety related data and 
developing in silico predictive models based 
on the data 

The eTRANSAFE 
Consortium 

https://etransafe.eu/;  
https://www.imi.europa.eu/projects-
results/project-factsheets/etransafe  

oCHEM A freely-available on-line resource that 
allows for the creation, storage, 
dissemination and use of QSARs 

Helmholtz Zentrum 
München, 
Neuherberg, 
Germany 

https://ochem.eu; Sushko et al. (2011) 

QSAR DataBase (DB) 
 

An open on-line platform for the 
organisation, storage and use of QSARs, 
searchable by a number of criteria. Contains 
over 500 QSARs which have each been given 
a unique identifier (DOI).  

Institute of 
Chemistry,  
University of Tartu, 
Estonia 

https://qsardb.org/; Ruusmann et al. (2015) 

Models reporting formats 
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In silico protocols Guidelines on performing expert review of in 
silico models for a variety of toxicological 
endpoints  

Consortium led by 
Instem, Columbus 
OH, USA 

A large number of articles including Myatt et al. 
(2018), Ruiz et al., (2018) 

OECD Guidance 
Document on the 
characterisation, 
validation and 
reporting of PBK 
models for regulatory 
purposes 

A harmonised template to record all 
relevant information regarding a PBK model 

OECD https://www.oecd.org/chemicalsafety/risk-
assessment/guidance-document-on-the-
characterisation-validation-and-reporting-of-
physiologically-based-kinetic-models-for-
regulatory-purposes.pdf  

QSAR-ML An open XML format for the exchange of 
QSAR datasets 

 Spjuth et al., (2010) 

QSAR Model 
Reporting Format 
(QMRF) 

A harmonised template to summarise and 
report the key information of QSAR models 

 https://www.oecd.org/chemicalsafety/risk-
assessment/validationofqsarmodels.htm; Worth 
(2010) 

Model repositories, without predictive capability 
GitHub Free-to-use provision of repositories for the 

distribution of QSARs, documentation etc., 
as well as R code, KNIME Workflows and 
similar tools 

GitHub Inc. https://github.com/ 

JRC QSAR Model 
Database    

An historical archive of some 150 QMRFs 
that had been submitted to EURL ECVAM. 
The archive is no longer updated but may be 
downloaded free-of-charge. 

European 
Commission’s Joint 
Research Centre, EU 
Reference Laboratory 
for Alternatives to 
Animal Testing (EURL 
ECVAM), Ispra, Italy 

http://data.europa.eu/89h/e4ef8d13-d743-
4524-a6eb-80e18b58cba4; EC JRC (2020) 

PBK database  
 

A freely available collection of key 
information for over 7,500 PBK models for 

School of Pharmacy 
and Biomolecular 
Sciences, Liverpool 

Thompson et al. (2021) 
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1,150 chemicals with details of modelling 
software used, species, chemicals etc.  

John Moores 
University, UK 

Other initiatives relevant to the sharing of models for chemical safety assessment 
BioModels A freely available repository of mathematical 

models representing biological systems. 
Whilst most models in BioModels are not 
relevant to in silico toxicology, there are 
some examples of PBK models. Models 
generally do not have predictive capability. 

European 
Bioinformatics 
Institute, 
European Molecular 
Biology Laboratory, 
UK 

https://www.ebi.ac.uk/biomodels/; Glont et al., 
(2018); Malik-Sheriff et al., (2020); Tiwari et al., 
(2021) 

FAIRsharing A curated, informative and educational 
resource on data and metadata standards, 
inter-related to databases and data policies 
encompassing a collection of registries – 
including some that are applicable to 
toxicology. The ELIXIR Toxicology 
Community is making use of this service to 
collate toxicology standards. 

FAIRsharing team https://fairsharing.org/ 

Research Data 
Management toolkit 
for Life Sciences 
(RDMkit) 

An online guide which contains guidance for 
data management with a specific page for 
toxicology data 

ELIXIR https://rdmkit.elixir-europe.org/toxicology_data 

RO-crate A freely available resource which allows 
packaging of research data with their 
metadata 

The University of 
Manchester, UK 

https://w3id.org/ro/crate  

The FAIRcookbook  An online, open and live resource for the Life 
Sciences to make and keep data FAIR. It 
contains recipes for FAIRification – some of 
which are directly applicable to toxicology or 
model inputs. 

ELIXIR https://faircookbook.elixir-
europe.org/content/home.html  
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5.4. Development of FAIR principles for in silico models 

The FAIR principles, originally devised for data sharing, are herein adapted to the needs of 

computational modelling. It is important to understand the context of the FAIR principles 

related to data sharing, which aimed to “define characteristics that contemporary data 

resources, tools, vocabularies and infrastructures should exhibit to assist discovery and reuse 

by third-parties” (Wilkinson et al., 2016). With regards to sharing in silico models, all of these 

concepts are valid, especially with the overall concept of facilitating “discovery and reuse” in 

addition to the other benefits, such as verification and trust, noted above, which will improve 

the utility and acceptance of models. Whilst the FAIR principles for data sharing do not 

specifically include verification and trust, they do indeed go further in other areas, 

emphasising the requirement “to improve knowledge discovery through assisting both 

humans, and their computational agents, in the discovery of, access to, and integration and 

analysis of, task-appropriate scientific data and other scholarly digital objects” (Wilkinson et 

al., 2016). Within the context of in silico predictive models, this is taken to mean that the 

model itself should be shared, in a usable form either directly (by sharing an accessible 

prediction service) or indirectly (by sharing the components and precise instructions to 

reproduce the model).  

Following the spirit of the FAIR principles for data sharing, the FAIR requirements were 

adapted in the context of in silico predictive models. Specifically, these requirements intend 

to ensure that a model can be located, i.e., it is Findable; that once located, the model and 

appropriate meta-data are retrievable, i.e., it is Accessible; the model is defined in a manner 

that it can be integrated with other software, i.e., it is Interoperable; and that predictions can 

be made by a robust, well-annotated version of the model, that will make the same 

predictions regardless of the platform and software used, i.e., it is Reusable.   

The FAIR principles for the sharing of in silico predictive models are summarised below 

(principles marked with an asterisk are the same, or adapted from, those for data sharing): 

To be Findable: 

F1*. Each model is assigned a globally unique and persistent identifier and different versions 

are assigned distinct identifiers 
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F2. Models are described with rich meta data covering all aspects of the model, for example: 

F2.1 Models are associated with searchable meta data for the property or endpoint to 

be predicted 

F2.2. Models are associated with searchable meta data or descriptions of the 

chemicals (e.g. InCHI or SMILES), or chemical class(es), within the model, or a 

description of its applicability domain 

F3. Models are registered or indexed in a searchable resource 

F3.1 Models’ identifiers should be optimised to allow for use in multiple search 

engines  

F4*. Models’ (meta)data clearly and explicitly include the identifier of the model they describe 

and are registered or indexed in a searchable resource  

To be Accessible: 

A1*. Models are retrievable by their identifier using a standardised communications protocol 

A1.1. The model (and any associated protocol) is openly accessible or 

reimplementable 

A1.2. The model (and any associated protocol) allows for an authentication and 

authorisation procedure, where necessary 

A2. Model (meta)data are accessible even when the model is no longer available, unless 

restricted for commercial, ethical or data protection reasons (e.g., blinding of confidential 

chemical structures) 

To be Interoperable: 

I1. The models and their (meta)data are described in a standardised manner, i.e., standards 

to define chemical structures, endpoints, molecular descriptors and modelling algorithms 

I2. The model reads, writes and exchanges data in a way that meets domain-relevant 

community standards 
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I3. The model must be able to integrate with other software, e.g., with a clearly defined input 

/ output i.e., with an appropriate Application Programming Interface (API) for shared web 

services 

I4*. (Meta)data use a formal, accessible, shared, and broadly applicable language for 

knowledge representation 

I5*. (Meta)data use vocabularies that follow FAIR principles 

I6. The model includes qualified references to other objects, such as molecular descriptors 

To be Reusable: 

R1. The model is available for its use in some format (e.g., source code, executable, library or 

service)  

R2. The usage license of the model should be clearly defined and appropriate to encourage 

its use  

R3. The storage of the model and (meta)data should be done on a sustainable and future-

proofed platform, anticipating the impact on the availability of software changes over time 

R4. Software includes qualified references to other software, e.g., so that the correct 

molecular descriptors can be obtained, either as part of the model or storage of the molecular 

descriptors software or experimental protocol 

R5*. (Meta)data are richly described with a plurality of accurate and relevant attributes 

R5.1.* The model and its (meta)data are associated with detailed provenance 

R6*. The model and its (meta)data meet domain-relevant community standards for 

documentation 

5.5. Model assessment utilising the FAIR principles for in silico models  

In total, 18 principles have been developed and adapted for in silico models that cover all 

aspects of the FAIR ideology. Each of the individual principles provides guidance and 

considerations for developers that once adhered to will foster a model that has been 

produced, labelled, and stored in a manner that fully promotes shareability and can be 
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categorised as FAIR. Akin to the work produced in Chapter 2, evaluation of models through 

application of the FAIR principles can highlight issues within a given workflow, which in turn 

may be hindering shareability. Demonstrating the ability of the principles to be utilised in this 

manner, Table 5.2 evaluates the ability of the six previously developed ML models (see 

Chapter 4) to satisfy the FAIR criteria. Due to the development of each model being identical, 

and only differing dependent upon algorithm utilised, the models were evaluated as a 

collective. To this end, the ability of the collective models to satisfy each individual principle 

was determined by a lead researcher and subsequently verified by another researcher. Each 

principle was assigned a classification being either ‘Yes’ (the principle was fully satisfied), 

‘Partially’ (the principle was somewhat satisfied), or ‘No’ (the principle was not satisfied). Each 

score was provided with an accompanying reasoning for transparency. In addition, scenarios 

where ‘Partially’ or ‘No’ were recorded a potential improvement strategy was also provided. 

As seen in Table 5.2, the majority of principles are reported to be sufficiently satisfied, 

however there exists a handful that are not. Whilst the ratio of successes outweighs that of 

failures it is essential that for a model to be considered FAIR all principles are sufficiently 

satisfied, as such mitigation strategies are required.
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Table 5.2. Results of the assessment from the models (considered as a whole) towards each FAIR principle and respective improvement strategies 

as required. 

FAIR Principle ID Verdict and reasoning Improvement strategies (where applicable) 
Findable 

F1 No. 
Models have only been assigned local identifiers that 
are associated throughout development.  

There is a clear need for the models to be assigned a unique 
global identifier such as a Digital Object Identifier (DOI). 

F2.1 Yes. 
Models are developed with searchable meta data for 
the endpoint of interest which is publicly available. 

 

F2.2 Partially. 
Unique chemical identifiers are provided for the 
meta data used within the model. However, 
applicability domains were not distinguished. 

Models need to be associated with a clearly defined applicability 
domain.  

F3.1 No. 
Model identifiers are minimal, providing only 
barebones information regarding algorithm and data 
utilised. 

Models should be provided with further identifiers that 
encapsulate the key characteristics including meta data 
information that would optimise use in multiple search engines. 

F4 No. 
Meta data from the models are yet to be made 
available. 

Once meta data are produced, information needs to be stored 
within a searchable resource with identifiers explicitly related 
towards the model. 

Accessible 
A1.1 Yes. 

Models are openly accessible and stored within a 
public repository on GitHub. 

 

A1.2 Yes. 
Models’ full development are publicly available 
enabling them to be authenticated. 
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A2 Yes. 
Meta data is openly accessible and stored within a 
public repository on GitHub. 

 

Interoperable 
I1 Yes. 

Models and their meta data are described in a 
standardised manner that can be located within the 
associated documentation. 

 

I2 No. 
Models exchanging of information cannot follow 
domain-relevant community standards until these 
have been proposed. 

Once the community standards have been proposed, evidence 
that the models follow them should be provided. 

I3 Partially. 
Clearly defined inputs and outputs for the models 
are outlined, however no API exists for them 
currently.  

Models need to be further developed with clear consideration 
for how the API must be presented to be appropriate for shared 
web services.  

I4 Yes. 
Meta data are all described using accepted 
identifiers and ontologies for knowledge 
representation. 

 

I5 Yes. 
Meta data adheres to the FAIR principles. 

 

I6 Yes. 
Objects outside of the original meta data that have 
been produced are appropriately referenced to 
original sources with the information additionally 
being publicly available. 

 

Reusable 
R1 Yes.  
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The models are available for their intended use 
within an executable source code. 

R2 No. 
No usage license for the models have been provided. 

Models need to be accompanied by a usage licence that actively 
encourages their usage. 

R3 Yes. 
Models and meta data are stored within a public 
repository on GitHub, which is globally accepted as a 
sustainable platform. 

 

R4 Yes. 
All software used throughout the development of 
the models and production of descriptors for the 
meta data are accurately referenced in the 
associated publication.  

 

R5.1 Yes. 
The origins of the meta data are clearly provided 
within the associated publication. 

 

R6 No. 
Domain-relevant community standards for data 
documentation are unavailable. 

Once community standards for data documentation are 
proposed such procedures must be adhered to. 
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Whilst failures of individual principles may be viewed as potentially minor and may simply be 

overlooked, it is essential that all are upheld. To this end, following individual assessment the 

identification of appropriate mitigation strategies (as required) should be promoted. 

Examples of which are further demonstrated within Table 5.2. Specifically, in relation to the 

models being Findable, the assessment revealed issues regarding model identifiers as well as 

a lack of applicability domain and predictive meta data. Whilst the latter of the two issues 

reflects the infancy of the models, and may be resolved through further development, 

addressing the model identifiers requires consideration of improved labelling strategies that 

captures greater information regarding each model. In particular, a decision on selection of 

an appropriate global identifier that is assigned to each model needs to be considered, with 

a possible solution being a unique DOI. With regard to models being Interoperable as well as 

Reusable, a lack of consideration as to how models can be incorporated into other web 

services, with an appropriate license, is identified. To move this forward, improved 

consideration regarding the models’ implementation within other web services must be 

considered. Additionally, the licence associated with the model should ensure that it is 

actively promoting usage with only essential restrictions where required. Additional issues 

within both Interoperable and Reusable principles is the lack of the data, and the fact that the 

workflow(s) do not follow community standards – the reason for this being that no such 

standards have yet been proposed. As compared to the uncertainty assessment criteria, 

which can be used as a tool to demonstrate fitness-for-purpose with varying levels of 

uncertainty being accepted, it may be expected that all FAIR principles should be satisfied. 

Therefore, reflecting upon issues identified through application of the principles, and taking 

remedial action where possible, is vital to the success of models being considered FAIR. 

As demonstrated, these principles may be used post hoc, however it is reasonable to assume 

that the most effective usage is as guiding principles that are continually considered 

throughout the model lifecycle. Enforcement of the principles during the development phase 

will ultimately ensure the production of harmonised models that can be easily shared. 

Examples of considering the FAIR principles at the core of data development can already be 

observed within other industry standards, such as the bioinformatics communities, with it 

widely being accepted that for data sharing to flourish the FAIR principles must be upheld. 

For this reason, national level infrastructure is being updated to encapsulate the FAIR 
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principles, with initiatives also being undertaken to converge industry standards (Mayer et 

al., 2021; Vesteghem et al., 2020). Whilst the bioinformatics researchers have been 

considering FAIR principles for the past few years, such workings provide a view towards the 

future which has the potential to be adapted for the field of in silico modelling. 

5.6. Priorities to make models FAIR 

The benefits of the FAIRification of in silico predictive models go beyond the simple 

advantages of being able to share models successfully. The benefits include making a usable 

resource that can assist chemical safety assessment, as well as being interrogated to 

understand the applicability domain of models, and to determine where data gaps exist in the 

domain. There is also a societal responsibility to enable access to models created and to 

record the outputs of research efforts. The modelling community must be challenged to make 

harmonised and usable models. This will reinforce the credibility of models and demonstrate 

responsible, ethical, transparent and efficient science. The acceptance of the understanding 

and promotion of the FAIR principles for modelling globally is proposed as a starting point, 

even if the finer details still need to be resolved.  

There will inevitably be a number of issues that require further development and acceptance, 

beyond the current state-of-the-art. Widescale sharing of models will need appropriate 

investment in the repository(ies) and resources to maintain the platform on which any 

repository is based. Comparable efforts to store models do exist e.g., BioModels, and remain 

active and on-line due to the creation of an appropriate business model. Relying on free 

storage resources is one way forward, but will be extremely limited in terms of the search 

capabilities and practical use.  

The FAIR principles on accessibility do not preclude restrictions on access but they do require 

metadata longevity and for the access protocols and access authorisation used to adhere to 

open standards and be clearly defined (Wise et al., 2019). However, in the case of training 

and test datasets used to build and validate the model there may be legal (e.g., IPR protection) 

and ethical (e.g., patient confidentiality) reasons, as well as commercial ones, that would 

preclude open access. 
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Key to the development of any data resource to be used in predictive modelling is the 

harmonisation of the terminology for reporting models. This could start with harmonised 

ontologies for endpoints, for which much work has already been undertaken. It will also 

require harmonised ontologies to describe the models e.g., for statistical and machine 

learning methods, definitions of molecular descriptors and chemical identifiers. In addition, 

harmonisation will be required in the definition of the methods for analysis of model 

performance, such as provided by Walsh et al. (2021). Much of this could be adapted from 

that already used for QMRF and elsewhere for ontologies for statistics (Zheng et al., 2016). 

Lastly, and probably most importantly and urgently, an internationally agreed vision for the 

future with an associated roadmap is required. Only when stakeholders, including potential 

funders, agree will progress be achieved. 

5.6. Conclusions 

There is an undoubted, and urgent, need to make in silico predictive models for toxicology 

FAIR. This is an achievable goal and, given appropriate resources, much progress could be 

made in the short to medium term. There are numerous reasons and benefits to the 

FAIRification of in silico models, most fundamental is to make models available and accessible 

to all enabling and supporting the 3Rs. It is highly probable that chemical risk assessors are 

missing out on opportunities to use in silico models simply as they may not know of their 

existence. Similarly, due to poor documentation, in silico models may be used inappropriately, 

e.g., out of applicability domain or for the incorrect endpoint. The ultimate sustainability of 

in silico models is also a key advantage. It is unacceptable that research efforts should be 

placed into modelling, often from public funding, that are unfindable or unusable. Finally, 

having open and transparent models, easily accessible, will increase trust for all users. This 

will be especially important for regulatory submissions where agencies can re-run models to 

check predictions for the target and similar compounds.  

In order to achieve the goal of making in silico models in toxicology FAIR, the priorities and an 

overall strategy should be devised. This will need agreement at multiple levels, across 

industrial sectors, stakeholders and geographical regions. The intention is that the FAIR 

principles described in this study will act as a template for FAIR principles to be applied to all 

models of biology. 
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Chapter 6. Discussion 

Presented in this final chapter is an overall summary of the research undertaken throughout 

the thesis, and how such work addresses the issue of "Increasing the Confidence of In Silico 

Modelling in Toxicology” and associates issues as highlighted within Chapter 1. Whilst full 

discussion of the work undertaken may be found within the respective chapters, key findings 

are summarised here. Contained within the summary of each chapter is identification of the 

strengths and limitations of the research conducted. Chapter 6 concludes with a view to the 

future, outlining the potential work that may be undertaken following the research conducted 

in this thesis. The aim of discussing the future work was to provide a vision towards the 

implementation of the frameworks, gathered throughout the thesis, that can be structured 

in a manner that would promote regulatory acceptance of in silico models. 

6.1. Summary of work 

Throughout the thesis, research has been conducted with an overarching theme to improve 

the acceptance of alternative methods to the use of animals for toxicological risk assessment, 

with a specific focus on in silico approaches and QSARs. The motivation for the research in 

the thesis arose from the vision that outlined the need for NAMs in toxicological risk 

assessment (US NRC, 2007; Krewski et al., 2020). Whilst there is a clear desire to incorporate 

such methods, in reality, their acceptance has not kept pace with scientific development. The 

issue of acceptance has undoubtedly severely hindered the use of NAMs in chemical safety 

assessment. As presented in Chapter 1, a recent study by Mahony et al. (2020) highlighted 

some of the key challenges that are hindering the implementation of such methods, some of 

which were addressed, in part at least, by the research conducted throughout the thesis. At 

the core of the issues faced by in silico methods is a lack of model understanding, requiring a 

clear strategy to appropriately validate them, enabling the strengths and weaknesses of the 

model, in terms of uncertainty, to be fully acknowledged. These crucial challenges were 

addressed throughout Chapters 2-4 of the thesis. 

Chapter 2 brought attention to the recently devised QSAR uncertainty assessment criteria 

produced by Cronin et al. (2019). These criteria were expanded upon throughout the thesis. 

To this end, the objective of Chapter 2 was to demonstrate the ability of the criteria to 
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determine fitness-for-purpose. To achieve this, the original 49 uncertainty assessment criteria 

(published by Cronin et al, 2019) were rationalised and organised to form ten components, 

each of which relates to a key phase of QSAR modelling – creation, characterisation, and 

application. Consolidation of the original criteria into the ten general assessment components 

provided a clear benefit of enabling a comprehensible overview of uncertainty for an 

individual QSAR model to be established. As such, particular areas of uncertainty relating to 

a given model could be defined. In addition to being able to pinpoint areas of uncertainty 

using the components, levels of acceptable uncertainty for a particular purpose were 

proposed; in turn, enabling a verdict for fitness-for-purpose for an intended use to be easily 

deduced. Demonstrating this capability of the assessment components, a case study of twelve 

recently published QSAR models was evaluated. Following the evaluation of each model, 

common areas of high uncertainty were reported, with these issues relating to data quality, 

descriptor transparency, consideration of the mechanism of action, and endpoint relevancy 

for regulatory use. Evidently, these issues reduce the applicability to regulatory use, as such 

the assessment components supported the improvement of the QSAR models to gain 

acceptability through targeted mitigation strategies. Whilst the research conducted 

demonstrated how the uncertainty assessment criteria could be utilised to address fitness-

for-purpose, limitations within the methodology exists. In particular, the assessment of the 

twelve case studies assigned scores were only validated by a singular internal researcher. As 

such, without further external validation, the scorings assigned may be influenced by biases, 

leading to inaccurate classifications. 

Chapter 2 outlined the value of the uncertainty assessment criteria in supporting the 

acceptance of QSAR models for regulatory purposes. Whilst the study demonstrated use 

cases for traditional single chemical issues, Chapter 3 further investigated how the criteria 

could be employed in relation to a topic of key interest in recent years – mixture assessment. 

To this end, research in Chapter 3 commenced with a detailed analysis of the different 

approaches that have been used throughout the development of QSAR models to predict the 

effects of mixture toxicity. In total, 40 toxicologically-based studies were collected, with each 

being categorised based on the key characteristics of QSAR models for mixtures. These 

characteristics summarised information regarding chemical classification, mixture 

composition, testing species or system, endpoint modelled, formulation of molecular 
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descriptors, and modelling approach. Analysis of the characteristics within the literature 

identified recurring trends that were present throughout, for instance, there were many 

examples of binary mixtures at single concentration ratios modelled in an additive manner. 

Collection of the literature in this manner additionally enabled a general appraisal of the 

current state of QSAR mixture modelling. Alongside a call for further modelling efforts and 

data availability, the standout issues presented throughout included a greater emphasis on 

potential interaction effects, with an improved effort to investigate realistic exposure 

scenarios. 

Lessons learned from the mixture review in Chapter 3 additionally enabled the opportunity 

to bolster the original QSAR uncertainty assessment criteria so that mixture-specific 

considerations could be evaluated effectively. To this end, additional guidance relating to the 

existing criteria was suggested including providing further direction on what information is to 

be expected of mixture data, as well as outlining the need for mixture-specific validation 

approaches. Lastly, an additional criterion was proposed, with this specifically assessing the 

uncertainty associated with the usage of mixture descriptors. Whilst the research undertaken 

in Chapter 3 presented the theoretical landscape of QSAR mixture assessment, limitations in 

the methods undertaken were observed. In particular, the literature review only accounted 

for toxicity-based studies; whereas non-toxicological-based-studies and research upon 

essential oils and nanoparticles were excluded during the screening procedures. 

Characteristics obtained from these studies may have contributed to categories with 

information deficits, such as the investigations into multi-component mixtures. 

Building upon the work in Chapter 3, Chapter 4 addressed the most active field of research 

currently being undertaken within QSAR studies – ML. ML methods have come into focus 

recently due to their exceptional predictive performance, with such approaches likely to 

become even more commonplace in the coming years. Whilst the statistical benefit compared 

to traditional modelling approaches is evident, comprehension of the model and confidence 

in the methodology have hindered acceptance. As outlined in Chapter 1, there is a clear desire 

to expand modelling methodologies used within QSARs, thus improving confidence in ML 

technologies is crucial. 

In relation to the acceptance of ML methods, Chapter 4 updated the knowledge contained 

within the uncertainty assessment criteria to bolster ML-specific considerations. 
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Identification of such considerations was achieved through the development of six QSAR 

models, each of which had been established utilising the most commonly employed ML 

algorithms observed within the QSAR literature. Throughout this process three distinctive 

themes that require careful consideration were encountered, these being: reproducibility, 

interpretability, and generalisation. Consideration of such problematic issues within the 

uncertainty assessment criteria was achieved through the proposal of further guidance within 

the current criteria. Working towards the improved assessment of reproducibility, a greater 

acknowledgement of the vast number of parameters needed to develop models was 

identified; this requires thorough documentation. Interpretability considerations of the ML 

approaches were addressed through the use of appropriate interpretation techniques, 

providing insight into the relevance of descriptors employed as well as improved 

transparency. Lastly, concerns regarding generalisation could be reduced through the 

application of appropriate resampling procedures, as well as a reflection on the complexity of 

the approach required. 

Accompanying the improved uncertainty assessment of ML models, the identification of good 

practice for ML approaches was also determined. Contained within these practices was 

guidance regarding data collection and cleaning, algorithm optimisation and interpretability, 

validation procedures and, lastly, reporting and documentation. The identification of best 

practices for ML approaches, as well as extending the scope of the uncertainty assessment 

criteria to better capture ML-specific issues, provides an improved understanding and 

assigned credibility to such methods, ultimately working towards the goal of improving 

acceptance. Whilst the research conducted provided an outline of best practices for ML 

approaches and improved the uncertainty assessment of such, limitations within the work 

exist. Most notably, the work focused on the development of models for regression-based 

outcomes, with classification problems not being investigated here. Whilst it is most probable 

that the practices and concerns apply to both assessment types, the potential for 

classification-specific issues may still be present. 

Following the work in the previous chapters that expanded upon the original uncertainty 

assessment criteria, Chapter 5 addressed the need to ensure the shareability and 

reproducibility of in silico models. Motivation for the work once again originated from the 

challenges identified by Mahony et al. (2020), identifying a desire to apply FAIR principles to 
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the sharing of predictive models. Conversion of the principles was additionally considered to 

improve the regulatory acceptance of prediction from such models. In total, eighteen 

principles were developed that covered all aspects relating to models being Findable, 

Accessible, Interoperable, and Reusable. Similar to the work conducted in Chapter 2, the 

application of the principles to the models developed in Chapter 4 was undertaken. Following 

this evaluation, the results demonstrated that most of the models satisfied the majority of 

principles. However, unlike the uncertainty assessment criteria where varying levels of 

uncertainty could be deemed acceptable dependent on usage, ensuring that models are fully 

shareable, requires all principles to be satisfied. Therefore, the principles additionally 

demonstrated the ability to serve as guidance for the development of improvement 

strategies. Whilst the principles described throughout the research demonstrate the 

possibility to serve as a template to ensure predictive models can be successfully shared, 

limitations within the principles exist. In particular, whilst translating the FAIR principles was 

successful, further collaboration and engagement within the community are warranted to 

devise agreed-upon community standards. Such community standards would need to ensure 

the harmonisation of previous benchmarks that can be employed throughout the various in 

silico fields. 

6.2. Main contributions of thesis 

The most notable contributions towards research and knowledge from the thesis include: 

• A greater understanding of how uncertainty within QSARs can be assessed throughout 

the stages of model development. This was demonstrated by utilising the uncertainty 

assessment criteria. The assessment criteria were grouped into ten components, showcasing 

the utilisation of uncertainty assessment criteria as a tool for determining fitness-for-purpose. 

Furthermore, it was established that the uncertainty criteria provide essential support in 

mitigating areas of high uncertainty. 

• The identification of the current state-of-the-art of practice for QSAR for mixtures 

highlighted a greater need for methodologies to better capture multi-component mixtures 

and differing interaction effects. Specifically, the potential use of AOPs and GNNs was found 

to offer the greatest potential for the future of the modelling of mixture toxicity. Additionally, 

utilising information gathered throughout the review enabled the further development of 



   
 

145 
 

uncertainty assessment criteria, allowing for a more comprehensive assessment of 

uncertainties associated with QSAR models for mixtures. 

• Improved understandings of best practices in ML-based QSAR methodologies were 

defined. It was deduced that enhanced considerations of data quality, interpretability, and 

documentation improved the acceptance of ML approaches to support chemical safety 

assessment. Additionally, this knowledge facilitated the definition of further ML-specific 

guidance for the uncertainty criteria, outlining considerations to address reproducibility, 

interpretability, and generalisability. 

• Addressing the need for improved reporting strategies for QSAR models to enable 

efficient finding and sharing, FAIR principles that have streamlined data sharing were adapted 

for predictive models. This work detailed the information required for a QSAR model to be 

labelled as FAIR, thereby supporting the ability to efficiently find and utilise QSAR models. 

6.3. Future work 

Towards the overarching goal of acceptance and implementation of in silico models, and in 

particular QSARs, research throughout this thesis aimed to address the openly acknowledged 

challenges in this area. Whilst such work has devised improved reporting strategies, to 

promote a greater appreciation and understanding of such approaches, as well as presented 

knowledge on state-of-the-art research focuses, obstacles must still be overcome. 

Throughout the following section, guided by the limitations and outcomes of the thesis, 

identification of areas for research focus in future are presented and discussed. 

6.3.1. QSAR mixture assessment 

Chapter 3 presented the current understandings regarding QSAR mixture assessment, 

specifically considering toxicological studies. Throughout the initial literature harvest, broad 

searching criteria were employed to capture all potential studies within the field which was 

later reduced through a screening procedure (see Chapter 3). Omitted from the review were 

studies based upon non-toxicological studies, as well as research into nanoparticles and 

essential oils. There now exists an opportunity to perform the same reviewing procedures 

upon these studies, characterising them in a similar manner to enable comparisons. Whilst 

the review into toxicological-based mixture assessments observed a clear bias towards binary 
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equitoxic studies, one can expect with the inherent multi-component nature of nanoparticles 

and essential oils a more diverse result. Findings from such work may provide further 

guidance upon how current toxicological mixture assessments can be undertaken. 

In addition to this, specific challenges within QSAR mixture studies that were identified could 

be addressed. In particular, one crucial limitation of QSAR mixture assessment was the way 

interaction effects between components are modelled. Although an additive manner was 

typically observed throughout most binary mixtures, scaling to a realistic exposure containing 

an abundance of individual chemicals at varying concentrations may result in 

underestimations of toxicity. Towards a more complete approach to address interaction 

effects, a better understanding of when it is appropriate to deviate from a typical additive 

approach needs to be deduced. One such source of potential knowledge exists within drug 

combination studies, with such research observing a greater uptake of in silico approaches in 

recent years (Sidorov et al., 2019). In particular a key area of interest is within the 

employment of ML approaches to deduce synergism, with recent work demonstrating 

outstanding predictive performance, providing a promising route for consideration within 

toxicological studies (Preuer et al., 2018). Furthering this, research into the utilisation of GNNs 

provides an abundance of potential for modelling mixtures, where interaction effects can be 

defined and incorporated into the architecture of the model itself (Qin et al., 2023). 

Therefore, an extensive review of the information contained in drug interaction literature 

should be investigated. Employing the synergistic assessments that are being undertaken in 

drug interaction studies would enable greater confidence in the assigned interaction effect to 

be attributed, improving the predictive capability of models. 

6.3.2. Machine learning confidence 

The use of ML approaches throughout all industrial and informatic sectors has become 

common place, with no signs of diminishing. The use of ML technologies for the development 

of QSARs can only be expected to increase, with more complex algorithms being employed. 

Whilst such approaches are the future for our field, lessons that have guided traditional 

approaches must not be slackened, nor ignored. Research conducted throughout the thesis 

has enabled an understanding of ML associated uncertainties to be deduced, however further 

efforts into ensuring ML approaches align to methodologies previously devised needs to be 
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encouraged. Particularly challenging, within this regard, is the identification of mechanistic 

rationale. Demonstrated throughout Chapter 4, efforts were specifically undertaken to 

provide a degree of interpretability for the ML algorithms. Towards this, understandings into 

feature importance were obtained through the usage of the package SHAP. Explanations from 

the package have started to gain appreciation within QSAR studies for model understandings, 

yet now exists an opportunity to relate such information to a mechanistic rationale 

(Jaganathan et al., 2022; Zhong et al., 2021). Towards this effort, a better understanding of 

what features are being identified as important to the model and their relevancy to the 

endpoint needs to be determined. Such work could be undertaken through the investigation 

of ML approaches, developed upon descriptor pools, which contain strategically incorporated 

mechanistically relevant descriptors. Once a greater understanding of the association 

between model and mechanistic interpretability is better understood, an improved level of 

confidence can be accredited to ML approaches; thus, improving acceptance. 

6.3.3. Harmonisation of reporting procedures 

Throughout the research undertaken within the thesis, an overarching theme of improving 

reporting strategies with the implementation of best practices have been developed. Such 

work has resulted in the improved reporting format for the QSAR uncertainty assessment 

criteria, as well as the proposal of FAIR principles towards in silico models. Whilst such 

research enables a sound and thorough means of improving the understanding of predictive 

models, an effort to encourage the uptake of such knowledge needs to be undertaken. Most 

obviously, this could be completed through the incorporation of the improved criteria and 

principles into pre-existing reporting frameworks. However, as shown within Chapter 5, a 

plethora of potential reporting frameworks for QSAR models exist, presenting the issue of 

which, if not all, must be considered. Evidently, a more conscientious approach needs to be 

employed. Whilst great amounts of collaborative research efforts have gone into the 

development of each unique reporting framework, there now exists the opportunity to 

harmonise such information.  

Towards this goal, an opportunity to draw inspiration from the AOP community exists. An 

integral part of the AOP knowledge base is the AOPWiki (https://aopwiki.org/), which enables 

AOP information to be effectively captured, shared, and reviewed. Furthermore, this public 
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repository was devised in a manner to actively facilitate collaborative development and 

engagement within the AOP communities, with information being stored in living documents 

(Martens et al., 2022). Such living documents provide extreme flexibility to the reporting of 

AOP frameworks, enabling models to be incorporated at varying levels of completeness, 

where information deficit queries can be supplemented through external crowd sourcing 

efforts. Further to this, key information of the networks is also stored whereby they can be 

actively merged and engage with the existing knowledgebase. Motivated by this, an attractive 

opportunity exists to develop a similar framework for QSAR models, guided through the 

harmonisation of previously proposed approaches. Ideally, the development of such a 

framework would encapsulate the entirety of the QSAR workflow, including assessment 

schemes whereby a complete understanding of the model is presented. In order to achieve 

this, proposals outlined throughout the uncertainty assessment criteria could form the basis 

of guidance required of model development, enabling an evolving level of confidence to be 

assigned. Furthermore, to ensure that models could be seamlessly shared throughout the 

framework, information to be stored and collected should be informed by the FAIR principles. 

As a community, we need to encourage the development of robust, understandable, and 

transparent models to gain the credibility needed for acceptance within regulatory use. 

Evidently, requiring vast amounts of individual documentation that needs to be satisfied will 

only impede the process, instead calling for a need to pool together our collective resources 

to form a cohesive and inclusive framework. Ultimately, the development of such a 

framework may only foster a more inclusive and collaborative environment, moving towards 

the production of clearly defined models that satisfy regulatory needs. 

6.4. Conclusions 

Research undertaken throughout the entirety of the thesis has aimed to address some of the 

key challenges affecting the acceptance of in silico approaches in regulatory settings, with a 

key focus on QSARs. The usability of the QSAR uncertainty assessment criteria was 

demonstrated to prove fitness-for-purpose through the conversion into ten components each 

of which related to a key phase of QSAR development. Bolstering the coverage of the criteria, 

a review into QSAR mixture assessment was conducted, identifying the characteristics and 

further considerations needed to be acknowledged. Similarly, ML concerns were additionally 
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determined through the development of six commonly employed algorithms. Finally, the 

recently devised FAIR principles were translated for use in in silico modelling, promoting a 

greater appreciation of information required to effectively share models. Knowledge and 

reporting formats devised throughout the thesis are envisioned to be implemented into a 

harmonised framework that would improve acceptance. 
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Appendices 

Appendix I. Supplementary material associated with Chapter 2 

This includes the criteria associated with each component, full evaluations of the 12 QSAR studies against the uncertainty assessment criteria, 

and proposed mitigation strategies. Tables S1, S2, and S4 can be accessed from the following link: https://github.com/SamBelfield/PhD_Thesis 

Table S3. Summary of uncertainty for each of the QSARs considered according to the QSAR components: yellow low uncertainty; green moderate 

uncertainty; blue high uncertainty. 

 

Data Structures Descriptors Modelling Performance Mechanisms Toxicokinetics Description Usability Relevance
Luan et al
Pal et al

de Morais e Silva et al
Toropova and Toropov

Wang et al
Yang et al
He et al

Jiang et al
Gupta and Rana

Ibrahim et al
Hao et al
Ahmadi

Creation Characteristics Application
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Appendix II. Unabridged scheme for QSAR mixture uncertainty assessment 

This is a snapshot of the suggested supplementary information for the assessment of QSAR 

mixtures from Chapter 3. The full document can be accessed from the following link: 

https://github.com/SamBelfield/PhD_Thesis 
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Appendix III. ML extended results 

This is a snapshot of the results from the initial data analysis, hyperparameter optimisation, 

and feature importance of the six ML methods employed in Chapter 4. The full document can 

be accessed from the following link: https://github.com/SamBelfield/PhD_Thesis 
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Appendix IV. ML hyperparameter optimisation extended results 

This is a snapshot of the further description of the hyperparameter optimisation techniques 

employed and the results of which obtained from the study conducted in Chapter 4. The full 

document can be accessed from the following link: 

https://github.com/SamBelfield/PhD_Thesis 
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Appendix V. Unabridged scheme for ML-specific QSAR uncertainty 

assessment 

This is a Snapshot of the suggested supplementary information for the assessment of QSAR 

models developed with ML algorithms from Chapter 4. The full document can be accessed 

from the following link: https://github.com/SamBelfield/PhD_Thesis 

 

 


