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Long Term Effect of Climate Change on Rainfall in Northwest Iraq 

 

Abstract 

Middle East and North Africa are considered as arid to semi-arid region. Water shortages in this region, represents 

an extremely important factor in the stability of the region and an integral element in its economic development 

and prosperity. Iraq was an exception due to the presence of Tigris and Euphrates Rivers. After the 1970s the 

situation began to deteriorate due to continuous decrease of the discharges of these rivers which are expected to 

dry (2040) with global climate change. In this research, long rainfall trends up to the year 2099 were studied in 

Sinjar area, northwest of Iraq to give an idea about future prospects. Two emission scenarios used by the 

Intergovernmental Panel on Climate Change (A2 & B2) were employed to study long term rainfall trends in 

northwest of Iraq. ANN model was used to provide climate change information at a suitable spatial scale from the 

Global Climate Model (GCM) data. In general 7 predictors of climate variables were found to have a significant 

relation with the rainfall for winter, spring and 6 predictors for autumn while the summer shows only 4 predictors. 

All seasons consistently projected a drop in daily rainfall for all future periods with summer which expected to 

have more reduction compared with other seasons as it is consider to be almost dry by end of 21 century for both 

scenarios. The results also indicates that, there is an appreciable change in the number of wet days by 2080s for 

months January, February and March in both scenarios with about 10%-40% decrease in wet days, while rest of 

the months experience a slight drop for all future periods. Summer months are noticed are considered almost dry, 

however, a tendency of dryness extending to September is also observed. Generally the average rainfall trend 

shows a continuous decrease. The overall average annual rainfall is slightly above 210 mm. In view of this 

prudent water management strategies are to be adopted to overcome water shortage crisis. 

 
 

Key words: Rainfall trend, GCM, ANN, Sinjar, Iraq 

 

1.0 Introduction 

Middle East and North Africa (MENA region) are considered as arid to semi-arid regions where the 

average annual rainfall does not exceed 166mm (Al-Ansari, 1998). For this reason, the scarcity of water 

resources in the MENA region, and particularly in the Middle East, represents an extremely important 

factor in the stability of the region and an integral element in its economic development and prosperity 

(Naff, 1993 and Al-Ansari, 2005). Recent work indicates that the situation will be more severe in future 

(Bazzaz, 1993 and Voss, et.al, 2013). Climate change is one of the main factors for future shortages 

expected in the region (Al-Ansari, 2013). At the end of this century the mean temperatures in the 

MENA region are projected to increase by 3°C to 5°C while the precipitation will decrease by about 

20% (Elasha, 2010). Water run-off will be reduced by 20% to 30% in most of MENA by 2050 (IP CC, 

2007) and water supply might be reduced by 10% or greater by 2050 (Milly et. al., 2005). 

 

Iraq till the 1970s was considered rich in its water resources due to the presence of the Tigris and 

Euphrates Rivers. Syria and Turkey started to build dams on the upper parts of these rivers which 

caused a major decrease in the flow of the rivers (Al-Ansari and Knutsson, 2011). Tigris and Euphrates 

discharges will continue to decrease with time and they will be completely dry up by 2040(UN, 2010). 

In addition, future rainfall forecast showed that it is decreasing in Jordan which is Iraq’s neighboring 

country (Al-Ansari, et.al, 1999&2006, Al-Ansari and Baban, 2005).  

In this paper, statistical downscaling models which were constructed with ANN of ALevenberg-

Marquardt approach were used to evaluate long term rainfall amounts expected in northwest Iraq for 
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four seasons (winter, spring, summer and autumn). This will help farmers and decision makers to take 

precautions to overcome water shortages.  

 

2.0 Studied Region & Data 

Sinjar District is a plan area located within Nineveh province in northwest Iraq (Figure 1). The whole 

area is locally referred to as Al-Jazirah (the area bounded by the Tigris and Euphrates Rivers north of 

Tharthar Lake). It is bordered from north and west by the international Iraq-Syria borders and the 

extension Province of Nineveh from the east and south. The population reaches 21,584. The most 

prominent terrain is Sinjar Mountain with highest peak that reaches an elevation of 1400 (m. a. s. l.) 

(Figure 1).   Rain water is the main source for agricultural practices in Sinjar area despite the presence 

of some wells.  

 

The average annual rainfall records indicate that it is about 303 mm. The rainy season extends from 

November to May. During this season, surface water flows in the valleys from Sinjar Mountain toward 

the Iraqi-Syrian border at northern Sinjar Mountain, and flows to the extension Province of Nineveh at 

southern Sinjar Mountain.  Maximum monthly evaporation is usually recorded in July and reaches 

563.4 mm.  The value drops to 57.4 mm in December. The soil in the study area has low organic 

content and consists of sandy loam, silty loam and silty clay loam (Rasheed, et.al., 1994). Fields 

observation indicates that, the catchment area at Sinjar region is one of three types: cultivated land, 

pasture land, and land covered by exposures of hard rocks. The cultivated land represents very good 

farming conditions (Figure 2) and has the ability to produce main crops such as wheat, barley and 

tobacco if water is available.  

 

 

 

 

 

 

 

 

 

 

 

                                                                                                  

                                                                                                         

Figure 1 Sinjar area 

 

Figure 2 Farm at Sinjar area. 

 



3 

 

Suitable data are needed to understand and investigate the relationship between hydrology and climate 

change. Two principal data sets were employed during the calibration, validation and simulation of the 

daily rainfall models: 

 

First, Rainfall data which is one of the main components in the hydrological cycle and intimately linked 

with almost all aspect of climate. Therefore rainfall data of highest quality are of primary importance 

for hydrological calculations. The main rainfall data used here are daily observations obtained from 

Iraqi Meteorological Office for period 1961-2001. 

 

Second, atmospheric data, these variables were used for the purpose of constructing a rainfall model 

(observed) and to simulate the future climate from GCM. Both observed and GCM daily predictor 

variables have been normalised with respect to their 1961-1990 means and standard deviations to 

account for any bias from the GCM. The normalisation process ensures that the distributions of 

observed and GCM-derived predictors are in closer agreement than those of the raw observed and raw 

GCM data. These two sets (large scale predictors) are described below:  

A. Reanalysis data 

Reanalysis data provide baselines or climate reference for future climate projections. The US National 

Centres for Environmental Prediction (NCEP) reanalysis dataset (Kalnay et al. 1996) provides 

contemporaneous gridded data which is usually considered to be the best global climate circulation 

representation of the current state of the earth system. NCEP data originally at resolution of 2.50x2.50, 

was re-gridded to conform to output of the GCM and was selected at grid box covering each of the 

station. The NCEP data are however considered adequate for present purposes, i.e. to be used as the 

current observed atmospheric data for developing downscaling rainfall (calibration and validation) tools 

using global climate data and was obtained for the period 1961-2001. 

B. Climate Model Data 

With provision for the simulation of the effects of anthropogenic emissions, climate models are an 

important tool for providing future climate information (Wheater, 2002). HadCM3 Global Climate 

Model (GCM) with grid resolution of 2.50x3.750 is used in this paper to provide future climate scenarios 

for three future periods 2020s (2010-2039), 2050s (2040-2069) and 2080s (2070-2099). Since climate 

projections are related to emission uncertainty, different climate scenarios, defined by Nakicenovic et 

al. (2000), are used by the Intergovernmental Panel on Climate Change to account for the uncertainty of 

future anthropogenic carbon emissions. Both the A2 & B2 emission scenarios are employed here. 
 

2.0 Methodology 

GCMs are the main tools to predict large scale climate variations at seasonal and interannual scales, but 

they are usually not successful in reproducing higher order statistics and extreme values. Furthermore, 

they can not be adapted for impact-oriented applications at regional scale because of their relatively 

coarse resolution of typically several hundred kilometers (Von and Heckl, 2011). For bridging the gap 
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between the scale of GCM and required resolution for practical applications, downscaling provides 

climate change information at a suitable spatial scale from the GCM data. 

 

In this study a downscaling approach has been used to obtain local scale rainfall at Sinjar station 

employing two steps, selected the suitable clime variables (predictors) and then developing the rainfall 

model. 

 

2.1 Model Predictors 

For downscaling rainfall, the selection of appropriate predictors is one of the most important steps in a 

downscaling exercise. The predictors are chosen by the following criteria: (1) they should be skillful in 

representing large-scale variability that is simulated by the GCMs and are readily available from 

archives of GCM output and reanalysis data sets; (2) they should strongly correlated with the with the 

surface variables of interest/predictands i.e. they should be statistically significant contributors to the 

variability in rainfall; (3) they should represent important physical processes in the context of the 

enhanced greenhouse effect (Hewitson and Crane, 1996; Cavazos and  Hewitson, 2005). The stepwise 

regression has been used for purpose of this process in order to select the parsimonious model as it 

would generally not be useful to include all predictors in the final model. The stepwise selection 

procedure is the combination of forward selection and backward elimination after adding one predictor 

to the subset or excluding one predictor from the subset. In this process, the observed daily predictors 

(climatic variables), which come from NCEP data, are selected from a range of candidate predictors that 

correlated with daily rainfall data for each season winter(JFD), spring(MAM), summer(JJA) and 

autumn(SON). 

 

2.2 Rainfall Model 

The daily single-site rainfall downscaling model is used in this study is ANN which has been recently 

used in many single or multisite daily rainfall generation as well as downscaling applications (for 

example, Ojha et al., 2010; Hoai et al., 2011; Fistikoglu and Okkan, 2011). ANNs is an example of the 

regression statistical downscaling method and has potential for complex, nonlinear, and time varying 

input-output mapping and rely on empirical relationships between local-scale predictands and regional-

scale predictor(s). Although the weights of an ANN are similar to nonlinear regression coefficients, the 

unique structure of the network and the nonlinear transfer function associated with each hidden and 

output node allows ANNs to approximate highly nonlinear relationships. Therefore the interest in 

ANNs is nowadays increasing (Coulibaly and Dibike, 2004). 

 

The model simulates rainfall wet and dry day at each location and is formulated to reproduce the 

temporal structure of the observed rainfall record in the simulations. On a given day, the model 

simulates rainfall at Sinjar station conditional on selected atmospheric variables for each season. 
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 2.2.1 ANN Model Structure 

The multi-layer feed forward ANN (MLF-ANN) (see Figure 3) composed of multiple simple processing 

nodes, or neurons, assembled in different layers (input, hidden, output). Each node computes a linear 

combination of the weighted inputs including a bias term from the links feeding into it. The assumed 

value of these inputs is transformed using a certain activation function; either linear or non-linear. The 

output obtained is then passed as input to other nodes in the following layer. One important requirement 

for this activation function is that it must map any input to a finite output range, usually between 0 and 

1 or -1 and 1 (Lisboa, 1992). Several different activation functions can be used, in this study, the linear 

(output layer) and log-sigmoid (hidden layer) have been selected which are commonly used. Figure 1 

show a typical three layer MLF, the output ‘y’ (rainfall) of a network with ‘n’ inputs, ‘k’ log-sigmoid 

nodes in the hidden layer and one linear node in the output layer is given by: 

                                                                                                                         (1) 

                                                                     (2)                                                                                                                    

where, 

 Xi   corresponds to the ith input (selected climatic variables) 

and  (  and ) are the weights and biases from the output (hidden) layers 

f is the log-sigmoid transfer function. 

 

 

 

 

 

 

 

 

 

 

Figure 3 Multilayer feed forward ANN 

2.2.2 Training of MLF-ANN 

The training of ANN simply means estimation of the model parameters which are the weights and 

number of hidden neurons. The main objective behind all ANN training algorithm is to minimise a 

certain error function E. The quantity E, usually the Mean Square Error, measures the difference 

between the observed (O) and predicted (S) values for a data with size (n) (Trigo 2000), 
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                                                                                                                 (3) 

 

For MLF-ANN, with more than one layer of weights (as in Figure 1), the error function will typically 

be a highly non-linear function of weights. As consequences of non-linearity, it is not in general 

possible to find an analytical solution for the minimum of the E. Instead, it is necessary to consider 

algorithm that involves a search through the weight space consisting of a succession of steps. 

 

Different algorithms involve different techniques to define the weight .The training technique most 

widely used in literature is the backpropagation algorithm in which the error is then back propagated 

through the network and weights are adjusted as the network attempts to decrease the prediction error 

by optimising the weights that contribute most to the error. This process is repeated many times with 

many different hidden neurons pairs until a sufficient accuracy for all data sets has been obtained. There 

are different backpropagation algorithms, however in the present application, Levenberg-Marquardt 

approach (LM) has been applied and that distinguish the current paper from the conventional ANN 

algorithm used.  

 

The LM algorithm which was independently developed by Kenneth Levenberg and Donald Marquardt 

(Levenberg, 1944; Marquardt, 1963) provides a numerical solution to the problem of minimizing a 

nonlinear function. It is usually more stable and more reliable than any other back-propagation 

techniques, and was designed to speed up the training process (Jeong and Kim, 2005; Yadav et al., 

2010). LM is based on the approximation of Gauss-Newton method and introduces another 

approximation to the Hessian matrix, H defined as: 

 

                                                                                                                                        (4) 

µ is always positive, called combination coefficient 

I is the identity matrix 

J is the Jacobian matrix and can be computed through a standard backpropagation technique that is 

much less complex than computing the Hessian matrix. The Jacobian contains the first derivatives of 

the ANN errors with respect to weights. So the update rule of LM algorithm can be presented as; 

 

                                                                                                                      (5)   

                      

2.2.3 Model Evaluation techniques       

Part of daily rainfall within the period 1961-2001 was used for verification processes for each of the 

winter, spring, summer and autumn models.  The performances of the ANN model were evaluated 

mainly based on: 

1. The correlation coefficient (R) has been widely used to evaluate the goodness-of-fit of hydrologic 

and hydrodynamic models (Legates and McCabe, 1999). This is obtained by performing a linear 
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regression between the ANN-predicted values (S) and the targets for n observations (O), being defined 

as, 

 

 

                                                                                                                                                (6)                                                                

 

 

 

A case with R is equal to 1 refers to a perfect correlation and the predicted values are either equal or 

very close to the target values, whereas there exists a case with no correlation between the predicted and 

the target values when R is equal to zero. Intermediate values closer to 1 indicate better agreement 

between target and predicted values (Legates and McCabe, 1999). 

 

2. Root Mean Squared Error (RMSE) for n observations (Schaap and Leij, 1998) defined as,    

                                                                         

                                                                                                                                                  (7)                                                                                                                                                                

 

ANN responses are more precise if RMSE close to (0). 

 

3. Nash –Sutcliffe coefficient. The range of this coefficient lies between 1.0 (perfect fit) and . An 

efficiency of lower than zero indicates that the mean value of the observed time series would have been 

a better predictor than the model.  The statistical index of model efficiency (Nash and Sutcliffe, 1970) is 

used, 

                                                                                                                       

                                                                                                                                                               (8) 

  

 

 

 

4. Bias. The optimal value of the Bias coefficient is (0), with low values indicate accurate model 

simulation. Positive values indicate underestimation and negative values indicate overestimation (Gupta 

et al., 1999) and can be represented by, 

  

                                                                                                                                                           (9) 

 

 

 

Furthermore, other visual plots to compare the observed and simulated rainfall amount by the ANN on 

seasonal basis are also considered. 
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3. Results& Discussions 

Downscaling models are developed following the methodology described in Section 2. The results and 

discussion are presented in this section. 

 

3.1 Potential Predictor Selection 

The most relevant probable predictor variables necessary for developing the downscaling models for the 

four season’s winter, spring, summer and autumn have been selected based on stepwise regression. The 

results in Table 1 show the selected predictors together with significance of the correlations for each 

season in terms of zero correlation and partial correlation (correlation of each predictor with the rainfall 

but take the effect of the other predictors). The most dominant predictor is the relative humidity at 850 

hpa for the four seasons which reveals significance between 0.00-0.021 less than 0.05. The vorticity at 

850 hpa and relative humidity at 500 hpa are ranked second for all seasons except the summer and 

spring. Other climate variables have been also considered as important (see Table 1) with a significance 

of 0.00-0.045, although the relative small correlation ranged between 0.038-0.351for zero correlation 

and 0.058-0.0256 for partial correlation. 

 
In general 7 predictors were found to have a significant relation with the rainfall for winter, spring and 6 

predictors for autumn while the summer shows only 4 predictors. Table 2 shows definition of each 

climate variable that has been used. 
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Table 1 selected Climate variable (predictors) 

Predictors JFD 

 

MAM 

 

JJA 

 

SON 

 
sig Zero-order Partial 

correlation 

sig Zero-order Partial 

correlation 

sig Zero-order Partial 

correlation 

sig Zero-order Partial 

correlation 

p_8z .003 .143 .087 .000 .205 .139 - - - .001 .067 .095 
r850 

 

.000 .252 .138 .000 .247 .256 .021 .045 .067 .000 .268 .250 
P_v 

 

.000 .325 .193 - - - - - - .000 .201 .212 
P_f - - - - - - - - - .000 .132 .140 
p_8f .000 .351 .140 - - - - - - - - - 
r500 

 

.000 .332 .112 .000 .275 .122 .000 .154 .149 - - - 
p_5th 

 

.000 -.240 -.109 - - - - - - - - - 
p_z .003 .073 .086 - - - - - - - - - 

p_5z - - - - - - - - - .002 .068 -.088 
p_5u 

 

- - - .000 -.060 -.140 - - - - - - 
p_8v 

 

- - - .000 .237 .174 - - - - - - 
p_5f 

 

- - - .000 .065 .107 - - - - - - 
shum 

 

- - - .001 .096 .100 - - - - - - 
rhum 

 

- - - - - - .000 .105 .123 - - - 
p_8th 

 

- - - - - - .045 .038 .058 - - - 
p850 

 

- - - - - - - - - .000 -.126 -.131 

* sig: significant level which is < 0.05 for significant correlation 
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Table 2 definition of the selected climate variable  

Code  Variable 
r500  Relative humidity at 500 hpa 

r850  Relative humidity at 850 hpa 

P5_u  Zonal velocity at 500 hpa 

p_z  surface vorticity 

p5_z  500hpa vorticity 

P8_z  850 hpa vorticity 

rhum  Near surface relative humidity 

p_8f  Surface airflow strength 

P_f  Surface airflow strength 

P_5f  500hpa  airflow strength 

p_v  Surface meridional velocity 

p_8v  850 hpa meridional velocity 

p850  850 Geopotential height 

shum  Near surface specific humidity 

P8_th  850 hpa wind direction 

 

3.2 Model Performance 

The selected climatic variables are provided as input to the regressions downscaling model together 

with the observed rainfall as output. For purpose of this study, 90% of the rainfall amount data 

considered as training set and 5% as validation set with additional 5% as test set after the training is 

stopped for the period 1961-2001 which were selected randomly. The validation set was used during 

the training to avoid the problem of overfitting. If the ANN is trained without stopping criteria (early 

stopping), then it begins to overfit, and the mean-square error begins increasing from its minimum. 

Without the early stopping method, data that have high complexity typically produce high variance 

when the training is terminated. The rainfall model has been applied using MATLAB 7.110. 

 

Results of the different statistical properties of the observed and simulated rainfall model as defined in 

previous section are tabulated in Table 3 in terms of correlation coefficient (R), root mean squared 

error (RMSE), Nash coefficient and Bias. The results of statistical parameters analyses indicated good 

model simulation for rainfall because overly the relatively high R and Nash coefficient above 80% 

and 65% respectively for daily rainfall for all seasons. The RMSE and bias are considered relatively a 

bit high as it would not expect the model to replicate the exact daily sequences found in observations 

in an arid region. 

 

Table 3 Statistical properties of ANN downscale model during calibration and validation periods 

Coefficient JFD 

 

MAM 

 

JJA 

 

SON 

 
R 0.84 0.81 0.84 0.85 

RMSE 3.33 2.53 0.22 1.63 

Nash 0.69 0.66 0.70 0.71 

Bias 13.41% -12.16% -3.76% -9% 
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Figure 4 shows comparisons of the observed and ANN estimated month-wise mean rainfall. 

Examination of Figure 4 shows that the calibrated model has reproduced the seasonal values quite 

well (during calibration and verification period). The model was slightly underestimated the mean 

monthly rainfall for January, February, March and December and overestimated May and September, 

while for the other months the model was in a good agreement. Hence the observed and the estimated 

annual rainfall are equal. 

 

Further, examination of Figure 5 in terms of average monthly wet days, reveals that only for a few 

months (February, June, July and August), ANN simulated monthly mean almost equally low below 

that of the observed data. For all other months of the year, the model was over estimated the wet days. 

 

It has been noticed that summer months were modelled better than the other season and that could be 

due to low skewness of the rainfall characteristics during this period. 

 
 

 
Figure 4 Average monthly rainfall of the observed & the simulated during calibration and validation periods  

(1961-2001) 

 
Figure 5 Average monthly wet days of the observed & the simulated during calibration and validation periods 

 (1961-2001) 

 

Another comparison for ability of ANN to reproduce the observed rainfall is quantile-quantile plot in 

Figure 6 between the observed and simulated daily rainfall for period 1961-2001. It is seen that the 

ANN model follow the 45° line for all daily rainfall amounts, suggesting the ANN models are closer 

to the observed rainfall distribution. There are outliers for the ANN model for high rainfall amount, 



12 

 

but not for low amounts in winter and spring seasons, which shows that low amounts are better 

simulated than high amounts, while the summer and autumn are more maintain the distribution. 

 

Moreover, uncertainty in simulation of future extreme values using the ANN approach needs to be 

taken into consideration. For instance, if an event was not represented in the observed climate then it 

is unlikely to be represented in the future climate. So the ANN extremes performance produced from 

observed NCEP predictors was validated by comparing them with observed extremes. Extreme 

values, corresponding to specific return periods were estimated with a standard frequency analysis 

using Generalised Extremes Value Distribution (GEV, Coles (2001)) (see Figure 7). NN was able to 

reproduce the winter extremes properly while overestimate the daily extremes for the other seasons 

specially the autumn. 

 

In general there are some differences between the observed daily rainfalls and simulated by ANN, but 

the overall performance of the downscaling model for calibration and evaluation phase at daily and 

monthly level is deemed satisfactory. 

 

 

 

Figure 6 Quantile – Quantile plot for observed &simulated daily rainfall for (a) winter (b) spring, (c) summer 

and (d) autumn during calibration and validation periods (1961-2001) 

(a) (b) 

(c) (d) 



13 

 

 

 

Figure 7 Return period-return level relationship of observed &simulated extremes rainfall for (a) winter (b) 

spring, (c) summer and (d) autumn during calibration and validation period (1961-2001) 

 

The final Structures of the ANN used in building the models are shown in Figure 8. The suitable size 

and structure of ANN in terms of hidden neurones and weight were selected during the training 

process. It can be deduced from the network structures that the ANN modelling approach employs a 

larger number of neurons in the hidden layer in winter, spring & autumn and sometimes two hidden 

layers (12-20 neurons). This larger number of neurons in the hidden layer generally contributes to the 

accuracy of the model. In contrast, the summer model network uses smaller numbers of neurons in the 

hidden layer (one layer of 4 neurons). 

 

 
 

 

 

 
 

 
 

Figure 2 Structure of ANN for the seasonal models (a) winter, (b) summer, (c) spring and (d) autumn 

 

(a) (b) 

(c) (d)  

Figure 8 Structure of ANN models for (a) winter (b) spring, (c) summer and (d) autumn 

(a) (b) 

(c) (d) 
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3.3 Future Rainfall Projection   

To incorporate the change in climate, one needs to calculate the relative change in daily mean wet and 

dry series lengths from the GCM output (HADCM3) of the control period (1961-1990) and future 

time-period. 
 

From the bar chart of downscaled predictand (Figure 9), it can be observed that rainfall is projected to 

decrease in future for A2 and B2 scenarios. The patterns of rainfall in the future are relatively same 

for both scenarios although the B2 scenarios projected more reduction than A2 scenario. This is 

because among the scenarios considered, the scenario A2 has the highest concentration of 

atmospheric carbon dioxide (CO2). Generally a greatest reduction is anticipated in 2080s for most of 

the months and can be up to 96% and 58% as in June of A2 and March of B2 respectively. December 

experiences very a slight increase in 2020s for both scenario and same trend was obtained for January 

in 2050s. 
 

Moreover, seasonal pattern of average daily rainfall for different future time slices for A2 and B2 

simulations at Sinjar are also projected as shown in Figure 10.  All seasons consistently projected a 

drop in daily rainfall for all future periods (black dots) with summer which expected to have more 

reduction compared with other seasons as it is consider to be almost dry by end of 21 century for both 

scenarios. A drop up to 34%, 45% and 30% for winter, spring and autumn respectively can be 

detected for A2 scenario by 2080s, while B2 projects a maximum drop of up to 34%, 30% and 33%. 

Vertical bar chart shows the standard deviation of the rainfall and confirmed that rainfall will be less 

variable and skewed due to the reduction of daily rainfall amount. 

 

 
Figure 9 Future monthly average rainfall for different time slices for A2 scenario (upper) and B2 scenario 

(lower) compared with control period  
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Fig 10 Seasonal average daily rainfall for different future time slices for A2 scenario (upper) and B2 scenario 

(lower) compared with control period. The vertical error bars indicate the standard deviation 

 

 

Using a simple linear trend approach (Hannaford and Marsh, 2006), the gradient and its variance of 

the resulting regression of the hydrological series with respect to time is used to check the possible 

trends in the rainfall series for the period 1961-2099. Using Wald test, the significance of trend 

gradients is tested based on a normally distributed assumption. Figure 11 shows the series plots and 

their trend lines for the average annual rainfall for Sinjar station. The rainfall trend shows a significant 

downward for A2 and B2 scenarios (α < 0.05) which confirm that climate change in Sinjar affect the 

rainfall pattern in a negative way especially in 2080s. 

 

Figure 12 indicates that, there is an appreciable change in the number of wet days by 2080s for 

months January, February and March in both scenarios with about 10%-40% decrease in the wet days, 

while rest of the months experiences a slight drop for all future periods. No changes in summer 

months are noticed are they anticipated  to be almost dry, however, a tendency of dryness extending to 

September is also observed (Figure 12). 

 

 

Winter Summer Autumn 



16 

 

 

 
Fig 11 Average annual rainfall for A2 scenario (upper) and B2 scenario (lower) compared with control period. 

Linear trend indicates that there is a significant downward trend  

 

 

 
Fig 12 Average monthly wet days for A2 scenario (upper) and B2 scenario (lower) compared with control 

period 
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Figures 13, 14 shows a comparison of PDF estimates of GEV for current and projected daily annual 

extremes rainfall amount for Sinjar, which reveals a change in the shape of the distribution. The ANN 

model shows some increase in the extremes event of 2020s for A2 scenarios (the tail of distribution is 

shifted more to the right compared with the control period), while the other future period PDFs for 

same scenario relatively maintain the shape of distribution (Figure 13). The B2 scenario shows mix 

results for changes in the distribution of extremes event (Figure 14). The ANN model shows a 

decrease in higher amounts for the three future periods, while the model projects an increase in low 

rainfall amounts in 202s & 2050s, and decrease for  in 2080s(the tail of distribution is shifted to the 

left) for the chosen GCM. 

 

The ANN model is sensitive to the temporal changes in climatic variables, as it uses temporal features 

as well as point values in defining rainfall distribution. This may make the model very sensitive to 

small changes between scenarios, leading to different projections. 

 

 

 

 

Fig 13 Probability density function distribution (pdf) of (a) control period compared with the future period for 

(b) 2020s (c) 2050s, (d) 2080s of annual extremes events for A2 scenario 

 

(b) (a) 

(c) (d) 
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Fig 14 Probability density function distribution (pdf) of (a) control period compared with the future period for 

(b) 2020s (c) 2050s, (d) 2080s of annual extremes events for B2 scenario 

 

In summary, it is evident that the average rainfall trend shows a continuous decrease. The overall 

average annual rainfall is slightly above 210 mm. This will keep this area below the average annual 

rainfall limit of 300mm required to maintain crop growth (FAO, 1987). Both scenarios (A2&B2) 

showed that about 83% of the years having rainfall less than 300mm. However, the distribution of dry 

years varies with time (Figure 15). In this figure there is a very slight increase of the average annual 

rainfall till 2060-70 followed by a sharp decrease towards 2099. 

 

Fig. 15 : Change of average annual rainfall with time 

(a) 
(b) 

(c) (d) 
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4. Conclusions 

Two emission scenarios used by the Intergovernmental Panel on Climate Change (A2 & B2) were 

used to study long term rainfall trends up to the year 2099 for Sinjar area northwest of Iraq. ANN 

model was used to provide climate change information to provide a suitable spatial scale from the 

GCM data. In general 7 predictors were found to have a significant relation with the rainfall for 

winter, spring and 6 predictors for autumn while the summer shows only 4 predictors. All seasons 

consistently projected a drop in daily rainfall for all future periods with summer which expected to 

have more reduction compared with other seasons as it is consider to be almost dry by end of 21 

century for both scenarios. 

 

The results also indicates that, there is an appreciable change in the number of wet days by 2080s for 

months January, February and March in both scenarios with about 10%-40% decrease wet days, while 

rest of the months experiences a slight drop for all future periods. No changes in summer months are 

noticed are they considered almost dry, however, a tendency of dryness extending to September is 

also observed. Generally the average rainfall trend shows a continuous decrease. The overall average 

annual rainfall is slightly above 210 mm. Both models showed that about 83% of the years having 

rainfall less than 300mm. However, the distribution of dry years varies with time. In this figure is 

slight increase of the average annual rainfall till 2060-70 followed by a sharp decrease towards 2099. 

In view of this prudent water management strategies are to be adopted to overcome water shortage 

crisis. 
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