A Novel Indoor Adaptive Thermal Comfort System
to Reduce the Energy Consumption for the

Residential Dwellings

Karyono Karyono

A thesis submitted in partial fulfilment of the requirements of Liverpool

John Moores University for the degree of Doctor of Philosophy

March 2023



Abstract

Abstract

The percentage of households in fuel poverty, who cannot afford adequate
heating, has reached 25% in the United Kingdom (UK), resulting in a critical threat to
life. Therefore, this issue is currently of interest to UK policymakers and stakeholders.
Currently, the main areas of interest relating to thermal comfort are factors relating to
indoor health, the energy crisis, and Global Climate Change.

There was a gap in the acknowledgements of adaptive thermal comfort
(psychological and human behaviour aspects) due to the focus on human physiology
(Predicted Mean Vote - Predicted Percentage Dissatisfied/ PMV-PPD). Furthermore,
existing heating control systems need to be optimized for using an electric radiant heating
panel to anticipate the future focus on renewable energy sources.

This work has developed a novel base system model that better reflects the user
conditions for the future indoor thermal control system based on the existing ASHRAE
RP-884 and Global Thermal Comfort Database 1l combined with new data collections
and case studies. The system model has the compatibility to control the heating panels
based on the network of sensors and flexible user control with a low-cost system approach
to suit residential needs.

The artificial intelligence (Al) model with shallow supervised learning
implemented in the system can enhance the existing model to produce a 98.49% comfort
zone from all ASHRAE multiple databases. In contrast, the PMV-PPD only gives 69.91%
comfort, while the Givoni approach gives 89.19%. With a 6.62% wider comfort area and
the assumption of direct conversion to saving, the base system model can contribute to
about 783.5 thousand tonnes of CO2 equivalent per year with the 2030 emission factor.
Widening the thermal comfort zone also acknowledges a particular group that needs a

different set point. This work also recognized that acknowledging the human presence
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during the thermal comfort assessment can increase the comfort level more than 10% with
the same heating arrangement.

The initial model assessment was also developed using MATLAB to represent the
UK’s indoor conditions for typical residential properties built prior to the 1920s and after
the 2010s and highlights the suitable parameters for indoor comfort with lower energy
use. The simulation results recommend lowering the thermal set point for thermal
comfort. The result is based on hourly thermal data across the UK on the different housing
typologies.
This solution can bridge the physiology and psychology aspects and benefit the engineers

and the researchers in the thermal comfort area.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Human comfort

About eighty-seven per cent of the population spend their time in an artificial climate
(indoor), according to the research of NHAPS (Klepeis et al., 2001). This fact justifies
that over the past fifty years, there has been a dramatic increase in research on thermal
comfort methods. Human comfort is a state of mind expressing satisfactory adaptation to
the immediate environment. Human comfort can be divided into smaller aspects, such as
lighting, acoustics, thermal comfort, and air quality. These aspects are not independent,
but there are relations between these comforts, which are visualised in Building Bulletin
101 Guidelines on ventilation, thermal comfort and indoor air quality in schools (Daniels,

2018), as shown in Figure 1. The arrows represent the relations of each aspect of comfort.

Thermal Comfort Air Quality

Radiant Temperature | Humidity || Air Temperature | Air Velocity | Air Quality Index
A A A A A
N Y

. IS -

Human
Comfort

\ 2 Y }

Lighting Level Uniformity Reverberation Time | Background Noise

Lighting Comfort Acoustic Comfort
Figure 1 Human comfort aspects and their relations.

Although outdoor comfort is also studied in some of the papers (HOppe, 2002)
(Coccolo, Kampf, Scartezzini, & Pearlmutter, 2016) (Lai, Liu, Gan, Liu, & Chen, 2019),
the majority of research is focused on indoor thermal comfort. Based on the Scopus search

99 ¢¢.

result, “indoor” “thermal comfort” returns 73.3% more dominant compared to “outdoor”
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“thermal comfort due to the nature of human living. Based on this fact, this work will
focus on indoor thermal comfort.

Thermal comfort is one of the primary concerns in the design process of the artificial
climate inside the building and significantly impacts health and safety. Some research
found a strong relationship between ambient temperature and the cause of specific
morbidities. The lag effect of hot temperature on morbidity was shorter than the cold and
will also be affected by sociodemographic and pollution factors. There are enough studies
to claim that mortality can be associated with cold and heat waves (X. Ye et al., 2012).
Heat exposure was associated with increased cardiovascular, cerebrovascular, and
respiratory mortality risk. Cold-induced cardiovascular morbidity increased in youth and
the elderly (X. Song et al., 2017).

In the past 30 years, The World Health Organization estimates that yearly over 150,000
fatalities are caused by climate change (Patz, Campbell-Lendrum, Holloway, & Foley,
2005). Besides the human factors, the dwelling significantly influences the protection
against heat and cold waves. Many existing dwelling stocks cannot provide enough
protection against the heat and cold waves (Ormandy & Ezratty, 2016). Besides health
and safety risks, thermal comfort will be beneficial also for productivity. If people work
in an uncomfortable environment, they will behave unsafely due to the deterioration of
their physical performance and thinking ability. The probability of committing an error
will be higher due to the lower concentration. The indirect effect of thermal comfort is

improving the working environment's morale (t. H. a. S. Executive, 2019).
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1.2 Conditions Which Show the Need for This Research

1.2.1 Global Climate Change

Thermal comfort has mainly focused on health and safety concerns. There is also a
complementary shift for research focused on lowering energy consumption and climate
change. The CO2 emission has grown 1.7% to reach 33.1 Gt and become the highest
growth since 2013. This growth is due to higher energy consumption (Eurostat, March
2018). The growth in the global economy and the increase in the energy demand for
heating and cooling are the leading cause of this increase. Global climate change (GCC)
can decrease heating needs by 2%.

On the contrary, the need for air conditioning has increased, especially in cooling
during summer, due to the effects of increased humidity (Scott, Wrench, & Hadley, 1994).
Increasing the global mean surface air temperature would benefit some countries but
trigger higher losses for others. In the United States, the weather triggered about a 60%
increase in CO2 emissions (Tol, 2002a). The UK Climate Projections 2018 (UKCP18),
which gives the UK climate projection tools, also predicts that the future will have
warmer, more wet winters and hotter, drier summers (Jason A. Lowe, 2018). If the
globally averaged values were used, the world impact would be excess spending of 3%
to compensate the GCC (Tol, 2002b). The GCC impact will be worse in the later years
and will have a worse impact on the more impoverished regions (Tol, 2002a). The
development of energy-efficiency scenarios should differ from one location to another
because the effectiveness of such designs will not be the same for each case (Scott et al.,
1994).

HVAC (Heating Ventilation and Air Conditioning) systems are employed to maintain

comfort. In Europe, the primary use of energy by households is for HVAC. It can reach
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more than 64% of the final energy consumption for the residential buildings (Eurostat,
March 2018), which is very significant. The more power produced will always contribute
to the carbon footprint and will have a consequence on climate change and temperature
rise. The household sector represents 27.2 % of final energy consumption in Europe.
Anticipating these trends, the UK will introduce a Future Homes Standard, mandating the
end of fossil-fuel heating systems in all new houses from 2025 (HM Treasury, 2019),
drive zero carbon emission and leverage the Paris Agreement. The target is to keep the
global temperature rise this century below 2 degrees Celsius and even further to limit the
temperature increase to 1.5 degrees Celsius (Change, 2018). More energy-efficient
systems are proposed without ignoring the aspect of human comfort. There has been a
tremendous increase in the papers published from the 1970s to the 2010s (Rupp, Vasquez,
& Lamberts, 2015).

This work presents the comparative development timelines between the human thermal
physiology approach and the human behaviour approach for thermal comfort. These will
give an insight into the other researchers that want to focus on this area of work. This
work aims to improve the adaptive approach using Artificial Intelligence (Al). This work
uses the Artificial Neural Network (ANN) and combines the Predicted Mean Vote and
Predicted Percentage Dissatisfied (PMV-PPD) approach taken from the ASHRAE
database. The Al learning process acknowledges the behavioural aspects of thermal
comfort. The aim is to produce a better intelligent system by coping with the limitation
of Al. The approach is becoming the other alternative for Explainable Al, which is

resource Consuming.
1.2.2 New Regulations and Regulation Limitations

Building regulations related to indoor comfort and fuel poverty are outlined in Part F:

Ventilation (H. Government, 2010a) and Part L: Conservation of fuel and power (H.
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Government, 2010b). These regulations cover both dwelling and other 'non-dwelling'
building types. They consist of Approved Document L1A: Conservation of fuel and
power in new dwellings, Approved Document L1B: conservation of fuel and power in
existing dwellings, Approved Document L2A: Conservation of fuel and power in new
buildings other than dwellings and Approved Document L2B: conservation of fuel and
power in existing buildings other than dwellings.

In addition to building regulations, British Standards also give design parameters for
indoor comforts, such as BS EN 15251:2007 Indoor Environmental Input Parameters for
Design and Assessment of Energy Performance of Buildings (Standard, 2007) and BS
5925:1991 Code of practice for ventilation principles and designing for natural
ventilation (BSI, 2000). Besides the standard defined by the UK Government and
Standardisation body, some guidance documents are published by professional bodies
such as the Chartered Institution of Building Services Engineers (CIBSE). Although it
covers residential buildings, many of the cases and annexes provided are targeted for

buildings in general and non-residential buildings (Engineers, 2012).

1.2.2.1 Residential Properties

Within the UK Building Regulations, Appendix A of Approved Document Part F of
the Building Regulations (H.M.Government, 2013) outlines the maximum acceptable
quantity of volatile organic compounds (VOCs), nitrogen dioxide, carbon monoxide and
nitrogen dioxide within residential properties. These figures are based on the Committee
on the Medical Effects of Air Pollutants (COMEAP) (H.M.Government, 2004). For
newly built residential properties, standards for ventilation and Indoor Air Quality (IAQ)
are demonstrated within H.M.Government (2019c). In terms of relative humidity, the
recommended levels within domestic properties as outlined in H.M.Government (2013)

and can be categorised as follows:
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e The daily average is less than 85% RH
e The weekly average is less than 75% RH

e The monthly average is less than 65% RH

These regulations have been modified since the previous 2006 edition of the Building
Regulations Part F. It was noted by H.M.Government (2013) that these regulations were
reformed to comply with research conducted by Altamirano-Medina, Davies, Ridley,
Mumovic, and Oreszczyn (2009).
1.2.2.2 Workplaces

Apart from more generalised documents as per BS EN 15251: 2007 (Standard, 2007),
the building regulations specific to building type are mentioned in Building Regulations
Part L (H. Government, 2010b) Approved Document L2A and L2B, which are for
buildings other than dwellings. CIBSE also published Guide F 'Energy efficiency in
buildings’ (Engineers, 2012), further explaining and supporting Building Regulations
Part L2. This CIBSE guide also provides more detailed information on how to comply
with the Building Regulations Part L due to the complexity of compliance with this
standard. Additional explanations and cases are given to support the building services
engineers in complying with the standard.

Another CIBSE document that covers the issue of health aspects in the workplace is
CIBSE TM40 'Health Issues in Building Services’ (Engineers, 2020). This document
outlines all aspects of health issues, including health and wellbeing, facilities
management, thermal conditions, humidity, air quality, lighting, acoustic,
electromagnetic field, and water quality. Supporting pre-existing legislation the TSO
Workplace (Health, Safety and Welfare) Regulations 1992 No. 3004 (TSO, 1992), CIBSE

TMA40 further clarifies the implementation of the regulation in more practical resources.
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Other relevant CIBSE documentation for workplaces include CIBSE Guide A:
Environmental Design (Engineers, 2015), CIBSE Guide B2: Ventilation and ductwork
(Engineers, 2016) and also CIBSE Guide F: Energy Efficiency in Buildings (Engineers,
2012).

Inthe US, the American Society of Heating, Refrigerating Air Conditioning Engineers
(ANSI/ASHRAE) utilise ANSI/ASHRAE Standard 55-2017 Thermal Environmental
Conditions for Human Occupancy (R. A. C. E. American Society of Heating,
Incorporated, 2017). Another document created for a specific working environment is
ANSI/ASHRAE/ASHE STANDARD 170-2017, 'Ventilation of health care facilities’

(Gary Hamilton P.E., 2018).
1.2.3 UK Housing Typology and Fuel Poverty

The age range of residential dwelling typologies within the UK is vast, where only
17% of homes have been built in the last 30 years (Figure 2, (H.M.Government, 2019a)).
With variation in age comes a variation in building standards, techniques and materials
different from those used today to improve energy efficiency and, as a result, having
different heating requirements. For example, within pre-1919 dwellings, energy costs are
over 70% higher than their post-1990 equivalents (H.M.Government, 2019b). The
comparison between the 1920s wall and the post-1990s can be seen in chapter 3.2.2,
Figure 19. Considering Figure 2, over 20% of English residential dwellings are within
this category (pre-1919 dwellings), producing around double the carbon emissions.
Figure 2 also has a secondary y-axis representing the number of houses assigned to these
dwelling ages.

The dwellings built using solid masonry bricks without air gaps (solid uninsulated
walls) are referred to as '1920s' homes and were constructed from pre-1919 and 1919-44

in Figure 2. These homes are approximately 36.6% of the total dwellings, or about 8.76
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million. The dwellings built using the latest well-insulated walls mentioned in Figure 2
as post-1990 are about 4.02 million or about 16.8% of the total dwellings. This study will
focus on these two main groups, which are about 12.78 million houses covering about

53.4% of the total dwellings in the UK.

25 6.00
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20 4.58 4.69 5.00

-l
- 2 \| 4.02
’ [/ 4.00
1

3.00

1 1.89
2.00
.00
0 0.00

pre-1919 1919-44 1945-64 1965-80 1981-90 post 1990
Dwelling Age

o (3}

[6)]
Quantity of homes (Millions)

Percentage of total housing stock (%)
(=Y

Figure 2 Dwelling age of properties of English homes (H.M.Government, 2019a).

Using heating contributes to approximately 61% of total energy consumption for UK
homes ((NEF), 2014). As previously mentioned, there is also a requirement for more
energy required to heat these older homes, which have a subsequently higher fuel cost.
The inability to afford adequate, satisfactory heating energy in a home is defined as fuel
poverty (Boardman, 1991), (Liddell, Morris, McKenzie, & Rae, 2012), (Moore, 2012).
Particularly in pre-1919 homes, the likelihood of fuel poverty is double the national
average, where all countries within the UK experience fuel poverty, as demonstrated in
Figure 3.

Understanding how specific regions are affected by fuel poverty is imperative for
developing a more profound knowledge and demonstrating locational requirements.

Specifically, Figure 4 demonstrates two geographically opposite locations, Liverpool
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(North West) and Kent (South East), which have been highlighted in purple and orange
(respectively). In Liverpool, it is demonstrated to be one of only 14 local authorities in
the whole of England to be at the highest end of fuel poverty with between 14.1-20.9%
of homes experiencing it. By contrast, Kent has between 8.1-10% of homes in fuel

poverty, one of 106 local authorities (H.M.Government, 2020b).

England Wales Scotland Northern Ireland

NN W
o o1 O

=
o1 O

Fuel Poor
Households (%)
|_\

(6)]

o

Country within United Kingdom

Figure 3 Percentage of fuel-poor households within the UK (Northern Ireland Housing
N. I. H. Executive, 2019; Scottish S. Government, 2020; Welsh W. Government, 2019;
H.M.Government, 2020a).

Proportion of Fuel Poor Households (%)
% (no. of LAs)
52% - 8% (67)
8.1% - 10% (108)
B 10.1% - 12% (100)
B 12.1% - 14% (39)
I 14.1% - 20.9% (14)

2

Figure 4. Sub-regional map of fuel poverty (by the proportion of local authority) within
England (H.M.Government, 2020b).
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By comparison, in Scotland, the national average for fuel poverty households from
2016-18 was 25% (S. Government, 2019); this is represented in Figure 5. An orange
arrow highlights Aberdeen. The results demonstrated in Figure 5 are that within
Aberdeen, fuel poverty is approximately slightly below the national average at 23% of all

households in fuel poverty.
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Figure 5. Percentage of fuel poverty homes in Scotland (by the local authority) (where
an orange arrow highlights Aberdeen) (S. Government, 2019).

Further, Figure 6 (a) demonstrates a clear correlation between fuel poverty homes and
the building envelope typology. Solid and un-insulated homes have the most significant
proportion of homes that fall into the fuel poverty classification at approximately 16% of
all homes. Figure 6 (a) shows that the average fuel poverty gap is the largest if residents
live in solid uninsulated homes. The fuel poverty gap represents the value or quantity of
money required to move the household out of fuel poverty; for solid, uninsulated homes,
this is over £400 per year.

The fuel poverty problem gets worse due to the energy price increase and forces

people in the UK to a choice between heating and eating, as shown in the headlines of
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some popular newspapers in the UK (Radnedge, 2022), (Partington, 2022), (Mirror,
2022), (Hiscott, 2022), (Alderson, 222), (Shaw, 2022). The energy price rise was steep,
with the price more than doubling its value within the current year (E. I. S. Department
for Business, 2022). The energy price chart showing the rise in gas and electricity prices

can be seen in Figure 6 (b).
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Figure 6. (a) Effect of wall type on the proportion of households in fuel poverty and
average fuel poverty gap (H.M.Government, 2020a) (b) Weekly average prices forward
delivery contracts of gas and electricity in the UK (Ofgem, 2022b) (Ofgem, 2022a) .

The poverty fight effort is also stated in the Sustainable Development Goals (SDGs)

initiated by the United Nations, which are an urgent call for action by all countries in a
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global partnership (Development, 2016). The focus is on 17 goals which include fighting
against poverty and other deprivations, tackling climate change and achieving sustainable
cities and communities.

The UK Government commits to cutting greenhouse emissions to net zero by 2050.
Since 1990, the UK has cut emissions by over 40%. The target by 2035 is cutting
emissions by 78%. This target is also applied to energy use in buildings and residential
dwellings, especially in heating and cooling. Decarbonising energy in buildings is also a
key part of the Clean Growth Strategy. One of the ways to achieve it is to phase out the
installation of natural gas boilers beyond 2035 (the Secretary of State for Business, 2021).
There will be a move to a gradual transition to low-carbon heating. The new low-carbon

heating will soon be the mainstream consumer option.

1.3 Aim and Objectives

1.3.1 Aim

Aim: to develop a base system that predicts the current comfort state according to the
adaptive thermal comfort to regulate buildings' thermal conditioning, resulting in
enhanced comfort and efficiency through a novel solution based on the fusion of wireless
sensors and artificial intelligence that sense the radiant temperature, relative humidity and

monitor thermal comfort in real time with a reasonable price for residential dwellings.

1.3.2 Research Objectives

In general, the outcome of the novel solution for achieving indoor thermal comfort for
residential was reached by elaborating on four phases of research. Phase one activities
are literature review, survey related to the smart system and identifying the novelty and

planning review. The objective of this phase was mapping the gap and possible
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improvement in the thermal comfort field that not only focused on Fanger's approach but
also acquired the Adaptive Thermal Comfort approach (this corresponds to phase 1 of
Figure 7).

Phase two activity was the development of a model for heating to simulate the solution
that can benefit the energy aspect of thermal comfort. The objective of this phase is to
develop a thermal comfort model based on the housing typology and hourly outdoor data,
representing the UK dwelling conditions (this corresponds to phase 2 of Figure 7). With
the whole year's hourly weather data, this MATLAB model was able to give insight into
the physical parameters that affect indoor thermal comfort, including the people's
presence as a milestone for the development of the novel system.

Phase three has the activities of the development of the thermal comfort framework
and using the multiple ASHRAE Database for Al training. The objective of this phase
was to develop the real-time model using the adaptive approach for thermal comfort. The
framework elaborates the wireless sensors and artificial intelligence to monitor thermal
comfort in real time. The system was designed considering the price point of the
residential use. The Al learning process were based on the multiple ASHRAE databases
to give the ability for the framework to accommodate adaptive user processes for
prominent energy saving and fitted in the local controller to increase the system's
robustness and make it more cyber-safe (this corresponds to phase 3 of Figure 7).

Phase four's activities were testing the system in the laboratory, the BRE house to
represent the 1970s housing typology and conducting five case studies to represent
multiple dwellings’ conditions. This procedure had the objective to validate the system
against the actual implementation of the framework and compare the system against the

use of COTS sensors (this corresponds to phase 4 of Figure 7).

Karyono 13



Chapter 1

Introduction

Human Thermal Comfort Design

Human Thermal Comfort Study

Thermal Requirements Standards

Building Physics
(hygrothermal model)

A4

Novel Indoor Adaptive Thermal
Comfort System

Challenges: energy price rise, cleaner
energy, new heater type and control
demand that suits residential dwelling,
different housing typology

Novelty: Real-Time Radiant Temperature
and Air Quality sensor framework and
Occupants Sensor with reasonable price,
Acknowledgement of Adaptive Thermal
Comfort (Wider comfort zone), Ability to
control Electric Radiant Heating Panels

Human Thermal

E Comfort ﬂ
Human Thermal Predictor
Sensations Algorithm

Acknowledgement and Recom-
(Wider Comfort Zone) mender

5

=

Lower heating
energy for
residential

|- -—---- -1

Predictor Algorithm based on 5 most

influenced factors for thermal comfort

and Recommender based on clothing
(Clo) and activities values (Met)

-----=-=-=-=|-=-==—===="

Artificial Intelligence Based Control
System: Shallow Supervised Learning
based on Multiple ASHRAE Databases

with filtering and semantic augmentation.

Phase 4

* Literature review/Survey
* ldentify the novelty and
planning review.

» System Physical
Modelling

* Development of Model for
heating in MATLAB

 Development Framework
for thermal comfort

« Artificial Intelligence
Development

+ Base model comparison

» Testing in the lab and
exemplar House
+ Field Studies

Figure 7 The developped entities and the research phases.

Karyono

14



Chapter 1 Introduction

1.4 Novelty

This work focuses on the system to achieve indoor thermal comfort for residential use.
The main novelty is the developed system model that can become the standard system for
developing robust thermal comfort systems for residential with the ability to acknowledge
the adaptive thermal comfort. The developed system predicts the comfort zone which can
be integrated to control the electric residential heating. This base system can be said to
have “intelligent at cost” because it uses affordable consumer-grade electronics to be
implemented for residential use and work with real-time sensor data.

This system has the following properties:

e able to monitor multiple locations and control the heater in real time (based on
IoT sensors)

e robust with the low cyber security concerns because the algorithm can be
deployed in the local controller

e acknowledging the psychology approach of thermal comfort by the predictor
algorithm

e able to acknowledge 6.06% wider comfort zone from ASHRAE data set compared
to the PMV-PPD and the Givoni comfort zone

The initial phase of this work also assesses the possibility of lowering energy use

without affecting health by using the digital twin model developed in MATLAB.
1.5 Chapter Overview

This thesis is divided into eight chapters that help the reader understand the
background of this work, the approach taken, and the result and conclusion. The
introduction gives the context and background of the importance of this research. Starting

from the human comfort point of view, the global climate change and the current
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conditions drive the need for further work that needs to be done in this field. The first
chapter also highlights the aims and research objectives and the novelty that this work
can give to the society of knowledge. Part of this chapter has been published in the paper
about the thermal comfort overview (Kanisius Karyono, Abdullah, Cotgrave, & Bras,
2020) and hygrothermal model (Kanisius Karyono, Romano, Abdullah, Cullen, & Bras,
2022).

The second chapter addresses the development of the field of thermal comfort that
affects the currently defined standard. The highlighted previous works contributing to
human physiology, human psychology and human behaviour developments are addressed
along with their pros and cons. This chapter also includes the viewpoint of the health
aspects and the special group of people like the young, elderly, and temporary ill who
have different preferences in the thermal set point. The research progress based on the
publication parameters are also assessed in this chapter, along with Daniel Kahneman's
Principle related to the approach this work offered. The second chapter also discusses the
latest development in simulation, WSN and Al technology that have become the enabler
for the improvement in this field. Part of this chapter has been published in the paper
about the thermal comfort overview (Kanisius Karyono et al., 2020) and experience and
memory principle (Kanisius Karyono, Abdullah, Cotgrave, & Bras, 2021).

The third chapter focuses on the methodologies used in this work. This chapter
addresses the phases conducted in the research, from the literature review, the simulation
in MATLAB and prototype development. The last sub-chapter describes the test
procedures for testing the prototype.

Chapter four discusses the simulations and the results obtained from the model which
is one of the novelties and contributions of this thesis. This chapter describes the detail

about the model, the parameters involved in the model, assumptions and model
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simplification then followed by the result from the simulation and the analysis of the
simulation output. This chapter also address the validation for the simulation. The results
of the simulations are validated against the ASHRAE Global Thermal Comfort Database
I1 and the Al model that is explained in the chapter six of this work. The thermal comfort
model recommends lowering the thermal set point to lower the energy use for thermal
comfort. Part of this chapter has been published in the paper about the hygrothermal
model (Kanisius Karyono, Romano, et al., 2022).

The fifth chapter discusses the system design for the proposed IoT system prototype.
This chapter addresses the perception of the user about smart system and sensors use and
addresses the needs of the adaptive system. The topology of the system and the system
flow, the design of the hardware and software for the prototype are discussed in the next
sub-chapter. The user interface and the database structure for the prototype are also
addressed in this chapter. Part of this chapter has been published in the paper about the
thermal comfort overview (Kanisius Karyono et al., 2020) and the adaptive system for
industry 4.0 (Kanisius Karyono, Abdullah, Cotgrave, Bras, & Cullen, 2022).

Chapter six discusses the artificial intelligence part of the system, which is also
becoming one of the novelties and contributions of this work. This approach proposes
shallow supervised learning based on the multiple ASHRAE Databases with filtering and
data Semantic Augmentation. The previous research only includes part of the database
for learning or uses the more complex method for the artificial intelligence. This work
offers the use of fundamental ANN shallow supervised learning methods for thermal
comfort. This chapter discusses the need for filtering for the learning data set and the
filtering algorithm. Increasing the accuracy of the learning process was done by
implementing data semantic augmentation. The learning result was also compared with

other existing methods. This chapter also proposes psychrometric-based verification and
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parameter visualisation. Part of this chapter has been published in the paper about the
human presence (K. Karyono, Abdullah, B.M., Cotgrave, A.J., Bras, A., Cullen, J. , 2022)
and the paper on reliable learning (K. Karyono, 2023).

The seventh chapter discusses the testing against the controlled conditions inside the
lab and in actual conditions by using the BRE house to represent the condition of the
1970s house. This chapter discusses the result of these tests and compares sensors and
validations. This step also shows that the people's presence can benefit heating energy
conservation. Some case studies were also assessed to introduce the Al model's approach
to assessing thermal comfort. The case studies include the case of a humid dwelling, the
new dwellings, the refurbished flats, the use of the new materials for thermal
improvement and the new modular house with advanced heating controls. Part of this
chapter has been published in the paper about human presence (K. Karyono, Abdullah,
B.M., Cotgrave, A.J., Bras, A., Cullen, J. , 2022) and the paper on Al field study (K.
Karyono, Abdullah, B.M., Cotgrave, A.J., Bras, A., Cullen, J., 2022).

The conclusions and future works are provided in chapter eight, which is the last
chapter. This chapter highlights all the contributions and novelty of this work for thermal
comfort. The references and appendixes are also included in this thesis to provide more

detailed materials for supporting the finding.
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Chapter 2 Literature Review

2.1 The Development of the Methods in Thermal Comfort

Thermal comfort began to gain attention in the early 1920s when it became possible
to directly control the indoor environment's microclimate. In the traditional approach,
using fireplaces to control the temperature was mandatory. In the second half of the
nineteenth century, it was necessary to model the building as an open system and apply
the laws of thermodynamics (Fabbri, 2015). Various electronic controllers were
developed, which led to the evolution of comfort monitoring. Fanger's comfort model was
introduced in the 1970s, focused on physically based determinism along with the
introduction to the comfort equation. The quality of air movement and sophisticated
models that map the human body's physics and physiology were also developed to build
coherent, global thermal perception. These developments were also driven by energy
efficiency (R. J. de Dear et al., 2013). In the twentieth century, the focus goes on humans
as the centre point of the design to improve the health and comfort of people and their
homes (Fabbri, 2015), (R. J. de Dear et al., 2013).

The equivalent temperature of an environment corresponds to the same temperature in
an environment where the temperature is uniform, the air is stationary, and the moisture
content corresponds to 100 %. Therefore, the human body cannot exchange energy with
the environment. If the actual temperature of an environment is 22°C with a relative
humidity of 50 % and airspeed of 0.2 m/s, it is equal to the temperature of 19.6 °C with a
relative humidity of 100 % and no airspeed (Patz et al., 2005).

It is becoming essential to review the progress of thermal comfort due to the growth
of low-cost sensing solutions. The provision of lighting and thermal comfort has been

widely increased to existing and future intelligent buildings to aid productivity, health,
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and well-being. Thermal cameras, for example, have the potential to be used widely in
the home comfort system nowadays. It used to be so costly that only the military,
firefighters, and surveyors could use it due to its price (BBC, 10 January 1985; Tu, August
18, 1997; villo, 2002). Besides sensors, artificial intelligence also plays a vital role in
creating more intelligent solutions for human comfort. The system can perform smartly
to maintain comfort while lowering energy usage.

Figure 8 presents the evolution in the enhancement of the thermal comfort approach
in houses from 1920 until the present. PMV-PPD is the typical method for comfort
analysis. It focussed on thermal physiology. The other method, the adaptive method, is
based on human behaviour. There are three thermal adaptation types (Brager & de Dear,
1998):

e Physiological which is related to the body's reaction due to the temperature change.
e Psychological which is derived from the state of mind of previous experiences.
e Behaviour related adaptation
The adaptive method can give the flexibility and personalisation needed to overcome the
problem due to the variability of people's metabolism, historical exposure, and

behavioural preferences.
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2.1.1 Pre 1920s

In pre 1920s times, people used fireplaces and stoves to control the indoor temperature.
Another way to gain comfort was using adaptive human behaviour and clothing
arrangement. Later, the study of thermodynamics was used to model the building to study
the comfort parameter. The military also played their part in the history of comfort by the
work to achieve comfort, for example, on ships. One of the pioneers in this era was John
Bartlett Pierce, who founded a boiler factory, heating systems and radiators in 1892. The
company was among the most important manufacturers of heating systems in the United
States. His legacy is the foundation which became the institute to support the research in
this field. The institute focuses on the population's health, which is achieved using space
heating. The research was focused on two major topics, the thermodynamic study of the
physiological processes and the relationship between the human body and the
environment concerning well-being, physical and physiological behaviour (Fabbri,
2015).

The comfort also attracted interest because the thermal conditions affected the factory
output. The notable works were from Vernon in 1919, assessing the workers in the steel
industry, tinplate workers and the accident rate in the munitions industry related to the
thermal condition. In 1927 Vernon also assessed the effect of temperature rise in coal
mining. Weston conducted other research in 1922, Wyatt et al. in 1926 on the weaving
linen industry, and Farmer et al. in 1923 on the glass industry. All had a similar result: a
lower output or work rate in high-temperature exposure. Besides the lower output, the
accident rate also increased (Parsons, 2020 ).

Houghten and Yagloglou began to research comfort based on empirical rules in the
1920s and published the paper “Determination of the comfort zone” in 1923. They

proposed the lines of comfort on the psychrometric chart where the temperature is
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uniform, the air is stationary, and the moisture content corresponds to 100 %, where the
human body cannot exchange energy with the environment. The air velocity later being

included in the diagrams of wellness by Vernon H.M. and Warner and C.G (Fabbri, 2015).

2.1.2 Fanger PMV-PPD and Human Physiology

The development of a thermal model by Fanger in 1970 (Fanger, 1970) was considered
a milestone. This work has become a standard reference for thermal comfort due to the
experiments and model it presented. The experiments were conducted in a controlled
room condition. The formulated model makes it possible to calculate the effect of
variables to gain comfort. This model stated that no significant difference was generated
by sex, age, body build, menstrual cycle, ethnic differences, food, circadian rhythm,
crowding, and colour. This model is known as the Predicted Mean Vote (PMV) /Predicted
Percentage of Dissatisfied (PPD). This model has also become the basis of the ISO 7730-
2005 (Hoppe, 2002). The mean radiant temperature and radiation data can be calculated
for human comfort.

Fanger's equation shows the relation of the parameters that can affect human comfort.
This equation, also acknowledged by ASHRAE, comprises the PMV-PPD model in the
ASHRAE-55 Standard (Enescu, 2017). This standard mentions the parameters which can
have effects on human comfort. Six parameters are mandatory for thermal comfort.

Two parameters are related to the occupants, which are:
e metabolic rate
e clothing insulation
Four others are related to the surrounding environment, which are:

e air temperature
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e radiant temperature
e airspeed
e humidity
The met unit represents the individual metabolic rate. One met is equal to 58.2 W/m?
or 18.4 Btu/h-ft2, which is equal to the energy produced per unit surface area of an average
person seated at rest. The surface area of an average person is 1.8 m2, Writing for example,
also equal to 1.0 met unit. The activities within 0.1 met units can be grouped into one
entity. The limitation for this is for the occupants, whose time-averaged metabolic rate is
more than 2.0 met. The basic equation for thermal balance can be calculated using the
formula presented in equation 1 (Fanger, 1970).
M-—W =C+ R+ E + (Cres + Eres) + S 1)
Where: M : the metabolic rate

W : mechanical work is done

C  :convective heat loss from the clothed body
R : radiative heat loss from the clothed body
E  :evaporative heat loss from the clothed body

Cres : convective heat loss from respiration

Eres : evaporative heat loss from respiration

S : the rate at which heat is stored in the body tissues

An empirical table lists everyday activities and their met units (ASHRAE, 2017).

Clothing insulation is also presented as a table consisting of the clothing items and their
clothing insulation values in clo units. One clo is equal to 0.155 m2-K/W or 0.88
°F-ft2-h/Btu. This corresponds to trousers, a long-sleeved shirt, and a jacket. The limit of
occupants grouping is when the clothing difference is more than 0.15 clo. However, to

use the table values, there are some limitations for the clothes with high impermeability
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to sweat, more than 1.5 clo, and if the occupants are in contact with bedding. The seven

-3 Cold

levels of people’s thermal sensation can be seen in Figure 9.

+1 slight 0] —1 slight
warm Neutral cool

Gy G Gy Uy
Accepted by 80%
of the occupants
20% dissatisfied margin
@ (10% general thermal comfort + 10% local/partial body)

Figure 9 Thermal comfort definition from PMV-PPD acknowledged in ASHRAE
standard.

The thermal indexes were added along with the equations in subchapter 2.1.2 Fanger

PMV-PPD and Human Physiology, as follows:

Furthermore, one of the ways to predict thermal comfort and thermal sensation is by using
the following equations (R. American Society of Heating, Air Conditioning Engineers,

American Society of Heating, & Engineers, 2017):

ty = 35.7 - 0.0275(M - W)  (2)

Erow=0.42 (M~ W —58.15) (3)

Where: M : the metabolic rate, in watts per square metre (W/m);

W : the effective mechanical power, in watts per square metre (W/m?);

tsk : mean skin temperature (°C);

Ersw : Sweat rate (L/h)
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The previous equations (1-3) were expanded to include a range of thermal sensations by
using a Predicted Mean Vote (PMV) index. This was a way to cope with Fanger's equation
when people were not satisfied. The PMV index predicts the mean response of a large
group of people according to the ASHRAE thermal sensation scale. The PMV is

calculated using the following equation:

PMV =[0.303 exp (-0.036M) + 0.028] L  (4)

Where: M : the metabolic rate, in watts per square metre (W/m );

L : the thermal load on the body, in watts (W)

PMV gives good results for standard conditions of sedentary activity and light clothing
but needs to be validated with the different range of clothing and different activities. The
difference in clo values and met values can result in the increase or decrease of skin and
body temperature and a change in thermal sensation. The predicted percent dissatisfied

(PPD) can also be estimated from the PMV as follows:

PPD = 100 — 95 exp [-(0.03353PMV* + 0.2179PMV?)]  (5)

The ASHRAE thermal sensation was developed for use in quantifying people's thermal
sensation vote (TSV). The acceptable comfort temperature range according to the
ASHRAE thermal environment for general comfort is within the PMV range of -0.5 to
+0.5 (R. A. C. E. American Society of Heating, Incorporated, 2017). Changes in
temperature and water vapor pressure can change the thermal sensation vote. A person
might experience a thermal sensation of -0.5 near the cooler zone's boundary and +0.5
near the warmer zone's boundary according to the ASHRAE thermal sensation scale (R.

American Society of Heating et al., 2017). Thermal sense alone is not a good indicator of
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thermal comfort when there is excessive humidity. The discomfort was brought on by the
sensation of moisture, which results in more friction between the skin and the clothing.

In the cold environment, the additional 0.1 clo or 0.1 met will impact saving energy
because it can lower the operating temperature to approximately 0.8°C. On the contrary,
a decrease of 0.1 clo or 0.1 met corresponds approximately to a 0.8°C increase in
operative temperature (Enescu, 2017). Achieving comfort can be done by maintaining a
humidity ratio below or the same as 0.012. The lower level is not specified, but if the
humidity is very low, it can cause skin drying, irritation of mucous membranes, dryness
of the eyes, and static electricity generation. The high airspeed can extend the thermal
comfort range. This approach can be used if the occupants' condition is slightly warm.
When the sunray falls on the occupant, the mean radiant temperature should be considered
regarding the type of window glazing, the shade and the body exposed to sunray.

Regarding the procedure for measurement, the sample location should be selected
where the occupants are spending their time, and the measurement must include the centre
of the room and the 1 m inward from the centre of each room’s walls. The measurement
point shall be measured at the height of 0.1, 0.6, and 1.1 m above the floor for seated
occupants and 0.1, 1.1, and 1.7 m for the standing occupants.

Since Fanger's trial was done in the chamber, it could not capture the difference
between sex, age and special populations like people with disabilities, older people,
babies and children, the sick, pregnant women, and people from different cultures. It is
sometimes noted that males and females have different thermal comfort responses, which
are also related to their clothes. Some work is being done to improve the PMV regarding
these matters (K.C.Parsons, 2003) or focus on the particular aspects of the comfort factors

like the inversely determined metabolic rate (S. Zhang, Cheng, Olaide Oladokun, Wu, &
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Lin, 2020). Some of the work also led to the adaptive approach, which will be clarified

in the following subsection.

2.1.3 Adaptive Approach, Psychology and Human Behaviour

The other method, which is the adaptive method, was introduced by Nicol and
Humphreys (Rupp et al., 2015) (Enescu, 2017) (Yao et al., 2022). The adaptive model is
formulated on the nature of humans who can adapt. Besides acknowledging the PMV-
PPD method, ASHRAE-55 Standard also acknowledges the adaptive method (ASHRAE,
2017). Unlike Fanger's model, this model defines the comfort zone, which is also related
to thermal experiences, changes in clothing, activities, age, and gender. In this model,
gender, age, and physical disabilities will affect thermal comfort. There are three thermal
adaptation types. Physiological, related to the body's reaction due to the temperature
change, while psychological, derived from the state of mind of previous experiences and
behaviour-related adaptation (Brager & de Dear, 1998). This model can become the
solution if the PMV cannot easily be obtained due to the properties that PMV is not
individual, not adaptable and has no input modification.

This model is based on the work being done by Macpherson, which considers the heat
balance of the body. This balance is affected by the personal parameters representing
characteristics of the occupants and ambient parameters. The personal parameters can
include the clothing insulation, metabolic heat rate or activity level. The temperature, air
velocity, and relative humidity can become the ambient parameters considered for
comfort (Enescu, 2017). This model allows the ambient parameters to be controlled by
opening windows or fans (Rupp et al., 2015). Besides the fan, which can be used to
influence the ambient condition, there is other equipment, for example, misting fan, heater

(centralised or personal heating) and air conditioning. The personal parameter which
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affects the thermal experiences can be in the form of gender (W. F. Song, Zhang, Lai,
Wang, & Kuklane, 2016) and age; for example, the elderly or disabled user group which
needs a higher temperature setting (Salata et al., 2018). In this case, a particular group of
people must be considered in the design of the human comfort system.

Many techniques are available for adaptive behaviours for assessing energy-efficient
building indoor cooling toward buildings sustainability. However, these tools have not
yet measured the energy efficiency index by involving user satisfaction from adaptive
behaviours, which can determine the actual energy consumption versus the planned
energy consumption of the building. Sensor technology development is crucial. A list of
adaptive behaviours already identified regarding energy-efficient systems for an indoor
environment is provided below (Keyvanfar et al., 2014):

a) Self-adaptation category: drinking cold beverages, less-sweating lifestyle,
restraining physical activity level, changing, or adjusting clothes from warm to
cool, decreasing the level of body skin moisture.

b) Adaptation to the environment category: taking a break and moving to a cooler
location, changing position and direction, adjusting furniture/finishing material,
opening, or closing doors using a feedback system, opening or closing operable
windows (with/without a feedback system), using a portable fan, using a hand fan,

adjusting room's thermostat, adjusting air-condition operative hours.

These are adaptive behaviours or actions to control the environment and combine it with
physiological reactions. Time is essential for these behavioural interactions, and the
periods can be grouped into four distinct period groups as follows:

1) Immediate, for example, the use of a coat in anticipation of a thermal change

2) Within-day, for example, the clothing changes to cope with changing environments

within a particular day.
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3) Day-to-day, for example, the learning process from one day to the next to cope with
changing conditions such as the weather.
4) Longer-term, for example, the clothing adaptation with the seasonal changes and

activities learned over a more extended period.

The value will dynamically and interactively change with climate, place and time (Fergus
Nicol, 2012).

The following Figure 10 presents the parameters taking into consideration the Thermal
Physiology methods (PMV-PPD) (left-hand side, horizontal stripes) and the Human

Behaviour adaptive methods (right-hand side, vertical stripes area).

Thermal Comfort

Mechanical work

Air Temperature Evaporative, Behavioural Response
Convective, Radiative Metabolic Heat i
Radiant Temperature Body Heat Loss Production Self Adaptation
Heat Exchange Factors ) { Humidity Thermal . Gradual
. . Human Behaviour || .~
Surface Heat Transfers ) L\AIr Speed Physiology g
Dubois relation (height,, { Evaporative, Convective Clothing Insulation Environment
weight, skin surface) Respiration Heat Loss Vapour Permeability Adaptation
Heat Stored in the Body Diurnal Cycle of Body Person Condition Thermal Alliesthesia

Temperature

Figure 10. The Thermal Comfort Parameters

The adaptive approach considers the parameters listed on the left-hand side less critical
since people will always behave to make themselves comfortable as far as possible
(Fergus Nicol, 2015). This work also addresses the fact that those comfortable
temperatures are changeable rather than fixed. Discomfort also can be caused by
excessive constraints on these choices and adjustment processes, rather than merely the

surrounding temperature. Comfort can be reached if there are sufficient opportunities for
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people to adapt. Only with the adaptive approach do all system parts become part of the
comfort solution (Fergus Nicol, 2015).

People can still be comfortable if the skin temperature changes happen gradually. The
skin temperature will be non-uniform. The cold is comforting for overheated bodies but
unpleasant for already cold bodies. The hot sensation is pleasant if the body is cold but
gives discomfort if the body is already hot. The sensation effect will depend on time,
clothing, and the temperature of the surroundings. The adaptive action is to drink water
to maintain thermal balance in hot, dry weather. A sudden change in weather conditions
will require people to act accordingly and avoid the danger of heatstroke (Fergus Nicol,
2012).

Figure 10 shows that the adaptive approach is goal-based, and the PMV-PPD is
prescriptive. Therefore, the difference in the methods will affect comfort temperature
values differently. The PMV-PPD approach will give more exact definitions of
comfortable temperature (ASHRAE, 2017), while adaptive methods will not give exact
boundaries on the comfortable temperature. The comfort zone (PMV-PPD) and potential
adaptive comfort zone can be seen in Figure 11. This potential zone can be elaborated to

minimise energy use.

2.1.4 Health Aspects

2.1.4.1 Elderly and Temporary Il

The illustration in Figure 12 shows the difference between the temperature needs
of disabled, temporarily ill, and elderly groups compared to the people without disability
group mentioned in the previous research (Yung, Wang, & Chau, 2019), (Basu & Samet,

2002)
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Goal-based method (red
numbers):

1 The potential adaptive comfort
zone by thicker clothing and
main activity.

2 The potential adaptive comfort
zone by light clothing, less
sweating activity, and
drinking cold beverages.

3 The potential adaptive comfort
zone by moving to a less
humid room and installing a
dehumidifier.

Figure 11 Psychometrics chart showing the comfort zone (PMV-PPD) and potential
adaptive comfort zone (R. A. C. E. American Society of Heating, Incorporated, 2017),

(Givoni, 1992)

Figure 12 (a) shows a gap between the behaviours of disabled people compared to

those without disabilities. Besides this, the figure emphasises that the gap seems more

significant for room temperatures below 23°C and above 30°C, which are more frequent

temperature domains due to climate change (cold and heat waves often happen). These

temperature domains highlight the importance of this study. This figure also shows a gap

between human temperature and the prediction from ASHRAE. This gap means that the

PMV-PPD comfort zone is inadequate based on this research result. However, this figure
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may not have enough data to develop a more detailed analysis and generalise the result

for all disabled people groups.
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Figure 12. lllustration to show the difference in comfort temperature from previous
research (Yung et al., 2019), (Basu & Samet, 2002) (a) and (b) for disabled (c) and (d)
for older people.

Figure 12 (b) further compares the thermal sensation between the disabled and
people without disabilities. For the head thermal sensation, the disabled feel that the
thermal sensation is higher than people without disabilities. A very different result

happened in the trunk thermal sensation. Not just the gap, the tendency of the disabled

Karyono 33



Chapter 2 Literature Review

people is flipped compared to the people without disability. Again, this figure is based on
limited data and cannot be generalised to all disabled people groups.

Aligned with the result in Figure 12 (a) and Figure 12 (b); Figure 12 (c) shows that the
young people group also has a different average temperature compared to the elderly
people group. This difference gap is not proportional, so the approach of thermal setting
or regulation cannot be set based on the percentage of the correction based on the standard
thermal settings. This difference again emphasises the importance of this study. The
thermal setting cannot be generalised and become more personal. This thermal sensation
also being validated by the trial shown in Figure 12 (d). The temperature discrimination
between the young and elderly people groups is not proportional, and there are significant
gaps between the two people groups.

The work which acknowledges similar results from the disabled people group is also
stated in other studies (Brager & de Dear, 1998), (Parsons, 2020 ), and for older people
(Maeda et al., 2005). In the case of the elderly people, thermoregulatory responses to both
cold and hot temperatures were delayed. This delay is caused by the ageing degradation
of vascular regulation ability and thermogenesis. The seasonal change and characteristics
are also significant in the thermal sensation of the elderly people group (Salata et al.,
2018), (Mishra & Ramgopal, 2013).

Defining the correct setting of thermal will be difficult because of individual variability
in temperature (Collins & Hoinville, 1980). ASHRAE releases an Open Database of
Global Thermal Comfort Database Il (The Comfort Database) to simplify the
implementation of the thermal comfort approach. The database maps the heating or
cooling strategy, building type, meteorological context, indoor climatic physical
parameter ranges, and various human factors. The human factors consider characteristics

such as sex, age, clothing insulation, metabolic rate and the availability of indoor
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environmental controls, such as operable windows, doors, thermostats, blinds, heaters,
and fans (t. H. a. S. Executive, 2019).

This complex and personalised parameterisation will be ideal to be solved with an
adaptive approach. Intelligent technology can also support personalised parameter
settings for minimising frequent user manipulation, generating uncomfortable activities
and providing optimum thermal comfort for everyone without significantly increasing

energy use (Hoof, 2006).

2.1.4.2 Temperature and Obesity

Increasing adaptive thermogenesis through activating brown adipose tissue (BAT) is
a promising practical strategy for preventing obesity and related disorders. BAT is a
thermogenic tissue in which heat is produced when the human body is exposed to a cold
environment. BAT is inversely connected to BMI and body fat percentage. It gives the
possibility to fight against obesity with cold weather exposure. When the unacclimatised
human body is exposed to a cold environment, the body temperature is sustained by
shivering thermogenesis (ST). If the cold exposures continue, the shivering (ST) will
decrease, and the heat is sustained by the non-shivering thermogenesis (NST). The NST
is entirely attributed to BAT in the preliminary research in rodents. This research is
extended to humans, and the result shows that BAT is present in human adults. The
metabolic adaptation is adaptive thermogenesis (AT) (A. A. J. J. van der Lans et al.,
2013).

This work proposes ten days of cold acclimation to increase BAT in parallel with
increasing the NST. There are no sex differences in the BAT presence. The acclimation
also triggers the subjective changes in temperature sensation and makes the subjects feel

comfortable in the cold with less shivering. The study recommends that the indoor
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environment introduce cold exposures to reduce the energy for heating and the possibility
of obesity (A. A. J. J. van der Lans et al., 2013).

Like this trial, Hanssen et al. also propose that ten days of cold acclimation can increase
BAT and improve the metabolic profile of skeletal muscle to benefit glucose uptake in
patients with type 2 diabetes. BAT activity is inversely related to age and body fat
percentage. At the end of the acclimation period, subjective responses to cold are slightly
improved (M. J. W. Hanssen et al., 2016).

Another advancement has been done by Gordon et al. This trial was done with seven
days of cold acclimation to reduce ST and increase NST with a significant decrease in
core temperature. This work can achieve what has been achieved in four weeks
acclimation procedure by Blondin in 2017. If exposed to a cold environment, people will
rely on body heat production against the cold environment to anticipate the heat lost to
the environment. The heat produced by the metabolic process will rely on activating the
non-shivering thermogenesis (NST) and shivering thermogenesis (ST). ST is the primary
heat production in the adult during cold environment exposure. One of the contributors
to NST is known as the brown adipose tissue (BAT). The well-known cold acclimation
protocol is the 31 days of cold air exposure by Davis in 1961 and two hours daily cold
exposure for four weeks by Blondin in 2017. The acclimation protocol, which can
increase the relative contribution of NST and decrease the part of ST, will be desirable
(Gordon et al., 2019).

The relation of cold acclimation with type 2 diabetes patients is shown in Remie et al.
This cold acclimation can promote insulin sensitivity in humans, and in patients with type
2 diabetes can improve the patient condition compared with the effects of long-term
exercise training. Insulin sensitivity is related to the increased translocation in the skeletal

muscle. However, mild cold acclimation does not result in improved insulin sensitivity
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and only results in mild effects on overnight fasted fat oxidation. The lack of metabolic
effects is due to the lack of shivering and muscle activation or contraction in skeletal
muscle. This work also suggests muscle contraction is needed for mild cold acclimation

to positively affect the human body (Remie et al., 2021).

2.2 The Research Progress on Thermal Comfort within the Last 2 and 7

Years

Indoor thermal comfort has increased exponentially within the last seven years. Human
comfort is surprisingly not mentioned often in state-of-the-art publications, as it should
be. The focus, based on the number of documents, is on air quality, thermal comfort,
human comfort, acoustic comfort, and lighting comfort. Many researchers are still
researching to produce a better solution for thermal comfort. It is now inseparable
between the aim to achieve health and well-being, and the ability to minimise energy use.

The research progress parameter for this study is based on the comparison between the
review conducted in November 2014 (Rupp et al., 2015) in November 2019 and the
current condition (March 2022). The first comparison is based on the search that uses the
term “thermal comfort” in Google Scholar, Web of Science, Scopus and Science Direct.
The result is presented in Table 1. This comparison shows that there has been a significant
increase in all the sources of publication within the last 2 and 7 years. Google Scholar
shows an increase of about 40% of “thermal comfort” term usage. Similar conditions also
applied to Web of Science, Scopus and Science Direct. The increase of the term usages
is 21%, 33% and 29% increase from the last two years. Figure 13 shows the increasing
trends for all the resources clearly. In order to have a more precise figure, the authors use

the logarithmic scale on the y-axis, which represents the number of search results.
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Table 1 Comparison results for general literature search on "thermal comfort"” in
different databases in 2 and 7 years.

Parameter/database Google Scholar Web of Science

Month-Year Nov- Nov- Mar- Nov- Nov- Mar-
2014 2019 2022 2014 2019 2022

Number of results 59,800 | 194,000 | 321,000 | 5,979 | 12,418 | 15,669

All (not optional)

Title, abstract and

classification

authors, number of
citations, recent citations

Search in
keywords
Sort Type Relevance (not optional) Number of citations
: Considers publisher, The highest number of
Meaning of citations

Parameter/database Scopus Science Direct

Nov- Nov- Mar- Nov- Nov- Mar-
SR 2014 | 2019 | 2022 | 2014 | 2019 | 2022
Number of results 8,302 | 15,978 | 23,917 2,285 5,243 7,380

Search in

Title, abstract and keywords

Title, abstract and

keywords
Sort Type Number of citations Relevance
Meaning of The highest number of The highest occurrence of
classification citations search term
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Figure 13 General Literature Search Result on Thermal Comfort for the Last 2 and 7
years (logarithmic scale).

The result in Google Scholar based on the relevance shows that: “Thermal comfort.

Analysis and applications in environmental engineering” by P.O. Fanger (Fanger, 1970)
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became the top result. The adaptive methods publications are gaining popularity over
these 2 and 7 years. The top results of the adaptive publications are "Adaptive thermal
comfort and sustainable thermal standards for buildings” by J.F. Nicol and M.A.
Humphreys (Nicol & Humphreys, 2002) and “Developing an adaptive model of thermal
comfort and preference” by De Dear and Brager (R. J. De Dear, and G.S. Brager, 1998).
Both groups of publications have increased significantly in 2 and 7 years. This result
shows that the thermal comfort methods are dominated by this thermal physiology and
human behaviour methods, and indoor thermal comfort is more dominating than outdoor.
The reason is that people spend more of their time in artificial space. The detailed result

can be seen in Table 2.

The result in Scopus based on relevance shows a similar trend to the result in Google
Scholar. The physiology and the adaptive model dominate the thermal comfort methods.
The adaptive methods publications are gaining popularity over these 2 and 7 years. The
detailed result can be seen in Table 3. Table 2 and Table 3 also show that researchers are
still trying to solve the problems that exist both in the human physiology and human
psychology approaches. The fundamental papers citation value shown in Table 2 and

Table 3 showed that the knowledge gap still needs to be solved in both approaches.

Based on the Scopus result on the search for thermal comfort, the authors have
generated a similar chart generated seven years ago (Rupp et al., 2015) (upper inset Figure
14) and capture the trend of the thermal comfort topic within the last seven years (Figure
14). The trend is exponential, with the degree of increase becoming steeper than in
previous years. This trend shows that this topic has gained much popularity over the years.
In 7 years, the total number of publications in the thermal comfort field has increased

almost three times.
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Table 2 Top 10 Documents comparison in Google Scholar 2014 with the citation in

2019 and 2022
1 | Thermal comfort. Analysis | P.O. Fanger 1970 | Danish 4690 | 8329 10900
and applications in Technical
environmental Press
engineering
2 | Comfort and thermal A.P. Gagge, 1967 | Environ- 474 874 1168
sensations and associated | J.A.J. mental
physiological responses at | Stolwijk, J.D. research
various ambient Hardy
temperatures
3 | Developing an adaptive R. de Dear, 1998 | ASHRAE 828 | 1815 2268
model of thermal comfort | G.S. Brager Transac-
and preference tions
4 | Adaptive thermal comfort | J.F. Nicol, 2002 | Energy and 541 | 1409 2028
and sustainable thermal M.A. Buildings
standards for buildings Humphreys
5 | Thermal comfort in R de Dear, 2002 | Energy and 493 | 1138 1552
naturally ventilated G.S. Brager Buildings
buildings: revisions to
ASHRAE Standard 55
6 | Thermal comfort of manin | H. Mayer, P. 1987 | Theoretical 309 731 1018
different urban Hoppe and
environments Applied
Climato-
logy
7 | Thermal comfort for free- N. Baker, M. 1996 | Energy and 160 288 345
running buildings Standeven Buildings
8 | Different aspects of P. Hoppe 2002 | Energy and 233 529 757
assessing indoor and Buildings
outdoor thermal comfort
9 | Thermal comfort in M. Nikolo- 2001 | Solar 245 574 826
outdoor urban spaces: poulou, N. Energy
understanding the human | Baker, K.
parameter Steemers
10 | Thermal comfort and M. Nikolo- 2003 | Energy and 236 638 902
psychological adaptation poulou, K. Buildings
as a guide for designing Steemers
urban spaces
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Table 3 Top 10 Documents comparison in Scopus 2014 with the citation in 2019 and
2022

1 | Developing an adaptive R de Dear, 1998 | ASHRAE 341 844 1250
model of thermal comfort G.S. Brager Transactions
and preference
2 | The physiological equivalent | P. Hoppe 1999 | International | 323 794 1208

temperature—a universal Journal of
index for the biometeoro- Biometeo-
logical assessment of the rology
thermal environment
3 | Adaptive thermal comfort J.F. Nicol, 2002 | Energy and 322 766 1139
and sustainable thermal M.A. Buildings
standards for buildings Humphreys
4 | Thermal adaptation in the G.S. Brager, | 1998 | Energy and 317 648 942
built environment: a R de Dear Buildings

literature review
5 | Thermal comfort in naturally | R de Dear, 2002 | Energy and 301 623 887

ventilated buildings: G.S. Brager Buildings
revisions to ASHRAE
Standard 55
6 | Comfort and thermal A.P. Gagge, | 1967 | Environment | 235 483 643
sensations and associated JAJ. al research
physiological responses at Stolwijk,
various ambient J.D. Hardy
temperatures
7 | The assessment of R.G. 1979 | Journal of 228 443 609
sultriness. Part |. A Steadman Applied
temperature-humidity index Meteorology

based on human physiology
and clothing science
8 | Thermal comfort of man in H. Mayer, P. | 1987 | Theoretical 176 442 624

different urban Hoppe and Applied
environments Climatology

9 | Afield study of thermal J. Spagnolo, | 2003 | Buildingand | 173 362 488
comfort in outdoor and R de Dear Environment

semi-outdoor environments
in subtropical Sydney

Australia

10 | A model of human C. Huizenga, | 2001 | Buildingand | 150 280 371
physiology and comfort for Z.Hu, E. Environment
assessing complex thermal Arens

environments

Further comparison of Scopus search results shows that the "Air Quality" topic has the
highest number of papers, followed by "Thermal Comfort"”, "Human Comfort", "Acoustic
Comfort", and the least popular is "Lighting Comfort™. The result chart of these search

results is presented in Figure 15. The previous figure shows that human comfort is
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surprisingly not mentioned often in state-of-the-art publications, as it should. The focus
of the past and current research is on air quality and thermal comfort. This finding
highlight that there is a gap in human comfort perception, and this emphasises the
relevance of the current work. Human comfort publications represent only 1.6% of the

total publications.
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Figure 14 Scopus results in Thermal Comfort in 2014 (Rupp et al., 2015) and
recent days.

From the Scopus resource, authors can also generate a list of journals with the highest
number of papers in thermal comfort and compare the list with the same condition 2 and
7 years ago. The Elsevier journal Building and Environment and Energy and Buildings
are dominating the number of documents point of view based on Scopus. The Energy
Procedia is also among the highest number of documents, but it was discontinued in 2019,

so no more documents will be accepted after 2019. Energies from MDPI has gained much
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focus in recent years due to the open access model of the journal. This list is presented in

Table 4.
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Scopus publication results in human, thermal, acoustic and lighting comforts
and air quality.

2.3 Daniel Kahneman's Principle

2.3.1 Experience vs Memory

One of the works of a Nobel prize winner, Daniel Kahneman, is about the eagerness

for medical patients to undergo medical treatment based on their last memory of their

previous medical treatment. Kahneman found an anomaly in the colonoscopy patients.

The common perception, the experience approach, judges that the long process of

colonoscopy, which triggers the pain, will be more memorable and avoided by the
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patients. The results of Kahneman's research are that the shorter process with higher pain

for colonoscopy will trigger more threatening memory in the patients compared with the

longer process but have less pain to be memorised (Redelmeier, Katz, & Kahneman,

2003). Patients who underwent the extended procedure also ranked the procedure as less

aversive. The eagerness to face the same treatment rate will be higher than the other

patients with shorter processes but more memorable pain (Redelmeier & Kahneman,

1996). Figure 16 shows the pain intensity and time chart in the Kahneman colonoscopy

trial.
Table 4. International journals with the highest number of papers in Scopus with
“thermal comfort” terms.
2014 2019 2022
Rank Journal Docs | Rank Journal Docs | Rank Journal Docs
1 | Energy And 582 1 | Building And 1140 1 | Building And 1608
Buildings Environment Environment
2 | Building And 560 2 | Energy And 1117 2 | Energy And 1496
Environment Buildings Buildings
3 | ASHRAE 269 3 | Energy 348 3 | Energy Procedia 348
Transactions Procedia
4 | SAE Technical 150 4 | ASHRAE 271 4 | Energies 319
Papers Transactions
5 | Advanced 118 5 | Procedia 215 5 | Sustainability 318
Materials Engineering Switzerland
Research
6 | International 109 6 | Applied Energy 214 6 | Top Conference 310
Journal Of Series Earth And
Biometeoro- Environmental
logy Science
7 | Applied 102 7 | International 202 7 | ASHRAE 307
Mechanics Journal Of Transactions
And Materials Biometeorology
8 | Renewable 88 8 | SAE Technical 195 8 | Applied Energy 279
Energy Papers
9 | Applied 83 9 | Indoor And 167 9 | Journal Of Building 270
Energy Built Engineering
Environment
10 | HVACand R 75 10 | Applied 148 10 | Sustainable Cities 253
Research Thermal And Society
Engineering
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In Figure 16, patient A experiences a shorter time of pain with a similar peak of pain
intensity experienced by patient B. Patient B experience a long time of pain with the peak
of pain intensity experienced by patient A, but patient B has less pain in the final medical
treatment. This research shows that patient A memorises the pain higher than patient B.
This experiment shows that the patients’ memories of pain will reflect the experiences of

pain at the worst part and the final part of the treatment.
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Figure 16. The pain intensity in Kahneman trials (Redelmeier & Kahneman, 1996)

The colonoscopy followed other Kahneman trials in 1993 with perception in dipping
hands in the water (Kahneman, Fredrickson, Schreiber, & Redelmeier, 1993). The
respondents had to dip their hands in the 14 °C for 1 minute and the second trial with the
same temperature and time, but then the water temperature was gradually raised to 15 °C
for 30 s. By raising the water temperature, it will become less painful. The trial is repeated,
and the respondents must select which trial they prefer to repeat. Most of the respondents
select the second trial. These results also represent that the duration of the pain will not
play a significant role in memory building. It will also show that memory will be formed

more in the final moments of episodes.
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2.3.2 Experience vs Perception

The other trial from Kahneman involved the students' perceptions about living in
California. The result says that students assumed that living in California should give
them more satisfaction with the climate, but they failed to conclude that the weather does
not affect all aspects of life. This perception represents that people cannot imagine the
effect of adaptation that will impact their happiness. Similar findings also applied to the
disabled people group. Their quality of life should be measured rather than having healthy
people valuing if the disability condition occurred to them. This result will reflect the
non-disabled people's reflection on their frightening feelings of being in the disabled
condition (Chernoff, 2002).

Another trial also reveals that people are bad at predicting perception over time. This
conclusion is taken after the trial of giving people their favourite ice cream flavour for
seven days. Some participants are happy, but some are tired of it (Chernoff, 2002). This
finding will also benefit the health and safety aspects where the consent is usually taken
before the treatment, and the patient can be in profound decision change after

experiencing the treatment.
2.3.3 Experience vs Adaptation

One key factor that affects experience is also adaptation. This factor is identified by
Kahneman's study on paraplegics and lottery winners. There will be some adaptation so
that for a paraplegic person, it will be terrible one month after the accident and become
lighter within a year. Similar happens to a lottery winner (Chernoff, 2002). This feeling
happens because people imagine the transition to the condition without feeling or
experiencing the actual condition. The evaluation of the condition should be done from

time to time and not based on memory.
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Regarding the experiences, there will be a stronger correlation between happiness and
satisfaction. People can control the parameters that make them happy and allocate their
time to this. So, giving more time to the activity which delivers happier activities can

increase satisfaction in general.
2.4 Thermal Comfort Simulations

Modelling and simulations have a unique beneficial role where problems are
characterised by uncertainty, complexity, repetition and flexibility in logic, especially
when knowledge is needed to capture the system behaviour and an integrated and accurate
solution is desired (AbouRizk, 2010). Simulations can model the probabilistic
phenomena, for example, random resource availability and weather. Modelling also can
introduce some level of abstraction. This abstraction allows the problems to be portrayed
accurately according to the time and resources available. Repetitive tasks are subjects to
be simulated and modelled. A similar process can be captured with modelling to optimise
the process. Simulation languages can build the model's decision structures to accurately
represent the problem. Integrating views and representations of all problems and
processes involved in the system becomes a key advantage of using simulation and
modelling. This feature can assist and facilitate effective scenarios and studies.
Simulation is used because it allows the modeller the flexibility to define the details of
resource interactions, activity relationships, and constraining logic with reasonable effort.
The system can then be studied and analysed to excellent detail levels and within
acceptable accuracy. Some approaches are also available to be used in modelling each
fundamental aspect (Gwynne, Galea, Owen, Lawrence, & Filippidis, 1999).

A review of the algorithm used in the modelling process is listed in Xie, Li, Li, Zhang,
and Luo (2020). The algorithms are Linear regression (LR), Tree regression (TR),

Classification tree (CT), Linear discriminant analysis (LDA), Logistic regression (LoR),
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Decision tree (DT), Boosted trees (BT), Bayesian network (BN), Bayesian modelling,
Naive Bayes (NB), Artificial neural networks (ANN), K nearest neighbours (KNN),
Adaboost (AB), Gradient boosting machine (GBM), Support vector machine (SVM),
Random forests (RF), Gaussian process classifier (GPC), Rule-based classifier (RBC),
Fuzzy logic, Extra tree, and Hidden Markov model (HMM). Ma, Aviv, Guo, and Braham
(2021) also assessed a similar review related to the use of machine learning Ma, Aviv,
Guo, and Braham (2021). Ma et al. also list the variables related to comfort and health,
such as Outdoor temperature (Tout), Wind velocity (va), Outdoor relative humidity
(RHout), Outdoor contaminants concentration (Cout), Room dimensions (Dim), Ceiling
height (H), Total surface area (A), Penetration factor through envelope/door (P), Radiant
temperature (TMR), Temperature of surface (Ti), Indoor relative humidity (RHin),
Volume flow rate (Natural, Mechanical, Infiltration) (Q), Indoor temperature (Ta), Air
density (p), Contaminants generation/deposition/removal concentrations/rates (Q),
Number of occupants (N), Exposure time (t) and Air exchange rate (EX). Computational
fluid dynamics (CFD) calculation and modelling are also common in analysing indoor
thermal conditions (Buratti, Palladino, & Moretti, 2017).

Other research has also been conducted to consider the thermal comfort factors in
dwellings by using mathematical models, laboratory testing, numerical calculations and
further computer-based simulations to develop the desired performance of building
materials (Reuge et al., 2020). Key examples of literature for developing new construction
materials with a mathematical model are demonstrated in Lelievre, Colinart, and
Glouannec (2014) and the further testing of the model (to ensure desired material
performance) is highlighted in Richter et al. (2021).

Multiple simulation steps are also being done to increase the model's accuracy. In this

work, Heat, Air and Moisture (HAM) models are being elaborated in three steps: the
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semi-infinite wall approach, adiabatic building envelope, and building envelope with heat
and moisture internal gains. This basic model is followed by the complex model with an
adiabatic building envelope with heat and moisture internal gains integrated with
validated building energy simulation (BES) (Francesca, Elena, Cristina, & Maria, 2021).
Besides using WUFI Plus, 3D hygrothermal modelling also uses other software such as
COMSOL Multiphysics (Knarud & Geving, 2015) (Ferroukhi, Djedjig, Belarbi, Limam,
& Abahri, 2015).

Some simulation software models such as TRNSYS and TAS only simulate thermal
comfort based on the dry bulb temperatures and do not consider relative humidity. The
hygrothermal simulation software such as WUFI Plus can consider the humidity and
additional loads such as occupancy (Hall, Casey, Loveday, & Gillott, 2013) using the
weather files for Nottingham. The thermal comfort parameter for relative humidity uses
the ASHRAE thermal comfort envelope, which has the upper comfort limit of 70% RH
using WUFI Plus. The calibration and validation process using the climatic chamber
compared with the software model has been completed in Antretter, Sauer, Schopfer, and
Holm (2011). Compared with the simulation result, the validation using the accurate
measurement in the real building has been explored in Coelho, Silva, and Henriques
(2018) and Francesca et al. (2021). Coelho et al. (2018) address the importance of using
detailed outdoor weather files and the soil temperature. The accurate data from the
weather station, even if it is not located directly on the premises, will help obtain a more
precise result. Using the weather files obtained from WUFI and EnergyPlus database
resulted in a lower precision. The importance of using multiple geographical locations for
simulation is also mentioned in work simulating moisture (Mukhopadhyaya, Kumaran,

Tariku, & Reenen, 2006).
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Further to the previous research, Yingchun Ji, Angela Lee, and Will Swan (2019) use
a model to compare a 1920s house with a real house built inside the thermal chamber.
The house model is developed in Integrated Environment Solutions Virtual Environment
(IESVE) and implemented with a blocked chimney due to health and safety
considerations. This model uses Manchester weather data for simulation. This work
shows that the construction details will improve the model accuracy. The model is further
extended by Yingchun Ji, Angela Lee, and William Swan (2019) to show the effects of a
retrofit on a building. From this study, heating demands can be reduced by 27% in a
retrofitted house, but the space heating demands can vary significantly depending on how
the building is heated (as per the occupants' preference). This result addresses the
importance of assessing the thermal settings concerning the indoor condition inside the
house. Ventilation, including infiltration and leakages, also strongly impacts space
heating energy demands.

This work utilises building typologies from typical residential properties utilising
1920s and 2010s building codes to model mean indoor relative humidity as a
consequential effect of locational weather conditions with the simulation conducted for
different thermal settings. The typology parameters can be seen in Table 6 in chapter 3.2.3
and the locational weather conditions presented in Figure 21, Figure 22 and Figure 23 in
chapter 3.2.2. This work uses MATLAB and SIMSCAPE as the base environment for
simulation. As previously demonstrated in Figure 2, in terms of the impact, this
simulation has a potential influence on nearly 13 million homes. The locations analysed
are Kent, Liverpool and Aberdeen, and due to their varied climates, to maintain thermal
comfort, this model was also able to predict the percentage of time with the heater turned

on.
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The use of MATLAB and SIMSCAPE gave the benefit that the simulation of the
humidity and temperature condition can be done concurrently, and the simulated
electrical heater can be added to the model to predict the energy consumption for heating.
The use of MATLAB simulation was then extended to process the dataset for shallow
supervised learning. With the MATLAB library, different Al methods can be applied to
select the best algorithm for the system. The neural network solution was also calculated
using MATLAB support to calculate the weight of the layer and bias value. With all the

features that MATLAB provides, the work can be done in a more integrated way.

2.5 Wireless Sensor Networks (WSN)

In recent years, due to the growing low-cost sensing solutions, the provision of thermal
comfort has been widely increased in existing and future intelligent buildings to aid
productivity, health, and well-being. Many sensors are widely used in the home comfort
system with easier installation and control. The WSN will change the approach of the
system solution. WSN is a network of sensors with unique characteristics. The nodes have
limited power, limited processing power, and transmission. There might be a connection
to more powerful servers (cloud). The circuit is relatively simple but has enough power
to do its tasks. The use of these sensors is beginning to be very common and is sometimes
called the internet of things devices. Their roles and tasks are unique and specific to
overcome their challenges: low power, low price, limited range and scattered node
position (Karyono, Martoyo, Uranus, Junita, & Kim, 2009).

Zigbee is one of the WSNs suitable for forming a real-time control system (Nguyen,
Tran, Leger, & Vuong, 2010), (Uguz & lpek, 2017). Zigbee can form a mesh network
capable of giving fault-tolerant capability and sufficient data transmission distance for

the distributed indoor controller (Samuel & Karyono, 2015).
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2.6 Artificial Intelligence

The previous studies emphasise the need to improve thermal comfort methods for
particular groups of people. Those methods focus on achieving comfort to maintain health
and safety within the energy efficiency corridor. Besides the variety of human physiology,
there is also the human behaviour factor, which can be different from one to another. In
order to make the system able to cope with such variability and able to adapt to get optimal
performances, some methods are used. These methods give the capability for the system
to act like uninterrupted human control and are described as having artificial intelligence
(Al) (Moon, Jung, Kim, & Han, 2011). Supported by Al features, the control system can
gain a better solution and can cope with people's preferences. The setting adjustment can
be made based on the setting for the specific use of the system as training data. The
simplified system for thermal comfort can be seen in Figure 17. There are currently two
most common methods in Al for thermal comfort. The first method is Fuzzy Logic, or

fuzzy for short, and the second method is an Artificial Neural Network (ANN).

External Data
Ex. Weather

Al
Learning Process
To decide expected
condition ex.
Minimize Energy
usage or maximize
comfort

Artificial Intelligence

ser Preferences

User Pattern
User Profiles

User Smart Control Syatem Radiator/Air Conditioner

Figure 17. Simplified Al System for Thermal Comfort.
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2.6.1 Fuzzy Logic

This method can interpret the verbal human perception or preferences such as ‘warm'
or ‘cool' which are not easily interpreted by the control system. The fuzzy methods are
used in the control system to give more human comfort while minimising energy use.
This approach is used to get a better result than the Proportional Integral Differential
(PID) control. Some of the previous work results are implemented in the form of
simulation, which is MATLAB-based (Lachiver, 1998), (Calvino, La Gennusa, Morale,
Rizzo, & Scaccianoce, 2010), (Nowak & Urbaniak, 2011) (Rawi & Al-Anbuky, 2011),
(Moon et al., 2011) and (R. Zhang, Chu, Zhang, Liu, & Hou, 2014). These methods have
also been implemented in the form of the prototype for controlling air conditioning
operations (Yonghong Huang, 2006), (Ciabattoni, Cimini, Ferracuti, & Ippoliti, 2015) or
heaters (Walek, Zacek, Janosek, & Farana, 2014). The comfort parameter is based on the
PMV model. The fuzzy method is also used in the research of material/fabric (Huang,
Sun, Kong, & Wang, 2008) and comfort in the automotive industry (Farzaneh &
Tootoonchi, 2008) (Beinarts, 2013). This system will also have the drawback if the data
are widely varied, so the fuzzy membership function cannot be clearly defined. Some
methods like a genetic algorithm (Shaikh, Nor, Nallagownden, & Elamvazuthi, 2014) or
ANN are being used to compensate for the drawback of fuzzy methods (Duan & Li,
2010). This ANN and fuzzy hybrid method are becoming the most popular methods

(Enescu, 2017).

2.6.2 Artificial Neural Network

In ANN, deep learning and shallow learning, the system's intelligence is gained from

the human sensory analogy. This method can work as a black box by giving a set of
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learning processes, mainly supervised, or directed learning. The learning process is
essential for this method. The same system can have a different result when trained with
a different training data set. This method is preferred by the system developer to build the
thermal comfort system where not all of the connections between all of the thermal
comfort factors are well known and well defined. The ANN research has been widely
used and gives significant results in thermal comfort. Some of the previous work is
implemented in the form of model and simulation (Liu, Zhou, Wang, Hu, & Liu, 2009),
(Yalong, Qiansheng, Xiaolong, Zhenya, & Qinyan, 2011), (Moon et al., 2011),
(Rodriguez-Alabarce, Ortega-Zamorano, Jerez, Ghoreishi, & Franco, 2016), (Moon &
Jung, 2016), (W. Zhang, Hu, & Wen, 2018), and (Escanddn et al., 2019). Some of these
models are developed to be implemented in the tropical regions (Bingxin, Jiong, &
Yanchao, 2011), (Zeng, Jin, Chen, & Meng, 2011), (Songuppakarn, Wongsuwan, & San-
um, 2014), (Chaudhuri, Soh, Li, & Xie, 2017) or to overcome the extreme conditions (Liu
et al., 2009), (Yalong et al., 2011). The result from the system prototype was also
presented in other papers (Kojima, 2010), (Kojima, 2011), and (Zhai, Chaudhuri, & Soh,
2017), who implemented the ANN to overcome individual preferences. This method is
also being used for research on fabric/materials (Baozhu & Shan, 2010), (Baozhu, 2011)
and also in lighting comfort (Kandasamy, Karunagaran, Spanos, Tseng, & Soong, 2018).

The ANN method being used is a typical feedforward neural network architecture, and
the learning use backpropagation methods (BP) to update the weight of the neuron (Liu
et al., 2009), (Kojima, 2010), (Kojima, 2011), (Bingxin et al., 2011), (Zeng et al., 2011),
(Moon et al., 2011), (Songuppakarn et al., 2014), (Moon & Jung, 2016), (Chaudhuri et
al., 2017), (Zhai etal., 2017), and (Escanddn et al., 2019). BP is the most common because
of the simplicity of the model. There are other types of ANN architecture and methods of

learning, such as Multilayer Feed Forward (Duan & Li, 2010), Radial Basis Function
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(YYalong et al., 2011), Nonlinear Autoregressive Model (Songuppakarn et al., 2014), C-
Mantec (Rodriguez-Alabarce et al., 2016) and Deep Neural Network (W. Zhang et al.,
2018). The ANN has also come in hybrid with another model such as with Fuzzy (Nowak
& Urbaniak, 2011), (Enescu, 2017) and with genetic algorithm (Bingxin et al., 2011). The
ANN approach also performs better in thermal comfort applications than the Fuzzy
approach (Moon et al., 2011).

Although this system is robust in processing unclearly defined relations, it negatively
impacts the learning process. If the training process is not done with proper data or the
data is not defined correctly with all the cases available, the system can perform falsely.
In the system for recognising males or females, for example, if all data provided for
women are always in the kitchen and men are always in the office, the system can interpret
wrongly. If the new case appears that the man is inside the kitchen, it can be interpreted
as a woman. That is why it can also be said that one pixel can make the wrong
interpretation (Su, Vargas, & Sakurai, 2019). The classification can be easily altered by
adding relatively small perturbations to the input vector and can become the source of an
attack by only altering one pixel. This matter is one aspect that can be associated with
producing natural stupidity in Al. The poisoning or perturbation introduced in the Al can
cause misclassification, and even the deep learning approach has proved to be sensitive

to spoofing (Hamon, Junklewitz, & Sanchez, 2020).

This thesis tried to address the gaps that were addressed in the previous works on
using machine learning. The gaps that had been identified from the previous works are
provided in Table 5. The underlined entries are the challenges outlined in previous
research that were addressed by our solution as a means to provide a solution to overcome
them and develop a better indoor thermal comfort system. The dataset that the authors

use was having 65,256 entries while the 37 previous works assessed 6,851 entries
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(Arakawa Martins, Soebarto, & Williamson, 2022). A larger dataset is needed to achieve
higher performance (Luo et al., 2020), (Feng et al., 2022). The proposed system is also
able to gain a wider comfort zone that has been identified as narrower over decades (R.
de Dear, Xiong, Kim, & Cao, 2020) hence increasing the energy-saving potential
(Qavidel Fard, Zomorodian, & Korsavi, 2022). This makes machine learning necessary
(Culié, Nizeti¢, Soli¢, Perkovié, & Congradac, 2021).

Table 5. Six recent review papers related to the use of Al and Adaptive Thermal
Comfort and their gaps identification.

No Review Paper Year Work reviewed LS
Assessed
1 | (Arakawa Martins et al., 2022) 2022 2007 to 2021 37

Dataset comparison, with maximum data set size 6,851. Methods: FC = Fuzzy
Classification, RF = Random Forest, KNN = K-Nearest Neighbors, SVM =
Support Vector Machine, DT = Decision Tree, LDA = Linear Discriminant
Analysis, Bl = Bayesian Inference/Classification, MLR = Multinomial Logistic
Regression, GPM = Gaussian Process Model, LR = Logistic Regression, ANN
=Artificial Neural Network, GB = Gradient Boosting, LVQ = Learning vector
quantization, OP = Ordered Probit, LinR = Linear Regression, NB = Naive
Bayes, RBC = Rule-Based Classifier, CART = Classification and Regression
Trees, LLS = Least-squares linear estimation, J48 = J48 Decision Tree.

Result and Gaps: The field still lacks a more unified and systematic modelling
framework. Model evaluation needs a clear comparison between studies and
approaches. The generalization of the results is still debatable due to the small
number of participants. Diversity needs to be introduced (more balanced datasets
and expanding the application of the personalized models into other types of
environments). Further assessment of inherently interpretable models and less
transparent techniques. Although both environmental and personal
characteristics have been used in most studies, personal features gathered
through physiological sensing technologies could be further explored, especially
in light of the rapid advances in wearable sensor technologies.

2 | (Qavidel Fard et al., 2022) [ 2022 | 2016 to 2021 | 137

Methods: [ANN]: Artificial Neural Network; [SVM]: Support Vector Machine;
[R]: Regression Method; [TBM]: Tree-Based Method; [BM]: Bayesian Method;
[ENL]: Ensemble Learning; [GA]: Gaussian Method; [M]: Markov Model;
[RNN]: Recurrent Neural Network; [ELM]: Extreme Learning Machine;
[KNN]: K-Nearest Neighbors; [LDA]: Linear Discriminant Analysis; [RL]:
Reinforcement Learning; [DL]: Deep Learning; [FOM]: Firefly Optimization
Method; [FLS]: Fuzzy Logic System; [GP]: Genetic Programming; [CNN]:
Convolutional Neural Networks; [LVQ]: Learning Vector Quantization; [BNN]:
Bayesian Neural Network; [PSO]: Particle Swarm Optimization.

Result and Gaps: 62% focused on developing group-based comfort models,
and 35% focused on personal comfort (recommended to be further studied).
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The most used tools for building ML were Matlab, Python and R.

The most frequently used algorithms among the reviewed papers were SVM,
ANN and Ensemble Learning (mainly RF), followed by Tree-Based models and
Regression methods (mainly LoR).

The metrics were accuracy, R2, RMSE, MSE, and r, (50%, 23%, 20%, 18%, and
15%). Future studies are recommended to consider both fitting and error metrics
for model evaluation.

ML models could outperform PMV and adaptive models with up to 35.9% and
31% higher accuracy and the personal comfort model could outperform PMV
models with up to 74% higher accuracy. Applying ML-based control schemas
reduced thermal comfort-related energy consumption in buildings by up to
58.5% while improving indoor quality by up to 90% and reducing CO2 levels
by up to 24%. Moreover, using physiological parameters improved the
prediction accuracy by up to 97%.

3 | (Feng etal., 2022) | 2022 | 2011 to 2021 | 25
Methods: Linear methods: LR and linear discriminant analysis (LDA) Non-
linear methods: Quadratic discriminant analysis (QDA), support vector machine
(SVM), support vector regression (SVR), K-nearest neighbours (KNN), K-
neighbors regression (KNR), and naive Bayes (NB), Decision trees:
Classification and regression trees (CART), classification tree (CTree), DT, and
tree regression (TR) Ensemble learning methods: Gradient boosting machine
(GBM), adaptive boosting (AdaBoost), and random forest (RF) Gaussian
processes: Gaussian process classification (GPC) and Gaussian process
regression Neural networks: Neural network (NNET), artificial neural network
(ANN), and multi-layer perceptron (MLP)

Result and Gaps: In-field studies give more realistic effects in terms of user
behaviour. The measurement system’s complexity was consistently reported in
reviewed studies. A minimally invasive data collection system is needed for
future studies and realistic applications. Contemporary machine learning
techniques are already commonly used in the domain, and no obvious evidence
indicates that one modelling technigue outperforms another. More standardized
individual/specific data with longitudinal information must be established and
framed for personal thermal comfort modelling. Once sufficient data related to
personal thermal comfort across different categories of individuals is attained,
researchers will be able to move from intra-to inter-variability, and analyses of
similarities among individuals performed via various online learning techniques
and more beneficial for practical applications such as individual comfort
monitoring, smart building control, and energy-efficient retrofits.

4 | (Culi¢ et al., 2021) | 2021 | 2018 to 2021 | 34
Methods: [ANN]: Artificial Neural Network; [SVM]: Support Vector Machine;
Random Forest; Gradient Boosting; Decission Tree; [KNN]: K-Nearest
Neighbors, Stochastic Gradient Boosting; C 5.0; Bagged Classification and
regression trees; Rule based Classifier; Classification and regression trees;
Logistic Regression; Proportional odds Logistic Regression Multinomial
Logistic Regression; [DL]: Deep Learning; [LDA]: Linear Discriminant
Analysis; Adaboost; Naive Bayes; [LVQ]: Learning Vector Quantization
Result and Gaps: Many proposed technological solutions are designed to be
compatible with heating/cooling management systems in buildings becoming
the potential path to greener BMS. Future work in this area should be focused
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on testing and integrating TC models with intelligent systems. Accomplished
through the development of new personalized models tailored for individual TC
and adjusting environmental parameters for purposes of both reducing
consumption and increasing indoor quality. The applicability of the TC
questionnaire should be investigated more thoroughly. It is indicated that a
compatibility analysis of the classical questionnaire with new data-driven
models is needed. Detailed analysis using machine learning and statistical
modelling is necessary for future research work. Evaluation among models
should be conducted and standardized for the basis of the accurate comparison
of various modelling approaches.

5 | (R. de Dear et al., 2020) | 2020 | 1998 to 2019 |
Methods: Calculation based on Dataset ASHRAE Standard 55 / RP-884; EN
15251 (and its revision prEN 16798)/SCATSs, Field studies in India, Field studies
in China

Result and Gaps: None of the published attempts at explaining the discrepancy
between predictions of heat balance comfort models and actual observations
inside adaptive comfort buildings. But there have been incremental contributions
of new theoretical knowledge to the domain. The central challenge for the future:
The absence of an evidence-based parameterisation of the concept of comfort
expectation.

Broad consistency between the various regulatory documents and standards on
adaptive comfort. A notable outlier seems to be the Chinese GB/T 50785
standard developed from a fundamentally different analytical approach.
Building typology exerts a discernible effect on occupant thermal responses and
thermal sensitivity, varying adaptive opportunities. Residents in their own
homes generally are more adaptable and tolerant of a wider range of indoor
thermal exposures. School students tend to like cooler than adult thermal
neutralities.

Boundaries of the comfort zone have become progressively narrower over the
past several decades. Long-term thermal experiences can raise comfort
expectations more readily than they can lower them. The adaptive comfort
concept is central to addressing questions of how to enhance adaptive capacity
in buildings and how to nudge occupant attitudes and behaviours relating to
indoor climate.

The weight of empirical evidence supports an extended-U model of temperature-
performance effects. We found no substantive, credible evidence to support the
practice of overcooling to optimise the performance of their occupants. The
cognitive performance plateau is bounded by regions of progressive
performance deficits at the acceptability limits of the adaptive comfort range.

6 | (Luo etal., 2020) | 2020 | 2016 to 2019 | 20
Methods: Gaussian Processing classifier (GPC); K-neighbor classifier (KNC);
Random Forest (RF) classifier; Support Vector Machine (SVM) classifier;
Conventional Neural Network (CNN); K-nearest neighbours (KNN); Deep
Neural networks; Bagging, artificial neural network (ANN), Logistic Regression
(LoR); Gradient boosting machine (GBM); Decision Tree (DT); Polynomial;
Naive Bayes (NB); ANOVA,; t-Test; Extreme learning machine (ELM);
Stepwise regression; Linear Discriminant Analysis (LDA); Gradient Boosting
Machines (GBM); Gaussian Process Classification (GPC); Classification And
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Regression Trees (CART); Gaussian Naive Bayes (GNB); Support vector
regression; Adaboost; Gaussian process regression (GPR)

Result and Gaps: Basic ML algorithms like NB and DT can get better TSV
prediction than the conventional PMV; Tair, RH, CLO, Vair, Age, and MET are
the top six important inputs; Large datasets like ASHRAE Comfort Database Il
and large data distribution may achieve higher performance than other balancing
methods; Two different targets, higher TSV prediction accuracy aim or detailed
occupants' thermal response; Compared machine learning (ML) algorithms in
predicting thermal sensation (TSV); ML got 60-66% and 52-57% accuracy for
3-point and 7-point TSV prediction; ML algorithms got 10-20% higher
prediction accuracy than PMV model; Random Forest got 62% prediction
accuracy by using three input features; Tuning parameters and selecting input
features are important for ML models.
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3.1 Research Phase

The research activities and the research phases can be seen in Figure 18. The left side of

the figure shows the activities done on each phase on the right side.

System Study
Literature review/Survey
Identify the novelty and planning review

System Physical Modelling
Development of model for heating in MATLAB
Throughout the year simulation using hourly weather data

Development Framework for Thermal Comfort
10T system development
Comparison of loT Sensors and COTS sensor

Artificial Intelligence Development
System parameter simplification
Use The Multiple ASHRAE Database for Al training
Semantic augmentation and data filtering for shallow
supervised learning

h

Base model comparison
Comfort zone comparison with PMV-PPD
Comfort zone comparison with Givoni

X

Testing in the lab and exemplar House
System reliability test
People model development
People presence analysis

h 4

Field Studies
The prior 1970s dwelling
The new dwelling
Modular house
Dwelling under refurbishment process
The use of new materials to improve indoor thermal
performance

Figure 18. The research activities and the research phases.
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3.2 System Study

The system design should be relevant to the advancement of the thermal comfort
study with the support of the latest technology. The proposed system should also
acknowledge the user aspects. In line with these acknowledgements, this work conducted
the survey to be able to capture the occupants’ responses and comprehensive literature
review in the field of thermal comfort.

There were two surveys in this work, firstly a survey was done during the tenant
gathering of one of the Northeast of Liverpool dwelling agencies in 2019 in the initial
phase of this work and the second survey was done by a third party and will be addressed
in the field study subchapter.

The first survey had ninety-five respondents with females being dominant because
the survey was done on weekdays. All respondents were given the option to select some
features that they consider to be important for their homes in the future. Some respondents
also gave comments regarding their knowledge of the smart house.

The concept of sensors is still not common for the respondents; therefore,
additional questionnaires were conducted for 24 respondents. The questionnaire mentions
the sensors and the data gathered by each sensor. Two aspects were assessed, the
comfortability and the privacy issues of each type of sensor. The sensors involved in the
questionnaires are the environmental sensor (temperature, humidity, and air quality
sensors), wearable sensors, MOS/CCD Camera, and Infrared/Thermal Cameras.

The second survey was conducted during a field survey to get the behaviour of
the occupants that impacted the indoor thermal condition. Example of the occupants'
behaviour was the use of other heaters/fireplace, their habit to open the windows, external
and internal doors, occupants' activities like showers and cooking and the most important

data was the comfort that the occupants feel in their dwellings.
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3.3 System Physical Modelling

This work utilises computer-based simulations to simulate the effect of outdoor
temperature and humidity on the internal temperature and humidity in the presence of
occupants within different dwelling typologies. This value was then used to predict the
indoor condition in the houses with two different construction typologies: the first model
Is the houses built in the 1920s' where the wall and floor insulation was not standard. The
second house model uses 2010s construction materials where the double-glazed windows

and the wall insulation materials are implemented.

The model defined is a digital twin representation of the room where the parameters
were derived from. Modelling and simulation nowadays have an important role in
supporting design and validating system properties. In the manufacturing industry, the
integration of sensor networks and the digitalization of production systems and machinery
gave rise to the concept of the digital twin. A physical asset and a sensor network are
needed for a digital twin, although neither is necessary for simulation during the design
process. Digital twin is defined as “a comprehensive physical and functional description
of a component, product or system together with all available operational data.”(Khajavi,

Motlagh, Jaribion, Werner, & Holmstrém, 2019).

3.3.1 Construction Typology

As demonstrated in Figure 2, approximately 16% of all homes were built within the
1920s, where the construction was a non-insulated solid brick (as per Figure 19 (a)). In
this work, when the '1920s' home is mentioned, it does not simply refer to this period. It
also refers to any dwelling built to the same building standard of a solid masonry wall. In

comparison, the 2010s' construction represents the 'newer' and updated construction
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methodology (see Figure 19 (b)). Like that of the 1920s typology, for this work, any
building with the same construction is included in this description. These construction
typologies are based upon 'to scale' Building Research Establishment (BRE) exemplar
houses built on-site at the Liverpool John Moores University (LJIMU) Byrom Street (as

pictured in Figure 20).

(@) (b)

Figure 19. (a) 1920s Solid masonry wall. (b) The 2010s Outer facing brick, 50mm clear
cavity, 40mm insulation board, medium density inner.

Figure 20. Image of BRE Exemplar Houses on campus at LIMU (where building
typologies from L to R represent the 1920s, 1970s and 2010s)

3.3.2 Location environmental conditions

Using a computer simulation allows the indoor conditions to be simulated for different

parts of the UK, based upon their differing weather conditions. The locations of the
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simulated dwellings are Liverpool (representing Northwest England), Kent (representing
Southeast England) and Aberdeen (to represent Northeast Scotland). Besides the
difference in the characteristics of energy poverty, Aberdeen was selected to represent
the coldest place in the UK, Kent as the hottest and Liverpool as the location in the middle.

The data used for this simulation uses Centre for Environmental Data Analysis
(CEDA) hourly weather data for 2017(Office, 2019) and is demonstrated for Liverpool,
Aberdeen and Kent in Figure 21, Figure 22 and Figure 23 (respectively). The model is
also able to simulate the indoor condition using the future weather forecast (for example,
in 2030) (Herrera et al., 2017) in order to view the impact of climate change on indoor
conditions. The future weather data prediction for the UK can be obtained from CEDA
data sets ((MOHC), 2017; Buratti et al., 2017).

The data used for this simulation uses Centre for Environmental Data Analysis
(CEDA) hourly weather data for 2017(Office, 2019) and is demonstrated for Liverpool,
Aberdeen and Kent in Figure 21, Figure 22 and Figure 23 (respectively). The model is
also able to simulate the indoor condition using the future weather forecast (for example,
in 2030) (Herrera et al., 2017) in order to view the impact of climate change on indoor
conditions. The future weather data prediction for the UK can be obtained from CEDA
data sets ((MOHC), 2017; Buratti et al., 2017).

Figure 21, Figure 22 and Figure 23 demonstrate that out of the three locations; there is
a greater temperature range in Kent compared to Aberdeen and Liverpool. Aberdeen had
the coldest temperature reading among the three locations, but Kent had the lowest mean
temperature (7.54°C) in 2017 compared with Aberdeen (8.56°C) and Liverpool (8.25°C).
The mean temperature of all locations was still below 9 °C. When considering RH,
Aberdeen had the lowest mean RH (80.57%RH), but all areas still had the mean relative

humidity above 80% (Kent 82.99% RH and Liverpool 82.26% RH).
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Figure 21. The chart of hourly annual temperature (upper chart) and relative humidity

(lower chart) for Liverpool in 2017.
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Figure 22. The chart of hourly annual temperature (upper chart) and relative humidity

(lower chart) for Aberdeen in 2017.
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Figure 23. The chart of hourly annual temperature (upper chart) and relative humidity
(lower chart) for Kent in 2017.

3.3.3 Model Input Parameters

The model uses the approach of a single room (similar to PASSYSS test cells (Strachan,
1993)) with two and four occupants constantly present inside the room. The two
occupants model parameter was based on the data that the average household size in the
UK was 2.4 (Statistics, 2021). The four occupants’ model parameter was selected for
comparison if the occupants' numbers were doubled. This model is deployed using
MATLAB-Simulink-SIMSCAPE software. Consisting of two related parts simulated
simultaneously, the model contains both a thermal model and a moisture model, where

the input parameters can be found in Table 6.
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Table 6. Model Parameters.
General
Input Parameter Value
Number of Occupants 2and4
Sensible heat per occupant, (W) 100
Ventilation area, (m?) 0.01
Flow (m/s) 0.05 and 0.025
Room Dimensions
Input Parameter Value
Room Volume (m3) 31.84 (4.35x3.05x2.4)
Window Area (m?) 2.8314
Door Area (m?) 34
Housing Typology Characteristics
Sf::;’ ¢ Thermal Wall Density
Typology Description . Conductivity Thickness 3
Capacity (W/mK) (m) (kg/m3)
(J/(kg K)
1920s house solid brick wall 800 0.98 0.215 1920
2010s house internal 1000 0.51 01 1400
blockwork concrete block
2010s house insulation 1500 0.022 0.09 30
2010s houzfi:k“ter facing 800 0.98 0.1025 1920

3.4 Framework Development and Test Preparation

People will need time to change their thermal state. The amount of metabolic heat
released by the body in light activities is relatively small compared to the body mass. The
heat input from metabolism and loss to the environment will be even smaller. A light
person will respond quickly (feels cold quickly), and a heavy person will feel cold more
slowly. Convection, radiation, and evaporation will happen to people, including the
respiration process. People can still be comfortable if the skin temperature changes
gradually. The skin temperature will be non-uniform. The cold is comforting for
overheated bodies but unpleasant for already cold bodies. The sensation effect will

depend on time, clothing and the temperature of the surroundings. A sudden change in
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weather conditions will require people to act accordingly and avoid the danger of
heatstroke (Fergus Nicol, 2012).
The solution for thermal comfort is not simply due to the complex parameters in terms
of:
e Physics; which is the regulation of thermal environment and clothing
e Physiology; which is the mechanisms of thermoregulation and acclimatisation
e Psychology; which is the perception of comfort and discomfort, relation to the health,
age and behavioural aspect of people
Based on Kahneman's work on experience vs memory, it can be concluded that people
will remember better, information which triggers their curiosity, and additional moments
of episodes, especially the final moments. This was also acknowledged by the previous
research that memory impacted thermal comfort. From the experience vs perception point
of view, people are bad at predicting perception and the human body is not a good sensor.
Based on these facts the intelligent system should have the ability to give
recommendations based on the current indoor condition. With the experience vs
adaptation principle, if given enough time, people can adapt gradually to indoor
conditions. This can become the key to energy saving while still maintaining indoor
comfort by adjusting the temperature gradually to lower the energy needed for comfort.
Giving the chance for people to adapt can increase satisfaction in general.
Based on these principles and our surveys on an intelligent system, the design of the
system should be:
I. Give memorable comfort experiences, especially before people leave the room.
ii. Giving people the ability to experience directly before they develop their assumed

perception, and this experience requires continuous sensing and interaction.
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iii. People are bad at predicting perception over time, and the system should be able to
give a recommendation based on a certain standard.
iv. The system can give flexibility in access time, which delivers happier activities that
can increase satisfaction in general.
v. People can have enough flexibility for the adaptation process which can lead to
energy saving.
vi. The primary driver of the system is to lower the bills (the economic drive).
vii. The system is trustworthy, and the sensor should not become a privacy breach to the
user.

The design criteria above give us the ideas to develop a system which can give thermal

comfort to the occupants while still minimising the energy use by implementing:

i.  The adaptive algorithm that can predict and acknowledge user needs.

ii.  Ability to regulate the room based on real time readings from sensors that were
installed as the integral component of the system and evaluated with the artificial
intelligence.

iii.  Avoid false prediction by giving the standard references according to the health
regulation and the ability to alter the setting based on the occupant preferences.

iv.  The system can provide a kind of gamification (K. Karyono, Andoko, & Ellianto,
2019) to give memorable comfort to the user. This system will give enough time
for the perception to be experienced and challenge users to lower their energy
usage profile.

v. The system can display the prioritisation selection to the user for maximal
comfort, saving, or between the two. The algorithm will be adjusted according to

user preference. The system can also use gamification to gain a more bill-friendly
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system, reducing further over the years as the user has already adapted to the
system and environment.

vi.  The data output of the sensor should be securely stored and can be accessed by
the customer based on the rights given.

vii.  The ability of the settings to be manually overridden by the approved user.

3.4.1 Prototype

The prototype represents three layers. Figure 24 shows the topology of the prototype
with three layers. The upper tier is a services tier (cloud-based services). This entity
consists of the database server and application server. The database server is used to store
the sensor reading data and the preference data of the occupants. The sensor data will be
used to calculate the recommendation settings, and the preference data will be used to

calculate the setting that will be pushed to the local controller.
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Figure 24 The topology of the prototype.
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The middle tier is the controller located in the house or apartments. This controller has
the ability to do the control locally if the server connection is faulty. The local controller
also becomes the data concentrator for all sensors assigned to this local controller. The
local controller also can relay the user requests. On the contrary, the local controller can
also conduct action or command sent by the cloud to the actuator. The connection of the
middle tier to the cloud can be made using Internet Protocol.

This prototype makes all connections using a Wi-Fi connection with Message Queuing
Telemetry Transport (MQTT) protocol to simplify the connection demonstration.
However, any modification to the communication layer can be easily deployed because
all components support multiple communication protocols. The format of the MQTT
messages is declared in Figure 25. The identity (ID) messages in this prototype were
defined with four characters; the first character represents the originated sender types,
followed by three characters as the ID number of the sender. The MQTT messages are
structured like a tree which is differentiated using their topic. The designated topics can
have multiple sub-topics to further differentiate the message. Using the tree structure of
the MQTT topic, the message can be handled and translated correctly.

The lower tier is the sensors and actuators. The distributed controller (WSN) connects
these sensors and actuators to the middle tier. The sensors can be a group of sensors to
monitor indoor thermal conditions, a passive infra-red sensor to detect the presence of
occupants and a thermal camera to detect occupant’s condition. The actuators for this
system are the controller connected to a Solid-State Relay (SSR) to control the heater

automatically based on the local controller or sensor command.
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The MQTT Topics
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Figure 25. The MQTT message format.

3.4.2 Test Preparation and Human model

This work focused on the thermal effect of human presence, but the direct people
presence was difficult in the case of health and safety risks, especially due to the COVID-
19 restrictions. The thermal representation of humans can be simulated using the radial
heater or light bulbs that emit heat like the human body heat. According to BS 5925:1991
(BSI, 2000) and ASHRAE standard 55 (R. A. C. E. American Society of Heating,
Incorporated, 2017), the activity of people generates an 80W to 800W metabolic rate for
an adult male. This human model focuses only on the body heat and does not compensate
for the respiratory vapour or activities that generate vapour, such as cooking or showering.

For the indoor people simulation, the model will cover two people in sleeping

conditions or one person in light or medium work, which is about 156 W using a radial
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heater (single 60W radial heater and double 40W heaters) and 20 W halogen lamp (which
is assumed to have 80% energy converted into heat). For the two-person case, one person
is simulated with two 40W radial heaters, and another is simulated using a 60W radial
heater and 20W halogen lamp. Table 7 shows the example of the activity list along with
its associated metabolic rate according to the BS 5925:1991.

Table 7 The relations between the activity and its associated metabolic rate (adult male).

Metabolic ASHRAE standard Metabolic rate (M)
BS 5925:1991 rate (M) 55
Activity (adult male) W Activity W/m»2 Met units
Seated quietly 100 | Seated, quiet 60 1
Light work 160 to 320 | Office, Walking about 100 1.7
Moderate work 320 to 480 | Light Machine work 1151t0 140 20t02.4
Heavy work 480 to 650 | Heavy Machine work 235 4
Very heavy work 650 to 800 | Basketball 290 to 440 5.0t07.6
Note: Surface  Adult male 1.9 m?
Adult female 1.6 m?
Children 1.2 m?

The human model was developed related to the case study that was discussed in
subchapter 7.1.2 Testing in the BRE house (1970s house). This human model was the
solution to comply with the case of health and safety risks, while still being able to
introduce the impact of the people presence, in the dwellings. This method can be used
and replicated in the new housing project or the refurbishment project to simulate the
human presence to give a more realistic assessment where the occupants’ presence is still

restricted.

3.5 Field Study of the Proposed System

Previous research has identified that the field still lacks a more unified and
systematic modelling framework(Arakawa Martins et al., 2022). Model evaluation needs
a clear comparison between studies and approaches. The generalization of the results is

still debatable due to the small number of participants. Diversity needs to be introduced
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(more balanced datasets and expanding the application of the personalized models into
other types of environments). In-field studies give more realistic effects in terms of user
behaviour (Feng et al., 2022). Future work in this area should be focused on testing and
integrating TC models with intelligent systems. Detailed analysis using machine learning
and statistical modelling is necessary for future research work (Culi¢ et al., 2021).
Boundaries of the comfort zone have become progressively narrower over the past several
decades. Long-term thermal experiences can raise comfort expectations more readily than
they can lower them. The adaptive comfort concept is central to addressing questions of
how to enhance adaptive capacity in buildings and how to nudge occupant attitudes and
behaviours relating to indoor climate (R. de Dear et al., 2020). Large datasets like
ASHRAE Comfort Database Il and large data distribution may achieve higher

performance than other balancing methods (Luo et al., 2020).

Based on these gaps, the case studies were done on five case studies that represent
the problems most likely in the United Kingdom. The five cases were the case of humid
dwelling (Dwelling Prior 1970s), the new dwellings, the refurbished flats, the
Implementation of the new materials for thermal improvement, and the new modular
house with advanced heating controls. With these extensive tests the model were expected
to be mature enough and close the gaps identified by the previous research.

The field study began with sensors implementation in various installation
locations according to the room type. Additional sensors were added to justify the
parameters that need focus, such as the heater air temperature. The sensors collected the
data within the predefined interval, for example, 15-minute intervals. The main
parameters for this data collection were the black globe temperature and humidity. This

interval was adequate to capture indoor temperature fluctuations and humidity changes.
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The sensors involved in this research were the customer/end-user type of sensors that are
very common on the Internet of Things (IoT) application. These types of sensors can also
be associated with low-cost sensors, which have a measurement accuracy of 0.5°C for
temperature and 2.25% for relative humidity. TC xx, TH xx and SOxx represent the
sensor's ID used in the field studies. TC was used to measure temperature while TH and
SO were for temperature and relative humidity.

The data was then downloaded and combined with the data from the local weather
station corresponding to the sensor data. This local weather station could deliver 15-
minute interval data with the main focus on the outdoor temperature and humidity. The
analysis phases mapped the data to form a chart for each room's temperature and relative
humidity corresponding with the outdoor temperature, then focused on the minimum and
maximum outside temperature for each period.

Based on this gathered data, the temperature and relative humidity data were fed
to the Atrtificial Intelligence model to decide whether the occupants were in a thermal
comfort situation. The psychrometric chart was used to map the data according to the
temperature and humidity, along with the comfort condition of the occupants. These steps
were done carefully to capture and simplify the parameters without ignoring the complex
aspects of the indoor thermal condition. Additional parameters such as occupants'
behaviour, for example, the habit of opening the window, the frequency of cooking and
showering, the occupants’ humid and thermal sense, and other indoor conditions, such as
the state of internal doors, were captured using the questionnaire where applicable. The
overview of the methods can be seen in Figure 26.

The case of the prior 1970s dwelling was done in one of the flats in a three-story

building in Liverpool (ASHRAE Climate Zone 4A). The data was collected from 17
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February 2022, 22:00 to 02 March 2022, 16:30, at the end of winter. The room heaters in

this house were turned off during the trial.
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Figure 26. The overview of the methods used in this work.

The case of a new dwelling was done in two new semi-detached houses in
Liverpool. The house was built with the proper insulation. The data was collected from
19 October 2020, 13:00 until 8 April 2021, 04:15, which was the autumn, winter, and
spring. The room heaters in this house were turned off during the initial data gathering
from 23 to 27 October 2020 and then turned on throughout the trial.

The case of the modular house with the advanced heating controller was done in
the new modular house in Liverpool. The data was collected during the autumn season

from 19 October 2021 to 29 November 2021.

The case of refurbished dwellings was done in five high-rise flats in Liverpool.
The refurbished building is the high-rise flats, and the flat is on the 14th floor. The
refurbishment processes were installing outdoor insulations, and the indoor refurbishment

was done by upgrading the electric heaters into new electric heaters. The data readings
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were done four times from 20 December 2019 to 26 February 2021 during the pre-
refurbishment phase, pre and during-refurbishment phase, during and post-refurbishment
phase and post-refurbishment phase. The data logging was done in four periods to cope

with the field condition.

The dwelling with additional material for thermal improvement was conducted in
four bungalow houses in Liverpool and was done from February 2022 to May 2022 during
the end of winter to spring. The trial was done by installing an additional layer in the
glazing area to increase the thermal resistance and lower the leakage. The occupants also
filled in the questionnaire regarding their behaviour, which might impact the trial result
because the trial was done in a single dwelling with one room installed with the material

and the other non-refurbished room for control.

The 1970s house typology assesses the people's presence impact on thermal
comfort. The trial was based on the ten-week field study in the 1970s' BRE House,
Liverpool John Moores University, Byrom Street Campus. The trials were divided into
three groups: the trial with no people present, the trial with people model/simulator
between 09:30 and 18:00 and the people simulator from 21:30 to 06:00, Monday to
Friday, to represent the indoor conditions. The people simulator was introduced due to
the health and safety reason of the trial location. The people simulator was based on
ASHRAE Standard 55 (ASHRAE, 2017) value to represent two people in the sleeping or
resting condition or a single person in the light work state. The people's presence time
was set equally so it can be comparable. The field study was done during the transition
periods from winter to summer.

Furthermore, the research on Al still has gaps in Al-based models for residential

buildings area, limited amounts of data and biases in datasets, limited generalization, and
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limited deployment of comfort models (Qavidel Fard et al., 2022). This paper offers a
solution to overcome these gaps by using the Al model that was previously developed
based on the multiple ASHRAE Databases and deployed the model in the various field
studies to show the benefit of using this model in the residential dwellings of various
typologies. The Al implemented was of type artificial neural network (ANN) which has
the capability of being deployed in the local controller node suitable for residential
dwellings’ control due to less memory and computation requirements. This Al method is
capable to acknowledge adaptive thermal comfort, leading to lower energy use for

comfort.
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Chapter 4 Thermal Comfort and Energy Simulation Results and

Analysis

SIMSCAPE is a feature of SIMULINK in MATLAB, where the simulation of the
physical model can be completed simultaneously to represent identical physical
conditions. This hygrothermal modelling was implemented with two loops of physical
properties. The first loop is for the water vapour property, and the second is the loop for
the thermal property demonstrated in Figure 27.

Even when the model is divided into two loops, the simulation of the water vapour loop
and the thermal property loop is completed simultaneously. The simultaneous simulation
means that their parameters are integrated and strongly correlated between each loop.
Splitting the model into two loops benefits the modularity aspects; the parameters defined
in each loop can be adequately identified and modelled in different modules. Each loop
can be isolated and executed to independently identify the effect of altering the simulation
parameters. This approach can be made on each separated loop and in an integrated
environment simulation. The intersection of the loop is in the constant volume chamber
component. This block models the moist air behaviour inside a constant room volume.
The mass and energy storage parameters are modelled with the possibility of changing
the simulated input parameters. Pressure and temperature will change based on the
thermal capacity and pressure of the moist air inside the chamber. The component

overview of the model can be seen in Figure 28.
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Figure 27. Thermal and vapour loop in the model.

4.1 Model Explanation

The moist air node is available for adding or removing moisture within the air. In this
model, this feature is utilised to model the occupant's presence. The occupant's presence
will give additional moisture due to the effect of human respiration. This component
intersects the water vapour loop and the thermal loop. Besides affecting the water vapour

loop in terms of increasing the humidity, the occupant's presence will also raise the
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temperature of the moist air volume due to the heat dissipated by the human body. Liquid
water condenses out of the moist air volume when it reaches saturation. The convective
and conductive heat transfer between the air, the surrounding wall, roof, floor and the

occupants are simulated in the thermal loop.
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Figure 28. Overview of the SIMSCAPE MATLAB Model

The heater model in this simulation is the convective panel electric heater model with
the closed-loop control. The heater will be turned on if the room temperature falls below
the set point and turns off if the temperature rises above the temperature set point.
Measuring the percentage of heater 'on’ time between different housing typologies and
locations will generate an annual quantification of energy usage for typology and

locational comparisons. The heater part is connected to the thermal property loop in the
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constant volume chamber component; hence, a change in the heater state (heater is turned
on or off) will impact the indoor air moisture. A simplified electric heater model is used
within this research (see Figure 29); the model also utilised the capability of executing

the Simulink model with batch processes.
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Figure 29. Simplified electric heater model in the SIMSCAPE simulation.

The simulation uses three UK locations, Kent, Aberdeen and Liverpool, to represent
the conditions all over the UK and is also similar to the model validation, which uses the
measurement data taken from ASHRAE Global Thermal Comfort Database 1l (Foldvary
Li¢ina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, &
Kaam, 2018) for all available UK data. The data selected is the data from all over the UK,
with naturally ventilated buildings for offices, classrooms, and other types of buildings.
The data set year is 1994, 1995, 1996, 1998, 1999, 2011 and 2012 throughout the year
with the data entry of 14,187 measurements from the Midlands, London, Hampshire,
Oxford, St. Helens, Chester, and Liverpool. The complete MATLAB model and the

simulation parameters lists can be seen in the Appendix 1.

4.2 Model Assumptions

Within the model, the following assumptions have been made for this research:
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e The heater is a model of the convective panel electric heater. The temperature of
the panel when switched on is 40 °C. Dimensionally, the panel heater is 0.9 x 0.4
m? with a mass of 46.7 kg, the radiator heat capacity is 447 %J/(kg K), and the
heat transfer coefficient is assumed to be 100 %W/m?K.

e Occupants are simulated to be present all the time (24 hours) and have the same
activity level. The amount of moisture produced to use the approximation of
occupants being at a low activity or resting and as per BS 5925:1991 RH is no
greater than 70%. Each occupant is assumed to produce a 50 g/h moisture level as
per BS 5925:1991standard (BSI, 2000) (as the value is 40 g/h for resting and 55
g/h for heavy activity)

e The solar heat gain is simplified in this model and not calculated using the weather
files as temperature and humidity are.

¢ No air conditioning is used in this model, and the thermal set point is applied as a
threshold for the heater to be turned on.

e Roof and floor constructions are identical to the 1920s and 2010s' house typology.

The ventilation state is also varied - ventilation with the air velocity rate of 0.025 m/s and
0.05 m/s. With this ventilation rate, the CO. level is below 1000 ppm for 2 and 4
occupants. This model uses the CO- gain per occupant value of 0.01 g/s, and the CO-
level in the fresh air uses the assumption of 0.04 %, as stated in BS 5925:1991 (BSI,

2000).

4.3 Analysis of the Simulation Result

Simulations were completed to compare the performance of the housing location and

construction typologies with 2 and 4 people inside a room over 24 hours, as demonstrated
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in Figure 30. The ventilation rate is 0.05 m/s for Figure 30 (a) and (c). For Figure 30 (b)
and (d) the ventilation rate is 0.025 m/s. Regarding CO: levels, a ventilation rate of 0.05
for two occupants inside the room will reach about 650 - 700 ppm, whereas, for four
occupants inside the room, CO- levels will reach about 900 to 950 ppm, both of which
are still considered within the healthy region. By comparison, when the ventilation rate is
halved to 0.025, the CO> level will rise to 900 - 950 ppm for two occupants, and with four
occupants, these levels rise to an unhealthy level of 1400 - 1450 ppm. Besides simulating
the CO> values, this work will also focus on relative humidity levels and if they can be
considered healthy. What is demonstrated is that the annual mean indoor humidity is
among the value range with no negative health effects, based on the simulation as outlined
in H.M.Government (2013), except in the case of 4 occupants with a ventilation rate of
0.025.

There is only a slight difference in the humidity between 1920s dwellings and the
2010s' with a ventilation flow of 0.05 (shown in Figure 30 (a)). This result is observed
particularly for both building typologies in Aberdeen after approximately 15°C, where
after there is no difference in mean indoor RH. The trend for all three locations is almost
linear, proportionally with the temperature change. However, for Liverpool and Kent, at
approximately 15°C, the RH for 2010s homes remains negligibly larger than that of its
1920s counterpart. This difference is sustained until 21.5°C for Liverpool and 23°C for
Kent homes. In terms of location, Liverpool and Kent-based homes have a similar RH
with a difference in RH of 1% from 13-21°C, whereas, above this temperature (21-25°C),
RH appears to be the same. However, initially, in Aberdeen, RH is only 2% lower than
in Kent, but at approximately 16°C, this difference increases to 3.5% RH and is sustained

until the end of the simulation at 25°C.
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Figure 30. Comparison of mean indoor relative humidity (% RH) for the 1920s and
2010s housing typologies in Liverpool, Aberdeen, and Kent over the entire year of 2017
with a.) 2 occupants and flow 0.05m/s, b.) 2 occupants and flow 0.025, c.) 4 occupants
and flow 0.05m/s and d.) 4 occupants and flow 0.025.

Similar to the case of 2 occupants (in Figure 30 (a)), the values of annual mean indoor
humidity in Figure 30 (c) are among the healthy values based on the simulation. Figure
30 (a)-(d) demonstrate that due to the increase in people within the room, the starting RH
values are approximately 3% high than those in Figure 30 (a). Figure 30 (c) demonstrated
a gap (of approximately 1%) in RH between 1920s dwellings and the 2010s' in the
temperature range 13-18°C. After this temperature, both housing typologies seem to have
the same mean indoor RH; the only difference is the location of the dwelling, where the

trends are almost linear, proportionally with the temperature change. With less ventilation
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flow, the mean humidity value difference between 1920s dwellings and 2010s’ are
distinguishable, especially with lower temperature settings. The efforts to reduce comfort
temperature settings to conserve energy will be supported by the modern house typology,
which has lower relative humidity than the old typology.

Figure 31 (a), (b) and (c) demonstrate the probability of the relative humidity
exceeding 70%, and all the results show the value below 25%. Only in Figure 31 (d), for
a dwelling with four occupants and ventilation flow of 0.025, has the relative humidity
exceeded 70% value above 25%. Besides the CO- level, the value of the RH makes IAQ
conditions unhealthy. The graph displayed in Figure 31 (a) — (d) is not linear because of
the humidity change. The use of a heater will increase the temperature and decrease
indoor relative humidity. The 2010s dwelling tends to have higher humidity than the
1920s dwelling. This condition happens due to the difference in the heater state. In the
1920s dwelling, the desired temperature must be achieved with the heater turned on, while
in the 2010s dwelling, the temperature still can be reached with no heater as the 2010s
dwelling has better insulation to maintain the indoor heat.

The chart of the percentage of the heater in the ‘on’ state cycle for the whole year
(2017) is provided in the Appendix 2. This cycle of heater ON and OFF represents the
additional heating needed and then switched OFF after the desired temperature setting
was obtained. This cycle can represent a rough estimation of the heating energy
comparison between house typologies. The more precise values were done in the
simulation by using integrator component to also capture the transient heating energy
values. The result of this process will be provided in Figure 32.

The probability of the relative humidity exceeding 70% shown in Figure 31 (a) and
the percentage of the heater in the ‘on’ state shown in the Appendix 2 (a) is negatively

correlated. In 1920s dwellings, for Liverpool, Kent, and Aberdeen, the values are -0.9579,
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-0.9830, and -0.9345. For the 2010s' dwellings for Liverpool, Kent, and Aberdeen, the

values are -0.9372, -0.9711, and -0.8817. This result shows that the decrease in the use of

the heater will increase the probability of the relative humidity exceeding 70%,

particularly in the dwellings in Kent that have the most significant inverse correlation

values.
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Figure 31. Comparison of the probability of indoor RH becoming >70% RH
1920s and 2010s housing typologies in Liverpool, Aberdeen, and Kent over the entire
year of 2017 with a.) 2 occupants and flow 0.05m/s, b.) 2 occupants and flow 0.025, c.)

4 occupants and flow 0.05m/s and d.) 4 occupants and flow 0.025.

In order to minimise the probability of the indoor RH not exceeding 70%, the location

will not give a significant value if the temperature inside the dwelling is maintained at at

least 15 - 16°C. With this temperature set point value, the number of people inside the
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room will have more of an effect more than the house location. Recommending this
temperature set point to become the recommended standard temperature setting for

comfort will consider giving a more uniform impact to the comfort.

Figure 31 (c) and Figure 31 (d) show that the 2010s' dwelling typology was beginning
to demonstrate the superior result compared to the 1920s'. The probability of the RH
exceeding 70% can be lowered while conserving indoor heating energy. Similar to the
dwellings with two occupants, the dwelling with four occupants has the tendency that the
location will not give a significant value to minimise the probability of the indoor relative
humidity not exceeding 70%. This simplification can be used if the temperature inside
the dwelling is maintained with the value of at least 16°C in the house with four occupants.
The housing typology will significantly impact thermal comfort when temperatures are
below 16°C. When the temperature set point is above 19°C, the dwelling typology
becomes no longer critical to the comfort, but only has an impact on the energy usage.
Therefore, recommending a temperature set point around 16°C - 19°C to become the

comfortable standard temperature would be desirable.

Figure 32 1. shows the relation between the heating energy needed and the house’s
location. The house that is located in the area with lower average temperature will need
higher heating energy.

Figure 32 1. also highlights the impact of the number of occupants in the house although
it was not as high as the ventilation impact. The higher number of occupants (c) and (d)
needed a lower heating energy compared to the case (a) and (c). The lower the temperature

set point, the higher the impact of the people’s presence in lowering the heating energy.
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Figure 32. I. Heating energy comparison between the 1920s and 2010s housing

typologies in Liverpool, Aberdeen, and Kent with a.) 2 occupants and flow 0.05m/s, b.)
2 occupants and flow 0.025, c.) 4 occupants and flow 0.05m/s and d.) 4 occupants and
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flow 0.025. 11. Heating energy ratio, Y axis represents the energy ratio 1920s against
2010s.

As outlined in
Figure 32 11 (a) and (c), the energy used for the heating in the 1920s" house can be doubled
compared with the 2010s' house throughout the year. The heating energy was decreased
with better insulation material in the 2010s dwelling. The use of this material can have a
higher impact compared to the impact of the different house locations across the UK.
With lower ventilation value
Figure 32 Il (b) and (d), the saving will be even higher. This value highlights the use of
ventilation with heat recovery to conserve heating energy.

Figure 32 Il also indicates that recommending a lower temperature set point for the
modern houses will give even higher benefit in conserving heating energy compared to
the 1920s’ house.

Appendix 2 also shows the heating energy curve for three hottest months and three
coldest months. The results from three coldest months highlight the benefit of the modern
house typology in the thermal energy saving. The gap between the heating energy usage
in the 1920s house and the 2010s house was massive. Lowering the temperature set point
for the 2010s house will give higher impact compared with the 1920s. The results from
three hottest months gave an interesting result. The housing typology had less impact with
the lower temperature set point. The people’s presence also had a greater impact beside
the rate of ventilation. Like the results from the three coldest months, lowering the
temperature set point for the 2010s house will give higher impact compared with the
1920s especially with more people present.

Based on the heating cycle simulation result where the 2010s dwelling typology can

conserve 2% of heating energy and with the assumption of 16,500 kWh - 22,000 kWh on
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annual heating energy consumption per household per year, the energy-saving per house
per year will be in the range of 330 - 440 kWh. If it was multiplied by the number of
'1920s" homes which are approximately 36.6% of the total dwellings (approximately 8.76
million homes), the total energy conservation across the UK will reach about 2.89 - 3.85
billion KWh. The carbon reduction per year can reach approximately 635.8 - 847 thousand
tonnes with 220 gCO»eq/kWh. This result can be higher if the heating energy simulation
is considered. More than half of the heating energy can be saved with the lower
temperature set point, and the use of modern construction materials as used in the modern

housing typology. The carbon reduction per year can reach 21 million tonnes.

4.4 Simulation Validation

4.4.1 Validation against ASHRAE Global Thermal Comfort Database 11

The simulation uses three cities within the UK: Kent, Aberdeen, and Liverpool, to
represent conditions all over the UK. The measurement data taken from ASHRAE Global
Thermal Comfort Database Il (Foldvary Li¢ina, Cheung, Zhang, de Dear, Parkinson,
Arens, Chun, Schiavon, Luo, Brager, Li, Kaam, et al., 2018) for Liverpool and all
available UK data were used to validate the model. The data from Liverpool were selected
to represent one area of the UK with average weather conditions with 197 measurements
data available in the database. All areas across the UK were selected from the database
with the data entry of 14,187 measurements from the Midlands, London, Hampshire,
Oxford, St. Helens, Chester, and Liverpool. These measurements were taken in naturally
ventilated buildings such as offices and classrooms. The data set years are 1994, 1995,

1996, 1998, 1999, 2011 and 2012, with the data span throughout the years.
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The measurement data in ASHRAE Global Thermal Comfort Database 1l are used as
the comparison parameter to the air velocity values in m/s and the RH in percentage (%).
For the Liverpool region, the measurement data shows that the average temperature is
21.18 °C with a standard deviation of 1.60 and the RH value of 44.55 % with a standard
deviation of 5.92. The average value of indoor air velocity is 0.06 m/s with a standard
deviation of 0.05. Our simulation shows that for the Liverpool area, with an average
temperature of 21 °C and an indoor air velocity of 0.05 m/s, the RH is 44.52%. This result
comparison can be seen in Table 8.

Table 8. Model Validation.

Simulation Result ASHRAE Global Thermal Comfort Database I
Rela- | Indoor Rela- Indoor
Tem- | tive Air Tem- tive Air Num-
pera- | Humi | Veloci- | pera- Humi Veloci- ber of
ture | dity ty ture Std. dity Std. ty Std. sam-
Area (°C) (%) (m/s) (°C) Dev. (%) Dev. (m/s) Dev. ples
Liverpool 21 | 44.52 0.05 | 21.18 1.60 | 44.55 5.92 0.06 0.05 197
; 22 | 40.63 0.05
United 22.67 193 | 41.87 | 13.14 0.07 0.06 14187
Kingdom 23 | 38.70 0.05

The global UK areas show that the mean of the RH is 41.87%, with a standard
deviation of 13.14. This value is measured at the mean temperature of 22.67 °C with a
standard deviation of 1.93. The mean air velocity value is 0.07 m/s with a standard
deviation of 0.06. Our simulation shows that for the average temperature between 22 °C
and 23 °C with an indoor air velocity of 0.05 m/s, the RH is between 38.7% and 40.63%.

The average RH value deviation is less than 2%, which justifies our simulation result.

4.4.2 Validation against the Al Model

The other way to validate the model is by comparing it to the Al model using the

ASHRAE database RP-884 and ASHRAE Global Thermal Comfort Database Il. This
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model is fed with a temperature value of 22.67 °C and humidity of 41.87%. Since, in the
model, the air velocity parameter is omitted, the other parameters like the clothing
insulation, activities and age are varied to capture the variability of the result. The value
for the clothing insulation parameter is from 0 to 2.89, with an interval of 0.5. The value
of activities ranges from 0.65 (sleeping) to 6 (very heavy work) with step 1. The age
parameter is fed with 6, 36, 66 and 96 years. The combinations of parameters resulted in
144 combinations of data, with the data point in the psychrometric chart shown in Figure

33.
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Figure 33. Mapping the validated value in the psychrometric chart.

The result of the Al model is analysed by observing the comfort percentage result from
the Al model output. The validation used the assumption that the common clothing

Insulation at home was 0.5 clo. The activities were assumed as sleeping and moderate
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work with a value of 0.65 t02.65 met. The occupants’ ages assumptions were between 6
to 96 years. With these assumptions, the result of the comfort percentage was 100%. It
means that all occupants were in a comfortable situation. This value justifies the result of
the simulation. Other values are also interesting to be analysed. In this temperature and
relative humidity value, the comfort percentage decreases if the clothing insulation value
is higher than 0.5 or the occupants do heavy work (higher activity value). This highlights
the recommendation for lowering the comfort temperature setting. The detailed result of

the validation with the Al model can be seen in Table 9.

Table 9. Validation result with Al Model
Conditions: Percentage

All cases: Clothing Insulation: 0-2.5 clo; Activities:
sleeping to heavy to very heavy work (0.65-5.65 met); | 65.97%
age: 6-96 years

All seasons: Clothing Insulation: 0-1.5 clo; Activities:
sleeping to heavy work (0.65-3.65 met); age: 6-96 years
Summer Clothing Insulation 0-1 clo; Activities:
sleeping to moderate to heavy work (0.65-3.65 met); | 93.75%
age: 6-96 years

Winter Clothing Insulation 1-2.5 clo; Activities:
sleeping to heavy to very heavy work (0.65-5.65 met); | 61.45%
age: 6-96 years

Common cases: Clothing Insulation: 0.5 clo; Activities:
sleeping to moderate work (0.65-2.65 met); age: 6-96 | 100.00%
years

95.31%

Karyono 94



Chapter 5 System Design

Chapter 5 System Design

5.1 Perception of a Smart System

Based on the first survey, most participants that commented on the smart house,
associated the smart house with a smart meter. Participants were interested in
implementing sensors and were willing to invest more to lower their energy bills. Most
of them who are aware of the concept of the smart house do not know the full capabilities
of the smart house. When they know that the smart house will be able to do more, they
say they want the solution. Based on this result, implementing an intelligent home system
and spending more to lower the bills will be the driver of the system's acceptance. Only
6% of the people (5 respondents) reject the idea of using an intelligent system and paying
more to lower their bills. If the majority want to pay more for the system, the acceptance
of the system will be even higher if they do not have to purchase the system. A further
question on their preferences about the system they wanted to have in their future home

can be seen in Figure 34 (a).
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Figure 34. Survey on the perception of the intelligent system (a) future home
features that occupants want (b) comfortability issue in sensor use (c) privacy issue in
sensor use (Y axis represent number of respondents)
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The solar panel is still the most commonly preferable solution for their future home.
An additional sensor / smart system is still not popular, and people are still unclear about
the sensor data, which will be related to their privacy. It is reflected in the result of the
survey on the sensors employed by the smart home. The respondents who feel that there
are no privacy issues are just about 2% higher than those who consider that the sensor
will be intrusive.

Since the concept of sensors was not common for the respondents, the further
questionnaire given to 24 respondents returned interesting results. The results of the
comfortability aspect can be seen in Figure 34 (b). The questionnaire result shows that
people are not very comfortable having the MOS/CCD Camera as their smart home
sensors. The exciting finding is that people are still comfortable even when using the
wearable sensor at home. This comfort might be due to the widespread use of
smartwatches and fitness bands. The second aspect, the privacy issue, can be referred to
in Figure 34 (c).

Based on the interview with eight participants from the group of 24, they feel that
using sensors inside their homes will not breach their privacy as long as the data is well
maintained. When they are introduced to the use of the IR thermal camera, most of them
do not object. They feel their privacy will remain because the image cannot directly relate
to them. They think the image results were funny and ask their children to be
photographed using this camera. The questionnaire result says a bit different. The
respondents still consider that privacy issues have become problems using some sensors.
Even if the data are securely kept, they still do not want to use the CCD/MOS camera
sensor type (the most untrusted on privacy) followed by the Thermal Camera and
wearable sensor. There should be more elaboration for the smart home implementations

regarding user education on the privacy aspects.
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5.2 People with Special Needs and the Design

5.2.1 Adaptive Behaviour

People naturally have adaptive behaviour to make a more comfortable environment
condition. This action is known as self-adaptation. There are three types of adaptation.
The first is a physiological adaptation, which represents the body’s reaction to the change
in the surroundings. The second is psychological adaptation. This adaptation is derived
from the state of mind of previous experiences. The third adaptation is related to human

behaviour (Parsons, 2020 ).

5.2.2 Adaptive System

Human comfort, particularly thermal comfort, is very personal. It can vary from person
to person according to their condition and disability. Developing a personally customised
system is very expensive. The framework review for personalised control is also
presented to make the system perform the automatic task (O'Brien & Gunay, 2014).
Automatic control, which aims to lower energy usage, has also been studied (Gunay,
O'Brien, Beausoleil-Morrison, & Gilani, 2017; Nagy, Yong, & Schlueter, 2016). These
systems focused on the implementation of the on-off system. The other parameter
supporting energy saving, like blinds, can also be controlled automatically.

The adaptive system is the solution to develop a system that can cope with personal
preferences. The system can be part of the Industry 4.0 development for supporting
employees (Kanisius Karyono, Abdullah, et al., 2022). This system can adapt to personal
preferences, increase human comfort, and increase productivity. Artificial Intelligence
(Al) was used to acquire the system’s capability to be able to acknowledge adaptive

thermal comfort. Neural Network is one of the preferred solutions for the core of the
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adaptive system. The various learning data from the ASHRAE multiple databases can
lead to a unique response under specific circumstances. Using this system, the real user

behaviour, which is unique, can be captured by the system.

5.3 Infrastructure Design

The infrastructure design approach uses the WSN to simplify the installation and allow
system expansion and scaling. The infrastructure design can be seen in Figure 35. The
lowest layer, or the edge, consists of the sensors and processor based on the ESP-32
WROOM modules programmed with the Arduino platform. This layer also contains the
actuator that consists of the Solid-State Relay (SSR) to control the heater or air
conditioner with the same processor based on the ESP-32 WROOM modules
programmed with the Arduino platform. The sensors consist of two sensor types. The first
type consists of a temperature and air quality sensor and a black globe sensor. The second
type has the same temperature, air quality and black globe sensor component but has an
additional PIR-based occupant's monitoring sensor and the thermal camera that can be
used for future developments.

The second layer consists of the local control with the Raspberry Pi as the main local
controller. The Raspberry Pi is running a local control program written in Node-Red.
Moreover, the communication between these layers is being done using the MQTT
protocol over a Wi-Fi connection.

The use of Raspberry Pi 3 Model B+ for the prototype was due to the product
availability, but it is not mandatory. Any other brand or type of local controller with
similar processor performance will be suitable because the algorithm used in the local
controller is not heavy or require high computational performance. The Al algorithm of

type Artificial Neural Network (ANN) is used based on this qualification. The local
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controller for residential has limited memory and computational power to form a low-

cost system that was affordable for residential use.
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Figure 35. The Proposed System Diagram.
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The highest layer is the server layer. In this prototype, the Application Server and the
Database server are implemented using a single machine based on the Intel i5 processor.
The database structure uses the MySQL-based database, and the data structure will be
addressed in chapter 5.6. The application Server is also using a Node-Red-based program.
For the user program, the application was developed using MIT App Inventor for cross-
platform deployment possibility, which is the possibility to be deployed into user
smartphones with different platforms such as Andriod-based smartphones and iOS-based
smartphones.

The sensor hardware module diagram can be seen in Figure 36. The sensors are
connected to the ESP-32 WROOM controller through the 12C communication protocol.
I2C is a serial communication protocol whose primary connection includes the Serial
Data (SDA) and Serial Clock (SCL). The other type of sensor module diagrams and
actuator diagrams can be seen in Appendix 3. The flow chart of the sensor node can be
seen in Figure 37, and the program of this sensor node can be seen in Appendix 4. The
sensor node can enter the sleep mode to reduce the power usage. The sensor will
automatically wake up according to the program and condition and perform its task. After
completing the task, the sensor node will go to the sleep state again. This feature will be
beneficial to conserving sensor node power, especially in this environment monitoring
application where the data transmitted from the sensor is not very often. In this prototype,
the period of each data transmission is once every15 minutes.

The local controller in the middle layer acts as an intermediary between the
sensor/actuator layer and the server. The role is vital for the system to anticipate faulty
communication to the server. In the case of faulty communication, the local controller
can act as a temporary local server to handle the data and send the corresponding action

to the actuator based on the algorithm stored in the local controller.
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Figure 36 Standard sensor Module Diagram.

The flow chart of the local controller and the Node-RED program can be seen in
Appendix 5. The web/application server program was also developed in Node-RED.
Node-RED was originally developed by IBM for integrating hardware devices. This
program is a flow-based development tool. This tool offers a visual programming
development environment which provides modular libraries to be integrated into the

program. The server receives the sensor data from the local controller through the MQTT
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protocol using Wi-Fi in this prototype. The server can also send the command to control

the actuator via the same protocol. This protocol's implementation and connection

methods can be altered according to the supporting infrastructure. The flow chart of the

server and the Node-RED program can be seen in Appendix 5.
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Figure 37 Standard Sensor Flow Chart
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Cost was among the consideration of components selection and system design.
The system was intended for residential implementation, so the low-cost approach was
preferred. Based on Table 10, implementing 2 sensors of Humidity with Black Globe
Temperature will cost £218.48, while the 1oT-based sensors will cost £184.57. This shows
that the cost of the 10T sensors is still comparable with the COTS offline sensors. This is
to highlight that this fulfils the low-cost approach for residential dwellings. With mass
production in the commercialization phase, the unit cost can be lower.

Table 10. The cost of the IoT system

Price
Each Link (last accessed at 20 July
Component Type (£) 2023)
Server As a Service
Access TP-Link 1 Port Wire- https://uk.rs-online.com/web/p/
Pont less AP 802.11 b/g/n 30.00 | wireless-access-points/2558454
Local https://uk.rs-online.com/web/p/
Controller Raspberry-Pi 3 B+ 38.57 | raspberry-pi/1373331
https://uk.rs-online.com/web/p/
sensor-development-tools/
1845086, https://uk.rs-online.com/
web/p/environmental-sensor-
ics/1950685, https://uk.rs-online.
Sensor ESP 32, SVM 30, com/web/p/communication-wire
Nodes BME 680 58.00 | less-development-tools/1840479
https://uk.rs-online.com/web/p/
communication-wireless-develop
ment-tools/1840479, https://uk.rs-
Actuator ESP 32, i-Autoc Solid online.com/web/p/solid-state-
Nodes State Relay, 10 A 36.30 | relays/1025544
PSU Plug-
In AC/DC| XP Power 5W 5V dc https://uk.rs-online.com/web/p/ac-
Adapter Output, 1A 5.27 | dc-adapters/1217120
Offline Type
Offline Lascar EL-USB-2 https://uk.rs-online.com/web/p/
Sensor 1 Temp & RHumidity 63.24 | data-loggers/4901064
Offline Lascar EL-USB-1
Sensor 2 - Temperature Data https://uk.rs-online.com/web/p/
BlackGlobe Logger 46.00 | data-loggers/4666115?gb=s

Karyono 103



Chapter 5 System Design

5.4 User Interface Design

The user interface of this system is designed as to be as simple as possible and has
only the essential components of the user interface for compatibility issues. The mobile
application was developed using MIT app inventor, a web-based mobile application
developer aiming to provide the native application through the web-based development
environment. From their integrated development environment, the native code for the
application, for example, Android, will be generated by the development tools. The web
application aims to provide the native generated code for mobile, for example, Android
and 10S. This developed application can be used to generate the essential parameters
needed for thermal comfort analysis in a more precise value.

The user can set the clothing and calculate the clo value used in the Al system. The
user also gets the suggestion from the application on what value is the best for winter and
summer according to the ASHRAE standards 55. A similar feature is also applied to the
activities. Users can enter their major indoor activities to be calculated, so the Al system
can be adjusted to meet the user's major activities. This value is among the five most
essential parameters in thermal comfort: age, clothing, activity/metabolism, temperature

and humidity. The user interface design layout is shown in Figure 38.

5.5 System Flow

The system works by the user trigger. The trigger can be in the form of a user request
from the application on their smartphone or their presence. These values will form rule-
based and case-based reasoning to build core artificial intelligence (Al)(Aljaaf et al.,
2018). The system will react based on the learning result of Al learning. Users can also

give corrections directly to alter the system setting. This feature will make the system
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adaptive to user needs. The system flow of the adaptive thermal model can be seen in

Figure 3
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Figure 38. The User Interface for Clothing Suggestions and Activity Calculator.
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Figure 39. The Proposed Adaptive Thermal Model Flow Chart.

Thermal comfort is crucial to support the health and safety of all people groups. The

young generation and mostly the elderly are susceptible to sickness because of heat- or

cold-related causes (X. Ye et al., 2012). The wrong thermal arrangement can be fatal for

some groups of people, especially in the GCC, when there can be sudden cold or hot

waves. ANN can give the personalisation setting, but the result should be controlled and

validated.
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The system, targeted for precision and fault-tolerance and wanting to use ANN
methods, now uses the novel approach called explainable artificial intelligence (XAl).
The process can backtrack the learning process, to check whether it has the wrong
interpretation (Samek W, 2018), (Joel VVaughan, October 2018). This process of tracking
will require the use of excessive resources. Due to the limited processing power and
memory, the devices used in the thermal comfort subsystems will have difficulties
implementing this method. Strengthening the learning process for the neural network
while still maintaining the processing power and memory usage will be challenging. This
method is a work in progress for combining the human physiology and human behaviour
methods (Fanger PMV-PPD model and the human behaviour Al system) to achieve a
faster and more reliable solution for thermal comfort. Instead of backtracking the whole
learning process, the PMV-PPD model can be used to check the training parameters and
processes. If it deviates over certain levels from the standard or the comfort guidelines,
the PMV-PPD equation can then be referred to validate the learning process involving
the user or stored parameters. The learning process can be acknowledged by mapping to
the PMV-PPD comfort map before the controlling result is sent to the controller for
thermal correction actions. This method will enable the outliers to be validated and
accommodated, increase security protection, lead to a more comfortable user, and gain
more trust. This approach has the potential to perform better compared to the XAl
approach. In the future, it will introduce a safer environment and a lower probability of
error triggered by the limitations of Al and probably Al hacking. The diagram of the
approach is presented in Figure 40.

The concern about the performance and the vulnerability of Al have been addressed,
not only due to the poor performance and malfunction but also the intentional malicious

attempt (Hamon et al., 2020). This work uses shallow supervised learning with the data
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source of learning from the ASHRAE multiple databases. With this prior system learning
and the use of a large dataset, the possibility of poor performance of the result can be
lowered, and the learning result has been validated using psychrometric chart mapping.
The intentional malicious attempt can also be avoided because the model uses pre-trained
ANN, and the base model has the weight and bias calculated using back propagation

methods.

Comprehensive
Learning Data

Artificial Intelligence

Empowering Artificial Intelligence

Learning

Learning Data —>
J Process

Artificial Intelligence Resouce Consuming

explainable
artificial
intelligence
(XAI) Process

And Proposed Work
Behavioural
Validation

Figure 40. Proposed Solutions for Empowering Al using Fanger PMV-PPD and
Behavioural Validation.
5.6 Database Design

The system uses the SQL-based database, which is deployed in MySQL. The prototype

can also use the NoSQL type of the database, but in this stage of development, the SQL-
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based database was preferred. Data processing, searching, and analysis has often been
done using general purpose software and the SQL-based database was preferred. The data
The Entity Relationship Diagram of the database is shown in Figure 41. This diagram
shows the relations between each item in the database that is grouped into fields of

entities.
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Figure 41. Database Entity Relationship Diagram.
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Chapter 6 Artificial Intelligence (AI)

6.1 The Development Gap

There has been much research to develop physiology and psychology (adaptive)
approaches for thermal comfort until now but combining the two approaches is not an
easy job. Due to the advancement in artificial intelligence (Al) technology, combining
both approaches is now becoming possible. This work aims to elaborate on the human
physiology and adaptive approaches to harvesting their benefit for better energy
conservation whilst maintaining human comfort.

This work implements shallow supervised learning based on ASHRAE multiple
thermal comfort databases as the training databases for the artificial neural network. The
Al-based algorithm will calculate the thermal comfort state of the occupant in real time
based on the network of sensors and do the thermal adjustment by turning the heater on
or off.

This work also proposes new validation methods to check the learning process in the
Al system for thermal comfort based on the psychrometric chart. This validation is crucial
to avoid overfitting problems and minimise the need to use the explainable Al, which is
not simple to be deployed on the Internet of Things (1oT) based system and still requires
much research. Auburn’s Nguyen even mentions that the field of explainability is getting

somewhat stuck (C. Q. Choi, 2021).
6.2 The ASHRAE Databases and Supervised Learning

The Al part uses the most comprehensive thermal comfort data set, ASHRAE RP-884
and ASHRAE Global Thermal Comfort Database I1. These databases are available online
as open-source databases. The ASHRAE RP-884 consists of 25,616 entries, and

ASHRAE Global Thermal Comfort Database Il includes 81,967 entries (Féldvary Lic¢ina,
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Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, & Kaam,
2018). This data set consists of objective indoor climatic observations and subjective
questionnaire-based evaluations. The data were taken from the field experiments with the
people doing their activities. The data even captured the PMV-PPD values; these values
differed from the Fanger experiments done in the controlled indoor environment of a
climate chamber (F6ldvary Li¢ina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun,
Schiavon, Luo, Brager, Li, Kaam, et al., 2018).

This data set will benefit the Al system developer rather than getting the value based
on their own data gathering. Doing their own data collection will require the calibrated
sensors equipment, the subject's consent and awareness of the thermal sensation and the
subject questionnaire. The data collection also should be done in the different
environmental conditions and building types to get a broad combination of training data.
Controlling all these parameters is challenging in field studies. On the contrary,
measuring these parameters in the climate chamber will be easier but not represent the
building types and the actual occupants’ conditions. There is also the approach to using
the simulated or generated data but validating the data can trigger another hurdle.

The ASHRAE database comprises different cities and countries, seasons, climate
zones, building types, cooling, and heating strategy, and personal information about the
subjects. This personal information includes sex, age, height, and weight. Other
subjective essential factors are thermal sensation, acceptability, and preference. These
subjective factors are taken with specific metabolic rate (met) and clothing insulation
level (clo). The comfort indices such as PMV, PPD and Standard Effective Temperature
(SET) were calculated uniformly and included in the database. The parameter
measurements included in this data set are various temperatures, air velocity, relative

humidity, and monthly average temperatures. Some indoor environmental controls
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include blinds, fans, operable windows, doors, and heaters (Foldvary Li¢ina, Cheung,
Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, Kaam, et al., 2018).

This data set has developed many approaches to predicting Thermal Sensation (PTS)
(Ji, Zhu, & Cao, 2020) regarding the location. Another recent model based on this
database is done to assess the PMV-PPD accuracy against the database (Cheung,
Schiavon, Parkinson, Li, & Brager, 2019). This work concludes that accuracy varied
enormously between ventilation, building types and climate. The authors have seen this
gap to propose better models using the power of Al.

ASHRAE Global Thermal Comfort Database 11 consists of data from Europe (31,392
entries), Asia (29,064 entries), America (17,359 entries), Africa (2,163 entries), and
Australia (1,868 entries). It includes field study data from 23 countries. This database
covered 16 distinct Képpen climate classes. They are hot-summer Mediterranean (23,192
entries), humid subtropical (15,536 entries), hot semi-arid (8,471 entries), tropical wet
savanna (6,633 entries), warm-summer Mediterranean (5,980 entries), temperate oceanic
(4,968 entries), Monsoon-influenced hot-summer humid continental (3,809 entries),
warm-summer humid continental (2,990 entries), hot desert (2,084 entries), tropical
monsoon (2,075 entries), monsoon-influenced humid subtropical (1,588 entries), cool-
summer Mediterranean (1,408 entries), subtropical highland (1,406 entries), tropical
rainforest (963 entries), cold semi-arid (312 entries), and tropical dry savanna (152
entries) climate zones. Related to the season of the data collection, the observations were
conducted in summer (30,545 entries), winter (30,440 entries), spring (9,455 entries) and
autumn (9,177 entries).

In supervised learning, the role of the training data is crucial. Getting the field data
during the system initialisation is not practical because the amount and variety of data

will not be adequate. This approach will not give a comfortable experience for the user.
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In order to accommodate this, a previous study has been done on developing the
intelligent system using the previous ASHRAE database.

Previous studies have shown that the Al approach using the ASHRAE RP-884 has
limited diversity and unbalanced distribution. This unbalanced distribution results in a
model which is not reliable in extreme conditions (Zhou et al., 2020). This work uses
20,954 data entries from 25,616 entries after data cleansing. The other research uses
ASHRAE Global Thermal Comfort Database Il, which consists of a more significant
amount of data (Luo et al., 2020). The other works use the combination of ASHRAE RP-
884 and ASHRAE Global Thermal Comfort Database Il (Z. Wang, Zhang, et al., 2020)
(Z. Wang, Wang, et al., 2020). However, in the previous research, the data items are
selected to represent each class or label. This selection is because the more extensive data
does not guarantee higher accuracy and can cause overfitting issues (Luo et al., 2020).

Not all data from this data set can be directly elaborated in the training data. This
limitation is due to the nature of the human psychological factor that the thermal comfort
is personal or individual (Z. Wang, Zhang, et al., 2020). The ambiguity of the data
inconsistency can be high. The previous work considers this data illogical and an anomaly
(Z. Wang, Wang, et al., 2020). From the 107,583 entries, this work only uses 16,795
based on four thermal metrics. The work by Luo also populates only 10,618 entries out
of 81,967 (Luo et al., 2020). This work uses the thermal sensation vote (TSV) to label the
learning target. Eighty per cent of the data are allocated for training and 20% for testing.
This work also mentions that allocating more data percentages for testing can decrease
accuracy, indicating the lack of data available for training.

The work by Luo discovered that even with 66,3% maximum accuracy using the
Random Forest, the approach already got 10-20% higher prediction accuracy than the

PMV model. The model also got 60—66% for 3-point TSV accuracy and 52-57% for 7-
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point TSV prediction (Luo et al., 2020). This work also introduced the six most
influencing variables: temperature, relative humidity, clothing insulation, airflow speed,
subject age, and activity/metabolism level. The work from Wang also has a similar result.
The scalability and sample number are limitations, although the accuracy can be increased
to 87% (Z. Wang, Wang, et al., 2020). The accuracy in predicting thermal acceptability
is also higher than thermal preference.
Learning from the previous work based on the ASHRAE Database, this work proposes
the uses of the database, which are:
- based on the TSV for the learning target, where three labels for the thermal conditions
are used (no change, prefer warmer and prefer cooler)
- uses as much entries data as possible and does not pick pointing data to represent as
many individual variations or preferences as possible
- compare the use of the four and five most significant variables, which are temperature,
relative humidity, clothing insulation, activity/metabolism level, and subject age
- uses simple filtering to minimise the ambiguity of data by considering the
psychological aspect of human
Although the ASHRAE data set is the most comprehensive, using the whole data set for
training data is not popular due to the psychological factors present in the data, decreasing
the accuracy of the result. This work fills the data conditioning gap to prepare the data to
become the training data. This work also uses three-state TSV, simplifying the result to

control the heating or cooling (no change, warmer and cooler).
6.3 Data Filtering

This work focused on the shallow learning Al for controlling, for example, the electric
radiant panel to be deployed as part of the Internet of Things (loT) system for the

residential house. This work is focused on the three TSV values or the thermal preference
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(no change, warmer and cooler). The diagram that shows the methodology of this work

is shown in Figure 42.
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Figure 42. Proposed validation methods and proposed methodology for thermal comfort
Al training
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The ASHRAE database was used for the training data source, and the filtering process
is applied to maintain the data consistency without eliminating the psychological aspect
variations in the data. The semantic augmentation process is added to the data to balance
the feature and enrich supervision learning. This work will implement four and five
parameters from six dominant parameters due to the availability of 10T sensors.

This work proposes to check the Al learning result using a psychrometric chart.
Testing the learning process using the testing data will not be sufficient to check the
training result. Visual result validation with the psychrometric chart using a predefined
input range to map the thermal comfort zone will result in a higher confidence level in
the system. Further, with this visual validation, the parameters can be mapped to view the
characteristic of each parameter regarding the impact on thermal comfort. The human
psychological/behavioural aspects can be shown on this map.

Previous works that use the ASHRAE database did not use the complete entries, but
selected entries based on each class to achieve balanced features. The data used for
training was only less than 20% of the whole ASHRAE database. This selection makes
the human psychological aspects not easily captured by the supervised training. On the
other hand, the risk of overfitting is also implied in using this database. That is why this
database is the most reliable for thermal comfort. Since it was published, few Al
developers have been willing to use this data to develop their Al systems.

This work proposes simple yet powerful methods to filter the data based on human
perception consistency. The need for filtering is because the data was based on precise
measurement, but the human perception data was based on the questionnaire that was
more prone to error and subjective judgment than the measured data. This filter worked
based on the comparison of parameters and omitted the data that is considered to be

inconsistent as follows:
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1. The filtering is based on the consistency between the thermal acceptability (0
unaccepted 1 accepted) and thermal preference (warmer, no change and cooler).
The warmer and cooler should have the thermal acceptability value of 0, no change
should have the value of 1.

2. The filtering is based on the consistency between the thermal acceptability (0
unaccepted 1 accepted) and thermal sensation (-3 to +3). The value between -2 and
2 should have the thermal acceptability value of 1, and the other should have 0.

3. The filtering is based on the consistency between the thermal sensation (-3 to +3)
and thermal preference (warmer, no change and cooler). The thermal sensation
value of less than -2 should correspond with warmer, and more than 2 should
associate with cooler. The state of no change should have a value between -2 and
+2.

4. The filtering is based on the consistency between the thermal preference (warmer,
no change and cooler) and thermal comfort (1-very uncomfortable, 6-very
comfortable). The value 1-very uncomfortable should not have the value of no
change. The value of 6-very comfortable should not have the value of warmer or
cooler.

5. The filtering is based on the consistency between the thermal sensation (-3 to +3)
and thermal comfort (1-very uncomfortable, 6-very comfortable). The 1- very
uncomfortable value should not have the value of -2 to +2. The thermal comfort
value of 6-very comfortable should not have the thermal sensation value below -2
or more than 2.

The target labels for the Al are based on the three states of TSV, -1 means that the

occupants need a warmer indoor environment, 1 means that the occupants need a cooler

temperature and 0 means that the occupants are satisfied with the indoor temperature.
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This approach is the most straightforward arrangement for the subject because they are
still comfortable in the current temperature, need a lower temperature, or need a warmer
temperature.

Not many people can define their thermal preferences using seven scale levels. There
is no crisp border between each scale, and even the same temperature can be mapped into
the different seven-scale TSV. The border between these three scales is not crisp either.
However, this map will better understand people’s thermal sensations due to its
simplicity.

Previous research shows that there are six dominant parameters, and compared to the
complete twelve parameters, it only increases by 2.6% in the performance compared to
elaborating six dominant parameters (Luo et al., 2020). The 10T low-cost sensors can
detect two of six dominant parameters: temperature and relative humidity. The occupant
data entries can introduce the clothing insulation, metabolic rate or activities, and age.
Low-cost sensors do not easily detect air velocity. This work also tried to narrow the
parameters into five for easier deployment with a residential 10T system. The precise air
velocity sensor and the sensor placement will not be feasible for the residential 10T
system. This work will give the overview that even without the air velocity sensor, the
result of the Al will still be acceptable.

Furthermore, the system which omits the parameter of age is also explored. This
exploration is due to the high availability percentage for age unavailability in the
ASHRAE database. The missing data for the five dominant parameters in the ASHRAE
database can be seen in Table 11.

Data filtering aims to use the data entries from the ASHRAE database as much as
possible by removing the inconsistent data while still capturing the psychological aspects

of human comfort registered in the database. This filtered data can be used as a base
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training data so that the Al developer does not have to capture their data which needs
much effort or will decrease the occupants’ comfort. The user can then override the setting
of the system with their personal preferences. Their personal preferences can be entered
in the later stage of the system development.

Table 11. Missing data for the five dominant parameters in the ASHRAE database

Missing Data Entry

2B sel| @ = 2 2E | 24

- Q L © E o a0 Qo o\o ©

Number | 8 £ | & < g = E z £ = £ -r% £ 'r'c; =

Dataset of EQ EQ = I | 8g| B o | o8 D =

NEmE - - 2 = 4 o O | O < < = O S x
ASHRAE

RP-884 25616 3816 14.90 761 2.97 332 | 1.30 6899 26.93 2164 8.45
ASHRAE

Global

Thermal
Comfort

Db Il 81967 3856 4.70 | 9060 11.05 7588 | 9.26 | 57105 69.67 | 15000 18.30

TOTAL 107583 7672 7.13 | 9821 9.13 7920 | 7.36 | 64004 59.49 | 17164 15.95

The number of data entries filtered in each filtering item in the ASHRAE database can
be seen in Table 12. The ASHRAE RP-884 database has 25,616 entries, and the ASHRAE
thermal comfort database 11 (1995 — 2015) has 81,967 entries. After the filtering process,
the amount of data in ASHRAE RP-884 is 14,970, with filtered entries of 10,646 or
41.56%. The ASHRAE Thermal Comfort Database Il entries are 50,286 after the filtering
process, with the filtered value of 31,681 entries or 38.65%. In total the ASHRAE
database after filtering is 65,256 entries or 60.66% (filtered value is 42,327 entries or
39.34%). This entry has at least three times as much data as the previous work. More
elaborated data means the system can better capture the occupants’ variations. The risk

of overfitting can be eliminated with further processing of the data.
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The filtering consists of five inconsistency checks. The simple algorithm for filtering

is as follows:

Algorithm 1: Simple Data Filtering for the ASHRAE Database

/% simple filtering based on five inconsistency check
I entry will be marked as 0 to be filtered / excluded from the database
// the field with “NA” entries will be skipped
/I TA=THERMAL_ACCEPTABILITY (0 unaccepted, 1 accepted)
/I TP= THERMAL_PREFERENCE (warmer, no change, cooler)
[ TS= THERMAL_SENSATION (-3 .. +3).
[/ TC= THERMAL_COMFORT (1-very uncomfortable .. 6-very comfortable)
Input: ASHRAE database
for ctr=1 to size (ASHRAE database) do
11%Thermal Acceptability vs ThermalPreference
IF (TA=1 and TP="no change") return 1
ELSEIF (TA=0 and TP="cooler") return 1
ELSEIF (TA=0 and TP="warmer") return 1
ELSEIF (TA="NA" or TP="NA") return "NA"
ELSE return 0
/I%ThermalSensation vs Thermal Acceptability
IF (TA=1 and ABS(TS)>2) return 0
ELSEIF (TA=0 and ABS(TS)<=1) return 0
ELSEIF (TA="NA" or TS="NA") return "NA"
ELSE return 1
//%ThermalSensation vs ThermalPreference
IF (TP="warmer" and TS<-2) return 1
ELSEIF (TP="cooler" and TS>2) return 1
ELSEIF (TP="no change" and ABS(TS)<=1) return 1
ELSEIF (1<TS<2 and (TP="cooler" or TP="no change")) return 1
ELSEIF (-2<TS<-1 and (TP="warmer" or TP="no change™)) return 1
ELSEIF (TS="NA" or TP="NA") return "NA"
ELSE return 0
//%ThermalComfort vs ThermalPreference
IF (TC=1 and TP="no change") return 0
ELSEIF (TC=6 and (TP="cooler" or TP="warmer")) return 0
ELSEIF (TP="NA" or TC="NA") return "NA"
ELSE return 1
11%ThermalComfort vs ThermalSensation
IF (TC=1 and ABS(TS)<=2) return 0
ELSEIF (TC=6 and ABS(TS)>2) return O
ELSEIF (TC="NA" or TS="NA") return "NA"
ELSE return 1
end for
Output: Marked ASHRAE database (the data marked with O will be filtered/excluded from the
database)
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Table 12. The number of data entries filtered in each filtering item in the ASHRAE
database.

Dataset | Number %IC
Name of entry IC1 % IC1 IC2 % 1C2 IC3 % 1C3 IC4 | %IC4 | IC5 5

ASHRAE
RP-884 25616 3051 | 11.91 1564 6.11 | 10192 | 39.79 192 | 0.75 | 129 | 0.50

ASHRAE
Global
Thermal
Comfort
Db Il 81967 | 14236 | 17.37 | 10393 | 12.68 | 27341 | 33.36 | 1106 | 1.35 | 326 | 0.40

TOTAL 107583 | 17287 | 16.07 | 11957 | 11.11 | 37533 | 34.89 | 1298 | 1.21 | 455 | 0.42

Filtering items:

(IC1) Inconsistency 1: Thermal Acceptability vs Thermal Preference

(IC2) Inconsistency 2: Thermal Sensation vs Thermal Acceptability

(IC3) Inconsistency 3: Thermal Sensation vs Thermal Preference

(IC4) Inconsistency 4: Thermal Comfort vs Thermal Preference

(IC5) Inconsistency 5: Thermal Comfort vs Thermal Sensation
After filtering, the amount of data in ASHRAE RP-884: 14,970 (filtered value: 10,646 or 41.56%)
After filtering, the amount of data in ASHRAE Thermal Comfort Database I1: was 50,286

(filtered value: 31,681 or 38.65%)

The Total data in both data set are 65,256 (filtered value: 42,327 or 39.34%)

The database that has been filtered is mapped and compared with the original
ASHRAE database. Figure 43 shows the mapping with the temperature as the x-axis and
relative humidity as the y-axis. The original database map is shown on the left, whereas
the filtered database is on the right. This figure shows the data mapping based on the three
TSV class groups, which are “no change”, “warmer”, and “cooler”. The ASHRAE
database is shown to have major overlaps between classes. This significant overlap is the
cause of the difficulties in training the Al using this database. It is challenging to have a
proper classification process with the risk of overfitting.

The class overlap is reduced with the filtered data, as shown on the right side. This
method gives the learning process a better chance to generate better training results for
proper classification. The mapping position between the “warmer” and “cooler” classes
looks physiologically better than the original database. The other parameters map can be
seen in Appendix 6. The figure in Appendix 6 shows the database map for clothing

insulation against the indoor temperature, the occupants’ activity/metabolism against the
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indoor temperature and the occupants’ age against the indoor temperature. Like the
relative humidity and temperature map, the classes in these parameters have a better

condition to be classified after the database filtering process.

Relative humidity (vertical axis) vs Indoor temperature (horizontal axis)

Data Set map before filtering (107,583 entries) Data Set map after filtering (65,256 entries)

v it

77 . AllData | NoChang All Data No Change

e g v s - gt st Gt

Warmer Colder Warmer Colder

Figure 43. The ASHRAE Database Mapping for Relative Humidity vs Indoor
Temperature Before Filtering and After Filtering

This map also shows a gap in the data availability for the “warmer” and “cooler”
classes. Not only to make the feature space to be equal. Furthermore, the system needs a
different range of data to be registered in the database for the “warmer” and “cooler”
classes. It needs more data outside the comfort temperature zone for a better learning

process. The answer to this problem is semantic augmentation.

6.4 Data Semantic Augmentation

Getting the data for thermal comfort training is not easy. It requires the proper
instruments and consent from the occupants. Most of the entries in the ASHRAE database
fall under the “no change” label (43,441 entries). Only about 14,966 entries need a

warmer temperature, and about 27,093 need a cooler indoor temperature. This case is
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similar to the image processing and classification problem with highly imbalanced data.
The training data for supervised methods are usually difficult to collect due to the costly
human efforts and particular domain expertise.

A data augmentation strategy is introduced to balance the feature space and enrich
supervision. The augmentation strategy can normalise the supervision process to improve
the robustness by embedding such that the features of the same instance under different
augmentations should be invariant and forcefully separated from the other instance
features (M. Ye, Shen, Zhang, Yuen, & Chang, 2020).

The previous work shows that data augmentation can be more powerful in the image
classification problem if the class identity is preserved, for example, with semantic
transformations. Each class in the training set can be added with the samples from the
generator. The procedure is computationally intensive and lengthens the training
procedure. The training set data can be effectively augmented by searching the semantic
directions. The random directions that may result in the meaningless transformation can
be reduced (Y. Wang et al., 2021).

This work aims to develop data augmentation using the approach of semantic data
augmentation. The class “no change” remains untouched while the “warmer” and
“cooler” classes are added with the data in the semantic direction of the value that is not
covered by the ASHRAE database. The “warmer” class is augmented with the lower
temperature value under the value of mapped ASHRAE data. On the contrary, the
“cooler” class is augmented with the data, which is higher than the mapped ASHRAE
data. This method helps to balance the feature space to enrich the supervision. The benefit
of this method is that the data obtained from the ASHRAE database is unaffected due to

the non-overlapped semantic augmentation direction. In this case, the data related to the
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psycholog

ical aspects are still maintained, and the essence of using the ASHRAE

database is sustained.

The base for semantic augmentation is the temperature data. This data is chosen

because the class that needs the augmentations are “warmer” and “cooler”. The data map

for "warm
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er, "no change”, and "cooler" are shown in Figure 44.
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44. Database map after the filtering process and semantic augmentation: (a)
warmer class (b) cooler class.

The class “no change” remains untouched due to the adequate data, and the

augmentation process for this class might introduce errors to the existing measurement
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data. Figure 44 shows the map of both classes, the augmentation, and the data map. This
method also retains the psychological aspects and the accurate measurements in the
ASHRAE database.

The augmentation data range was decided based on the notion that the augmentation
data will not change the original data obtained from the ASHRAE database. The
“warmer” class is augmented with the lower temperature value under the value of mapped
ASHRAE data, which is 10 °C. The "cooler" class is augmented with data above 40 °C.
It is shown that the semantic augmentation direction is non-overlapped. The essence of
the ASHRAE database is sustained. It is shown in Figure 44 that this range of augmented
data is also outside the comfort zone.

The algorithm for generating the semantic augmentation is as follows:

Algorithm 2: Semantic Augmentation Data

//%”for colder augmentation class”

Input: data intervals

row=0;

for clo=0 to 2.89 step clo_intervals do

for met=0.65 to 6.83 step met_intervals do
for tem=40 to 63.2 step tem_intervals do
for RH=0.4 to 100 step RH_intervals do
for age= 6 to 99 step age_intervals do
row=row+1;
AugMat(row,1)=clo;
AugMat(row,2)=met;
AugMat(row,3)=tem;
AugMat(row,4)=RH;
AugMat(row,5)=age;
AugMat(row,6)="colder”;
end for
end for
end for

end for

Output: Augmentation Matrix: AugMat(row,[1:6])

//%*“for warmer augmentation class”

/I similar with warmer except this line:

I for tem=0 to 10 step tem_intervals do

I

/l AugMat(row,6)="warmer”;

/I temp can be expanded for more extreme temperature
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The neural network model used in this work is shown in Figure 45. The artificial neural
network model was implemented using MATLAB's artificial neural network generator
function after the case was analysed using the classification learner function in MATLAB.
This function supports the selection of classification methods to solve the problems. The

result of the analysis is provided in Appendix 7.
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Figure 45. Simple Neural Network Structure for Psychrometric Chart Validation.
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The artificial neural network was chosen because the shallow supervised learning
process can be done in a more powerful machine with multiple ASHRAE databases. Once
the training has been done in the artificial neural network, this huge amount of training
data is no longer needed, and the trained network can be deployed in a less powerful
machine such as a local server or controller.

The network was trained with the prebuilt function in MATLAB, which was the scaled
conjugate gradient backpropagation. The training function could train any network as
long as its weight, net input, and transfer functions have derivative functions. The process
of updating weight was done with the backpropagation to calculate performance
derivatives with respect to the weight and bias variables. The backpropagation allows the
weight to be updated to reduce the error in prediction. The scaled conjugate gradient
algorithm was based on conjugate directions, but this algorithm does not perform a line
search at each iteration.

The Al impact on society has to be addressed so that the Al vulnerability will have
less impact (Hamon et al., 2020). In terms of robustness, this work uses shallow
supervised learning. The database source for training was based on multiple ASHRAE
databases, which resulted from the precise measurement. These learning results update
the weights and biases in the ANN. The scale of the database items and prior system
learning will form a solid base for the ANN, minimize the Al's poor processing
performance, and minimize the long-term impact of Al vulnerability. The result of the
learning also has been validated using psychrometric chart mapping. This effort will
minimize the possibility of error and false pattern mapping.

The Al model selection was based on the limitation of the solution deployment
for the residential dwellings. The algorithm should be able to run in the local controller

node with limited memory and computational power. The ANN which consists of the
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input layer, one hidden layer and an output layer was chosen although having slightly
lower performances among K-Nearest Neighbors (KNN) and Ensemble Bagged Trees.
The ANN has the benefit of being less computationally expensive and less memory usage
with a better interpretability of the model. Table 13 shows the comparison accuracy
between popular Al methods with the same training data without Principal component
analysis (PCA).

Table 13. The accuracy comparison between popular Al methods

Accuracy (%) Accuracy (%)

(without PCA) Classification Methods (without PCA)

Case

Classification Methods | Case1 | Case 2 Case 1 2

Fine Tree 93.90 93.80 | Coarse KNN 77.70 | 89.30

Medium Tree 93.70 93.70 | Cosine KNN 77.60 | 89.40

Coarse Tree 93.60 93.60 | Cubic KNN 77.70 | 89.60

Linear Discriminant 77.40 89.20 | Weighted KNN 78.80 | 92.50

Quadratic Discriminant 77.50 89.10 | Ensemble Boosted Trees 96.10 | 96.10

Gaussian Naive Bayes 95.50 95.50 | Ensemble Bagged Trees 97.00 | 98.70

Ensemble Subspace

Kernel Naive Bayes 95.60 95.60 | Discriminant 94.40 | 94.80

Linear SVM 78.30 89.60 | Ensemble Subspace KNN 98.20 | 64.50

Quadratic SVM 78.40 72.10 | Ensemble RUS Boosted Trees 93.70 | 93.70

Cubic SVM 78.20 81.70 | Narrow Neural Network 96.00 | 89.70

Fine Gaussian SVM 78.50 89.70 | Medium Neural Network 96.00 | 96.00

Medium Gaussian SVM 78.40 89.60 | Wide Neural Network 96.10 | 96.10

Coarse Gaussian SVM 78.30 89.60 | Bilayered Neural Network 96.00 | 89.70

Fine KNN 78.80 92.40 | Trilayered Neural Network 78.50 | 89.70
Medium KNN 77.70 89.60

Note:

Case 1: Training with Augmented & Filtered ASHRAE RP-884 database and ASHRAE
Global Thermal Comfort Database 11

Case 2: Training with the same dataset as Casel, but without Age parameter

6.5 Psychrometric Based Verification
Testing and validation for supervision learning are usually done using randomly
populated data fractions. The typical value for testing and validation can be 10% to 20%.

A higher percentage can decrease the accuracy (Luo et al., 2020). However, more

extensive data does not guarantee higher accuracy and can cause overfitting issues.
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Checking the learning against overfitting issues is not easy. This work proposes using
psychrometric chart mapping to validate the supervised learning result. This method is
based on the comfort zone map in the psychrometric chart. The overfitting results will
lead to the map not showing the correct pattern if the system is fed with the data series.
The example of the mapping result can be seen in Figure 46.

The pattern is generated using the validation data generated with the value range of
relative humidity from 0% to 100% and temperature from 10 °C to 40°C. Other
parameters like age, clothing insulation and activity can be predefined with median
values. The result can be mapped with different colours or symbols to represent the
output. The blue colour in the sample represents the class that needs warmer temperatures.
The red represents the class that needs a cooler temperature, while the green represents
the comfort zone (no change). In the case of overfitting, the generated pattern will be very

different from the comfort zone shown in Figure 11.
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Figure 46. Mapping the comfort zone generated by the pre-trained system.
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This verification process method can also be used to compare the effects of the
parameter change. One parameter value can be altered while the other parameters are
constant. The impact of each parameter on the comfort zone can be captured and
simulated. This method can simplify the representation of the multidimensional
parameters that impact thermal comfort.

Many previous Al works only limit the training validation with the available data.
Usually, data is separated randomly into training, testing, and validation data, and the
accuracy is purely based on this data. The problem raised is the edge of the comfort zone
or the zone outside the predefined zone, which might still be comfortable to the occupants.
This area should be explored to define the system's ability to conserve energy. The
intelligent system can have the recommender function to lower energy costs by informing
the occupants about clothing or activities that can keep them comfortable but with less
energy. The occupants still have the probability of staying comfortable with higher
clothing insulation during winter to conserve heating energy. On the contrary, the
occupants will also have the probability to be comfortable in the hot summer by wearing
lighter clothes, using the fan and consuming fresh beverages to conserve the cooling
energy. This behaviour is the current gap in the previous work.

This work accommaodates these needs by proposing the validation process using the
psychrometric chart and test data generator. The test data generator works in a similar
way to the Algorithm 2 but with the parameter range to be more specific on the comfort
zone map. The temperature can be between 10°C and 40°C, with a relative humidity value
between 0% and 100%. The generated data then being fed to the intelligent system, and
the result is drawn in the psychrometric chart. Each label can be drawn in the chart with
a different colour to show the "no change" class, "warmer" class, and "cooler" class. The

previous work also mapped the training result with the psychrometric chart without the
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test data generation. This method limits the validation to the available data, and the
comfort zone cannot be adequately mapped. The comfort zone can be appropriately
mapped using the generated data, with the edges of the thermal comfort zone visually
presented.

In order to compare the learning result and the effect of filtering and semantic
augmentation method, a similar neural network algorithm and model were used in this
work. For this test, the parameters involved were the combination of indoor temperature,
relative humidity, clothing insulation, and activity/metabolism. The age parameter is a
single value, taken randomly to reduce the training data size. The learning data set
composition for this Neural Network training was 70% training. 15% validation and 15%
testing data. The data selection for these test groups is based on random selection. To be
compared, the neural network structures were trained with the original ASHRAE data,
the filtered data, and the filtered semantic augmented data.

The first comparison parameter was done using the learning from the plain ASHRAE
database. The result of training returned an accuracy of 45.6%, and the Al system is then
fed with the generated test data. The class result is drawn in the psychrometric chart, as
shown in Figure 47 (a). This result shows an incomplete comfort zone. Only class "no
change" and "cooler" classes dominate, and the comfort zone is not drawn correctly. The
class “no change” is represented with green colour, “cooler” with red colour and
“warmer” with blue colour. The comfort zone range is from 10°C up to 30 °C, which is

not valid compared with the PMV-PPD results.
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Figure 47. Psychrometric Mapping for the Comfort Zone Trained with (a) the Original
ASHRAE Database (b) the Filtered ASHRAE Database (c) the Filtered ASHRAE
Database with the Data Semantic Augmentation
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The second comparison parameter used the filtered ASHRAE database for the
supervised training database. Figure 47 (b) shows the psychrometric map of the generated
test data for the system, which was trained using this database. The parameters and data
set grouping method are like the trial shown in Figure 47 (a). The accuracy of the training
for this dataset was 55.5%. All three classes are visible, but the comfort zone is still not
drawn correctly. The class "warmer" only covers a small portion of the chart, and the
comfort zone range spans 10°C up to more than 40 °C, which is not valid compared with
the PMV-PPD results. This problem shows that the system needs semantic augmentation
to generate the correct result.

The third comparison parameter used the semantic augmentation filtered ASHRAE
database and was deployed with the accuracy of this training data about 98%. The
parameters and data groupings are similar to the trials for Figure 47 (a) and Figure 47 (b).
The psychrometric map generated for the semantic augmentation filtered ASHRAE data
is shown in Figure 47 (c). The comfort zone is better represented in this result. The
comfort zone ranges from 17.5°C to about 29 °C. The result is better than the previous
mapping, shown in Figure 47 (a) and Figure 47 (b). This result represents the comfort
zone presented in Figure 11.

Learning from the accuracy of data training, which can be high, as shown in Appendix
7, the system training result still needs further validation. The validation method can be
the psychrometric mapping of the comfort zone. Figure 47 highlights the importance of

validation using a psychrometric chart.

6.6 Parameter Visualisation

One of the six crucial parameters in thermal comfort is air movement. However, this

parameter cannot be easily obtained from the 10T sensor system. This work deploys the
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system with five and four parameters without the age data of the occupant. This case study
is for simulating in case the occupants' age information is unavailable. The result of both
systems is compared to show their characteristics. This combination of the original and
filtered ASHRAE database was then used for the training data for 29 well-known Al
algorithms for classification. The accuracy of each database and method can be seen in
Appendix 7. The parameters for each classification method used in the result were defined

in the table in Appendix 7. The average of the accuracy results is given in Table 14.

Table 14. The Average Accuracy from 29 Classification Methods

Average

Database (%)

DB1 51.87
Filtered DB1 76.09
Filtered DB1 Tested with All Data 49.05
DB1 without age 55.05
Filtered DB1 without age 80.40
Filtered DB1 without age Tested with All Data 50.70
DB2 42.00
Filtered DB2 70.23
Filtered DB2 Tested with All Data 47.23
DB2 without age 50.51
Filtered DB2 without age 81.57
Filtered DB2 without age Tested with All Data 49.44
DB1 and DB2 43.69
Filtered DB1 and DB2 74.90
Filtered DB1 and DB2 Tested with All Data 48.75
ASHRAE DB1 and DB2 without age 50.53
Filtered DB1 and DB2 without age 81.52
Filtered DB1 and DB2 without age Tested with All Data 50.87
Augmented & Filtered DB1 and DB2 86.43
Augmented & Filtered DB1 and DB2 Tested with All Data 44.28
Augmented & Filtered DB1 and DB2 without age 90.12
Augmented & Filtered DB1 and DB2 without age Tested with All Data 48.51

Note: DB1 = ASHRAE RP-884 database
DB2 = ASHRAE Global Thermal Comfort Database I
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The result shows that the data filtering increases the accuracy of the training results.
The proposed filtering methods can improve the ASHRAE database for each RP-884
database, Thermal Comfort Database Il and the combination between databases. The
accuracy increases for all methods of training. The result is still better for the filtered data
when tested against the original database than the original data. Besides this data filtering,
data normalisation is already included in the Al process to gain better results. The result
also shows that reducing the parameter (age parameter) can maintain accuracy. This result
can be caused by the overfitting or the unbalance of the feature space. The semantic data
augmentation will give better accuracy results for this problem.

The parameters are shown before can show the differences between classes “warmer",
"no change", and "cooler" for the particular value of a parameter such as age to show the
potential comfort zone for each parameter value. If the parameter is changed accordingly,
the impact of this parameter change on the thermal comfort zones can be mapped and
studied. The impact of the parameter change in the thermal comfort zone can be seen in
Figure 48.

This work assesses the age parameter impact on the thermal comfort zone. This
assessment becomes an example of the parameter assessment with this method. The age
parameter is one parameter that can show the human condition aspect of thermal comfort.
The thermal comfort is not standard and is based on personal factors. It has been studied
that the young, elder, disabled or temporary ill people group will have a different comfort
zone.

Figure 48 (a) displays the adult's comfort zone representation based on the filtered
ASHRAE database with the data semantic augmentation. Figure 48 (b) shows the same
comfort zone for the elderly group. They were based on the filtered ASHRAE database

with the data semantic augmentation. Based on this chart, the system designer will have
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insight into designing and testing the Al system since the borders between the comfort

zone are not crisp but more personal.
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Figure 48. Psychrometric Mapping for (a) the Comfort Zone Trained with the Filtered
ASHRAE Database with the Data Semantic Augmentation for adults, (b) for an elderly
people group, (c) the "warmer™" class of the elder people group, (d) the "cooler" class of

the elderly people group.

A similar result also happened in the same age group. The differences in clothing
insulation and activity/metabolism can have different thermal conditions. This condition
is shown in Figure 48 (b), Figure 48 (c) and Figure 48 (d). Figure 48 (b) represents class
“no change”, Figure 48 (c) represents class “warmer” and Figure 48 (d) represents class
"cooler". This map shows that the class "no change" intersects with the class "warmer"
and “cooler”. This case means that if one person feels cold and needs a warmer
environment, another can feel comfortable. When one person feels hot and needs a cooler
indoor environment, the other can feel comfortable. The more extreme condition is the

overlapping chart between Figure 48 (c) and Figure 48 (d). It means that one person
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wanted the temperature to be warmer at the same temperature, but the other person wanted
a cooler temperature. This condition highlights the need for the system to have a manual
override so that the occupants can alter the system setting.

The psychrometric chart mapping for ASHRAE multiple database comfort region
based on the parameter comfortable or uncomfortable data field can be seen in Figure 49.
Figure 49 shows that the comfort data from the ASHRAE database covers much more
area outside the PMV-PPD Comfort Zone. The map generated from ASHRAE RP-884
Database and ASHRAE Global Thermal Comfort Il database is wider than Givoni
Comfort Zone. Since the ASHRAE Database comes from the precise sensor reading and
extensive data collection, including the personal interview process from the thermal
sensation, this will become legitimate proof to mention that the possibility of expanding
the thermal comfort zone is valid.

The individual mapping of the PMV-PPD and Givoni Comfort Zone against the
ASHRAE multiple thermal comfort databases is shown in Figure 50. Figure 50 (a) shows
that from the ASHRAE multiple thermal comfort databases, which consider being in
comfortable situations, only about 69.91% is acknowledged by the PMV-PPD Comfort
Zone. Similar to this result, about 89.19% of the comfortable occupants’ data from
ASHRAE multiple thermal comfort databases are acknowledged in the combination of
all Givoni Comfort Zone (Figure 50 (b)).

The conclusion from these figures is the possibility of obtaining comfort for the
occupants at higher temperatures in summer or tropical areas and lower temperatures in
winter. Even with both PMV-PPD and Givoni comfort zone combination (Figure 50 (c)),
more than 7 per cent of the ASHRAE comfort data have not been covered. This result

shows that thermal comfort is personal. A group of people have different preferences for
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the thermal comfort set point, and the thermal comfort zone is not prescriptive but is

subject to differences due to human adaptive behaviour.
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data2: the PMV-PPD comfort zone for 1.0<met<1.3 and 0.5 Clo, ASHRAE Standard 55

data3: Givoni comfort zone for still air condition for winter

data4: Givoni comfort zone for still air condition for summer

data5: Givoni comfort zone for winter with an assumed air speed of about 2 m/s.

data6: Givoni comfort zone for summer with an assumed air speed of about 2 m/s.

Green Dots: the Data items from Multiple ASHRAE Thermal Comfort databases that represent
occupants' comfort

Figure 49. The Comfort Area from ASHRAE Database is mapped with the PMV-PPD
comfort zone and Givoni Comfort Zone (R. A. C. E. American Society of Heating,
Incorporated, 2017), (Givoni, 1992).

Figure 51 presents the similar comfort zone bit mapped with the result of the Al model
with a specific age group. The main temperature values are similar between the Al model
and the ASHRAE database map. The difference lies in the humidity value predicted to be
in the comfort region. This value is due to the shallow learning process, which does not

have enough training data in extreme humidity conditions. Introducing semantic
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augmentation for extreme relative humidity data will be possible, but since there is only

a tight area open for semantic augmentation, the validation process for this augmentation

will be complex. If the uncomforting condition is introduced in augmentation without

proper judgement, it will affect the overall learning process.
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Figure 50. Individual map of the comfort area from ASHRAE Database against (a)
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In Figure 51, the Al model uses the parameters of clothing value as 1 clo as

recommended in ASHRAE for winter, shown in Figure 51 (a) and 0.5 clo as

recommended in ASHRAE for summer, shown in Figure 51 (b). The other parameters

are the activity with the value of 1.5 met, which represents the light works, and the

Karyono

14

0




Chapter 6 Artificial Intelligence (Al)

people's age which uses the value of 40.5 years as the median value of the people living
in the UK. With the winter parameters, the acquired comfort percentage is 98.03% from
all the ASHRAE multiple databases, compared to the PMV-PPD value of 69.91%, the
Givoni comfort zone value of 89.19% and the combination of both with the value of 92.84
%. There is an increase of 5.19% in the acknowledgements of the comfort zone. With the
summer parameters (clothing value of 0.5 clo), the acquired comfort percentage is 98.49%
from the ASHRAE multiple databases. There is an increase of 5.65% in the
acknowledgements of the comfort zone compared to the combination between the PMV-

PPD and Givoni.
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Figure 51. Maps the Comfort Area (in green colour) from the Al model with parameters
(@) 1 clo (winter); (b) 0.5 clo (summer); (c) winter and summer; and (d) model with
multiple ages parameter
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If the clothing parameters are combined (summer and winter), the value of comfort
percentage rises to 98.90%, an increase of 6.06% of the acknowledgement. The comfort
zone is displayed in Figure 51 (c). The value can still increase, but the other parameters,
such as age and activity values, will need to be altered. Figure 51 (d) shows the age
variations effect in comfort map results according to the ASHRAE multiple databases,
from 6 to 96 years old. The value of comfort percentage rises to 99.46% compared to the
whole ASHRAE multiple databases, which is an increase of 6.62% of the PMV-PPD and

Givoni acknowledgement.

Based on the assumption that there are 27.8 million households in the UK (Statistics,
2021) and the annual median energy consumption for the UK household is 15,400
kWhlyear (E. I. S. B. Department for Business, 2021) and the assumption that 61% of
energy is used for space heating ((NEF), 2014), the total energy spent for the annual
domestic heating energy across the UK is 261.1532 billion kWh/year. With this massive
amount of value, if the 6.62% wider comfort area acknowledgement is directly associated
with the same amount of energy saving, it will equal 15.67 billion kWh/year. If the CO>
emission factor is 0.309 kge / kWh ((BEIS), 2018), this work will contribute to 4,842
thousand tonnes of COz equivalent. If the emission factor used is 50 g CO2 eq/kWh, which
is the target for 2030 (Technology, 2011), the contribution of this work will be about
783.5 thousand tonnes of CO- equivalent per year. With the UK reaching emissions of
around 6 t CO2e per person in 2020 (E. I. S. Department for Business, 2023), the work is
equivalent to saving the carbon spending of 131 person's annual CO2 emissions per year.
This value shows that using an Al model to acknowledge thermal comfort can

significantly conserve energy and help reduce carbon emissions.
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6.7 Potential Refinement of the Model

Obtaining the data set for thermal comfort is not an easy task. This work develops the
filtering and semantic augmentation for the ASHRAE database, one of the most reliable
databases for thermal comfort. This work also proves that the database can perform well
in the thermal comfort zone prediction. This work shows that even though the training for
the Al process has been done with an excellent training validation percentage, it does not
guarantee that the system will perform well for the data with extreme value or within the
comfort zone borders. In line with that finding, this work also proposes validation
methods based on the test data generation and validation through psychrometric comfort
zone mapping. This method will help analyse each impact of the parameters for thermal
comfort based on the psychrometric mapping of the thermal comfort zone.

Semantic augmentation has proven to be robust in the processing of thermal data.
There is the possibility that the semantic augmentation can be implemented in other
parameters without changing the notion of comfort that is stored in the ASHRAE
database. The humidity parameter can be one of the candidates for future work. There is
no comfort recommendation for the humidity value for comfort, but the healthy range for
the relative humidity is not more than 80% and not less than 15%. This gap can lead to
registering the semantic augmentation for the relative humidity comfort value. This
system can be developed to control the indoor humidifier or the dehumidifier.

Another potential development of the system is implementing the recommendation
and gamification system to lower energy use but maintain comfort. Since thermal comfort
is the state of mind related to memory and not just physiology, the gamification feature
and the intelligent system pre-set can help achieve the goal of lower energy use either for
heating or cooling. The system can influence the user to feel comfortable with the

gamification and recommendation, but it will need a long adaptation process (Kanisius
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Karyono et al., 2020). For low temperature, for example, exposure to cold acclimation
can improve the subjective responses to cold (M. J. Hanssen et al., 2016). Due to this gap,
the research for the use of the ASHRAE database is essential to give the fundamental
ability to the intelligent system to deliver comfort. A healthier target can also be set in the
system, like exposing the user to lower temperatures to decrease body fat (A. A. van der

Lans et al., 2013).
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Chapter 7 Testing and Case Studies

7.1 Testing Steps

The purpose of these testing steps was to introduce the data analysis using the Al model
and analyse the comforting result against the parameters gathered by the sensors. The
outcomes of the tests are whether the Al model results conformed with the readings from
the sensors in terms of the thermal comfort region. The tests were done in the artificial
indoor condition and model house, which can represent an actual dwelling. Both the 0T
Sensors and commercial off-the-shelf (COTS) sensors were deployed so that both can be
analysed.

Implementing the Artificial Intelligence model will give an overview of the benefit of
implementing this model in real life. Previous implementations were always done using
the PMV-PPD model, which is proven not to give enough flexibility due to the
prescriptive nature of this model. Since this model was derived from the test done in the
thermal chamber, this model does not acknowledge enough flexibility for the individual
thermal differences such as sex, age group, and the memory of the person's thermal
experiences. This Al implementation model can look at the potential energy saving due

to thermal flexibility.

7.1.1 Testing in the laboratory

Some sensor spots are introduced in the laboratory area. The first spot is the workbench
in the laboratory; the second spot is the computer desk area in the simulation and
modelling area in the laboratory; and the third spot is the spot that was exposed to sunlight
and became the lowest temperature spot in the laboratory. These sensors are also

compared with offline sensors installed in the exact location as the online sensors and the
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heater temperature inside the laboratory. This work also includes the outside temperature

and humidity data obtained from the weather station.

7.1.2 Testing in the BRE house (1970s house)

Tests are being done in a similar way to the test in the laboratory but with a temperature
range lower than the laboratory to capture the house's performance during winter in the
1970s house. The tests were divided into two parts, the empty house condition and with
occupants' condition. Due to the COVID restrictions, two thermal models of the human
bodies were developed using radial heaters and halogen bulbs to represent a single person
with moderate activities or two people with resting (sleeping) conditions. The radial
heaters employed in model 1 are two 40Watt radial heaters. Model 2 consists of one 60W

radial heater and a 20W halogen lamp. Figure 52 shows the people models.

Figure 52. The human thermal model for testing in the BRE house
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The people model power supplies are connected with the programmed timer to
simulate the human presence at the desired time. The first arrangement was using office
hours during which the people were present at 09:30 AM and left at 18:00. In total, the
presence of the people was 8 hours and 30 minutes. This arrangement was necessary to
ensure that the model was safe enough to be left unattended. The second arrangement had
the same duration but started at 21:30 to 06:00 AM. These tests were conducted to
determine human presence's impact on indoor thermal conditions. The insight about this
is because the current measurement of the comforts was usually done without the presence
of the occupants. This process can lead to overheating or a slightly higher thermal set
point. This trial might save a little heating energy, but it can be a considerable amount of
energy in the long run. The people model represented the heat dissipated from the people's
presence but didn’t consider the CO2 produced and the water vapour generated from
people's activities.

The sensor network was deployed with the local network, with the sensors located
inside the room, inside the room close to the window and outside the room (stairs) to
capture and measure the comfort inside the room and its affecting parameters. For this
trial, the local controller and the server are also located on the same premises. The data
from the LIMU Byrom Street Campus weather station was used to capture the outdoor
condition of the BRE house. With these sensors, the combination of main parameters to
predict thermal comfort can be obtained. There are many affecting parameters for thermal
comfort, and it will not be easy to gather all the parameters. In this trial, five major
parameters were the main focus: humidity, temperature, clothing value, metabolism value
and age. The sensor set-up inside the room in the 1970s BRE house is provided in

Figure 53.
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Sensor unit and Sensor with thermal camera:

Actuator unit:

Figure 53. The sensors arrangement in the 1970s BRE House room.

7.2 Data Acquired

7.2.1 Testing in the laboratory

The sensors are located on the computer desk and the workbench. The outdoor data
were obtained from the weather station installed at the Byrom Street campus. The data
was taken at 15 minutes intervals. The chart from the data obtained during laboratory
trials is provided in Figure 54, Figure 55, Figure 56, and Figure 57, respectively. The X-
axis shows the date, the primary Y axis represents temperature (in °C) and the secondary
Y axis represents RH value (in %). The other charts from the other sensor inside the

laboratory are provided in Appendix 8.
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7.2.2 Testing in the BRE house

The data gathering sessions were divided into three major groups: the ‘no people
present’, the ‘people afternoon presence’ and the night presence to capture the indoor
condition related to the people presence and the impact on human thermal comfort.
Sessions and periods were introduced to each group to capture the impact of different
outdoor conditions and seasonal transitions from the winter to the summer. The sensors'
location data and the first installation date and data collection are provided in Table 15.
The obtained result from the BRE house for the first period is shown in Table 16. The
chart related to the results in Table 16 is provided in Figure 58 for the temperature chart
and Figure 59 for the humidity chart.

Table 15. Sensors location and first deployment date.

Sensor Location Installation Date | 1 Data Processing
01 Outside room, stairs 25/01/2022 12:00 10/02/2022 12:00
02 desktop 25/01/2022 12:00 | 10/02/2022 12:00
03 window 25/01/2022 12:00 | 10/02/2022 12:00
05 desktop 25/01/2022 12:00 | 10/02/2022 12:00

TCO011 | heater (surface) 25/01/2022 12:00 10/02/2022 12:00

TCO024 | heater (top left) 25/01/2022 12:00 | 10/02/2022 12:00

TCO025 | heater (top right) 25/01/2022 12:00 | 10/02/2022 12:00

THO002 | desk 25/01/2022 12:00 | 10/02/2022 12:00

THOO04 | Outside room, stairs 25/01/2022 12:00 10/02/2022 12:00

Table 16. Data were obtained from the first period for the sensors in the BRE house.

Temperature(°C) 01 02 03 05
Minimum 11.98 12.13 11.10 12.34
Maximum 16.90 16.90 16.85 14.61
Average 14.10 14.53 13.72 13.93
StdDev 0.90 1.04 1.27 0.65
Humidity(%)
Minimum
Maximum
Average
StdDev

TCO11
11.00
15.00
13.22

1.09

TC024
10.50
15.50
12.97

1.08

TC025
10.50
15.00
12.86

1.09

TCO2
11.50
23.00
14.15

1.03

TCO4
12.50
23.00
14.51

0.87

THO2
13.00
17.50
15.91

0.94

THO4
12.50
16.00
14.39

0.79

Outdoor
2.00
13.00
8.53
2.33

47.69
60.99
55.43

2.92

47.40
56.98
53.33

2.07

48.17
60.98
56.11

2.20

44.72
57.50
53.51

3.21

45.00
55.00
50.63

2.51

46.50
61.50
55.14

3.20

64.00
94.00
81.64

5.90
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7.3 Analysis

7.3.1 Testing in the laboratory

This data result was analysed using the Al model based on the ASHRAE RP-884 and
ASHRAE Global Thermal Comfort Database I1. The result of all sensor 1 data is all in
the range of comfort conditions. This sensor is placed on the workbench. The
psychrometric mapping of all data is shown in Figure 60. This result is acquired with the
assumption that the average clothing insulation is 1 clo. The activity value is set at 1.5,
which is the average between the seating position and light work. The age parameter is
set at an average of 30 years. The mapping shows that the indoor conditions are always
within the range of comfort during the trial. The same parameters are also being used for

other sensors.
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Figure 60. The psychrometric mapping of sensor 1 data (workbench).
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The data for the computer desk is captured by sensor number 2. Similar to the result
obtained by sensor number 1. Similar to the sensor number 1 result, all data shows that
the conditions are in the range of comfort. The psychrometric mapping of the data from

sensor number 2 is shown in Figure 61.
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Figure 61. The psychrometric mapping of sensor 2 data (computer desk).

The data for the spot that was exposed to sunlight and located near the glazing was
captured by sensor number 3. Unlike the previous two sensors, this sensor captures the
conditions which are not in the range of comfort due to the exposure to the cold
temperature outdoor. The number of data not in the comfort region is 0.60%. This result
is also shown in Table 17, which shows the maximum, minimum and average of the

temperature and relative humidity. The sensor detected a broader range of temperatures.
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The lower temperature that is not in the range of comfort was detected. The psychrometric
mapping of the data from sensor number 3 is shown in Figure 62. Two previous maps
only show the green marked group, which is the comfort situation. In this sensor number
3 reading, the sensor detected the low-temperature group below the comfort temperature
range. It was about 15 to about 17 °C. This low reading is due to the sensor being located

near the glazing, which was exposed to the low outside temperature presented in blue.

50
145
140
35
130
125

20

Specific Humidity (g/kg)

115

110

15

A1 1 0
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Dry Bulb Temperature (°C)

Figure 62. The psychrometric mapping of sensor 3 data (near glazing).

Table 17 also compares the comfort percentages that were interpreted using the PMV-
PPD comfort zone, the Givoni comfort zone, the combination of PMV-PPD and Givoni
comfort zone, and the developed Al model comfort zone in this work. The result shows
that PMV-PPD acknowledged the narrowest comfort zone and the Al model has the

capability to acknowledge a more expansive comfort zone.
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7.3.2 Testing in the BRE house

7.3.2.1 First Period

The first phase of the test was intended to check and verify the result of the proposed
sensors infrastructure against the offline commercial off-the-shelf (COTS) sensors. The
check was needed due to the use of the dedicated Wi-Fi network with a frequency of 2.4
GHz, with the possibility of missing data. The more reliable quality of service (QoS) level
can be used but will have a drawback in the power usage during transmission.

Table 17. The summary of the captured data from each sensor.

Sensor Number 1 (Workbench) | 2 (Computer Desk) | 3 (Near Glazing)
Max. Temp. Value (°C) 29.95 30.83 30.71
Min. Temp.Value (°C) 18.92 17.14 14.94
Average Temp. (°C) 23.03 25.16 23.04
StdDev 1.86 1.96 2.84
Max. RH. Value (%) 65.93 69.44 65.21
Min. RH Value (%) 21.85 22.29 22.7
Average RH (%) 41.93 39.12 42.83
StdDev 11.12 8.63 8.97
PMV-PPD Comfort
Percentage (%) 93.07 88.68 76.12
Givoni Comfort
Percentage (%) 99.10 99.36 95.69
PMV-PPD-Givoni
Comfort Percentage (%) 99.35 99.50 95.69
Al Model Comfort
Percentage (%) 100.00 100.00 99.40

This phase can represent the regular use of the sensors and capture the differences
between the data regarding the differences in sensor readings and the missing data due to
the use of the default QoS level. The test was done from 25 January 2022 at 12:00 until
10 February 2022 at 11:00 AM (16 days) with the rate of sampling data interval of 15

minutes and collected data items are 1533.
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The result shows that inside the room, the COTS sensor THO2 had an average
temperature of 15.91°C compared to the proposed sensor average, which was 14.53°C
(less than 1 degree C difference). The average relative humidity value was 50.63% for
the COTS sensor and 53.33% for the proposed sensor 02. Outside the room (stairs), the
average temperature reading from the COTS sensor TH04 was 14.39°C, and the proposed
sensor was 14.10°C. The average relative humidity value was 55.14% for the COTS
sensor and 55.43% for the proposed sensor. Since the COTS sensors reading also had
their deviation, it was decided to include both sensor types in all the following phases for
value comparison.

The first phase analysis also includes using the Al model to analyse comfort. Based on
the sensor reading and fed into the Al model, the comfort inside the room was 36.03%
and outside the room was 15.08% during the test periods. The other comfort area analysis
with the PMV-PPD comfort zone and Givoni comfort zone returned 0% comfort. The
uncomfortable situation was due to the low outdoor temperature (outdoor comfort was
0%) for all the comfort zone analyses. The Al model could still acknowledge a small
percentage of comfort in a particular condition.

During this data collection, the capability of detecting the human presence (occupation
sensor) was also activated in sensor 05 and showed that during people's presence, the
indoor temperature dropped and put the room in an uncomfortable situation. This
condition was due to the people's arrival habit, who entered the dwelling and went to
check the trial, which led the sensor to be in contact with the cold outdoor air. The
psychrometric chart showing the comfort map from sensor 1 (stairs, outside the room),
sensor 2 (inside the room), sensor 3 (inside the room near glazing) and outdoor conditions

are presented in Figure 63, Figure 64, Figure 65, Figure 66, and Figure 67 respectively.
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Figure 63. The comfort map for Sensorl (stairs, outside the room) with a comfort level
of 15.08%.
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Figure 64. The comfort map for Sensor2 (inside the room) with a comfort level of
36.03%.
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Figure 65. The comfort map for Sensor3 (near the glazing, inside the room) with a
comfort level of 15.33%.
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Figure 66. The comfort map for Sensor5 (people visit inside the room) with a comfort
level of 0%.
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Figure 67. The comfort map for outdoor with a comfort level of 0%.

A better understanding of the comfort pattern was also acquired using a representation
map of the data with hourly percentage comfort. The mapping can show the percentage
of comfort inside the dwelling hourly throughout the day. The vertical axis (z) is the
percentage of comfort, while the horizontal axis (x) shows the time (hour of the day). The
other axis (y) shows the day relative to the trial period. The hourly comfort map from
sensor 1 (stairs area outside the room) is presented in Figure 68. The other detail can be

seen in Appendix 9.

7.3.2.2 Second Period
The second-period data logging was intended to compare the sensor (S01B and S02B)
with the black globe sensor (SO1A and SO02A). The black globe sensor will deliver a more

stable reading which will be beneficial to be used in the thermal regulation system. In the
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case of the outside the room temperature reading, the sensor SO1B shows an average
temperature of 15.14°C with a minimum temperature of 13.56°C and a maximum of
16.98°C. The same reading with the black globe sensor SO1A showed the average
temperature of 13.8°C with a minimum temperature of 12.29°C and a maximum of
15.9°C. In the comparison, the COTS sensor average temperatures were 14.13°C and
13.95°C. The temperature inside the room showed an average of 16.21°C with a minimum
value of 13.69°C and the maximum value of 18.57°C. The black globe sensor installed
inside room SO02A showed an average temperature value of 13.74°C with a minimum
value of 11.74°C and the maximum value of 15.9°C. The values shown by the COTS
sensors were 13.24°C and 13.57°C. Based on this result, the next phase elaborated on
temperature and humidity and black globe sensors. The comfort level for each location is
shown in Appendix 9. Based on the result, the black globe displays more sensible and

accurate results.

Percentage of
comfort (in %) 20

Number of
days

Time — 24-hour
5 format (in hour)

Figure 68. The hourly comfort map for Sensorl (stairs, outside the room) with a comfort
level of 15.08%.

If this comfort level is mapped hourly, the comfort pattern can be used to identify the

condition that happened. If the outdoor temperature was not too low, it might be possible
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to get a comfortable condition inside the room. The sensor near the window detected a
higher temperature than the temperature in the middle of the room but the lower
temperature in the evening. Two possible reasons could trigger the faster decrease of the
temperature. Firstly, the sunlight penetration through the glazing caused the temperature
to rise. This condition causes the sensor near the window to detect the comfort level
earlier than the sensor in the middle of the room. The second reason was the leakages in
the glazing due to the lower insulation level of glazing compared to the wall materials.
The mapping also showed that the comfort level outside the room was lower due to
the exposure to the lower outdoor temperature when the outer door was opened. This
result also highlights the temperature decrease due to the heat loss outside of the room
due to the internal doors that opened, and there were other windows with a lower
insulation level compared to the wall materials that made the other rooms' temperature
lower due to the thermal leakages. The hourly comfort map from sensor 2 (inside the

room) is presented in Figure 69. The other detail can be seen in Appendix 9.

60
Percentage of 40
comfort (in%) 20

Number of : Time — 24-hour
days format (in hour)

Figure 69. The hourly comfort map for Sensor2 (inside the room) with a comfort level
of 3.50%.
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7.3.2.3 Third Period

The third phase was intended to check the influence of the human presence in the
dwelling against the change in the temperature. Many thermal comfort assessments were
being done before the occupancy periods in the absence of the occupants. If the occupants
can be simulated, the temperature set point or control algorithm can be prepared to
anticipate the human presence. Even if this value seems small and can be ignored, the
energy reduction due to this fact can become a concern in the long run.

Based on the assumption of the average person sizing and the level of activities, the
human thermal simulator was built with radial heating to represent the human presence.
The human thermal simulator assumes the minimal thermal value of human metabolism
that equals people sleeping or resting. If two human thermal simulators are present to
represent resting, they can also represent one person's presence with a medium activity
level.

The third phase uses two human thermal simulators placed inside the room and can
increase less than 1 degree C if the human model were placed between 9:30 AM — 6:00
PM (8.5 hours a day). The outdoor temperature was not the same during the second phase,
but since it was lower for the third phase, on average, it will be acceptable to claim that
the human presence can impact the indoor thermal condition. The outdoor average
temperature for the second phase was 7.96°C, and the outdoor average temperature for
the third phase was 7.23°C. There were no other activities done in the house which could
interfere with the result. The indoor room temperature increased from an average of
13.57°C and 13.74°C to 14.28°C and 14.37°C. The percentage of comfort charts for the
third phase are provided in Appendix 9.

The exciting finding is the increase in the rate of comfort. It can elevate the comfort

rate to 20.62% from about 4.02% to 3.50%. This reading might have happened due to the
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border condition that had less comfort and then could be elevated to comfort with the only
slight increase in the temperature. If these conditions are likely to happen, a significant
increase in energy performance can be achieved.

This result was acknowledged by reviewing the hourly comfort level data. The other
comfort groups were in the morning to afternoon, whereas in the previous phase, these
groups had no comfort even when the sensor near the window (that was exposed to
sunlight) had comfort. There was also the possibility that the thermal increases were
sustained until the evening after the people left the premises, but this issue still needs
further proof since, at the same time, the comfort level outside the room also increased.
The hourly comfort maps for each sensor's location are presented in

Figure 70.
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Figure 70. The hourly comfort map for Sensor2 (inside the room), Sensor 1 (stairs) and

Sensor3 (Window). The vertical axis (z) is the percentage of comfort (in %), while the

horizontal axis (x) shows the time in 24-hour format (hour of the day). The other axis
(y) shows the day relative to the trial period.

7.3.2.4 Fourth Period
Like the third phase, in the fourth phase, the average outdoor temperature was lower
than in the third phase (from 7.23°C to 6.89°C). The average indoor temperature in the

third phase showed a slight increase in the sensor temperature from 14.28°C to 14.67°C,
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but the black globe average temperature showed a slight decrease from 14.37°C to
14.08°C. In order to analyse further, the assessment of the sensor reading outside the room
is necessary. The value of the average sensor temperature outside the room had a slight
increase from 14.32°C to 14.53°C. The black globe average temperature from outside the
room also slightly increased from 14.29°C to 14.70°C. This increase showed that some
activities outside the room trigger the temperature increase even as the outside
temperature decreases. Based on these conditions, the comfort level both inside the room
and outside the room was increased to 23.85% of the time. The detailed comfort result
psychrometric map can be seen in Appendix 9.

Looking further at the room's hourly comfort map indicated that it was affected by the
temperature outside the room. However, the comfort map inside the room was also
affected by the human presence that was identified by the increase in percentage level in
the morning until the afternoon. The exciting data is also shown by the sensor near the
window that is not affected by the condition outside the room. This phenomenon might
be due to the low outdoor temperature that affected the sensor reading more than the
condition of the room. The detailed map of these comfort zones can be seen in Appendix
9.

The periods were continued so that three periods of data were collected for each class;
the measurement with no people present, people present in the afternoon and people
present at night.
7.3.2.5 Summary of the BRE House Trial

The result from three trial groups is tabulated to be able to be appropriately analysed
and minimise the factors that have been simplified. In order to compare each group and
minimise the error due to the simplification, the whole data on each group is compared

with the corresponding data with similar properties. Since the indoor temperature data is
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affected by the outdoor and the adjacent room (stairs) temperature, the data are grouped

into entries with the same outdoor temperature data and adjacent room data. With this

approach, the error due to parameter simplification can be minimised. The analysis of the

measurement result can be seen in Table 18.

Table 18. Field Measurement Result Analysis.

Indoor |Indoor | Stairs | Stairs | Outdoor | Outdoor Indoor [Indoor| Stairs | Stairs | Outdoor | Outdoor
Temp RH | Temp RH Temp RH Temp RH | Temp RH Temp RH
Min 13.10| 44.11| 13.00| 46.47 4.00]  60.00 11.54| 41.14| 13.00| 44.83 4.00]  49.00
Max 20.90| 57.77| 18.92| 60.95] 15.00/  92.00 20.90| 55.38| 18.92| 63.57| 15.00/  94.00
Avg No 14.20| 53.87| 14.26| 54.34 7.63|  79.41| Day 14.25| 49.74| 14.26| 52.42 7.63|  76.70
StdDev People 1.03 2.04| 0.90( 2.33 1.62 6.83| Presence 1.65| 3.05| 0.90| 3.79 1.62 11.95
Percentage 5.07 4.88 0.84 24.77 4.88 0.84
of Comfort
Min 13.10| 41.46| 13.68| 44.12 5.00]  43.00 12.46| 35.75| 13.68| 38.86 5.00] 38.00
Max 20.98| 57.81| 20.60| 60.17| 20.00]  92.00 20.90| 53.83| 20.60| 65.30] 20.00|  93.00
Avg No 17.28| 48.60| 17.43| 50.03| 10.47|  75.73| Night | 17.82| 40.68| 17.43| 44.62| 10.47| 65.15
StdDev People 224 4.46| 2.18| 3.90 2.98 9.70| Presence | 2.39| 3.88] 2.18| 5.25 298 1233
FOTEELE 71.83 71.83 11.80 82.04 71.83 11.80
of Comfort
Min 11.79| 39.43| 13.68| 44.20 2.00]  43.00 12.46| 35.87| 13.68| 38.74 2.00]  43.00
Max 20.91| 54.88| 19.50| 63.49] 16.00/  94.00 20.32| 53.58| 19.50| 63.33] 16.00/  92.00
Avg Day 16.00| 46.40| 15.90| 49.58 8.72| 75.86| Night | 16.73| 43.20| 15.90| 46.82 872 73.12
StdDev Presence| 1.84| 4.16| 1.19| 4.11 2.30| 12.36|Presence| 1.72| 4.80| 1.19| 5.39 2.30 9.97
Percentage 51.97 62.12 1.01 79.93 62.12 1.01
of Comfort
Percentage of
Comfort based on | Indoor Stairs Outdoor Indoor Stairs Outdoor
No People Day Presence
PMV-PPD 0.09 0.00 0.00 1.50 0.00 0.00
Givoni 2.53 3.00 0.00 3.00 3.00 0.00
PMV-PPD-Givoni 2.53 3.00 0.00 3.00 3.00 0.00
Al Model 5.07 4.88 0.84 24.77 4.88 0.84
No People Night Presence
PMV-PPD 2.99 0.70 0.00 4.05 0.70 0.00
Givoni 48.94 65.14 2.29 65.67 65.14 2.29
PMV-PPD-Givoni 48.94 65.14 2.29 65.67 65.14 2.29
Al Model 71.83 71.83 11.80 82.04 71.83 11.80
Day Presence Night Presence
PMV-PPD 2.14 0.00 0.00 0.00 0.00 0.00
Givoni 12.85 5.98 0.00 21.31 5.98 0.00
PMV-PPD-Givoni 12.85 5.98 0.00 21.31 5.98 0.00
Al Model 51.97 62.12 1.01 79.93 62.12 1.01

The average indoor temperature where no people are present is 14.2 °C, whereas the

indoor temperature where people are present in the afternoon is 14.25 °C. The result
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showed a slight increase when there were people inside the room. Similarly, when there
are people at night, it can increase the average temperature value from 17.28 °C to 17.82
°C. The exciting result was also acquired when the people present were compared with
afternoon and night presence. The average indoor temperature data for the afternoon
presence was 16 °C compared to 16.73 °C for the night presence. This result shows more
borderline indoor temperature conditions at night compared to the afternoon. The people's

presence will be having more effect on the indoor temperature conditions.

7.3.2.5.1 Percentage of Comfort

Table 18 also presents the percentage of comfort as the output of Al models that predict
the percentage of comfort for each data item with corresponding temperature and
humidity. This trial uses the median age of people in the UK, 40.5 years, clothes value of
1 clo, the recommended clothing value from ASHRAE for winter and activity value of
1.5 met, which is associated with light work. The percentage of comfort for the
corresponding indoor condition where no people are present is 5.07 compared to 24.77
where there are people present in the afternoon. Similarly, when there are people present
at night, the percentage of comfort can increase from 71.83 to 82.04. If the people are
present in the afternoon compared with the night, the percentage of comfort will rise from
51.97 to 79.93. This value shows that the human presence at night impacts the most during
winter's indoor conditions.

Table 18 also shows the comfort percentage defined by the Al model compared to the
PMV-PPD comfort zone, Givoni Comfort Zone and the combination of both PMV-PPD
and Givoni. The result shows that the Al model could capture a wider comfort area. The
difference in the percentage comfort result is due to the acknowledgement of the comfort,
especially in the border of temperature and RH values mapped in the PMV-PPD and

Givoni, which were prescriptive and trenchant. These are shown in the last entry of the
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table, where the percentage of the Al model results far outperform both PMV-PPD and
Givoni comfort zone acknowledgement. This test shows that in the case of the border
condition, the comfort can be acknowledged by the Al model and, in return, will conserve

more energy to obtain indoor comfort.

7.3.2.5.2 Psychrometric Chart

The psychrometric chart for the comfort map result of the indoor condition with the
people present in the afternoon is shown in Figure 71 (a), and the people present at night
are presented in Figure 71 (b). This chart shows the comfort condition in the middle part
(green area), dominating the cold area (presented in blue). The cold area in Figure 71 (a)
shows a broader area than Figure 71 (b) due to the more unsatisfied sensation in this
condition. On the other hand, the more comprehensive comfortable condition is shown in
Figure 71 (b), representing a higher percentage of comfort shown for the human presence

at night.
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Figure 71. The Psychrometric chart for the comfort condition (a) with human presence
in the afternoon (left) and (b) with the human presence at night (right).
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7.3.2.5.3 Sensor Reading Comparison

In the 10T system, there is the possibility that the sensor reading does not reach the
local controller or the server due to communication errors, especially when the QoS level
is low. This work also compared the COTS sensors against the 10T sensor. The error
generated can be from the communication error and sensor value deviation when used in
the actual project. The comparison chart between the COTS temperature sensors and the
comparison chart between the temperature and humidity COTS sensors and the loT
sensors can be seen in Appendix 9. The comparisons were made in the BRE house to
simulate the actual sensor usage with 7,361 data readings with 15 minutes intervals.

The values of R-Squared for the comparison between the temperature COTS sensors
were 0.984, 0.974, and 0.990. The value of reliable R-Squared value should be more than
0.95. In this case, the COTS sensors were considered to be reliable. In comparing the
black globe COTS temperature sensors and black globe 10T temperature sensors, the
values were 0.990 for the centre room sensors and 0.986 for the stair sensors. These values
were also considered reliable due to the values being higher than 0.95. For the humidity
sensors, the values of the R-Squared COTS humidity sensor compared to 10T sensors
were 0.974 for the centre room and 0.967 for the stairs. The loT humidity sensors showed
reliable results. Since the trials were done in the BRE house that simulated the actual
condition, these 10T sensors are considered reliable to be deployed in the project.
7.3.2.5.4 Conclusions for BRE House Trial

This work shows that the data processed through the Al system demonstrate the
following:

e The result shows a more expansive comfort zone than the standard comfort zone.

This result shows the adaptive notion of human comfort.
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e The comfort percentage increased to more than 10% with the human presence in
the room. This value proves that the human presence should be considered in the
heating system design, particularly in the low border indoor temperature.

e Human presence at night results in higher comfort than in the afternoon. This
result shows the importance of the scheduling included in the heating control
scheme.

e The 10T sensors are considered to be reliable when they are compared with the

COTS sensors.

7.4 Case Studies for the Artificial Intelligence Model

The data collected in these case studies were done by a third-party using COTS
sensors. Since the sensors are identical in output (sub-chapter 7.3.2.5.3), the data can be
associated as similar to the proposed system output. Hence, the author has processed and
analysed the data using the proposed model and presented the result in this chapter. Some
cases might be interesting to include in this work because the case studies can represent
real-world problems. Five case studies represent the problems most likely in the United
Kingdom.

Where applicable, the questionnaire also had been given to the occupants to compare
the thermal sensation of the occupants that was compared with the result obtained from

the Al model. An example of the questionnaire was given in Appendix 11.
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7.4.1 The Case of Humid Dwelling (Dwelling Prior 1970s)

7.4.1.1 The Data Acquired

This case is interesting because it is a typical case that happened in the dwelling pre-

1970s with no insulation and cavity in the building envelopes. The example of the studied

dwelling is shown in Figure 72. High humidity is most likely to happen. The data

summary is presented in Table 19. As shown in the data summary, the humidity is very

high, and the average relative humidity can exceed outdoor humidity due to the human

activities inside the dwelling. The temperature chart for this data is shown in Figure 73,

while the humidity chart is shown in Figure 74.

Figure 72. The picture of the studied dwelling with high relative humidity.
Table 19 Summary of the data acquired from the case of humid dwelling.

Temperature TH 06| TC 06| TH 12| TH 03 | TC 05

(°C) Temp |[Temp |Temp |Temp |Temp | Outdoor
Minimum 10.00| 11.00| 1050| 12.00| 11.50 3.00
Maximum 13.00| 14.00| 17.00| 19.50| 19.00 12.00
Average 11.65| 1233| 13.07| 13.74| 14.27 7.44
Std. Dev 0.60 0.54 1.26 0.91 1.00 2.05
Relative TH 06 | TH 12 | TH 03

Humidity (%) Hum Hum Hum Outdoor

Minimum 79.00 | 76.50| 62.50 53.00

Maximum 99.50 | 100.00 | 89.00 93.00

Average 9391| 8641 | 80.57 78.66

Std. Dev 3.89 3.72 3.65 8.29
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The Al Model for comfort shows that the comfort level in the living room was 13.28%,

(Do) @4mreuadwiag

in the Bedroom was 0%, comfort in the kitchen was 9.70%, and the outdoor comfort was
0%. The comfort map from the Living room is shown in Figure 75. The other comfort

7.4.1.2 Al Model Result
map can be referred to in Appendix 10.
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Figure 75. The comfort map from the Living room in the humid dwelling case.

7.4.1.3 Analysis

The result of the Al model showed very low indoor comfort rates due to the relatively
low temperature and the high humidity. The rise of the temperature in the living room
and the kitchen was due to the cooking activity and the other activities being done by the
occupants. Even though the outdoor temperature fell below 10°C, the indoor temperature
was higher due to the occupants' presence and activities. However, the indoor relative
humidity showed a higher value than the outdoor temperature due to the occupants'
activities that generated moisture, such as respiration, cooking, showering, and washing.
This humidity value can be caused by poor insulation, ventilation, and heating.
7.4.1.4 Conclusion

This trial proves that the model was able to highlight low indoor comfort due to the
low temperature and the high relative humidity rate. The living room still had 13.28%
comfort while the kitchen was 9.7% from all assessment time. In this case, the model will
trigger the heater to be turned on in the low-temperature condition. The model was also

able to acknowledge the comfort that was achieved due to the occupants’ presence and
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activities even when the heater was inactive. In this case, when the temperature reaches
the predicted comfortable zone, the heater can be turned off to conserve the heating

energy.

7.4.2 The New Dwellings

7.4.2.1 Sensor Usage and Availability

The sensors were installed in the new dwelling, consisting of 5 sensor sets on each
house. Each sensor can detect indoor temperature and humidity. Every house's set of
sensors can detect the black globe temperature and relative humidity. Due to the missing

sensors, only two homes had complete sensor reading and availability. The picture of the

dwellings can be seen in Figure 76. The sensors' placements are described in Table 20.

Figure 76 The picture of the studied new dwelling.

7.4.2.2 Data Acquired for the New Dwellings

The sensors captured data from 19 October 2020 from 13:00 until 8 April 2021 at
04:15 (171 days or 4095 hours). The weather station installed in Liverpool John Moores
University, Byrom Street Campus is used to obtain the outdoor temperature and humidity
data. The distance of the weather station is still adequate to obtain similar outdoor

temperature and humidity to the local premises.
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Table 20. The placement of the sensors.

House Number 17
AH15 | Landing
IstFloor = 1114 T Bedroom 2
AH16 | Hall
Gnd
Eloor AHO02 | Lounge

ACO02 | Lounge
House Number 19
st | AH11 Landing
Floor | AH12 Bedroom 2
AH13 Hall
AHO4 Lounge
AC04 Lounge

Gnd
Floor

7.4.2.3 Analysis for the New Dwellings
7.4.2.3.1 Temperature

The indoor temperature for house number 17 during the assessed period was always
in comfort. Only during the initial data gathering (23 to 27 October 2020) were the
temperatures below the standard comfort temperature. Apart from the temperatures
mentioned, the indoor temperature in each room monitored was always within the
comfort zone. The low temperatures most likely happened due to no heater being turned
on in the house. The summary of the thermal data can be seen in Table 21, and the chart
which displays the outdoor and indoor temperature is shown in Figure 77.

As mentioned before, the minimum temperature values were reached due to the heater
being turned off. The measurement shows that the value from the black globe sensor
installed in the lounge was close to the outside temperature rather than the Lounge
temperature. This result indicates that the thermocouple or the black globe sensor was

touching the element of wall or glazing exposed to the external temperature.
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Table 21. The summary of the thermal data for house number 17.

Temperature
(&)

Lounge

Lounge
BG

Hall

Bedroom
2

Landing

Outdoor

Max

25.50

21.00

27.50

28.50

28.50

21.00

Min

6.00

-0.50

6.00

6.00

6.00

-3.00

Average

18.77

9.08

22.40

22.43

22.59

7.56

Std Dev

1.89

1.46

2.63

2.52

2.64

3.67
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Figure 77. The chart displays the outdoor and indoor temperatures for house number 17.
The Y-axis shows temperature (°C).

Assessing the maximum temperature value, the maximum temperature in the hall,
bedroom 2, and landing might be too high during the peak of the external temperature.
The heater/thermostat set point for these highlighted rooms is considered adjusted.
However, the average indoor temperature for all the rooms was within the comfort zone.
With the outdoor temperature average of 7.56 °C, the indoor temperature can be

maintained at about 18.77 °C to about 22.59 °C, which is still in the comfort zone. When
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the heater was turned off, the indoor temperature reached a value of about 6 °C because
the external temperature also showed a similar value.

In the early days of January 2021, the heater load was at the maximum. This load is
because the outdoor temperature was around 0 °C, but the room temperatures were at their
peak. It is suggested to adjust the temperature set point or thermostat to save heating
energy and have a better RH value, which will be explained in the next section. A lower
room temperature set point is preferred.

At the end of March 2021, the outdoor temperature began to rise, with the room's
temperature relatively stable. In this case, less energy was used for heating the rooms. In
general, there was a gap between the lounge and other rooms. This gap might have
happened due to the difference in the temperature set point between the lounge and other
rooms. It is advised to balance the set point or the heater arrangement so that the
temperature in the hall, bedroom 2 and landing room can be lowered, which can conserve
the heating energy while maintaining indoor health and comfort.

Like the previous data set, the indoor temperature for house number 19 during the
assessed period was always in the comfort temperature. Only during the initial data
gathering (23 to 27 October 2020) were the temperatures below the comfort standard,
which may be due to the absence of the heater. The Black Globe temperature in this data
set shows correct values, unlike the previous data set. The chart which displays the
outdoor and indoor temperature is shown in Figure 78, and the summary of the thermal
data can be seen in Table 22.

The curve displays the average temperature values from the lowest to the highest: the
lounge, bedroom, hall, and landing. With the outdoor temperature average of 7.56 °C, the
indoor temperature can be maintained at about 16.75 °C to about 20.94 °C, which is still

in the comfort zone. Like the previous data set, in the early days of January 2021, the
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heater load was at the maximum. The outdoor temperature was around 0 °C, but the room

temperatures were more than 20 °C. The values assessed show that the recommended

temperature maximum setting during the observation period is less than 20 °C. It will

result in the saving of heating energy and better RH value, which will be explained in the

next section.

Table 22. The summary of the thermal data for house number 19.

O

Temperature

Lounge

Lounge
BG

Hall

Bedroom

Landing

Outdoor

Max

22.00

22.50

24.50

25.50

24.50

21.00

Min

6.00

6.50

6.00

6.00

6.00

-3.00

Average

16.75

17.65

20.07

19.86

20.94

7.56

Std Dev

1.72
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2.15

3.67
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Figure 78. The chart displays the outdoor and indoor temperatures for house number 19.
The Y-axis shows temperature (°C).
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This data set also showed the same tendency as the previous data set at the end of
March 2021. The outdoor temperature began to rise, keeping the room's temperature
relatively stable. In this case, less energy was used for heating the rooms. There was a
gap between the lounge and other rooms that may happen due to the difference in the
temperature set point or the usage of the door, which brought lower temperature outdoor

air to the lounge.

7.4.2.3.2 Humidity

Besides the temperature, relative humidity (RH) also plays a vital role in indoor
comfort and healthiness. Based on the ASHRAE Fundamentals handbook 2017 (R.
American Society of Heating et al., 2017), the healthy relative humidity range is 20 to 70
%. The RH value outside the mentioned range might trigger health problems.
Furthermore, the RH value is advised to be 30 to 70% for a comfortable indoor
environment. The summary of the relative humidity data can be seen in Table 23, and the
humidity chart for House number 17 during the observation period is presented in Figure

79.

Humidity

Hall RH ==e=Bedroom2 RH s anding RH Outdoor RH

= Lounge RH

Figure 79. The chart displays the outdoor and indoor relative humidity for house
number 17. The Y-axis shows relative humidity (%).
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Table 23. The summary of the relative humidity data for house number 17.

RH (%) | Lounge Hall | Bedroom2 | Landing | Outdoor
Max 96.00 | 74.50 71.50 74.00 96.00
Min 25.00 | 22.00 25.50 23.50 33.00
Average 4515 | 38.71 40.84 39.72 82.54
Std Dev 5.43 7.43 6.92 7.39 9.38

The table shows that the RH minimum value was still in healthy condition. The
minimal RH value, close to 20%, is still healthy but might be causing discomfort.
However, this value can be better when the temperature set point is adjusted to slightly
lower values, as mentioned in the previous section. Assessing the average RH, the values
are within healthy and comfortable conditions. Further analysis is being done to show
how frequently the uncomfortable RH condition happened during the observation (4095
hours). The uncomfortable period is displayed in Table 24.

Table 24. Uncomfortable relative humidity values from the acquired data.

Uncomfortable
RH Lounge | Hall | Bedroom2 | Landing
RH >70% (hours) 0.75 1.25 0.75 1.25
RH <30 % (hours) 6.75 | 491.25 152.75| 359.00
Percentage 0.16 12.00 3.73 8.77

Table 24 shows that the hall, bedroom2, and landing had 491.25, 152.75 and 359.00
hours of uncomfortable RH values from the total of 4095 hours. In percentages, they are
12%, 3.73% and 8.77% of the time that the RH values are not in the comfortable range.
As mentioned in the temperature subsection, lowering the temperature set point for these
rooms will lower the possibility of unhealthy RH conditions, as shown in the lounge chart
and table. Decreasing the temperature gap with the lounge will also reduce the unhealthy
RH to more than 30% to achieve healthier indoor conditions from the RH side. The indoor
thermal and humidity condition during the time the heater is turned off is shown in Figure

80.
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Figure 80. The indoor temperature (top) and humidity (bottom) condition during the
Due to the low outdoor temperature, without a heater, the indoor temperature was not

heater turned off for house number 17. The Y
in a comfortable region. The humidity followed the outside humidity value, but the house
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materials buffer it. The indoor thermal and humidity conditions during the low outdoor
temperature, during the high outdoor temperature and for house number 19 can be seen
in Appendix 10.

When the heater is operational, the indoor thermal condition can be sustained within
the comfort region. However, if the heater set point is too high, the humidity will fall to
the uncomfortable zone (below 30% RH). It is advised to lower the heater set point
temperature for better humidity value and heating energy saving. With the outdoor
temperature raised, turning off the heater at some point will be needed or can be done
automatically. The humidity value will remain stable even with the fluctuation of the

external humidity value. The result from house number 19 can be seen in Table 25.

Table 25. The summary of the relative humidity data and the uncomfortable relative
humidity percentage for house number 19

RH(%) | Lounge Hall | Bedroom2 | Landing | Outdoor
Max 7350 | 79.00 74.50 75.00 96.00
Min 34.00 | 30.50 33.50 28.50 33.00
Average 5413 | 45.92 48.42 42.69 82.54
Std Dev 5.98 6.98 6.08 6.92 9.38
Uncomfortable
RH Lounge | Hall | Bedroom2 | Landing
RH >70% (hours) 53.5 2.25 2.75 0.25
RH <30 % (hours) 0.00 0.00 0.00 25.50
Percentage 1.31 0.05 0.07 0.62

The table shows that the RH minimum value was still healthy and comfortable. The
temperature set point for the landing room should be lowered, and the set point
temperature in the lounge should be raised. A temperature set point less than 20 °C is

preferable.
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7.4.2.3.3 Al Analysis for Each Room

The artificial intelligence model assumes that the occupants use clothing insulation
value of 1 clo in the light or medium activity with a met value of 1.5 and the assumption
of age 40.5 years. In House number 17, the lounge comfort level is 96.18%, hall 97.80%,
bedroom 97.81% and landing 97.75%. These were achieved during an outdoor comfort
level of 2.46%. For house number 19, the Lounge comfort level is 87.54%, the hall
comfort level is 96.37%, the bedroom is 96.31%, and the landing is 96.20%, with the
same outdoor comfort level (2.46%). The uncomfortable condition indoors happened due

to the heater that was turned off and the indoor temperature falling below 15°C.

7.4.2.4 Conclusion

The indoor condition was in a comfortable state for most of the time. Only when the
heater was off, the indoor temperature was uncomfortable. The Al analysis was able to
show that there is the possibility to lower the temperature set point and keep the occupants
still in comfort. Lowering the heating or thermostat settings, especially in the hall,
bedroom2, and landing room, to balance with the lounge will affect the more comfortable
indoor environment and lower the usage of heating energy, which can lower the carbon
footprint of the house. The case study reflects that if the model is implemented in the

house, it can control the heater in a more impactful way for energy conservation.

7.4.3 The Refurbished Flats

The case study of the refurbished flats was done with five flats being monitored from
a 16-storey block of flats. There was Flat 89, which is located on the 15th floor, Flat 80
on the 14th floor, Flat 49 on the 8th floor, and Flat 41 and 38 on the 7th floor. This flat

data was interesting to be analysed due to the refurbishment involving additional
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insulation installation and new electric heaters. The data readings were done at least three
times during pre-, construction and post-construction. The picture of the flats can be seen
in Figure 81. The range of data captured, and the intervals are listed in the table in
Appendix 10. During the initial set-up stage, the sensor recorded data every 5 minutes for
stages 1 and 2. On stage 3, it has been set to 10 minutes because from the observation on
stages 1 and 2, not many different variants in terms of data set can be observed within the

5 minutes interval. The 10 minutes intervals allow for a longer duration. The precise date

and duration can be seen in Appendix 10.

Figure 81 The picture of the studied refurbished flats; before, during, and after
refurbishment.

Since the availability of tenants was different, the sensor installations were done at
different times. The regulation change regarding the pandemic time also left the sensors
out for a long time. The other challenge was the sensor's position which was moved so
that it might be prone to invalid data because of direct contact with glazing with sunlight
exposure like in the bedroom 1 sensor in Flat 80. The deviated sensors' readings were
excluded from the results chart. Another challenge was the missing sensors. Some sensors
were missing, with the significant loss in Flat 89 due to the occupant's passing away. The
flats with the complete stages data were Flat 80, Flat 41, and Flat 38. The state of the
sensors is presented in the table in Appendix 10. The indoor refurbishment was done by

upgrading the electric heaters into new ones. In the result charts, this period can be
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detected by the absence of a heater high-temperature reading. Even with these limitations,
the baseline data can still be obtained to analyse the refurbishment effects and the

occupant's behaviour related to the indoor thermal conditions.

7.4.3.1 Results and Analysis for the Refurbished Flats

The results and analysis are presented flat by flat. They will be concluded by
presenting the tabulated data results since the weather station was not installed in this
project; the available un-quality-controlled data from CEDA (MetOffice) for Liverpool
(Crosby) was used to give a hint of the external temperature condition. The data can be
found at https://data.ceda.ac.uk/badc/ukmo-midas-open/data/uk-daily-weather-
obs/dataset-version-201901/Merseyside/17309_crosby. The Liverpool John Moores
University weather station data which was obtained from the LIMU BRE Houses weather
station located in the Byrom Street Campus was also used for the second and third stage.
The data was in the format of 15 minutes intervals, which are linearly interpolated to

match the sensor 10 minutes interval.

7.4.3.1.1 Flat 80 Temperature

The data shows that the occupants always turn on the entrance and hall heater and turn
off the heater inside the bedroom. There was a trace of the bedroom heater turned on
during the initial periods of data gathering, but that was the only time this heater was
turned on. The most impactful heater in this Flat was the hall heater. It might be due to
the position of the heater, which is in the centre of the flat, and the heat can be felt all
around it. The bedroom doors were predicted to be open most of the time, which explains
the similarity of the temperature result for the hall and bedrooms temperatures. Based on
this chart, the occupants always get the indoor temperature relatively stable. The

temperature chart for Flat 80 in the pre-refurbishment phase, pre and during-
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refurbishment phase, during and post-refurbishment phase and post-refurbishment phase
are shown in Appendix 10.

Before the refurbishment, the indoor temperature was within the comfort temperature,
but the energy to maintain the comfort temperature was high. This condition can be shown
by the peak temperature and the number of peaks generated by the entrance and hall
heater. Figure 82, Figure 83, Figure 84 and Figure 85 show the stable daily temperature
in a day for all of the stages of the project from the pre-refurbishment until the post-
refurbishment. The entrance heater and hall heater regulate the indoor temperature for the
whole area of the flat. In the pre-refurbishment phase shown in Figure 82, the number of
peaks was three, with the hall heater temperature peak reaching 80 °C and the entrance
heater temperature reaching 50 °C. During the refurbishment process shown in Figure 83
and Figure 84, the number of peaks decreased to two, and the peak temperature also
decreased. The hall heater temperature peak, which previously reached 80 °C, was
reduced to 50 °C, and the entrance heater temperature from 50 °C was reduced to 40 °C.
All of this happens with an outside temperature of around 10 °C. Similar things happened
with the post-refurbishment.

Figure 85 shows that the number of peaks is reduced to one. The hall heater's peak is
about 50 °C, and the entrance heater temperature was about 40 °C, with the outside
temperature around 10 °C. This sensor reading shows the potential heating energy saving
due to the refurbishment process. The temperature chart for the post-refurbishment phase
shown in Figure 85 also showed a rise in the thermal performance when the heaters were
switched off. The indoor temperature decreased slowly, indicating that the refurbishment
can give the flat better thermal properties than before. Although these sensors cannot
measure the precise amount of energy, the chart shows that energy saving is achieved

after refurbishment.
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Figure 82. Daily temperature chart for Flat 80 in pre-refurbishment phase. Secondary y-
axis is used for Heaters’ temperature.
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Figure 83. Daily temperature chart for Flat 80 in pre and during-refurbishment phase.
Secondary y-axis is used for Heaters’ temperature.
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Flat 80 during&post-refurbishment
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Figure 84. Daily temperature chart for Flat 80 during and post-refurbishment phase.
Secondary y-axis is used for Heaters’ temperature.
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Figure 85. Daily temperature chart for Flat 80 in post-refurbishment phase. Secondary
y-axis is used for Heaters’ temperature.
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The Sign of the thermal energy efficiency increase is also shown in Table 26. The hall
heater's average temperature decreased from 74 °C in the pre-refurbishment to 64 °C, 43
°C and 39 °C in the post-refurbishment. The average temperature of the entrance heater is
decreased from initially 47 °C down to 45 °C, 38 °C and 35 °C in the post-refurbishment.
Based on this value, the potential energy saving can reach about 36% on average. The
value is based on the outdoor temperature value of 6 °C, 13 °C, 5 °C and 10 °C, which in
this case is assumed to be constant for simplification. Table 26 shows the summary of the
sensor reading.

Table 26. The parameters summary for Flat 80

Summary for Pre&During During&Post
Flat 80 Pre refurbishment refurbishment refurbishment Post refurbishment
Std
Parameters Mean Std Dev Mean Std Dev Mean Dev Mean Std Dev
BedRoom1

Temperature (°C) 23.981 0.407 24.538 0.859 19.825 | 1.886 24.226 3.250
BedRoom1Heater
Temperature (°C) 23.692 1.983 24.004 0.963 22.029 | 1.606 24,591 1.609
BedRoom?2
Temperature (°C) 23.067 0.698 24.027 0.927 23.032 | 1.408 25.225 1.517
Hall Heater
Temperature (°C) 73.996 5.992 64.167 17.383 43.233 | 7.833 39.085 9.329
Above Hall
Temperature (°C) 25.380 0.485 25.083 0.871 25.033 | 1.114 24.796 5.051
Entrance Heater
Temperature (°C) 47.466 4.139 45.319 6.140 37.989 | 2.479 34.594 5.194
Outdoor

temperature (°C) *6.459 *1.897 | *12.609 *4.224 5.027 2.917 10.927 4,528
Outdoor Relative

Humidity (%) *93.36 *1.87 *66.934 | *12.809 86.864 5.601 72.386 13.247
Indoor Relative

Humidity (%) 40.120 2.328 33.984 3.688 31.507 | 4.040 34.214 4.196

NOTE: * incomplete data

7.4.3.1.2 Flat 80 Humidity

Even with the outdoor relative humidity, which can reach about 90% and cause
discomfort, the indoor relative humidity value was not exceeding 70% and stayed in the
healthy range. The indoor relative humidity is relatively stable, with a standard deviation

value of about four and an average value of about 40% in pre-refurbishment, 33%, 32%

Karyono 189



Chapter 7 Testing and Case Studies

and 34% post-refurbishment. The outdoor humidity value is about 80%. In the pre-
refurbishment phase, the outdoor humidity data from the weather station was unavailable,
and the humidity data were obtained from the daily humidity data from CEDA
(MetOffice).

The humidity chart for Flat 80 in the pre-refurbishment phase, pre and during-
refurbishment phase, during and post-refurbishment phase and post-refurbishment phase
are shown in Appendix 10, including the example of the daily humidity chart comparison
between pre-refurbishment and post-refurbishment. The result of the post-refurbishment
relative humidity value is slightly lower than the pre-refurbishment, which shows that the
post-refurbishment relative humidity value will most likely not exceed 70%, which is

considered to be in a healthy range.

7.4.3.1.3 Flat 38 Temperature

Similar to the case of Flat 80, the increase in thermal efficiency can be seen through
the lower peaks in the heater temperature. Unlike in flat 80, where the peaks and peaks
number are easily recognisable, the pattern was not simple in the case of flat 38. The daily
temperature chart for the pre-refurbishment phase, during refurbishment and post-
refurbishment can be seen in Figure 86, Figure 87, and Figure 88, respectively. The
thermal efficiency can be seen more easily in Table 27, which shows that the hall heater
and the entrance heater have lower temperatures in the post-refurbishment phase while
maintaining the indoor comfort temperature of around 24 °C.
7.4.3.1.4 Flat 38 Humidity

The relative humidity value from Flat 38 shows a similar tendency to that in Flat 80.
The outdoor relative humidity value fluctuation would not directly affect the indoor

relative humidity. After the refurbishment process, it is shown that the internal humidity
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value has a health advantage: it rarely reached 70% and was within the healthy

requirement and not too low. The chart showing the relation of the outdoor relative

humidity against the indoor relative humidity in Flat 38 can be seen in Appendix 10.
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Figure 86. Daily temperature chart for Flat 38 in pre-refurbishment phase.

60
S 50
[J]
S
5 40
ey
o 30 —
2 e e———
20
£
2 10
OWWWWWWWWWWWWWWWWWW
O 0000000000000 QO QO
@M N MM NN maoomn
O N < O N OO O AN MW O 0 O -1 N O
O O 0O 0000 dddAdAdA +d +d N N O
D e T e R e B e B T e T e O O o O o O R e O O R I |
AN AN AN AN AN AN AN AN AN AN NN NN NN
OO0 0000000000000 O O
AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN
AN AN AN AN AN N AN AN AN NN NN NNy
O O 0O 0O 0O 0000000000 o oo
Mm N N MH N N MH N N MH N MHm N N N N <
AN AN AN AN AN AN AN AN AN AN AN AN AN NN NN

Flat 38 during-refurbishment

BedRoom1Temp

BedRoom1HeaterTemp

BedRoom2Temp
HallHeaterTemp

—— AboveHallTemp

EntranceHeaterTemp

OutdoorTemp

Figure 87. Daily temperature chart for Flat 38 during-refurbishment phase.
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Figure 88. Daily temperature chart for Flat 38 in post-refurbishment phase.

Table 27. The parameters summary for Flat 38

During Post

Summary for Flat 38 Pre refurbishment refurbishment refurbishment

Std Std
Parameters Mean Std Dev Mean Dev Mean Dev
BedRoom1Temperature (°C) 24.625 0.848 | 19.825 1.886 | 23.498 1.444
BedRoom1Heater Temperature
({9)) 24.405 0.859 | 22.029 1.606 | 24.158 1.594
BedRoom2Temperature (°C) 23.981 1.177 | 23.032 1408 | 23.843 1.792
HallHeater Temperature (°C) 37.260 23.125 | 38.806 | 11.783 | 29.083 7.045
AboveHallTemperature (°C) 25.075 0.611 | 25.033 1.114 | 25.676 0.652
EntranceHeaterTemperature
°O) 42.776 5.873 | 42.689 | 10.132 | 35.701 5.397
Outdoor temperature (°C) *12.609 *4.224 5.027 2917 | 10.927 4.528
Outdoor Relative Humidity (%6) *66.934 | *12.809 | 86.864 5.601 | 72.386 | 13.247
Indoor Relative Humidity (%) 42.555 5.954 | 40.794 4.409 | 36.518 5.603

NOTE: * incomplete data

7.4.3.1.5 Flat 41 Temperature
Although Flat 38 and 41 are located on the same floor (7th floor), the indoor thermal
value in Flat 38 was not identical to Flat 41. The pattern difference was related to the

metabolism of the occupants and the occupants' behaviour, for example, the heater setting
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and the activity that impact indoor thermal conditions like cooking. However, with the
refurbishing process, the thermal efficiency would increase and can be seen through the
lower peaks in the heater temperature. The daily temperature chart for the pre-
refurbishment phase, during refurbishment and post-refurbishment can be seen in
Appendix 10. Table 28 shows the reduction in the hall heater and the entrance heater

value after the refurbishment phase, with the indoor temperature remaining constant at

around 24 °C.
Table 28. The parameters summary for Flat 41
During Post

Summary for Flat 41 Pre-refurbishment refurbishment refurbishment

Std Std
Parameters Mean Std Dev Mean Dev Mean Dev
BedRoom1Temperature (°C) 24.709 0.797 22.780 1.229 | 24.179 0.977
BedRoom1HeaterTemperature
(°O) 23.944 0.689 22.541 2271 | 24993 | 1.165
BedRoom2Temperature (°C) 24.648 0.734 22.849 0.861 | 24.387 1.237
HallHeater Temperature (°C) 54.150 9.931 58.214 | 11.671 | 48.505 | 6.746
AboveHallTemperature (°C) 25.259 0.730 25.819 0.872 | 25.801 0.839
EntranceHeaterTemperature
(°O) 36.720 8.861 39.728 4.320 | 30.134 | 6.527
Outdoor temperature (°C) *12.609 *4.224 5.027 2917 | 10.927 | 4.528
Outdoor Relative Humidity (%) | *66.934 | *12.809 86.864 5.601 | 72.386 | 13.247
Indoor Relative Humidity (%) 32.514 2.854 31.507 4.040 | 32475 | 4.755

NOTE: * incomplete data

Comparing the data from Flat 80, 38 and 41 shows that after the refurbishment process,
the tendency of overheating was not detected. Flat 80, located on the 14th floor, shows a
higher reduction in the heating peak temperature by 47% and 27%. This reduction was
higher than Flat 38 and 41, located on the 7th floor. This difference cannot be claimed
due to the Flat's location but was also related to the occupants’ activities and metabolism.
It is shown by the Flat 38 and 42 result, which was different even though they are located

on the same floor. The reduction in Flat 38 heating percentages was 22% and 17%, while
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in Flat 42 it reached 10% and 18%. The reduction of the heating on average is 24%, and

the percentage can be seen in Table 29.

Table 29. The heating reduction percentage for flats 80, 38 and 41.

Pre- Post-
Flat no Heater refurbishment | refurbishment | Reduction
80 Hall Heater Temp 73.996 39.085 | 47.18%
Entrance Heater Temp 47.466 34594 | 27.12%
38 Hall Heater Temp 37.260 29.083 | 21.95%
Entrance Heater Temp 42.776 35.701 | 16.54%
41 Hall Heater Temp 54.150 48.505 | 10.42%
Entrance Heater Temp 36.720 30.134 | 17.94%
Average 23.52%

7.4.3.1.6 The Al Model Result

The assumption for the Al model is clothing value 1 clo, light work/activity 1.5 met
and age 40.5 years. Figure 89 shows the comparison of the comfort conditions before and
after refurbishment.

The Al model was able to acknowledge that after the refurbishment, the condition of
overheating was most likely to happen. Overheating can occur due to the old habit of the
occupants that use the pre-refurbishment setting to gain comfort while their dwellings are
having a better energy performance.
7.4.3.2 Conclusion

The temperature and the number of peaks of the hall heater and entrance heater
decreased while the indoor temperature remained stable after the refurbishment. This
reduction was a sign of energy saving due to the refurbishment. However, the amount of
energy saving cannot be calculated precisely based on this value. Comparing this value

only, the rough estimation of the energy saving can reach about 24% on average.
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Outdoor comfort: 20.96% in comfort condition
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Figure 89. The comparison of the comfort conditions before refurbishment, after
refurbishment and outdoor conditions.

The value of relative humidity also decreased after the refurbishment. This fact
represents that the probability of humidity exceeding 70% (unhealthy limit) is also
decreased. After refurbishment, indoor health and comfort levels also increased.

The use of the model can give a further benefit to energy saving. The model was able
to detect the tendency of overheating. Elaborating the model in the dwelling heating
control can result in the conservation of the heating energy. The model will give better

control so that the temperature set point can be lowered to avoid the overheating problem.

7.4.4 The Implementation of the New Materials for Thermal Improvement

This case study compares the use of the latest material to increase the thermal
performance in dwellings. The trial was done in four dwellings, with one room using the
improved materials and one left as it was. The occupants filled in the questionnaire
regarding their behaviour that might impact the trial. The sensor installation summary,
sensor reading and chart for the temperature and relative humidity and the thermal

comfort percentage can be assessed in Appendix 10.
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7.4.4.1 Analysis and Comparison of Comfort Model with Occupants Questionnaire
House #1 Phasel:

Based on the heater temperature data, the average temperature for the heater in the
bedroom is 22.32°C, while the average heater temperature in the living room (equipped
with the materials) is slightly lower at 21.95°C. Even with this lower setting, the average
temperatures detected by other sensors in the living room are slightly higher than the
condition inside the bedroom (living room: 19.40 °C and bedroom 18.23°C). The peak
temperature detected for the bedroom heater was 60°C compared to the living room,
heater which was 49.5°C. The difference indicates that the energy needed to maintain a
comfortable temperature is less with the new materials.

In terms of humidity, there was no indication of the change in the humidity upon the
installation of the material since the two sensors have different average value readings.
Based on the Avrtificial Intelligence (Al) model, the percentage of comfortable time in the
living room is also higher compared to the bedroom (95.4% compared to 91.2% of the
time).

Compared with the data from the questionnaire, the occupant has an electric fire, but
it is just for decoration and not to be turned on. The occupant always kept their internal
door, and the external front door closed most of the time during the test. Similar things
happened with windows. The occupant only occasionally opens the kitchen window and
never during winter. This show that the data gathered are valid. However, based on the
questionnaire, the occupant has not changed behaviour after installing the materials.

Even though the sensors did not detect the humidity improvement, the occupant sensed
less window moisture for the window equipped with the materials. The thermal sensation
that the occupant felt was comfortably warm, acceptable temperature, and the occupant

was satisfied with the condition and did not want to alter it (no change condition). The

Karyono 197



Chapter 7 Testing and Case Studies

occupant felt the humidity was proper and only felt too humid on the porch. This
perception was also reflected in our average humidity measurement, below 70%, while
the average outdoor humidity was 81%.

House #1 Phase 2:

In the second period of data gathering, the average temperature for the heater in the
bedroom was 20.79°C, while the average heater temperature in the living room (equipped
with the material) was slightly lower at 19.22°C. The highest temperature detected by the
heater sensor for the bedroom was 65°C, whereas the living room was 49°C. These
temperature values were similar to the first phase of data gathering.

Analysing more detail for the maximum outside temperature and outside temperature,
it is also apparent that the material positively impacted heating energy reduction. The
heater temperature in the room equipped with the material had less value than the existing
room, with the indoor temperature relatively the same for both rooms. This second phase
shows a better chart profile than the chart generated from the first.

The humidity values for the second phase showed no improvement. Even though our
sensors did not detect the humidity improvement, the occupant sensed less window
moisture for the window equipped with the material. The thermal sensation that the
occupant felt was comfortably warm, an acceptable temperature, and the occupant was
satisfied with the condition and did not want to alter it (no change condition). The
occupant felt the humidity was proper and only felt too humid on the porch. The average
relative humidity value for the second phase was also below 70%. The average outdoor
humidity value from the second phase was 74.39%.

Based on the Artificial Intelligence (Al) model, the percentage of comfortable time for
the outside weather condition was just 7.82%. The comfort level in the living room with

material installed inside was 75% compared with the bedroom, 69%. The comfort level
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was lower in the second phase due to the lower temperature set point. The occupant will
benefit from the lower energy needed for the heating. More precise energy usage can be
checked by comparing the energy bills before and after material installation.

House #3 Phasel:

The indoor condition in this house is different compared to the previous house. The
dwelling is a one-bedroom bungalow. Based on the questionnaire, the occupants have an
electric fire, and the internal doors are always open (the occupants only close the internal
doors at bedtime). The occupants also use their gas cookers daily. This habit makes the
living room's average temperature slightly higher than the bedroom equipped with the
material. The heater temperature in the bedroom also showed a higher average number
compared to the living room due to these reasons. The habit of opening their windows for
a few hours during autumn and winter might affect the result.

The benefit of the installation of the materials, in this case, was only shown when the
black globe temperature was compared between sensor EH20, which was in the bedroom
(with the materials) compared sensor EH17, which was in the living room. During the
lowest outside temperature, sensor EH20 shows that the temperature was slightly warmer
than detected in sensor EH17. Both sensors showed a similar temperature level during the
highest outside temperature (about 30°C). This result indicates that the materials help
buffer the indoor temperature and reduce glazing leakages.

The bedroom sensor and the relative humidity data showed a lower average value than
the living room. These average values are in the healthy zone. The questionnaire result
acknowledged this measurement that the occupants only feel the moisture on the kitchen
windows and bathroom, mainly in the winter.

From the Al model result, it can be said that the occupants were always in their

comfortable situations (94.38%, 99.97% and 100% of the time). This result justified the
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questionnaire results that the occupants feel warm and comfortable and do not want to
alter the thermal condition (no change).

House #3 Phase 2:

Like the first phase, the benefit of the material installation, was shown when we
compared the black globe temperature between sensor EH20 in the bedroom installed
with the material compared to the sensor EH17 located in the living room. Sensor EH 20
shows that the temperature is slightly warmer than detected in sensor EH17. This value
indicates that the material helps buffer the indoor temperature and reduce glazing
leakages.

The average relative humidity values were always in the healthy zone for the second
period. The questionnaire result acknowledged this condition that the occupants only feel
the moisture on the kitchen windows and bathroom, mainly in the winter. This moisture
was due to the occupants’ activities that generated water vapour. From the Al model
result, it can be said that the occupants were always comfortable (almost all cases had
100% comfort of the time). This value justified the questionnaire results that the
occupants feel warm and comfortable and do not want to alter the thermal condition (no
change).

House #4 Phase 1:

Similar to house 1, the average temperature of the heater in the living room equipped
with the materials was lower compared to the bedroom (21.91°C compared to 22.72°C),
resulting in a slightly lower room temperature. The living room's average temperatures
are 18.48°C and 18.10°C, while the average bedroom temperatures are 19.40°C and
19.31°C. The occupants seldom open the window, and their internal and external doors

are always closed. The occupants also do not own a fireplace.

Karyono 200



Chapter 7 Testing and Case Studies

The effect of the materials installed in the living room can easily be identified during
the minimum outdoor temperature. The heater sensor detected that to achieve a relatively
similar indoor temperature, the heater temperature inside the living room (EC16) showed
a temperature of less than 40°C. The bedroom (EC15) showed a temperature of almost
60°C. This case showed that the materials help to maintain the indoor temperature during
winter.

The sensor reading also shows the temperature reached more than 30°C, even 36°C.
This reading was acknowledged in the Al model, which had a wider red-coloured area
representing overheating, although the overall comfort based on the Al model was mainly
comfortable. This condition reflects in the questionnaire result that the occupants felt
slightly or comfortably warm but still acceptable (no change). The overheating might be
reflected by the fact that the occupants need to increase air movements.

Although the relative humidity in the living room (with the materials) is slightly higher
than in the bedroom, the average values are still in the healthy range. The occupants also
state in the questionnaire that the humidity is just right.

House #4 Phase 2:

Similar to the first phase, the average temperature of the heater in the living room
equipped with the material was lower compared to the bedroom. The average temperature
of the heater in the living room was 20.93°C, and in the bedroom was 21.46°C. This case
is also an excellent environment to test the impact of the material due to less noise
impacting the measurement results. The chart with minimum outside temperature showed
a bold difference in the heater temperature that showed the heating energy conservation.

Like in the first phase, there was a possibility of overheating in the living room. This
case was acknowledged in the Al model, which has a wider, red-coloured area in the

psychrometric chart. This condition reflects that the occupants felt slightly or comfortably
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warm (mentioned in the questionnaire). The overheating might also be reflected by the
statement in the questionnaire, which needs to increase air movements. The occupants
were advised to reduce the temperature set point.

Although the relative humidity in the living room (with the material) was slightly
higher than in the bedroom for both phases, the average values are still in the healthy
range. The occupants' questionnaire results also acknowledged this.

House #5 Phase 1:

This house is different from the other houses because the heater was either on or off,
and no thermostat was installed. The electric fire was also installed in the living room
with the materials installed. This condition made the bedroom average temperature heater
higher than the living room heater (22.87°C compared to 17.57°C), which can highlight
the benefit of using the materials but might be due to the electric fire. This extreme figure
was shown during the minimum outside temperature periods. Due to this higher heater
temperature, the average value of the indoor temperature in the living room is slightly
lower than in the bedroom.

The result might be affected by the cooking done twice daily and the internal doors
that are never closed. The low temperature in the room could be due to the effect of the
window opening. The occupants mention that the windows are usually open in summer
and autumn and often in winter and spring. This condition explained the questionnaire
result: they felt cool but still comfortable, and the indoor temperature was acceptable (no
change). This statement also justifies our Al model that captures the comfort level at
67.6%, 93.74%, 87.91% and 99.37% during data logging. The average relative humidity
is also just about 60% which is a healthy level, and the occupants feel the humidity was

just right.
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House #5 Phase 2:

The second-period bedroom average temperature heater was higher than the living
room heater (21.46°C compared to 15.71°C). This value was due to the occupants'
behaviour. Due to this higher heater temperature, the average value of the indoor
temperature in the living room was slightly lower than in the bedroom. This condition
makes the house not an ideal case study for the use of the material. The average relative
humidity for this period was in the healthy level condition below 70%. The Ai analysis
showed that the comfort percentages were below 89.83%.

The Al model assessment results captured a wide area of indoor thermal conditions. It
reflected that the heating controls were not done properly. Even though most of the time
occupants were in comfort situations, the use of the Al model can increase the comfort
level of the occupants. There might be still a possibility in this case to conserve the heating
energy.
7.4.4.2 Conclusion

Although not all the tests can show clear evidence of the impact of using the materials
to increase thermal performance, each test shows that installing the materials improved
the indoor thermal condition, especially during winter. The installation of the materials
can reduce the heater temperature or energy usage for heating.

The use of an Al model can properly fix the heating profile and minimize the
uncomfortable situation in both “too hot” and “too cool” conditions. The heating energy
conservation can also be obtained with the use of the model to focus the comfort zone to

the lower comfort temperature during winter.
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7.4.5 The New Modular House with Advanced Heating Controls

The analysis is based on the data generated by third-party sensors for indoor and the
Weather Station located in Byrom Street Campus LIMU for outdoor data. The picture of
the modular house is presented in Figure 90. The data was obtained from 19 October 2021
to 29 November 2021. The data is grouped based on the sensor position. Due to the
sensors' nature that they will send the data when there are changes in the value, the data
needs to be arranged into 15 minutes intervals using the epoch timestamp from the data.
The information about the data on each group is shown in Table 30. This data is then
displayed in the chart with the left axis showing the temperature and the right secondary

axis showing the relative humidity. The result can be accessed in Appendix 10.

Figure 90 The picture of the studied modular house.

Table 30. Summary for data measurement in the Modular House.

Master | Living Dining

Area Outdoor | Stairs |Backdoor|Bedroom| room | Kitchen | Landing |Bedroom| room
Temp. Max (°C) 20.00 22.83 18.87 26.69 22.70 26.99 21.35 21.82 21.70
Temp. Min (°C) 0.00 14.29 13.98 19.15 16.53 18.97 17.34 18.77 16.52
Temp. Average (°C) 10.65 19.05 17.08 21.14 19.56 23.31 19.57 20.15 19.32
Std Dev 3.35 1.90 1.36 1.16 1.10 1.64 0.82 0.65 1.31
RH Max (%) 95.00 35.42 33.36 32.61 32.87 32.37 33.58 32.29 31.96
RH Min (%) 51.00 19.54 17.83 17.58 18.50 16.92 15.97 18.50 12.18
RH Average (%) 81.50 26.68 24.79 25.56 25.47 24.24 24.29 25.74 23.58
Std Dev 8.58 2.82 2.94 2.93 2.43 2.86 2.65 2.73 3.22
% Comfort 10.27 80.07 68.08/ 100.00 99.90] 100.00] 100.00| 100.00 99.78
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The data is then processed with the Al Model to show the comfort condition percentage
over the data for each group of sensors. In the model, the clothing insulation value is
assumed to be 1 clo, the recommended clothing insulation value in the winter. The activity
value is assumed to be 1.5 met, representing the activity of sitting and light work. The
age entry for the model was 30 years.

The psychrometric charts were drawn based on the Al model to show the comfort
condition. The green dot represents the comfort class group. The blue and red coloured
dot represents the uncomforted class group. The red represented the occupants that needed
the cool temperature. The blue represented the need for a warm temperature. This result

can be seen in Appendix 10.

7.4.5.1 Results for the New Modular House

The measurement and comfort analysis shows that the comfort level was 10.27% for
the outdoor data, while the indoor comfort levels are relatively good. The comfort
percentage in the backdoor was 68.08%, the main bedroom 100%, the living room 99.9%,
the stairs 80.07%, the kitchen 100%, the landing 100%, the bedroom 100%, the dining
room was 99.78% in comfort condition.

The backdoor had the lowest comfort due to the exposure to the outdoor condition
when the door was opened. The stairs also still had acceptable comfort, although the area
does not have a dedicated heater, and the heating was taken from the convection of the
air in the room. Although the heating schemes were being altered, due to the excellent
insulation of the house and the minimal leakages, the heating can be efficient.

Based on this analysis, all rooms were in comfortable conditions, with the humidity
value sometimes below the recommended value. In this case, the room humidifier is
recommended to decrease the probability of the relative humidity falling under the lower

healthy limit. The relative humidity value in the dining room was the lowest and should
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be prioritised for the room humidifier. This low humidity value was also due to no one
living in the house, so no vapour was generated by the constant respiration, bathing, or
cooking. The comfort value of the backdoor was the lowest due to the direct exposure to
the outdoor condition.

The Al model still can contribute to this case, especially related to the comfort analysis
of each area even though it was already having an advanced control system. The model
was able to give the comfort map for each location to give a better comfort situation for

the occupants.

7.4.5.2 Conclusion

In the case of advanced heating, although the heating system was already able to give
comfort to most of the area of the house, the model still contributes to better comfort
mapping for each monitored location in the house, so that the comfort can be evenly

distributed throughout the monitored area.
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Chapter 8 Conclusions

8.1 Summary of findings and conclusion

Fuel poverty in some areas of the UK has reached 25% and this issue is currently of
interest to UK policymakers and stakeholders. This problem arises along with the energy
crisis and Global Climate Change which put thermal comfort research into the focus of
interest. This work introduced a novel base system model that better reflects the user
condition for the future indoor thermal control system to be able to solve the mentioned
gaps. The system model has the compatibility to control the heating panels based on the
real-time sensor network with the adaptive thermal comfort acknowledgement capability
in a low-cost system to suit residential needs.

About 87% of the population spends their time indoors. Human comfort is a state of
mind expressing satisfactory adaptation to the immediate environment. The comfort zone
can be widened to accommodate a special group of people and lower the energy use for
comfort. There has been a great improvement in building standards, techniques, and
materials since the early twentieth century. This has led to improved energy efficiency
and as a result housing built in the 1920’s will have very different heating requirements
from housing built in the period from the 1970’s. to the present day. Using heating
contributes to approximately 61% of total energy consumption for UK homes, so a better
heating strategy is needed to lower the energy use for comfort. There is a clear correlation
between fuel-poverty homes and the building envelope typology.

A software physical model was developed to better understand thermal comfort,
resulting in a model that can justify the thermal comfort in the building with the variations
in building materials and the occupant’s presence. This model focuses on two main

housing typologies which represent about 12.78 million houses and covers about 53.4%
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of the total dwellings in the UK. The model analysed three locations: Kent, Liverpool and
Aberdeen, using each location's hourly data and predicting the percentage of heater usage
state. This analysis recommends lowering the thermal set point, which is still proven to
deliver a healthy indoor environment.

The housing typology will significantly impact thermal comfort when the temperature
set point is below 16°C, a level that generated high humidity. When the temperature set
point is above 19°C, the dwelling typology becomes no longer important to comfort but
only impacts energy usage. Therefore, recommending a temperature set point around
16°C-19°C to become the comfortable standard temperature would be desirable.

If the heater used state was used to measure the dwelling typology improvement, the
energy-saving value will be about 2%. With the assumption of 16,500 kWh - 22,000 kWh
on annual heating energy consumption per household per year, the energy-saving per
house per year will be in the range of 330 - 440 kWh. If it is multiplied by the number of
'1920s" homes which are approximately 36.6% of the total dwellings (approximately 8.76
million homes), the total energy conservation across the UK will reach about 2.89 - 3.85
billion KkWh. The carbon reduction per year can reach approximately 635.8 - 847 thousand
tonnes with 220 g CO2 eq/kWh. This result can be higher if the heating energy simulation
is considered. More than half of the heating energy can be saved with the lower
temperature set point and the use of modern construction materials as used in the modern
housing typology. The carbon reduction per year can reach 21 million tonnes.

In the development of the novel prototype, a new algorithm to recognize the comfort
zone was introduced. The revisited thermal comfort development produced the map of
two groups of researchers based on human physiology and human psychology/behaviour.
This work addresses those comfortable temperatures that are changeable rather than fixed.

Comfort can be reached if there are sufficient opportunities for people to adapt. Only with
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the adaptive approach, all parts of the whole system can become part of the comfort
solution.

This algorithm utilised the benefit of using Al for the main feature to recognize the
comfort zone. The artificial neural network was chosen because the shallow supervised
learning process can be done in a more powerful machine with multiple ASHRAE
databases. Once the training has been done in an artificial neural network, this huge
training data set is no longer needed, and the trained network can be deployed in a less
powerful machine such as a local server or controller. The multi-layer feed-forward fully
connected neural network with 100 nodes/neurons (wide neural network) was used for
the model.

The multiple ASHRAE database consists of ASHRAE RP-884 and ASHRAE Global
Thermal Comfort Database Il for the learning process. The shallow supervised learning
for the base ANN introduced better portability compared to using XAl. The ASHRAE
RP-884 consists of 25,616 entries, and ASHRAE Global Thermal Comfort Database |1
includes 81,967 entries. Previous research used part of the data to represent each label to
have a better training result but will not perform well, especially on the edge of the
comfort zone. The plain data set will only result in less than 50% of accuracy. To
overcome the problem, this work used the filtering process and data augmentation process
for the learning data.

This work proposes simple yet powerful methods to filter the data based on human
perception consistency. The need for filtering is because the data was based on precise
measurement, but the human perception data was based on the questionnaire which was
more prone to error and subjective judgment than the measured data. This filter worked
based on the comparison of parameters and omitted the data that was inconsistent. After

filtering, the ASHRAE database has 65,256 entries or 60.66%. Six parameters are
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mandatory for thermal comfort. This work also addresses the possibility of considering
five parameters, including acknowledging human adaptive, which can be deployed in the
loT infrastructure.

Semantic data augmentation was introduced to overcome the overfitting problem in
the Al learning process. The class "no change” remains untouched while the "warmer"
and "cooler" classes are augmented with the new data. In order not to introduce error and
bias, the semantic direction of the value was applied in the area that is not covered by the
ASHRAE database. The "warmer" class is augmented with the lower temperature value
under the value of mapped ASHRAE data. On the contrary, the "cooler" class is
augmented with the data, which is higher than the mapped ASHRAE data. The benefit of
this method is that the data obtained from the ASHRAE database is unaffected due to the
non-overlapped semantic augmentation direction. In this case, the data related to the
psychological aspects are still maintained, and the essence of using the ASHRAE
database is sustained. The data then can be used to properly train the ANN model.

Checking the learning against overfitting issues is not easy. This work proposes using
psychrometric chart mapping to validate the supervised learning result. This method is
based on the comfort zone map in the psychrometric chart. The overfitting results will
lead to the map not showing the correct pattern if the system is fed with the data series.

The algorithm results in wider comfort acknowledgements by acknowledging adaptive
thermal comfort. With the winter parameters, the acquired comfort percentage is 98.03%
from all of the ASHRAE multiple databases, compared to the PMV-PPD value of
69.91%, the Givoni comfort zone value of 89.19% and the combination of both with the
value of 92.84 %. There is an increase of 5.19% in the acknowledgements of the comfort
zone. With the summer parameters (clothing value of 0.5 clo), the acquired comfort

percentage is 98.49% from the ASHRAE multiple databases. There is an increase of
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5.65% in the acknowledgements of the comfort zone compared to the combination
between the PMV-PPD and Givoni. If the clothing parameters are combined (summer
and winter), the value of comfort percentage rises to 98.90%, an increase of 6.06% of the
acknowledgement.

The value of the comfort percentage can be increased to 99.46% for multiple input
parameters such as multiple age groups, compared to all the ASHRAE multiple databases,
which is an increase of 6.62% of the PMV-PPD and Givoni acknowledgement. If the CO>
emission factor used is 0.309 kge / kWh ((BEIS), 2018), this work will contribute to the
reduction of 4,842 thousand tonnes of CO> equivalent. If the emission factor used is 50
gCO2eq/kWh, which is the target for 2030 (Technology, 2011), the contribution of carbon
reduction from this work will be about 783.5 thousand tonnes of CO2 equivalent. These
values show that using an Al model to acknowledge thermal comfort can significantly
conserve energy and help reduce carbon emissions.

This model shows that the thermal comfort zone can be widened from the ASHRAE
comfort Zone and Givoni Comfort zone based on the reliable ASHRAE multiple thermal
comfort database, which can lower the energy use for thermal comfort. The shallow
supervised learning is feasible to be included in the real-time controlling model and
capable of coping with the adaptive approach for thermal comfort and giving the ability
for the model to compensate for the special occupants' needs.

This work uses sensor networks to capture real-time data. The performance of these
sensors was compared with the COTS sensors. The value of R-Squared for the
comparison between the black globe COTS temperature sensors and black globe loT
temperature sensors was 0.990 for the centre room sensors and 0.986 for the stair sensors.
For the humidity sensors, the values of the R-Squared COTS humidity sensor compared

to 10T sensors were 0.974 for the centre of the room and 0.967 for the stairs. The
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comparisons were made with 7,361 data readings with 15 minutes intervals. These values

were considered reliable due to the values being higher than 0.95.

This work also proposes to address the people's presence in the heating assessment
to achieve lower energy use since the people will dissipate their body heat. This work
shows that at least 10% of the comfortable condition can be achieved by involving the
people's presence. The learning validation based on the comfort zone mapping in the
psychrometric chart is also proposed to avoid Al learning errors in the Al-based system.
This validation uses a broad range of temperature and humidity data fed into the Al
system and maps the comfort zone to validate the learning result.

Validating and testing the model using the BRE houses at LIMU shows that the
Al model can be used to analyse indoor thermal comfort. The case studies of different
real case situations also strengthen the model use. This work delivers:

e Anoverview of the thermal comfort research map and the highlight of its importance

e An indoor thermal model which can be tuned to capture the behaviour of the indoor
thermal environment to assist the research in human comfort.

e The possibility to lower the temperature set point to reduce the energy consumption
for comfort while still maintaining the healthy indoor environment.

e The Al-based framework uses filtered and semantically augmented ASHRAE
multiple databases for shallow supervised learning (ANN).

e The validation of Al learning results is done using psychrometric chart mapping.

e The acknowledgement of a more expansive comfort zone based on multiple ASHRAE
databases, compared to the ASHRAE 55 standards (PMV PPD approach) and Givoni
comfort zone.

e Proof that the presence of the occupation has a strong impact on the indoor comfort

evaluation.
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The physiological, psychological, and behavioural approach acknowledgement was

implemented in the novel base system and shares the benefit of lowering energy use.

8.2 Limitations

Trials are not directly done with an actual human who can introduce errors or biases
into the result.

Al model cannot deliver 100% accuracy but still introduces false positives and
negatives.

The human thermal model only focuses on human presence's thermal impact and does
not add CO, and water vapour to the system.

The prototype does not implement a complete user application. The prototype only
shows the base model for the base model of Al implementation for thermal comfort.
No real user interaction and gamification with the system was implemented.

The research focused on the heating control and not the cooling.

The algorithm for controlling the heater currently does not implement the trigger
mapping zone. With the trigger mapping zone, the heater control can have a different
action between the trigger near the Al thermal comfort zone's borderline, in the middle

of the comfort zone, or far out of the comfort zone.

8.3 Recommendations and Future works

Based on the findings from this work, the recommendations are:
Revise the thermal comfort zone in the standard to accommodate broader thermal
preferences and behavioural and psychological aspects of humans, which can lead to
better comfort, acknowledging the special groups of people (young, elderly, disabled,

and temporary ill) and or lower the energy use.
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e Using the thermal comfort map in the psychrometric chart to justify the Al learning
result and validate and justify the result.

e Introduce the use of the Al model for indoor comfort evaluation.

e Consider the occupants' presence under the indoor comfort evaluation.

The future works:

This work can be extended to achieve a better result in the database for Al learning by
extending the semantic augmentation for precise humidity. This work is not focused on
giving the augmentation for humidity value but giving the augmentation for the humidity
value might be possible to increase indoor comfort. The augmentation data should be
generated correctly to not alter the humidity values based on actual measurements from
the ASHRAE multiple databases.

Implementing the entire system that all rooms are registered in the system, all user and
user preferences can be registered, and their preferences can be stored and associated
with their activities and clothing values.

Implementing different schemes for controlling the actuator according to user
preferences. This scheme can prioritise minimising energy use or maximising the
comfort factor with sensible energy use.

The use of gamification integrates the heating energy spending and the heating energy
cost. The gamification can encourage users to be concerned about their energy spending
for thermal comfort. The user can compare their daily, monthly, or yearly and be given
an incentive if they can lower their energy use for comfort. The user achievement can
also be posted and ranked to constantly endorse the user.

The system can have the ability to reduce the temperature setting in the long run. Based
on the data stored in the system and user preference, the thermal setting can be reduced

annually, for example, half a degree Celsius in a year; with this temperature reduction,
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heating energy can be saved without the user realising and affecting their comfort
perception.

The system can be tested with an actual user (human), and the users are given a
questionnaire for feedback to check the system performance and user satisfaction. The
user application interface example can be seen in Figure 91.

The system can be tested in other parts, such as tropical areas. The actuator will use
the fan and air conditioner instead of the heater to achieve thermal comfort.

Thermal comfort depends not only on the temperature and humidity but is also affected
by the other human senses, as seen in Figure 91. In this case, the lighting comfort can also
affect thermal comfort. Further research is needed to study this relation and the strategy
to increase thermal comfort using lighting comfort, which might have the benefit of less
energy achieved.

The thermal camera has been adapted for detecting the human skin temperature to
capture the human thermal comfort state. The example of the image captured by the

thermal camera can be seen in Figure 92.
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Figure 91 User interface example for the application.

Karyono



Chapter 8

Conclusions

21 21 21 21 21 21 21 22 21 21 21 21 21 212122 2122222121212222
21 21 21 21 21 21 21 21 21 21 21 21 21 2122 212221222121212121
21 21 21 21 21 21 212121212121212121212121212121212121
2121 2121 2121212121212121212122212221212122212121
21 21 21 21 21 21 21 21 21 22 21 21 21 22 2122 2122212121212121
2121 2221 2121222121212121212121212121222122212121
2121 21212121212121212121212121212121212121212121
212121212121212121212121212121212121212121212121
21 21 22 22 22 21 2222 22222121212121212121212121222122
21 21 21 21 22 22 222222212121212121212121212121212222
21 21 21 21 22 2223 2323222121212121212121212121212122
21 21 22 22 222324 2525242221212121212121212121212122
21 22 22 22242530 31 31 30 24 22 21 21 21 21 21 21 21 21 21 212121
21 22 22 2224 2731323231 2622212121212121212121212121
21 21 22 22 26 29 32 32 33 32 27 23 22 23 26 26 23 22 21 21 21 21 21 21
21 21 22 22 26 29 32 32 32 32 28 23 22 26 29 29 24 22 22 21 21 21 21 21
21 21 22 23 26 2932 32 33 32 28 23 22 27/33°33 29 26 22 22 21 21 21 21
212122 22 25 28 32 33 33 33 28 23 22 2733 33 30 26 22 21 21 21 21 21
21 22 22 22 23 26 32 33 32 32 24 22 21 24 29 29 29 26 22 22 21 21 21 21
22 22 222223 263233 3230 2321212225252725222121212121
22 23 2526 27 28 32 32 32 31 26 25 2524 23 23 24 252423 2121 21 21
22 23 26 27 28 28 31 31 32 32 28 27 26 26 25 25 25 2524 23 21 21 21 21
24 25 27 28 28 28 28 29 28 28 27 27 27 26 26 27 26 25 24 23 21 21 21 21
25 26 27 27 28 27 28 27 27 26 27 27 27 25 26 26 26 25 23 22 21 21 21 21
26 27 27 27 27 27 27 27 26 26 26 27 26 25 25 26 24 23 22 22 21 21 21 21
26 27 27 27 27 27 26 26 26 26 26 26 26 25 25 24 23 22 22 21 21 21 21 21
26 27 27 27 26 26 26 26 26 26 26 26 25 25 24 23 22 22 21 21 21 21 21 21
26 26 27 27 27 26 26 26 26 26 26 25 25 25 24 23 22 22 21 21 21 21 21 21
27 27 27 27 26 26 26 26 26 26 25 25 25 25 23 23 22 22 22 22 212121 21
27 27 26 26 26 26 26 26 26 25 25 25 25 25 23 22 22 22 222121 21 22 11
27 28 28 27 26 26 25 26 25 25 25 25 25 25 23 22 21 22 21 21 21 21 21 21
25 26 28 28 27 26 26 25 25 25 25 25 26 25 24 23 22 22 22 21 22 21 21 20

Figure 92 The output of the thermal camera with the colour mapping.

Elaborating the thermal camera image of the human skin to predict the human

comfort and temperature set point. The skin temperature relation with the human body

temperature is shown in work by Burton (Burton, 1935). It states that skin temperature is

4° or 5° C lower than the core temperature. The accurate average temperature can be

obtained by combining the rectal and surface temperatures. The average temperature

equals 0.65 x rectal temperature plus 0.35 x average surface temperature. The average

error is reduced from 7%z per cent using rectal temperature alone to 5% per cent using the

formula. Rectal measurement is the most reliable way to obtain a core temperature value

due to the low variation. The normal temperature range is approximately between 36.6

°C and 38.0 °C(Corporation). Rectal measurement is a reliable method to measure body

temperature, but it is not practical. Measuring using zero heat flow in infants can also be

as reliable as the rectal method (Van Der Spek, Van Lingen, & Van Zoeren-Grobben,

2009).
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Body temperature should be measured with precautions. The measurement should
be:
(1) convenient, harmless, and painless
(2) not be affected by local blood flow or by environmental changes.
(3) temperature changes should reflect quantitatively small changes in temperature

(Fox, Solman, Isaacs, Fry, & MacDonald, 1973)

The average temperature of the peripheral thermal compartment is 2°-4°C less than the
core temperature. The difference depends on the severity of the environment and the
consequent vasomotor responses to substantial changes in the core-to-peripheral tissue
and internal distribution of body heat. The hypothermic condition usually has a core
temperature of approximately 34.5°C. Peripheral tissue temperatures vary widely
depending on the region, environmental characteristics, and thermoregulatory
vasomotion. The MBT formula is as follows:

MBT =a - T+ (1 —a) - TSk (6)

Where ‘a’ is the coefficient 0.64 derived from the measurement, T is the

temperature of human body core temperature and TSK" is the temperature of

human body skin temperature.
For a neutral and hot environment, ‘a’ can be defined as 0.7, while additional muscular
work in a hot environment can raise ‘a’ value to reach 0.8. The value of 0.79 can also be
assigned in an extremely hot environment (Lenhardt & Sessler, 2006).

An oral measurement (in the cheek or under the tongue) is below the measured
value of a rectal measurement (up to 1.1 °C). The normal oral temperature range is
approximately between 35.5 °C and 37.5 °C. Another axillary measurement type (in the
armpit) is only possible up to a particular body mass and takes a long time. This method

also results in a lower temperature than a rectal measurement (up to 1.9 °C). The normal

Karyono 218



Chapter 8 Conclusions

axillary temperature values are between 34.7 °C and 37.3 °C. Measuring temperature n
the ear using an IR thermometer normally will result in a value between 35.5 °C and
37.7 °C. For IR thermometer with the forehead measurement values are approximately
between 35.4 °C and 37.4 °C (Corporation).

Forehead IR thermometer will not predict axillary temperature reliably, but is
comfortable, rapid, and non-invasive. Fever is defined as an axillary temperature greater
than or equal to 37.5°C. For the children aged 2 to 6 years, the forehead measurements
had a sensitivity of 88.6% and a specificity of 60% in patients with temperatures
>36.75°C. The sensitivities of the neck measurement at cut-offs of >37.35°C and >36.95
were 95.5% and 78.8% (Atas Berksoy, Bag, Yazici, & Celik, 2018).

The effect of the ambient temperature in IR thermometer reading is shown in
Figure 93 (Suarez, Nozariasbmarz, Vashaee, & Oztiirk, 2016), (Webb, 1992). The skin
temperatures can also be used to determine the overall thermal sensations people

experience (J.-H. Choi & Loftness, 2012).

Skin Location Cold (15°C) Room (27°C) Hot (47°C)
Forehead (A) 31.7 35.2 37
Back of Neck (B) 31.2 35.1 36.1
Chest (C) 30.1 34.4 35.8
Upper Back (D) 30.7 344 36.3
Lower Back (E) 29.2 33.7 36.6
Upper Abdomen (F) 29.0 33.8 35.7
Lower Abdomen (G) 29.2 34.8 36.2
Tricep (H) 28.0 33.2 36.6
Forearm (J) 26.9 34.0 37.0
Hand (L) 23.7 33.8 36.7
Hip (M) 26.5 322 36.8
Side thigh (N) 27.3 33.0 36.5
Front Thigh () 29.4 33.7 36.7

Back Thigh (P) 25.5 322 36.0
Ccalf (Q) 25.1 316 35.9
Foot (R) 23.2 30.4 36.2

Figure 93 Skin temperature reading using IR thermometer (Suarez et al., 2016), (Webb,
1992).

The thermal camera result for the forehead is in the range of 32 °C to 33 °C. The

axillary temperature reading is 36°C. The room temperature is 24 °C. The temperature
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reading difference is 3 to 4 °C. Based on the result and the literature review; the thermal
camera module should be compensated if it is used to measure the thermal sensation. The
thermal camera module is factory calibrated for the temperature reading. The detection
of the thermal sensation will have to be corrected when it is used at a cold or hot

temperature.
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