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Abstract 

The percentage of households in fuel poverty, who cannot afford adequate 

heating, has reached 25% in the United Kingdom (UK), resulting in a critical threat to 

life. Therefore, this issue is currently of interest to UK policymakers and stakeholders. 

Currently, the main areas of interest relating to thermal comfort are factors relating to 

indoor health, the energy crisis, and Global Climate Change. 

There was a gap in the acknowledgements of adaptive thermal comfort 

(psychological and human behaviour aspects) due to the focus on human physiology 

(Predicted Mean Vote - Predicted Percentage Dissatisfied/ PMV-PPD). Furthermore, 

existing heating control systems need to be optimized for using an electric radiant heating 

panel to anticipate the future focus on renewable energy sources.     

This work has developed a novel base system model that better reflects the user 

conditions for the future indoor thermal control system based on the existing ASHRAE 

RP-884 and Global Thermal Comfort Database II combined with new data collections 

and case studies. The system model has the compatibility to control the heating panels 

based on the network of sensors and flexible user control with a low-cost system approach 

to suit residential needs.  

The artificial intelligence (AI) model with shallow supervised learning 

implemented in the system can enhance the existing model to produce a 98.49% comfort 

zone from all ASHRAE multiple databases. In contrast, the PMV-PPD only gives 69.91% 

comfort, while the Givoni approach gives 89.19%. With a 6.62% wider comfort area and 

the assumption of direct conversion to saving, the base system model can contribute to 

about 783.5 thousand tonnes of CO2 equivalent per year with the 2030 emission factor. 

Widening the thermal comfort zone also acknowledges a particular group that needs a 

different set point. This work also recognized that acknowledging the human presence 
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during the thermal comfort assessment can increase the comfort level more than 10% with 

the same heating arrangement. 

The initial model assessment was also developed using MATLAB to represent the 

UK’s indoor conditions for typical residential properties built prior to the 1920s and after 

the 2010s and highlights the suitable parameters for indoor comfort with lower energy 

use. The simulation results recommend lowering the thermal set point for thermal 

comfort. The result is based on hourly thermal data across the UK on the different housing 

typologies. 

This solution can bridge the physiology and psychology aspects and benefit the engineers 

and the researchers in the thermal comfort area.  
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Chapter 1  Introduction 

1.1 Human comfort  

About eighty-seven per cent of the population spend their time in an artificial climate 

(indoor), according to the research of NHAPS (Klepeis et al., 2001). This fact justifies 

that over the past fifty years, there has been a dramatic increase in research on thermal 

comfort methods. Human comfort is a state of mind expressing satisfactory adaptation to 

the immediate environment. Human comfort can be divided into smaller aspects, such as 

lighting, acoustics, thermal comfort, and air quality. These aspects are not independent, 

but there are relations between these comforts, which are visualised in Building Bulletin 

101 Guidelines on ventilation, thermal comfort and indoor air quality in schools (Daniels, 

2018), as shown in Figure 1. The arrows represent the relations of each aspect of comfort. 

Human
Comfort

Thermal Comfort Air Quality

Lighting Comfort Acoustic Comfort

Air Quality IndexAir VelocityAir TemperatureRadiant Temperature Humidity

Background NoiseReverberation TimeLighting Level Uniformity

 

Figure 1 Human comfort aspects and their relations. 

 

Although outdoor comfort is also studied in some of the papers (Höppe, 2002) 

(Coccolo, Kämpf, Scartezzini, & Pearlmutter, 2016) (Lai, Liu, Gan, Liu, & Chen, 2019), 

the majority of research is focused on indoor thermal comfort. Based on the Scopus search 

result, “indoor” “thermal comfort” returns 73.3% more dominant compared to “outdoor” 
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“thermal comfort due to the nature of human living. Based on this fact, this work will 

focus on indoor thermal comfort. 

Thermal comfort is one of the primary concerns in the design process of the artificial 

climate inside the building and significantly impacts health and safety. Some research 

found a strong relationship between ambient temperature and the cause of specific 

morbidities. The lag effect of hot temperature on morbidity was shorter than the cold and 

will also be affected by sociodemographic and pollution factors. There are enough studies 

to claim that mortality can be associated with cold and heat waves (X. Ye et al., 2012). 

Heat exposure was associated with increased cardiovascular, cerebrovascular, and 

respiratory mortality risk. Cold-induced cardiovascular morbidity increased in youth and 

the elderly (X. Song et al., 2017). 

In the past 30 years, The World Health Organization estimates that yearly over 150,000 

fatalities are caused by climate change (Patz, Campbell-Lendrum, Holloway, & Foley, 

2005). Besides the human factors, the dwelling significantly influences the protection 

against heat and cold waves. Many existing dwelling stocks cannot provide enough 

protection against the heat and cold waves (Ormandy & Ezratty, 2016). Besides health 

and safety risks, thermal comfort will be beneficial also for productivity. If people work 

in an uncomfortable environment, they will behave unsafely due to the deterioration of 

their physical performance and thinking ability. The probability of committing an error 

will be higher due to the lower concentration. The indirect effect of thermal comfort is 

improving the working environment's morale (t. H. a. S. Executive, 2019). 
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1.2 Conditions Which Show the Need for This Research 

1.2.1 Global Climate Change 

Thermal comfort has mainly focused on health and safety concerns. There is also a 

complementary shift for research focused on lowering energy consumption and climate 

change. The CO2 emission has grown 1.7% to reach 33.1 Gt and become the highest 

growth since 2013. This growth is due to higher energy consumption (Eurostat, March 

2018). The growth in the global economy and the increase in the energy demand for 

heating and cooling are the leading cause of this increase. Global climate change (GCC) 

can decrease heating needs by 2%. 

On the contrary, the need for air conditioning has increased, especially in cooling 

during summer, due to the effects of increased humidity (Scott, Wrench, & Hadley, 1994). 

Increasing the global mean surface air temperature would benefit some countries but 

trigger higher losses for others. In the United States, the weather triggered about a 60% 

increase in CO2 emissions (Tol, 2002a). The UK Climate Projections 2018 (UKCP18), 

which gives the UK climate projection tools, also predicts that the future will have 

warmer, more wet winters and hotter, drier summers (Jason A. Lowe, 2018). If the 

globally averaged values were used, the world impact would be excess spending of 3% 

to compensate the GCC (Tol, 2002b). The GCC impact will be worse in the later years 

and will have a worse impact on the more impoverished regions (Tol, 2002a). The 

development of energy-efficiency scenarios should differ from one location to another 

because the effectiveness of such designs will not be the same for each case (Scott et al., 

1994). 

HVAC (Heating Ventilation and Air Conditioning) systems are employed to maintain 

comfort. In Europe, the primary use of energy by households is for HVAC. It can reach 
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more than 64% of the final energy consumption for the residential buildings (Eurostat, 

March 2018), which is very significant. The more power produced will always contribute 

to the carbon footprint and will have a consequence on climate change and temperature 

rise. The household sector represents 27.2 % of final energy consumption in Europe. 

Anticipating these trends, the UK will introduce a Future Homes Standard, mandating the 

end of fossil-fuel heating systems in all new houses from 2025 (HM Treasury, 2019), 

drive zero carbon emission and leverage the Paris Agreement. The target is to keep the 

global temperature rise this century below 2 degrees Celsius and even further to limit the 

temperature increase to 1.5 degrees Celsius (Change, 2018). More energy-efficient 

systems are proposed without ignoring the aspect of human comfort. There has been a 

tremendous increase in the papers published from the 1970s to the 2010s (Rupp, Vásquez, 

& Lamberts, 2015). 

This work presents the comparative development timelines between the human thermal 

physiology approach and the human behaviour approach for thermal comfort. These will 

give an insight into the other researchers that want to focus on this area of work. This 

work aims to improve the adaptive approach using Artificial Intelligence (AI). This work 

uses the Artificial Neural Network (ANN) and combines the Predicted Mean Vote and 

Predicted Percentage Dissatisfied (PMV-PPD) approach taken from the ASHRAE 

database. The AI learning process acknowledges the behavioural aspects of thermal 

comfort. The aim is to produce a better intelligent system by coping with the limitation 

of AI. The approach is becoming the other alternative for Explainable AI, which is 

resource consuming.  

1.2.2 New Regulations and Regulation Limitations  

 Building regulations related to indoor comfort and fuel poverty are outlined in Part F: 

Ventilation (H. Government, 2010a) and Part L: Conservation of fuel and power (H. 
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Government, 2010b). These regulations cover both dwelling and other 'non-dwelling' 

building types. They consist of Approved Document L1A: Conservation of fuel and 

power in new dwellings, Approved Document L1B: conservation of fuel and power in 

existing dwellings, Approved Document L2A: Conservation of fuel and power in new 

buildings other than dwellings and Approved Document L2B: conservation of fuel and 

power in existing buildings other than dwellings. 

 In addition to building regulations, British Standards also give design parameters for 

indoor comforts, such as BS EN 15251:2007 Indoor Environmental Input Parameters for 

Design and Assessment of Energy Performance of Buildings (Standard, 2007) and BS 

5925:1991 Code of practice for ventilation principles and designing for natural 

ventilation (BSI, 2000). Besides the standard defined by the UK Government and 

Standardisation body, some guidance documents are published by professional bodies 

such as the Chartered Institution of Building Services Engineers (CIBSE). Although it 

covers residential buildings, many of the cases and annexes provided are targeted for 

buildings in general and non-residential buildings (Engineers, 2012). 

1.2.2.1 Residential Properties 

 Within the UK Building Regulations, Appendix A of Approved Document Part F of 

the Building Regulations (H.M.Government, 2013) outlines the maximum acceptable 

quantity of volatile organic compounds (VOCs), nitrogen dioxide, carbon monoxide and 

nitrogen dioxide within residential properties. These figures are based on the Committee 

on the Medical Effects of Air Pollutants (COMEAP) (H.M.Government, 2004). For 

newly built residential properties, standards for ventilation and Indoor Air Quality (IAQ) 

are demonstrated within H.M.Government (2019c). In terms of relative humidity, the 

recommended levels within domestic properties as outlined in H.M.Government (2013) 

and can be categorised as follows:  
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• The daily average is less than 85% RH  

• The weekly average is less than 75% RH 

• The monthly average is less than 65% RH 

 These regulations have been modified since the previous 2006 edition of the Building 

Regulations Part F. It was noted by H.M.Government (2013) that these regulations were 

reformed to comply with research conducted by Altamirano-Medina, Davies, Ridley, 

Mumovic, and Oreszczyn (2009). 

1.2.2.2 Workplaces 

 Apart from more generalised documents as per BS EN 15251: 2007 (Standard, 2007), 

the building regulations specific to building type are mentioned in Building Regulations 

Part L (H. Government, 2010b) Approved Document L2A and L2B, which are for 

buildings other than dwellings. CIBSE also published Guide F 'Energy efficiency in 

buildings’ (Engineers, 2012), further explaining and supporting Building Regulations 

Part L2. This CIBSE guide also provides more detailed information on how to comply 

with the Building Regulations Part L due to the complexity of compliance with this 

standard. Additional explanations and cases are given to support the building services 

engineers in complying with the standard.  

 Another CIBSE document that covers the issue of health aspects in the workplace is 

CIBSE TM40 'Health Issues in Building Services’ (Engineers, 2020). This document 

outlines all aspects of health issues, including health and wellbeing, facilities 

management, thermal conditions, humidity, air quality, lighting, acoustic, 

electromagnetic field, and water quality. Supporting pre-existing legislation the TSO  

Workplace (Health, Safety and Welfare) Regulations 1992 No. 3004 (TSO, 1992), CIBSE 

TM40 further clarifies the implementation of the regulation in more practical resources. 
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Other relevant CIBSE documentation for workplaces include CIBSE Guide A: 

Environmental Design (Engineers, 2015), CIBSE Guide B2: Ventilation and ductwork 

(Engineers, 2016) and also CIBSE Guide F: Energy Efficiency in Buildings (Engineers, 

2012). 

 In the US, the  American Society of Heating, Refrigerating Air Conditioning Engineers 

(ANSI/ASHRAE) utilise ANSI/ASHRAE Standard 55-2017 Thermal Environmental 

Conditions for Human Occupancy (R. A. C. E. American Society of Heating, 

Incorporated, 2017). Another document created for a specific working environment is 

ANSI/ASHRAE/ASHE STANDARD 170-2017, 'Ventilation of health care facilities’ 

(Gary Hamilton P.E., 2018). 

1.2.3 UK Housing Typology and Fuel Poverty 

The age range of residential dwelling typologies within the UK is vast, where only 

17% of homes have been built in the last 30 years (Figure 2, (H.M.Government, 2019a)). 

With variation in age comes a variation in building standards, techniques and materials 

different from those used today to improve energy efficiency and, as a result, having 

different heating requirements. For example, within pre-1919 dwellings, energy costs are 

over 70% higher than their post-1990 equivalents (H.M.Government, 2019b). The 

comparison between the 1920s wall and the post-1990s can be seen in chapter 3.2.2, 

Figure 19. Considering Figure 2, over 20% of English residential dwellings are within 

this category (pre-1919 dwellings), producing around double the carbon emissions. 

Figure 2 also has a secondary y-axis representing the number of houses assigned to these 

dwelling ages.   

The dwellings built using solid masonry bricks without air gaps (solid uninsulated 

walls) are referred to as '1920s' homes and were constructed from pre-1919 and 1919-44 

in Figure 2. These homes are approximately 36.6% of the total dwellings, or about 8.76 
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million. The dwellings built using the latest well-insulated walls mentioned in Figure 2 

as post-1990 are about 4.02 million or about 16.8% of the total dwellings. This study will 

focus on these two main groups, which are about 12.78 million houses covering about 

53.4% of the total dwellings in the UK. 

Figure 2 Dwelling age of properties of English homes (H.M.Government, 2019a). 

 

Using heating contributes to approximately 61% of total energy consumption for UK 

homes ((NEF), 2014). As previously mentioned, there is also a requirement for more 

energy required to heat these older homes, which have a subsequently higher fuel cost. 

The inability to afford adequate, satisfactory heating energy in a home is defined as fuel 

poverty (Boardman, 1991), (Liddell, Morris, McKenzie, & Rae, 2012), (Moore, 2012). 

Particularly in pre-1919 homes, the likelihood of fuel poverty is double the national 

average, where all countries within the UK experience fuel poverty, as demonstrated in 

Figure 3. 

 Understanding how specific regions are affected by fuel poverty is imperative for 

developing a more profound knowledge and demonstrating locational requirements. 

Specifically, Figure 4 demonstrates two geographically opposite locations, Liverpool 
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(North West) and Kent (South East), which have been highlighted in purple and orange 

(respectively). In Liverpool, it is demonstrated to be one of only 14 local authorities in 

the whole of England to be at the highest end of fuel poverty with between 14.1-20.9% 

of homes experiencing it. By contrast, Kent has between 8.1-10% of homes in fuel 

poverty, one of 106 local authorities (H.M.Government, 2020b). 

 

Figure 3 Percentage of fuel-poor households within the UK (Northern Ireland Housing 

N. I. H. Executive, 2019; Scottish S. Government, 2020; Welsh W. Government, 2019; 

H.M.Government, 2020a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. Sub-regional map of fuel poverty (by the proportion of local authority) within 

England (H.M.Government, 2020b). 
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 By comparison, in Scotland, the national average for fuel poverty households from 

2016-18 was 25% (S. Government, 2019); this is represented in Figure 5. An orange 

arrow highlights Aberdeen. The results demonstrated in Figure 5 are that within 

Aberdeen, fuel poverty is approximately slightly below the national average at 23% of all 

households in fuel poverty. 

 

Figure 5. Percentage of fuel poverty homes in Scotland (by the local authority) (where 

an orange arrow highlights Aberdeen) (S. Government, 2019). 

 

 Further, Figure 6 (a) demonstrates a clear correlation between fuel poverty homes and 

the building envelope typology. Solid and un-insulated homes have the most significant 

proportion of homes that fall into the fuel poverty classification at approximately 16% of 

all homes. Figure 6 (a) shows that the average fuel poverty gap is the largest if residents 

live in solid uninsulated homes. The fuel poverty gap represents the value or quantity of 

money required to move the household out of fuel poverty; for solid, uninsulated homes, 

this is over £400 per year.  

 The fuel poverty problem gets worse due to the energy price increase and forces  

people in the UK to a choice between heating and eating, as shown in the headlines of 
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some popular newspapers in the UK (Radnedge, 2022), (Partington, 2022), (Mirror, 

2022), (Hiscott, 2022), (Alderson, 222), (Shaw, 2022).  The energy price rise was steep, 

with the price more than doubling its value within the current year (E. I. S. Department 

for Business, 2022). The energy price chart showing the rise in gas and electricity prices 

can be seen in Figure 6 (b). 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) Effect of wall type on the proportion of households in fuel poverty and 

average fuel poverty gap (H.M.Government, 2020a)  (b) Weekly average prices forward 

delivery contracts of gas and electricity in the UK (Ofgem, 2022b) (Ofgem, 2022a) . 

 

 The poverty fight effort is also stated in the Sustainable Development Goals (SDGs) 

initiated by the United Nations, which are an urgent call for action by all countries in a 
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global partnership (Development, 2016). The focus is on 17 goals which include fighting 

against poverty and other deprivations, tackling climate change and achieving sustainable 

cities and communities.  

 The UK Government commits to cutting greenhouse emissions to net zero by 2050. 

Since 1990, the UK has cut emissions by over 40%. The target by 2035 is cutting 

emissions by 78%. This target is also applied to energy use in buildings and residential 

dwellings, especially in heating and cooling. Decarbonising energy in buildings is also a 

key part of the Clean Growth Strategy. One of the ways to achieve it is to phase out the 

installation of natural gas boilers beyond 2035 (the Secretary of State for Business, 2021). 

There will be a move to a gradual transition to low-carbon heating. The new low-carbon 

heating will soon be the mainstream consumer option. 

 

1.3 Aim and Objectives 

1.3.1 Aim 

 Aim: to develop a base system that predicts the current comfort state according to the 

adaptive thermal comfort to regulate buildings' thermal conditioning, resulting in 

enhanced comfort and efficiency through a novel solution based on the fusion of wireless 

sensors and artificial intelligence that sense the radiant temperature, relative humidity and 

monitor thermal comfort in real time with a reasonable price for residential dwellings.  

1.3.2 Research Objectives  

 In general, the outcome of the novel solution for achieving indoor thermal comfort for 

residential was reached by elaborating on four phases of research. Phase one activities 

are literature review, survey related to the smart system and identifying the novelty and 

planning review. The objective of this phase was mapping the gap and possible 
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improvement in the thermal comfort field that not only focused on Fanger's approach but 

also acquired the Adaptive Thermal Comfort approach (this corresponds to phase 1 of 

Figure 7). 

 Phase two activity was the development of a model for heating to simulate the solution 

that can benefit the energy aspect of thermal comfort. The objective of this phase is to 

develop a thermal comfort model based on the housing typology and hourly outdoor data, 

representing the UK dwelling conditions (this corresponds to phase 2 of Figure 7). With 

the whole year's hourly weather data, this MATLAB model was able to give insight into 

the physical parameters that affect indoor thermal comfort, including the people's 

presence as a milestone for the development of the novel system.        

 Phase three has the activities of the development of the thermal comfort framework 

and using the multiple ASHRAE Database for AI training. The objective of this phase 

was to develop the real-time model using the adaptive approach for thermal comfort. The 

framework elaborates the wireless sensors and artificial intelligence to monitor thermal 

comfort in real time. The system was designed considering the price point of the 

residential use. The AI learning process were based on the multiple ASHRAE databases 

to give the ability for the framework to accommodate adaptive user processes for 

prominent energy saving and fitted in the local controller to increase the system's 

robustness and make it more cyber-safe (this corresponds to phase 3 of Figure 7). 

 Phase four's activities were testing the system in the laboratory, the BRE house to 

represent the 1970s housing typology and conducting five case studies to represent 

multiple dwellings’ conditions. This procedure had the objective to validate the system 

against the actual implementation of the framework and compare the system against the 

use of COTS sensors (this corresponds to phase 4 of Figure 7). 
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• Literature review/Survey 

• Identify the novelty and 

planning review. 
 

• System Physical 

Modelling  

• Development of Model for 

heating in MATLAB 
 

• Testing in the lab and 
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Figure 7 The developped entities and the research phases. 
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1.4 Novelty  

    This work focuses on the system to achieve indoor thermal comfort for residential use. 

The main novelty is the developed system model that can become the standard system for 

developing robust thermal comfort systems for residential with the ability to acknowledge 

the adaptive thermal comfort. The developed system predicts the comfort zone which can 

be integrated to control the electric residential heating. This base system can be said to 

have “intelligent at cost” because it uses affordable consumer-grade electronics to be 

implemented for residential use and work with real-time sensor data.   

 This system has the following properties: 

• able to monitor multiple locations and control the heater in real time (based on 

IoT sensors) 

• robust with the low cyber security concerns because the algorithm can be 

deployed in the local controller 

• acknowledging the psychology approach of thermal comfort by the predictor 

algorithm 

• able to acknowledge 6.06% wider comfort zone from ASHRAE data set compared 

to the PMV-PPD and the Givoni comfort zone 

      The initial phase of this work also assesses the possibility of lowering energy use 

without affecting health by using the digital twin model developed in MATLAB.  

1.5 Chapter Overview 

 This thesis is divided into eight chapters that help the reader understand the 

background of this work, the approach taken, and the result and conclusion. The 

introduction gives the context and background of the importance of this research. Starting 

from the human comfort point of view, the global climate change and the current 
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conditions drive the need for further work that needs to be done in this field. The first 

chapter also highlights the aims and research objectives and the novelty that this work 

can give to the society of knowledge. Part of this chapter has been published in the paper 

about the thermal comfort overview (Kanisius Karyono, Abdullah, Cotgrave, & Bras, 

2020) and hygrothermal model (Kanisius Karyono, Romano, Abdullah, Cullen, & Bras, 

2022). 

 The second chapter addresses the development of the field of thermal comfort that 

affects the currently defined standard. The highlighted previous works contributing to 

human physiology, human psychology and human behaviour developments are addressed 

along with their pros and cons. This chapter also includes the viewpoint of the health 

aspects and the special group of people like the young, elderly, and temporary ill who 

have different preferences in the thermal set point. The research progress based on the 

publication parameters are also assessed in this chapter, along with Daniel Kahneman's 

Principle related to the approach this work offered. The second chapter also discusses the 

latest development in simulation, WSN and AI technology that have become the enabler 

for the improvement in this field.  Part of this chapter has been published in the paper 

about the thermal comfort overview (Kanisius Karyono et al., 2020)  and experience and 

memory principle (Kanisius Karyono, Abdullah, Cotgrave, & Bras, 2021). 

 The third chapter focuses on the methodologies used in this work. This chapter 

addresses the phases conducted in the research, from the literature review, the simulation 

in MATLAB and prototype development. The last sub-chapter describes the test 

procedures for testing the prototype. 

 Chapter four discusses the simulations and the results obtained from the model which 

is one of the novelties and contributions of this thesis. This chapter describes the detail 

about the model, the parameters involved in the model, assumptions and model 
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simplification then followed by the result from the simulation and the analysis of the 

simulation output. This chapter also address the validation for the simulation. The results 

of the simulations are validated against the ASHRAE Global Thermal Comfort Database 

II and the AI model that is explained in the chapter six of this work. The thermal comfort 

model recommends lowering the thermal set point to lower the energy use for thermal 

comfort. Part of this chapter has been published in the paper about the hygrothermal 

model (Kanisius Karyono, Romano, et al., 2022). 

 The fifth chapter discusses the system design for the proposed IoT system prototype. 

This chapter addresses the perception of the user about smart system and sensors use and 

addresses the needs of the adaptive system. The topology of the system and the system 

flow, the design of the hardware and software for the prototype are discussed in the next 

sub-chapter. The user interface and the database structure for the prototype are also 

addressed in this chapter. Part of this chapter has been published in the paper about the 

thermal comfort overview (Kanisius Karyono et al., 2020) and the adaptive system for 

industry 4.0 (Kanisius Karyono, Abdullah, Cotgrave, Bras, & Cullen, 2022). 

 Chapter six discusses the artificial intelligence part of the system, which is also 

becoming one of the novelties and contributions of this work. This approach proposes 

shallow supervised learning based on the multiple ASHRAE Databases with filtering and 

data Semantic Augmentation. The previous research only includes part of the database 

for learning or uses the more complex method for the artificial intelligence. This work 

offers the use of fundamental ANN shallow supervised learning methods for thermal 

comfort. This chapter discusses the need for filtering for the learning data set and the 

filtering algorithm. Increasing the accuracy of the learning process was done by 

implementing data semantic augmentation.  The learning result was also compared with 

other existing methods. This chapter also proposes psychrometric-based verification and 
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parameter visualisation. Part of this chapter has been published in the paper about the 

human presence (K. Karyono, Abdullah, B.M., Cotgrave, A.J., Bras, A., Cullen, J. , 2022) 

and the paper on reliable learning (K. Karyono, 2023). 

 The seventh chapter discusses the testing against the controlled conditions inside the 

lab and in actual conditions by using the BRE house to represent the condition of the 

1970s house. This chapter discusses the result of these tests and compares sensors and 

validations. This step also shows that the people's presence can benefit heating energy 

conservation. Some case studies were also assessed to introduce the AI model's approach 

to assessing thermal comfort. The case studies include the case of a humid dwelling, the 

new dwellings, the refurbished flats, the use of the new materials for thermal 

improvement and the new modular house with advanced heating controls. Part of this 

chapter has been published in the paper about human presence (K. Karyono, Abdullah, 

B.M., Cotgrave, A.J., Bras, A., Cullen, J. , 2022) and the paper on AI field study (K. 

Karyono, Abdullah, B.M., Cotgrave, A.J., Bras, A., Cullen, J., 2022). 

 The conclusions and future works are provided in chapter eight, which is the last 

chapter. This chapter highlights all the contributions and novelty of this work for thermal 

comfort. The references and appendixes are also included in this thesis to provide more 

detailed materials for supporting the finding.  
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Chapter 2  Literature Review 

2.1 The Development of the Methods in Thermal Comfort 

 Thermal comfort began to gain attention in the early 1920s when it became possible 

to directly control the indoor environment's microclimate. In the traditional approach, 

using fireplaces to control the temperature was mandatory. In the second half of the 

nineteenth century, it was necessary to model the building as an open system and apply 

the laws of thermodynamics (Fabbri, 2015). Various electronic controllers were 

developed, which led to the evolution of comfort monitoring. Fanger's comfort model was 

introduced in the 1970s, focused on physically based determinism along with the 

introduction to the comfort equation. The quality of air movement and sophisticated 

models that map the human body's physics and physiology were also developed to build 

coherent, global thermal perception. These developments were also driven by energy 

efficiency (R. J. de Dear et al., 2013). In the twentieth century, the focus goes on humans 

as the centre point of the design to improve the health and comfort of people and their 

homes (Fabbri, 2015), (R. J. de Dear et al., 2013).  

 The equivalent temperature of an environment corresponds to the same temperature in 

an environment where the temperature is uniform, the air is stationary, and the moisture 

content corresponds to 100 %. Therefore, the human body cannot exchange energy with 

the environment. If the actual temperature of an environment is 22°C with a relative 

humidity of 50 % and airspeed of 0.2 m/s, it is equal to the temperature of 19.6 °C with a 

relative humidity of 100 % and no airspeed (Patz et al., 2005).  

 It is becoming essential to review the progress of thermal comfort due to the growth 

of low-cost sensing solutions. The provision of lighting and thermal comfort has been 

widely increased to existing and future intelligent buildings to aid productivity, health, 
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and well-being. Thermal cameras, for example, have the potential to be used widely in 

the home comfort system nowadays. It used to be so costly that only the military, 

firefighters, and surveyors could use it due to its price (BBC, 10 January 1985; Tu, August 

18, 1997; villo, 2002). Besides sensors, artificial intelligence also plays a vital role in 

creating more intelligent solutions for human comfort. The system can perform smartly 

to maintain comfort while lowering energy usage.  

Figure 8 presents the evolution in the enhancement of the thermal comfort approach 

in houses from 1920 until the present. PMV-PPD is the typical method for comfort 

analysis. It focussed on thermal physiology. The other method, the adaptive method, is 

based on human behaviour. There are three thermal adaptation types (Brager & de Dear, 

1998): 

• Physiological which is related to the body's reaction due to the temperature change. 

• Psychological which is derived from the state of mind of previous experiences.  

• Behaviour related adaptation  

The adaptive method can give the flexibility and personalisation needed to overcome the 

problem due to the variability of people's metabolism, historical exposure, and 

behavioural preferences.  
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Figure 8 Timeline diagram for developing the methods in "Thermal Comfort" from 

1920 until now. 
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2.1.1 Pre 1920s 

 In pre 1920s times, people used fireplaces and stoves to control the indoor temperature. 

Another way to gain comfort was using adaptive human behaviour and clothing 

arrangement. Later, the study of thermodynamics was used to model the building to study 

the comfort parameter. The military also played their part in the history of comfort by the 

work to achieve comfort, for example, on ships. One of the pioneers in this era was John 

Bartlett Pierce, who founded a boiler factory, heating systems and radiators in 1892. The 

company was among the most important manufacturers of heating systems in the United 

States. His legacy is the foundation which became the institute to support the research in 

this field. The institute focuses on the population's health, which is achieved using space 

heating. The research was focused on two major topics, the thermodynamic study of the 

physiological processes and the relationship between the human body and the 

environment concerning well-being,  physical and physiological behaviour (Fabbri, 

2015). 

 The comfort also attracted interest because the thermal conditions affected the factory 

output. The notable works were from Vernon in 1919, assessing the workers in the steel 

industry, tinplate workers and the accident rate in the munitions industry related to the 

thermal condition. In 1927 Vernon also assessed the effect of temperature rise in coal 

mining. Weston conducted other research in 1922, Wyatt et al. in 1926 on the weaving 

linen industry, and Farmer et al. in 1923 on the glass industry. All had a similar result: a 

lower output or work rate in high-temperature exposure. Besides the lower output, the 

accident rate also increased (Parsons, 2020 ). 

 Houghten and Yagloglou began to research comfort based on empirical rules in the 

1920s and published the paper “Determination of the comfort zone” in 1923. They 

proposed the lines of comfort on the psychrometric chart where the temperature is 
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uniform, the air is stationary, and the moisture content corresponds to 100 %, where the 

human body cannot exchange energy with the environment. The air velocity later being 

included in the diagrams of wellness by Vernon H.M. and Warner and C.G (Fabbri, 2015). 

 

2.1.2 Fanger PMV-PPD and Human Physiology 

 The development of a thermal model by Fanger in 1970 (Fanger, 1970) was considered 

a milestone. This work has become a standard reference for thermal comfort due to the 

experiments and model it presented. The experiments were conducted in a controlled 

room condition. The formulated model makes it possible to calculate the effect of 

variables to gain comfort. This model stated that no significant difference was generated 

by sex, age, body build, menstrual cycle, ethnic differences, food, circadian rhythm, 

crowding, and colour. This model is known as the Predicted Mean Vote (PMV) /Predicted 

Percentage of Dissatisfied (PPD). This model has also become the basis of the ISO 7730-

2005 (Höppe, 2002). The mean radiant temperature and radiation data can be calculated 

for human comfort.   

Fanger's equation shows the relation of the parameters that can affect human comfort. 

This equation, also acknowledged by ASHRAE, comprises the PMV-PPD model in the 

ASHRAE-55 Standard (Enescu, 2017). This standard mentions the parameters which can 

have effects on human comfort. Six parameters are mandatory for thermal comfort.  

Two parameters are related to the occupants, which are: 

• metabolic rate  

• clothing insulation 

Four others are related to the surrounding environment, which are: 

• air temperature 
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• radiant temperature 

• airspeed 

• humidity  

The met unit represents the individual metabolic rate. One met is equal to 58.2 W/m² 

or 18.4 Btu/h·ft², which is equal to the energy produced per unit surface area of an average 

person seated at rest. The surface area of an average person is 1.8 m². Writing for example, 

also equal to 1.0 met unit. The activities within 0.1 met units can be grouped into one 

entity. The limitation for this is for the occupants, whose time-averaged metabolic rate is 

more than 2.0 met. The basic equation for thermal balance can be calculated using the 

formula presented in equation 1 (Fanger, 1970). 

M−W = C + R + E + (Cres + Eres) + S                  (1) 

Where:   M     : the metabolic rate 

W     : mechanical work is done 

C       : convective heat loss from the clothed body 

R       : radiative heat loss from the clothed body 

E       : evaporative heat loss from the clothed body  

Cres   : convective heat loss from respiration 

Eres    : evaporative heat loss from respiration 

S       : the rate at which heat is stored in the body tissues 

An empirical table lists everyday activities and their met units (ASHRAE, 2017). 

Clothing insulation is also presented as a table consisting of the clothing items and their 

clothing insulation values in clo units. One clo is equal to 0.155 m²·K/W or 0.88 

°F·ft²·h/Btu. This corresponds to trousers, a long-sleeved shirt, and a jacket. The limit of 

occupants grouping is when the clothing difference is more than 0.15 clo. However, to 

use the table values, there are some limitations for the clothes with high impermeability 
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to sweat, more than 1.5 clo, and if the occupants are in contact with bedding. The seven 

levels of people's thermal sensation can be seen in Figure 9.   

 

 
 

 

 

 

 

Figure 9 Thermal comfort definition from PMV-PPD acknowledged in ASHRAE 

standard. 

 

The thermal indexes were added along with the equations in subchapter 2.1.2 Fanger 

PMV-PPD and Human Physiology, as follows: 

Furthermore, one of the ways to predict thermal comfort and thermal sensation is by using 

the following equations (R. American Society of Heating, Air Conditioning Engineers, 

American Society of Heating, & Engineers, 2017): 

tsk = 35.7 – 0.0275(M – W)      (2) 

Ersw = 0.42 (M – W – 58.15)     (3) 

Where: M : the metabolic rate, in watts per square metre (W/m ); 

W : the effective mechanical power, in watts per square metre (W/m2 ); 

tsk : mean skin temperature (°C); 

Ersw : sweat rate (L/h) 
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The previous equations (1-3) were expanded to include a range of thermal sensations by 

using a Predicted Mean Vote (PMV) index. This was a way to cope with Fanger's equation 

when people were not satisfied. The PMV index predicts the mean response of a large 

group of people according to the ASHRAE thermal sensation scale. The PMV is 

calculated using the following equation: 

PMV = [0.303 exp (–0.036M) + 0.028] L    (4) 

Where: M : the metabolic rate, in watts per square metre (W/m ); 

L : the thermal load on the body, in watts (W) 

PMV gives good results for standard conditions of sedentary activity and light clothing 

but needs to be validated with the different range of clothing and different activities. The 

difference in clo values and met values can result in the increase or decrease of skin and 

body temperature and a change in thermal sensation. The predicted percent dissatisfied 

(PPD) can also be estimated from the PMV as follows: 

PPD = 100 – 95 exp [–(0.03353PMV4 + 0.2179PMV2)]     (5) 

The ASHRAE thermal sensation was developed for use in quantifying people's thermal 

sensation vote (TSV). The acceptable comfort temperature range according to the 

ASHRAE thermal environment for general comfort is within the PMV range of -0.5 to 

+0.5 (R. A. C. E. American Society of Heating, Incorporated, 2017). Changes in 

temperature and water vapor pressure can change the thermal sensation vote. A person 

might experience a thermal sensation of -0.5 near the cooler zone's boundary and +0.5 

near the warmer zone's boundary according to the ASHRAE thermal sensation scale (R. 

American Society of Heating et al., 2017). Thermal sense alone is not a good indicator of 
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thermal comfort when there is excessive humidity. The discomfort was brought on by the 

sensation of moisture, which results in more friction between the skin and the clothing. 

In the cold environment, the additional 0.1 clo or 0.1 met will impact saving energy 

because it can lower the operating temperature to approximately 0.8°C.  On the contrary, 

a decrease of 0.1 clo or 0.1 met corresponds approximately to a 0.8°C increase in 

operative temperature (Enescu, 2017). Achieving comfort can be done by maintaining a 

humidity ratio below or the same as 0.012. The lower level is not specified, but if the 

humidity is very low, it can cause skin drying, irritation of mucous membranes, dryness 

of the eyes, and static electricity generation. The high airspeed can extend the thermal 

comfort range. This approach can be used if the occupants' condition is slightly warm. 

When the sunray falls on the occupant, the mean radiant temperature should be considered 

regarding the type of window glazing, the shade and the body exposed to sunray. 

Regarding the procedure for measurement, the sample location should be selected 

where the occupants are spending their time, and the measurement must include the centre 

of the room and the 1 m inward from the centre of each room's walls. The measurement 

point shall be measured at the height of 0.1, 0.6, and 1.1 m above the floor for seated 

occupants and 0.1, 1.1, and 1.7 m for the standing occupants. 

Since Fanger's trial was done in the chamber, it could not capture the difference 

between sex, age and special populations like people with disabilities, older people, 

babies and children, the sick, pregnant women, and people from different cultures. It is 

sometimes noted that males and females have different thermal comfort responses, which 

are also related to their clothes. Some work is being done to improve the PMV regarding 

these matters (K.C.Parsons, 2003) or focus on the particular aspects of the comfort factors 

like the inversely determined metabolic rate (S. Zhang, Cheng, Olaide Oladokun, Wu, & 
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Lin, 2020). Some of the work also led to the adaptive approach, which will be clarified 

in the following subsection.   

 

2.1.3 Adaptive Approach, Psychology and Human Behaviour  

 The other method, which is the adaptive method, was introduced by Nicol and 

Humphreys (Rupp et al., 2015) (Enescu, 2017) (Yao et al., 2022). The adaptive model is 

formulated on the nature of humans who can adapt. Besides acknowledging the PMV-

PPD method, ASHRAE-55 Standard also acknowledges the adaptive method (ASHRAE, 

2017). Unlike Fanger's model, this model defines the comfort zone, which is also related 

to thermal experiences, changes in clothing, activities, age, and gender. In this model, 

gender, age, and physical disabilities will affect thermal comfort. There are three thermal 

adaptation types. Physiological, related to the body's reaction due to the temperature 

change, while psychological, derived from the state of mind of previous experiences and 

behaviour-related adaptation (Brager & de Dear, 1998). This model can become the 

solution if the PMV cannot easily be obtained due to the properties that PMV is not 

individual, not adaptable and has no input modification.  

 This model is based on the work being done by Macpherson, which considers the heat 

balance of the body. This balance is affected by the personal parameters representing 

characteristics of the occupants and ambient parameters. The personal parameters can 

include the clothing insulation, metabolic heat rate or activity level. The temperature, air 

velocity, and relative humidity can become the ambient parameters considered for 

comfort (Enescu, 2017). This model allows the ambient parameters to be controlled by 

opening windows or fans (Rupp et al., 2015). Besides the fan, which can be used to 

influence the ambient condition, there is other equipment, for example, misting fan, heater 

(centralised or personal heating) and air conditioning. The personal parameter which 
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affects the thermal experiences can be in the form of gender (W. F. Song, Zhang, Lai, 

Wang, & Kuklane, 2016) and age; for example, the elderly or disabled user group which 

needs a higher temperature setting (Salata et al., 2018). In this case, a particular group of 

people must be considered in the design of the human comfort system. 

Many techniques are available for adaptive behaviours for assessing energy-efficient 

building indoor cooling toward buildings sustainability. However, these tools have not 

yet measured the energy efficiency index by involving user satisfaction from adaptive 

behaviours, which can determine the actual energy consumption versus the planned 

energy consumption of the building. Sensor technology development is crucial. A list of 

adaptive behaviours already identified regarding energy-efficient systems for an indoor 

environment is provided below (Keyvanfar et al., 2014):  

a) Self-adaptation category: drinking cold beverages, less-sweating lifestyle, 

restraining physical activity level, changing, or adjusting clothes from warm to 

cool, decreasing the level of body skin moisture. 

b) Adaptation to the environment category: taking a break and moving to a cooler 

location, changing position and direction, adjusting furniture/finishing material, 

opening, or closing doors using a feedback system, opening or closing operable 

windows (with/without a feedback system), using a portable fan, using a hand fan, 

adjusting room's thermostat, adjusting air-condition operative hours. 

These are adaptive behaviours or actions to control the environment and combine it with 

physiological reactions. Time is essential for these behavioural interactions, and the 

periods can be grouped into four distinct period groups as follows: 

1) Immediate, for example, the use of a coat in anticipation of a thermal change 

2) Within-day, for example, the clothing changes to cope with changing environments 

within a particular day. 



Chapter 2  Literature Review 

 

Karyono  30 

 

3) Day-to-day, for example, the learning process from one day to the next to cope with 

changing conditions such as the weather. 

4) Longer-term, for example, the clothing adaptation with the seasonal changes and 

activities learned over a more extended period. 

The value will dynamically and interactively change with climate, place and time (Fergus 

Nicol, 2012). 

The following Figure 10 presents the parameters taking into consideration the Thermal 

Physiology methods (PMV-PPD) (left-hand side, horizontal stripes) and the Human 

Behaviour adaptive methods (right-hand side, vertical stripes area). 
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Figure 10. The Thermal Comfort Parameters 

 

The adaptive approach considers the parameters listed on the left-hand side less critical 

since people will always behave to make themselves comfortable as far as possible 

(Fergus Nicol, 2015). This work also addresses the fact that those comfortable 

temperatures are changeable rather than fixed. Discomfort also can be caused by 

excessive constraints on these choices and adjustment processes, rather than merely the 

surrounding temperature. Comfort can be reached if there are sufficient opportunities for 
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people to adapt. Only with the adaptive approach do all system parts become part of the 

comfort solution (Fergus Nicol, 2015). 

People can still be comfortable if the skin temperature changes happen gradually. The 

skin temperature will be non-uniform. The cold is comforting for overheated bodies but 

unpleasant for already cold bodies. The hot sensation is pleasant if the body is cold but 

gives discomfort if the body is already hot. The sensation effect will depend on time, 

clothing, and the temperature of the surroundings. The adaptive action is to drink water 

to maintain thermal balance in hot, dry weather. A sudden change in weather conditions 

will require people to act accordingly and avoid the danger of heatstroke (Fergus Nicol, 

2012). 

Figure 10 shows that the adaptive approach is goal-based, and the PMV-PPD is 

prescriptive. Therefore, the difference in the methods will affect comfort temperature 

values differently. The PMV-PPD approach will give more exact definitions of 

comfortable temperature (ASHRAE, 2017), while adaptive methods will not give exact 

boundaries on the comfortable temperature. The comfort zone (PMV-PPD) and potential 

adaptive comfort zone can be seen in Figure 11. This potential zone can be elaborated to 

minimise energy use. 

 

2.1.4 Health Aspects 

2.1.4.1 Elderly and Temporary Ill 

 The illustration in Figure 12 shows the difference between the temperature needs 

of disabled, temporarily ill, and elderly groups compared to the people without disability 

group mentioned in the previous research (Yung, Wang, & Chau, 2019), (Basu & Samet, 

2002) 
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Figure 11 Psychometrics chart showing the comfort zone (PMV-PPD) and potential 

adaptive comfort zone (R. A. C. E. American Society of Heating, Incorporated, 2017), 

(Givoni, 1992) 

 

 Figure 12 (a) shows a gap between the behaviours of disabled people compared to 

those without disabilities. Besides this, the figure emphasises that the gap seems more 

significant for room temperatures below 23℃ and above 30℃, which are more frequent 

temperature domains due to climate change (cold and heat waves often happen). These 

temperature domains highlight the importance of this study. This figure also shows a gap 

between human temperature and the prediction from ASHRAE. This gap means that the 

PMV-PPD comfort zone is inadequate based on this research result. However, this figure 

1 2 

3 

Prescriptive: 

data1: the PMV-PPD comfort zone for 

1.0<met<1.3 and 1.0 Clo, ASHRAE 

Standard 55  

data2: the PMV-PPD comfort zone for 

1.0<met<1.3 and 0.5 Clo, ASHRAE 

Standard 55  

data3: Givoni comfort zone for still air 

condition for winter 

data4: Givoni comfort zone for still air 

condition for summer 

data5: Givoni comfort zone for winter with 

an assumed air speed of about two 

m/s. 

data6: Givoni comfort zone for summer 

with an assumed air speed of about 

two m/s. 

Goal-based method (red 

numbers): 

1 The potential adaptive comfort 

zone by thicker clothing and 

main activity. 

2 The potential adaptive comfort 

zone by light clothing, less 

sweating activity, and 

drinking cold beverages. 

3 The potential adaptive comfort 

zone by moving to a less 

humid room and installing a 

dehumidifier. 
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may not have enough data to develop a more detailed analysis and generalise the result 

for all disabled people groups. 
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Figure 12. Illustration to show the difference in comfort temperature from previous 

research (Yung et al., 2019), (Basu & Samet, 2002) (a) and (b) for disabled (c) and (d) 

for older people. 

 

  Figure 12 (b) further compares the thermal sensation between the disabled and 

people without disabilities. For the head thermal sensation, the disabled feel that the 

thermal sensation is higher than people without disabilities. A very different result 

happened in the trunk thermal sensation. Not just the gap, the tendency of the disabled 
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people is flipped compared to the people without disability. Again, this figure is based on 

limited data and cannot be generalised to all disabled people groups. 

Aligned with the result in Figure 12 (a) and Figure 12 (b); Figure 12 (c) shows that the 

young people group also has a different average temperature compared to the elderly 

people group. This difference gap is not proportional, so the approach of thermal setting 

or regulation cannot be set based on the percentage of the correction based on the standard 

thermal settings. This difference again emphasises the importance of this study. The 

thermal setting cannot be generalised and become more personal. This thermal sensation 

also being validated by the trial shown in Figure 12 (d). The temperature discrimination 

between the young and elderly people groups is not proportional, and there are significant 

gaps between the two people groups. 

The work which acknowledges similar results from the disabled people group is also 

stated in other studies (Brager & de Dear, 1998), (Parsons, 2020 ), and for older people 

(Maeda et al., 2005). In the case of the elderly people, thermoregulatory responses to both 

cold and hot temperatures were delayed. This delay is caused by the ageing degradation 

of vascular regulation ability and thermogenesis. The seasonal change and characteristics 

are also significant in the thermal sensation of the elderly people group (Salata et al., 

2018), (Mishra & Ramgopal, 2013). 

 Defining the correct setting of thermal will be difficult because of individual variability 

in temperature (Collins & Hoinville, 1980). ASHRAE releases an Open Database of 

Global Thermal Comfort Database II (The Comfort Database) to simplify the 

implementation of the thermal comfort approach. The database maps the heating or 

cooling strategy, building type, meteorological context, indoor climatic physical 

parameter ranges, and various human factors. The human factors consider characteristics 

such as sex, age, clothing insulation, metabolic rate and the availability of indoor 
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environmental controls, such as operable windows, doors, thermostats, blinds, heaters, 

and fans (t. H. a. S. Executive, 2019).  

 This complex and personalised parameterisation will be ideal to be solved with an 

adaptive approach. Intelligent technology can also support personalised parameter 

settings for minimising frequent user manipulation, generating uncomfortable activities 

and providing optimum thermal comfort for everyone without significantly increasing 

energy use (Hoof, 2006). 

2.1.4.2 Temperature and Obesity 

 Increasing adaptive thermogenesis through activating brown adipose tissue (BAT) is 

a promising practical strategy for preventing obesity and related disorders. BAT is a 

thermogenic tissue in which heat is produced when the human body is exposed to a cold 

environment. BAT is inversely connected to BMI and body fat percentage. It gives the 

possibility to fight against obesity with cold weather exposure. When the unacclimatised 

human body is exposed to a cold environment, the body temperature is sustained by 

shivering thermogenesis (ST). If the cold exposures continue, the shivering (ST) will 

decrease, and the heat is sustained by the non-shivering thermogenesis (NST). The NST 

is entirely attributed to BAT in the preliminary research in rodents. This research is 

extended to humans, and the result shows that BAT is present in human adults. The 

metabolic adaptation is adaptive thermogenesis (AT) (A. A. J. J. van der Lans et al., 

2013). 

 This work proposes ten days of cold acclimation to increase BAT in parallel with 

increasing the NST. There are no sex differences in the BAT presence. The acclimation 

also triggers the subjective changes in temperature sensation and makes the subjects feel 

comfortable in the cold with less shivering. The study recommends that the indoor 
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environment introduce cold exposures to reduce the energy for heating and the possibility 

of obesity (A. A. J. J. van der Lans et al., 2013). 

 Like this trial, Hanssen et al. also propose that ten days of cold acclimation can increase 

BAT and improve the metabolic profile of skeletal muscle to benefit glucose uptake in 

patients with type 2 diabetes. BAT activity is inversely related to age and body fat 

percentage. At the end of the acclimation period, subjective responses to cold are slightly 

improved (M. J. W. Hanssen et al., 2016). 

 Another advancement has been done by Gordon et al. This trial was done with seven 

days of cold acclimation to reduce ST and increase NST with a significant decrease in 

core temperature. This work can achieve what has been achieved in four weeks 

acclimation procedure by Blondin in 2017. If exposed to a cold environment, people will 

rely on body heat production against the cold environment to anticipate the heat lost to 

the environment. The heat produced by the metabolic process will rely on activating the 

non-shivering thermogenesis (NST) and shivering thermogenesis (ST). ST is the primary 

heat production in the adult during cold environment exposure. One of the contributors 

to NST is known as the brown adipose tissue (BAT). The well-known cold acclimation 

protocol is the 31 days of cold air exposure by Davis in 1961 and two hours daily cold 

exposure for four weeks by Blondin in 2017. The acclimation protocol, which can 

increase the relative contribution of NST and decrease the part of ST, will be desirable 

(Gordon et al., 2019). 

 The relation of cold acclimation with type 2 diabetes patients is shown in Remie et al. 

This cold acclimation can promote insulin sensitivity in humans, and in patients with type 

2 diabetes can improve the patient condition compared with the effects of long-term 

exercise training. Insulin sensitivity is related to the increased translocation in the skeletal 

muscle. However, mild cold acclimation does not result in improved insulin sensitivity 
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and only results in mild effects on overnight fasted fat oxidation. The lack of metabolic 

effects is due to the lack of shivering and muscle activation or contraction in skeletal 

muscle. This work also suggests muscle contraction is needed for mild cold acclimation 

to positively affect the human body (Remie et al., 2021).  

 

2.2 The Research Progress on Thermal Comfort within the Last 2 and 7 

Years 

 Indoor thermal comfort has increased exponentially within the last seven years. Human 

comfort is surprisingly not mentioned often in state-of-the-art publications, as it should 

be. The focus, based on the number of documents, is on air quality, thermal comfort, 

human comfort, acoustic comfort, and lighting comfort. Many researchers are still 

researching to produce a better solution for thermal comfort. It is now inseparable 

between the aim to achieve health and well-being, and the ability to minimise energy use. 

 The research progress parameter for this study is based on the comparison between the 

review conducted in November 2014 (Rupp et al., 2015) in November 2019 and the 

current condition (March 2022). The first comparison is based on the search that uses the 

term “thermal comfort” in Google Scholar, Web of Science, Scopus and Science Direct. 

The result is presented in Table 1. This comparison shows that there has been a significant 

increase in all the sources of publication within the last 2 and 7 years. Google Scholar 

shows an increase of about 40% of “thermal comfort” term usage. Similar conditions also 

applied to Web of Science, Scopus and Science Direct. The increase of the term usages 

is 21%, 33% and 29% increase from the last two years. Figure 13 shows the increasing 

trends for all the resources clearly. In order to have a more precise figure, the authors use 

the logarithmic scale on the y-axis, which represents the number of search results. 
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Table 1 Comparison results for general literature search on "thermal comfort" in 

different databases in 2 and 7 years. 

Parameter/database Google Scholar Web of Science 

Month-Year 
Nov-

2014 

Nov-

2019 

Mar-

2022 

Nov-

2014 

Nov-

2019 

Mar-

2022 

Number of results 59,800 194,000 321,000 5,979 12,418 15,669 

Search in 
All (not optional) Title, abstract and 

keywords 

Sort Type Relevance (not optional) Number of citations 

Meaning of 

classification 

Considers publisher, 

authors, number of 

citations, recent citations 

The highest number of 

citations 

Parameter/database Scopus Science Direct 

Month-Year 
Nov-

2014 

Nov-

2019 

Mar-

2022 

Nov-

2014 

Nov-

2019 

Mar-

2022 

Number of results 8,302 15,978 23,917 2,285 5,243 7,380 

Search in 
Title, abstract and keywords Title, abstract and 

keywords 

Sort Type Number of citations Relevance 

Meaning of 

classification 

The highest number of 

citations 

The highest occurrence of 

search term 

 

 

Figure 13 General Literature Search Result on Thermal Comfort for the Last 2 and 7 

years (logarithmic scale). 
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became the top result. The adaptive methods publications are gaining popularity over 

these 2 and 7 years. The top results of the adaptive publications are "Adaptive thermal 

comfort and sustainable thermal standards for buildings" by J.F. Nicol and M.A. 

Humphreys (Nicol & Humphreys, 2002) and “Developing an adaptive model of thermal 

comfort and preference” by De Dear and Brager (R. J. De Dear, and G.S. Brager, 1998). 

Both groups of publications have increased significantly in 2 and 7 years. This result 

shows that the thermal comfort methods are dominated by this thermal physiology and 

human behaviour methods, and indoor thermal comfort is more dominating than outdoor. 

The reason is that people spend more of their time in artificial space. The detailed result 

can be seen in Table 2.  

The result in Scopus based on relevance shows a similar trend to the result in Google 

Scholar. The physiology and the adaptive model dominate the thermal comfort methods. 

The adaptive methods publications are gaining popularity over these 2 and 7 years. The 

detailed result can be seen in Table 3. Table 2 and Table 3 also show that researchers are 

still trying to solve the problems that exist both in the human physiology and human 

psychology approaches. The fundamental papers citation value shown in Table 2 and 

Table 3 showed that the knowledge gap still needs to be solved in both approaches. 

 Based on the Scopus result on the search for thermal comfort, the authors have 

generated a similar chart generated seven years ago (Rupp et al., 2015) (upper inset Figure 

14) and capture the trend of the thermal comfort topic within the last seven years (Figure 

14). The trend is exponential, with the degree of increase becoming steeper than in 

previous years. This trend shows that this topic has gained much popularity over the years. 

In 7 years, the total number of publications in the thermal comfort field has increased 

almost three times. 
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Table 2 Top 10 Documents comparison in Google Scholar 2014 with the citation in 

2019 and 2022 

Top 
10 Article title Authors Year 

Published 
in 

2014 
Cita-
tion 

2019 
Cita-
tion 

2022 
Cita-
tion 

1 Thermal comfort. Analysis 
and applications in 
environmental 
engineering 

P.O. Fanger 1970 Danish 
Technical 
Press 

4690 8329 10900 

2 Comfort and thermal 
sensations and associated 
physiological responses at 
various ambient 
temperatures 

A.P. Gagge, 
J.A.J. 
Stolwijk, J.D. 
Hardy 

1967 Environ-
mental 
research 

474 874 1168 

3 Developing an adaptive 
model of thermal comfort 
and preference 

R. de Dear, 
G.S. Brager 

1998 ASHRAE 
Transac-
tions 

828 1815 2268 

4 Adaptive thermal comfort 
and sustainable thermal 
standards for buildings 

J.F. Nicol, 
M.A. 
Humphreys 

2002 Energy and 
Buildings 

541 1409 2028 

5 Thermal comfort in 
naturally ventilated 
buildings: revisions to 
ASHRAE Standard 55 

R de Dear, 
G.S. Brager 

2002 Energy and 
Buildings 

493 1138 1552 

6 Thermal comfort of man in 
different urban 
environments 

H. Mayer, P. 
Höppe 

1987 Theoretical 
and 
Applied 
Climato-
logy 

309 731 1018 

7 Thermal comfort for free-
running buildings 

N. Baker, M. 
Standeven 

1996 Energy and 
Buildings 

160 288 345 

8 Different aspects of 
assessing indoor and 
outdoor thermal comfort 

P. Höppe 2002 Energy and 
Buildings 

233 529 757 

9 Thermal comfort in 
outdoor urban spaces: 
understanding the human 
parameter 

M. Nikolo-
poulou, N. 
Baker, K. 
Steemers 

2001 Solar 
Energy 

245 574 826 

10 Thermal comfort and 
psychological adaptation 
as a guide for designing 
urban spaces 

M. Nikolo-
poulou, K. 
Steemers 

2003 Energy and 
Buildings 

236 638 902 
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Table 3 Top 10 Documents comparison in Scopus 2014 with the citation in 2019 and 

2022 

Top 
10 Article title Authors Year Published in 

2014 
Citati-

on 

2019 
Citati-

on 

2022 
Citati-

on 

1 Developing an adaptive 
model of thermal comfort 
and preference 

R de Dear, 
G.S. Brager 

1998 ASHRAE 
Transactions 

341 844 1250 

2 The physiological equivalent 
temperature—a universal 
index for the biometeoro-
logical assessment of the 
thermal environment 

P. Höppe 1999 International 
Journal of 
Biometeo-
rology 

323 794 1208 

3 Adaptive thermal comfort 
and sustainable thermal 
standards for buildings 

J.F. Nicol, 
M.A. 
Humphreys 

2002 Energy and 
Buildings 

322 766 1139 

4 Thermal adaptation in the 
built environment: a 
literature review 

G.S. Brager, 
R de Dear 

1998 Energy and 
Buildings 

317 648 942 

5 Thermal comfort in naturally 
ventilated buildings: 
revisions to ASHRAE 
Standard 55 

R de Dear, 
G.S. Brager 

2002 Energy and 
Buildings 

301 623 887 

6 Comfort and thermal 
sensations and associated 
physiological responses at 
various ambient 
temperatures 

A.P. Gagge, 
J.A.J. 
Stolwijk, 
J.D. Hardy 

1967 Environment
al research 

235 483 643 

7 The assessment of 
sultriness. Part I. A 
temperature-humidity index 
based on human physiology 
and clothing science 

R.G. 
Steadman 

1979 Journal of 
Applied 
Meteorology 

228 443 609 

8 Thermal comfort of man in 
different urban 
environments 

H. Mayer, P. 
Höppe 

1987 Theoretical 
and Applied 
Climatology 

176 442 624 

9 A field study of thermal 
comfort in outdoor and 
semi-outdoor environments 
in subtropical Sydney 
Australia 

J. Spagnolo, 
R de Dear 

2003 Building and 
Environment 

173 362 488 

10 A model of human 
physiology and comfort for 
assessing complex thermal 
environments 

C. Huizenga, 
Z. Hu, E. 
Arens 

2001 Building and 
Environment 

150 280 371 

 

 Further comparison of Scopus search results shows that the "Air Quality" topic has the 

highest number of papers, followed by "Thermal Comfort", "Human Comfort", "Acoustic 

Comfort", and the least popular is "Lighting Comfort". The result chart of these search 

results is presented in Figure 15. The previous figure shows that human comfort is 
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surprisingly not mentioned often in state-of-the-art publications, as it should. The focus 

of the past and current research is on air quality and thermal comfort. This finding 

highlight that there is a gap in human comfort perception, and this emphasises the 

relevance of the current work. Human comfort publications represent only 1.6% of the 

total publications.  

 

 
 Figure 14 Scopus results in Thermal Comfort in 2014 (Rupp et al., 2015) and 

recent days. 

 

 From the Scopus resource, authors can also generate a list of journals with the highest 

number of papers in thermal comfort and compare the list with the same condition 2 and 

7 years ago. The Elsevier journal Building and Environment and Energy and Buildings 

are dominating the number of documents point of view based on Scopus. The Energy 

Procedia is also among the highest number of documents, but it was discontinued in 2019, 

so no more documents will be accepted after 2019. Energies from MDPI has gained much 
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focus in recent years due to the open access model of the journal. This list is presented in 

Table 4. 

 

 

Figure 15. Scopus publication results in human, thermal, acoustic and lighting comforts 

and air quality. 

 

2.3 Daniel Kahneman's Principle 

2.3.1 Experience vs Memory 

 One of the works of a Nobel prize winner, Daniel Kahneman, is about the eagerness 

for medical patients to undergo medical treatment based on their last memory of their 

previous medical treatment. Kahneman found an anomaly in the colonoscopy patients. 

The common perception, the experience approach, judges that the long process of 

colonoscopy, which triggers the pain, will be more memorable and avoided by the 
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patients. The results of Kahneman's research are that the shorter process with higher pain 

for colonoscopy will trigger more threatening memory in the patients compared with the 

longer process but have less pain to be memorised (Redelmeier, Katz, & Kahneman, 

2003). Patients who underwent the extended procedure also ranked the procedure as less 

aversive. The eagerness to face the same treatment rate will be higher than the other 

patients with shorter processes but more memorable pain (Redelmeier & Kahneman, 

1996). Figure 16 shows the pain intensity and time chart in the Kahneman colonoscopy 

trial. 

 

Table 4. International journals with the highest number of papers in Scopus with 

“thermal comfort” terms. 

2014 2019 2022 

Rank Journal Docs Rank Journal Docs Rank Journal Docs 

1 Energy And 
Buildings 

582 1 Building And 
Environment 

1140 1 Building And 
Environment 

1608 

2 Building And 
Environment 

560 2 Energy And 
Buildings 

1117 2 Energy And 
Buildings 

1496 

3 ASHRAE 
Transactions 

269 3 Energy 
Procedia 

348 3 Energy Procedia 348 

4 SAE Technical 
Papers 

150 4 ASHRAE 
Transactions 

271 4 Energies 319 

5 Advanced 
Materials 
Research 

118 5 Procedia 
Engineering 

215 5 Sustainability 
Switzerland 

318 

6 International 
Journal Of 
Biometeoro-
logy 

109 6 Applied Energy 214 6 Top Conference 
Series Earth And 
Environmental 
Science 

310 

7 Applied 
Mechanics 
And Materials 

102 7 International 
Journal Of 
Biometeorology 

202 7 ASHRAE 
Transactions 

307 

8 Renewable 
Energy 

88 8 SAE Technical 
Papers 

195 8 Applied Energy 279 

9 Applied 
Energy 

83 9 Indoor And 
Built 
Environment 

167 9 Journal Of Building 
Engineering 

270 

10 HVAC and R 
Research 

75 10 Applied 
Thermal 
Engineering 

148 10 Sustainable Cities 
And Society 

253 
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 In Figure 16, patient A experiences a shorter time of pain with a similar peak of pain 

intensity experienced by patient B. Patient B experience a long time of pain with the peak 

of pain intensity experienced by patient A, but patient B has less pain in the final medical 

treatment. This research shows that patient A memorises the pain higher than patient B. 

This experiment shows that the patients' memories of pain will reflect the experiences of 

pain at the worst part and the final part of the treatment.   

 

Figure 16. The pain intensity in Kahneman trials (Redelmeier & Kahneman, 1996) 

  

 The colonoscopy followed other Kahneman trials in 1993 with perception in dipping 

hands in the water (Kahneman, Fredrickson, Schreiber, & Redelmeier, 1993). The 

respondents had to dip their hands in the 14 °C for 1 minute and the second trial with the 

same temperature and time, but then the water temperature was gradually raised to 15 °C 

for 30 s. By raising the water temperature, it will become less painful. The trial is repeated, 

and the respondents must select which trial they prefer to repeat. Most of the respondents 

select the second trial. These results also represent that the duration of the pain will not 

play a significant role in memory building. It will also show that memory will be formed 

more in the final moments of episodes. 
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2.3.2 Experience vs Perception 

 The other trial from Kahneman involved the students' perceptions about living in 

California. The result says that students assumed that living in California should give 

them more satisfaction with the climate, but they failed to conclude that the weather does 

not affect all aspects of life. This perception represents that people cannot imagine the 

effect of adaptation that will impact their happiness. Similar findings also applied to the 

disabled people group. Their quality of life should be measured rather than having healthy 

people valuing if the disability condition occurred to them. This result will reflect the 

non-disabled people's reflection on their frightening feelings of being in the disabled 

condition (Chernoff, 2002).  

 Another trial also reveals that people are bad at predicting perception over time. This 

conclusion is taken after the trial of giving people their favourite ice cream flavour for 

seven days. Some participants are happy, but some are tired of it (Chernoff, 2002). This 

finding will also benefit the health and safety aspects where the consent is usually taken 

before the treatment, and the patient can be in profound decision change after 

experiencing the treatment. 

2.3.3 Experience vs Adaptation 

 One key factor that affects experience is also adaptation. This factor is identified by 

Kahneman's study on paraplegics and lottery winners. There will be some adaptation so 

that for a paraplegic person, it will be terrible one month after the accident and become 

lighter within a year. Similar happens to a lottery winner (Chernoff, 2002). This feeling 

happens because people imagine the transition to the condition without feeling or 

experiencing the actual condition. The evaluation of the condition should be done from 

time to time and not based on memory.  
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 Regarding the experiences, there will be a stronger correlation between happiness and 

satisfaction. People can control the parameters that make them happy and allocate their 

time to this. So, giving more time to the activity which delivers happier activities can 

increase satisfaction in general. 

2.4 Thermal Comfort Simulations 

 Modelling and simulations have a unique beneficial role where problems are 

characterised by uncertainty, complexity, repetition and flexibility in logic, especially 

when knowledge is needed to capture the system behaviour and an integrated and accurate 

solution is desired (AbouRizk, 2010). Simulations can model the probabilistic 

phenomena, for example, random resource availability and weather. Modelling also can 

introduce some level of abstraction. This abstraction allows the problems to be portrayed 

accurately according to the time and resources available. Repetitive tasks are subjects to 

be simulated and modelled. A similar process can be captured with modelling to optimise 

the process. Simulation languages can build the model's decision structures to accurately 

represent the problem. Integrating views and representations of all problems and 

processes involved in the system becomes a key advantage of using simulation and 

modelling. This feature can assist and facilitate effective scenarios and studies. 

Simulation is used because it allows the modeller the flexibility to define the details of 

resource interactions, activity relationships, and constraining logic with reasonable effort. 

The system can then be studied and analysed to excellent detail levels and within 

acceptable accuracy. Some approaches are also available to be used in modelling each 

fundamental aspect (Gwynne, Galea, Owen, Lawrence, & Filippidis, 1999). 

 A review of the algorithm used in the modelling process is listed in Xie, Li, Li, Zhang, 

and Luo (2020). The algorithms are Linear regression (LR), Tree regression (TR), 

Classification tree (CT), Linear discriminant analysis (LDA), Logistic regression (LoR), 
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Decision tree (DT), Boosted trees (BT), Bayesian network (BN), Bayesian modelling, 

Naive Bayes (NB), Artificial neural networks (ANN), K nearest neighbours (KNN), 

Adaboost (AB), Gradient boosting machine (GBM), Support vector machine (SVM), 

Random forests (RF), Gaussian process classifier (GPC), Rule-based classifier (RBC), 

Fuzzy logic, Extra tree, and Hidden Markov model (HMM). Ma, Aviv, Guo, and Braham 

(2021) also assessed a similar review related to the use of machine learning Ma, Aviv, 

Guo, and Braham (2021). Ma et al. also list the variables related to comfort and health, 

such as Outdoor temperature (Tout), Wind velocity (va), Outdoor relative humidity 

(RHout), Outdoor contaminants concentration (Cout), Room dimensions (Dim), Ceiling 

height (H), Total surface area (A), Penetration factor through envelope/door (P), Radiant 

temperature (TMR), Temperature of surface (Ti), Indoor relative humidity (RHin), 

Volume flow rate (Natural, Mechanical, Infiltration) (Q), Indoor temperature (Ta), Air 

density (ρ), Contaminants generation/deposition/removal concentrations/rates (G), 

Number of occupants (N), Exposure time (t) and Air exchange rate (EX). Computational 

fluid dynamics (CFD) calculation and modelling are also common in analysing indoor 

thermal conditions (Buratti, Palladino, & Moretti, 2017). 

 Other research has also been conducted to consider the thermal comfort factors in 

dwellings by using mathematical models, laboratory testing, numerical calculations and 

further computer-based simulations to develop the desired performance of building 

materials (Reuge et al., 2020). Key examples of literature for developing new construction 

materials with a mathematical model are demonstrated in Lelievre, Colinart, and 

Glouannec (2014) and the further testing of the model (to ensure desired material 

performance) is highlighted in Richter et al. (2021). 

 Multiple simulation steps are also being done to increase the model's accuracy. In this 

work, Heat, Air and Moisture (HAM) models are being elaborated in three steps: the 
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semi-infinite wall approach, adiabatic building envelope, and building envelope with heat 

and moisture internal gains. This basic model is followed by the complex model with an 

adiabatic building envelope with heat and moisture internal gains integrated with 

validated building energy simulation (BES) (Francesca, Elena, Cristina, & Maria, 2021). 

Besides using WUFI Plus, 3D hygrothermal modelling also uses other software such as 

COMSOL Multiphysics (Knarud & Geving, 2015) (Ferroukhi, Djedjig, Belarbi, Limam, 

& Abahri, 2015).  

 Some simulation software models such as TRNSYS and TAS only simulate thermal 

comfort based on the dry bulb temperatures and do not consider relative humidity. The 

hygrothermal simulation software such as WUFI Plus can consider the humidity and 

additional loads such as occupancy (Hall, Casey, Loveday, & Gillott, 2013) using the 

weather files for Nottingham. The thermal comfort parameter for relative humidity uses 

the ASHRAE thermal comfort envelope, which has the upper comfort limit of 70% RH 

using WUFI Plus. The calibration and validation process using the climatic chamber 

compared with the software model has been completed in Antretter, Sauer, Schöpfer, and 

Holm (2011). Compared with the simulation result, the validation using the accurate 

measurement in the real building has been explored in Coelho, Silva, and Henriques 

(2018) and Francesca et al. (2021). Coelho et al. (2018) address the importance of using 

detailed outdoor weather files and the soil temperature. The accurate data from the 

weather station, even if it is not located directly on the premises, will help obtain a more 

precise result. Using the weather files obtained from WUFI and EnergyPlus database 

resulted in a lower precision. The importance of using multiple geographical locations for 

simulation is also mentioned in work simulating moisture (Mukhopadhyaya, Kumaran, 

Tariku, & Reenen, 2006).  
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 Further to the previous research, Yingchun Ji, Angela Lee, and Will Swan (2019) use 

a model to compare a 1920s house with a real house built inside the thermal chamber. 

The house model is developed in Integrated Environment Solutions Virtual Environment 

(IESVE) and implemented with a blocked chimney due to health and safety 

considerations. This model uses Manchester weather data for simulation. This work 

shows that the construction details will improve the model accuracy. The model is further 

extended by Yingchun Ji, Angela Lee, and William Swan (2019) to show the effects of a 

retrofit on a building. From this study, heating demands can be reduced by 27% in a 

retrofitted house, but the space heating demands can vary significantly depending on how 

the building is heated (as per the occupants' preference). This result addresses the 

importance of assessing the thermal settings concerning the indoor condition inside the 

house. Ventilation, including infiltration and leakages, also strongly impacts space 

heating energy demands. 

 This work utilises building typologies from typical residential properties utilising 

1920s and 2010s building codes to model mean indoor relative humidity as a 

consequential effect of locational weather conditions with the simulation conducted for 

different thermal settings. The typology parameters can be seen in Table 6 in chapter 3.2.3 

and the locational weather conditions presented in Figure 21, Figure 22 and Figure 23 in 

chapter 3.2.2. This work uses MATLAB and SIMSCAPE as the base environment for 

simulation. As previously demonstrated in Figure 2, in terms of the impact, this 

simulation has a potential influence on nearly 13 million homes. The locations analysed 

are Kent, Liverpool and Aberdeen, and due to their varied climates, to maintain thermal 

comfort, this model was also able to predict the percentage of time with the heater turned 

on.  
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 The use of MATLAB and SIMSCAPE gave the benefit that the simulation of the 

humidity and temperature condition can be done concurrently, and the simulated 

electrical heater can be added to the model to predict the energy consumption for heating. 

The use of MATLAB simulation was then extended to process the dataset for shallow 

supervised learning. With the MATLAB library, different AI methods can be applied to 

select the best algorithm for the system. The neural network solution was also calculated 

using MATLAB support to calculate the weight of the layer and bias value. With all the 

features that MATLAB provides, the work can be done in a more integrated way.   

2.5 Wireless Sensor Networks (WSN) 

 In recent years, due to the growing low-cost sensing solutions, the provision of thermal 

comfort has been widely increased in existing and future intelligent buildings to aid 

productivity, health, and well-being. Many sensors are widely used in the home comfort 

system with easier installation and control. The WSN will change the approach of the 

system solution. WSN is a network of sensors with unique characteristics. The nodes have 

limited power, limited processing power, and transmission. There might be a connection 

to more powerful servers (cloud). The circuit is relatively simple but has enough power 

to do its tasks. The use of these sensors is beginning to be very common and is sometimes 

called the internet of things devices. Their roles and tasks are unique and specific to 

overcome their challenges: low power, low price, limited range and scattered node 

position (Karyono, Martoyo, Uranus, Junita, & Kim, 2009). 

 Zigbee is one of the WSNs suitable for forming a real-time control system (Nguyen, 

Tran, Leger, & Vuong, 2010), (Uguz & Ipek, 2017). Zigbee can form a mesh network 

capable of giving fault-tolerant capability and sufficient data transmission distance for 

the distributed indoor controller (Samuel & Karyono, 2015). 
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2.6 Artificial Intelligence 

 The previous studies emphasise the need to improve thermal comfort methods for 

particular groups of people. Those methods focus on achieving comfort to maintain health 

and safety within the energy efficiency corridor. Besides the variety of human physiology, 

there is also the human behaviour factor, which can be different from one to another. In 

order to make the system able to cope with such variability and able to adapt to get optimal 

performances, some methods are used. These methods give the capability for the system 

to act like uninterrupted human control and are described as having artificial intelligence 

(AI) (Moon, Jung, Kim, & Han, 2011). Supported by AI features, the control system can 

gain a better solution and can cope with people's preferences. The setting adjustment can 

be made based on the setting for the specific use of the system as training data. The 

simplified system for thermal comfort can be seen in Figure 17. There are currently two 

most common methods in AI for thermal comfort. The first method is Fuzzy Logic, or 

fuzzy for short, and the second method is an Artificial Neural Network (ANN). 

Artificial Intelligence 

User Preferences
User Pattern
User Profiles

User

Smart 
Control

AI
Learning Process

To decide expected 
condition ex. 

Minimize Energy 
usage or maximize 

comfort

Smart Control Syatem Radiator/Air Conditioner

External Data
Ex. Weather 

Data

 
Figure 17. Simplified AI System for Thermal Comfort. 
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2.6.1 Fuzzy Logic 

 This method can interpret the verbal human perception or preferences such as 'warm' 

or 'cool' which are not easily interpreted by the control system. The fuzzy methods are 

used in the control system to give more human comfort while minimising energy use. 

This approach is used to get a better result than the Proportional Integral Differential 

(PID) control. Some of the previous work results are implemented in the form of 

simulation, which is MATLAB-based (Lachiver, 1998), (Calvino, La Gennusa, Morale, 

Rizzo, & Scaccianoce, 2010), (Nowak & Urbaniak, 2011) (Rawi & Al-Anbuky, 2011), 

(Moon et al., 2011) and (R. Zhang, Chu, Zhang, Liu, & Hou, 2014). These methods have 

also been implemented in the form of the prototype for controlling air conditioning 

operations (Yonghong Huang, 2006),  (Ciabattoni, Cimini, Ferracuti, & Ippoliti, 2015) or 

heaters (Walek, Žáček, Janošek, & Farana, 2014). The comfort parameter is based on the 

PMV model. The fuzzy method is also used in the research of material/fabric (Huang, 

Sun, Kong, & Wang, 2008) and comfort in the automotive industry (Farzaneh & 

Tootoonchi, 2008) (Beinarts, 2013). This system will also have the drawback if the data 

are widely varied, so the fuzzy membership function cannot be clearly defined. Some 

methods like a genetic algorithm (Shaikh, Nor, Nallagownden, & Elamvazuthi, 2014) or 

ANN are being used to compensate for the drawback of fuzzy methods (Duan & Li, 

2010). This ANN and fuzzy hybrid method are becoming the most popular methods 

(Enescu, 2017). 

 

2.6.2 Artificial Neural Network 

 In ANN, deep learning and shallow learning, the system's intelligence is gained from 

the human sensory analogy. This method can work as a black box by giving a set of 



Chapter 2  Literature Review 

 

Karyono  54 

 

learning processes, mainly supervised, or directed learning. The learning process is 

essential for this method. The same system can have a different result when trained with 

a different training data set. This method is preferred by the system developer to build the 

thermal comfort system where not all of the connections between all of the thermal 

comfort factors are well known and well defined. The ANN research has been widely 

used and gives significant results in thermal comfort. Some of the previous work is 

implemented in the form of model and simulation (Liu, Zhou, Wang, Hu, & Liu, 2009), 

(Yalong, Qiansheng, Xiaolong, Zhenya, & Qinyan, 2011), (Moon et al., 2011), 

(Rodríguez-Alabarce, Ortega-Zamorano, Jerez, Ghoreishi, & Franco, 2016), (Moon & 

Jung, 2016), (W. Zhang, Hu, & Wen, 2018), and (Escandón et al., 2019). Some of these 

models are developed to be implemented in the tropical regions (Bingxin, Jiong, & 

Yanchao, 2011), (Zeng, Jin, Chen, & Meng, 2011), (Songuppakarn, Wongsuwan, & San-

um, 2014), (Chaudhuri, Soh, Li, & Xie, 2017) or to overcome the extreme conditions (Liu 

et al., 2009), (Yalong et al., 2011). The result from the system prototype was also 

presented in other papers (Kojima, 2010),  (Kojima, 2011), and (Zhai, Chaudhuri, & Soh, 

2017), who implemented the ANN to overcome individual preferences. This method is 

also being used for research on fabric/materials (Baozhu & Shan, 2010), (Baozhu, 2011) 

and also in lighting comfort (Kandasamy, Karunagaran, Spanos, Tseng, & Soong, 2018).  

The ANN method being used is a typical feedforward neural network architecture, and 

the learning use backpropagation methods (BP) to update the weight of the neuron (Liu 

et al., 2009), (Kojima, 2010), (Kojima, 2011), (Bingxin et al., 2011), (Zeng et al., 2011), 

(Moon et al., 2011), (Songuppakarn et al., 2014), (Moon & Jung, 2016), (Chaudhuri et 

al., 2017), (Zhai et al., 2017), and (Escandón et al., 2019). BP is the most common because 

of the simplicity of the model. There are other types of ANN architecture and methods of 

learning, such as Multilayer Feed Forward (Duan & Li, 2010), Radial Basis Function 
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(Yalong et al., 2011), Nonlinear Autoregressive Model (Songuppakarn et al., 2014), C-

Mantec (Rodríguez-Alabarce et al., 2016) and Deep Neural Network (W. Zhang et al., 

2018). The ANN has also come in hybrid with another model such as with Fuzzy (Nowak 

& Urbaniak, 2011), (Enescu, 2017) and with genetic algorithm (Bingxin et al., 2011). The 

ANN approach also performs better in thermal comfort applications than the Fuzzy 

approach (Moon et al., 2011). 

Although this system is robust in processing unclearly defined relations, it negatively 

impacts the learning process. If the training process is not done with proper data or the 

data is not defined correctly with all the cases available, the system can perform falsely. 

In the system for recognising males or females, for example, if all data provided for 

women are always in the kitchen and men are always in the office, the system can interpret 

wrongly. If the new case appears that the man is inside the kitchen, it can be interpreted 

as a woman. That is why it can also be said that one pixel can make the wrong 

interpretation (Su, Vargas, & Sakurai, 2019). The classification can be easily altered by 

adding relatively small perturbations to the input vector and can become the source of an 

attack by only altering one pixel. This matter is one aspect that can be associated with 

producing natural stupidity in AI. The poisoning or perturbation introduced in the AI can 

cause misclassification, and even the deep learning approach has proved to be sensitive 

to spoofing (Hamon, Junklewitz, & Sanchez, 2020).  

This thesis tried to address the gaps that were addressed in the previous works on 

using machine learning. The gaps that had been identified from the previous works are 

provided in Table 5. The underlined entries are the challenges outlined in previous 

research that were addressed by our solution as a means to provide a solution to overcome 

them and develop a better indoor thermal comfort system. The dataset that the authors 

use was having 65,256 entries while the 37 previous works assessed 6,851 entries 
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(Arakawa Martins, Soebarto, & Williamson, 2022). A larger dataset is needed to achieve 

higher performance (Luo et al., 2020), (Feng et al., 2022). The proposed system is also 

able to gain a wider comfort zone that has been identified as narrower over decades (R. 

de Dear, Xiong, Kim, & Cao, 2020) hence increasing the energy-saving potential 

(Qavidel Fard, Zomorodian, & Korsavi, 2022). This makes machine learning necessary 

(Čulić, Nižetić, Šolić, Perković, & Čongradac, 2021). 

Table 5. Six recent review papers related to the use of AI and Adaptive Thermal 

Comfort and their gaps identification. 

No Review Paper Year Work reviewed 
Work 

Assessed 

1 (Arakawa Martins et al., 2022) 2022 2007 to 2021 37 

Dataset comparison, with maximum data set size 6,851. Methods: FC = Fuzzy 

Classification, RF = Random Forest, KNN = K-Nearest Neighbors, SVM = 

Support Vector Machine, DT = Decision Tree, LDA = Linear Discriminant 

Analysis, BI = Bayesian Inference/Classification, MLR = Multinomial Logistic 

Regression, GPM = Gaussian Process Model, LR = Logistic Regression, ANN 

=Artificial Neural Network, GB = Gradient Boosting, LVQ = Learning vector 

quantization, OP = Ordered Probit, LinR = Linear Regression, NB = Naive 

Bayes, RBC = Rule-Based Classifier, CART = Classification and Regression 

Trees, LLS = Least-squares linear estimation, J48 = J48 Decision Tree. 

Result and Gaps: The field still lacks a more unified and systematic modelling 

framework.  Model evaluation needs a clear comparison between studies and 

approaches. The generalization of the results is still debatable due to the small 

number of participants. Diversity needs to be introduced (more balanced datasets 

and expanding the application of the personalized models into other types of 

environments). Further assessment of inherently interpretable models and less 

transparent techniques. Although both environmental and personal 

characteristics have been used in most studies, personal features gathered 

through physiological sensing technologies could be further explored, especially 

in light of the rapid advances in wearable sensor technologies. 

2 (Qavidel Fard et al., 2022) 2022 2016 to 2021 137 

Methods: [ANN]: Artificial Neural Network; [SVM]: Support Vector Machine; 

[R]: Regression Method; [TBM]: Tree-Based Method; [BM]: Bayesian Method; 

[ENL]: Ensemble Learning; [GA]: Gaussian Method; [M]: Markov Model; 

[RNN]: Recurrent Neural Network; [ELM]: Extreme Learning Machine; 

[KNN]: K-Nearest Neighbors; [LDA]: Linear Discriminant Analysis; [RL]: 

Reinforcement Learning; [DL]: Deep Learning; [FOM]: Firefly Optimization 

Method; [FLS]: Fuzzy Logic System; [GP]: Genetic Programming; [CNN]: 

Convolutional Neural Networks; [LVQ]: Learning Vector Quantization; [BNN]: 

Bayesian Neural Network; [PSO]: Particle Swarm Optimization. 

Result and Gaps: 62% focused on developing group-based comfort models, 

and 35% focused on personal comfort (recommended to be further studied). 
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The most used tools for building ML were Matlab, Python and R.  

The most frequently used algorithms among the reviewed papers were SVM, 

ANN and Ensemble Learning (mainly RF), followed by Tree-Based models and 

Regression methods (mainly LoR). 

The metrics were accuracy, R2, RMSE, MSE, and r, (50%, 23%, 20%, 18%, and 

15%). Future studies are recommended to consider both fitting and error metrics 

for model evaluation. 

ML models could outperform PMV and adaptive models with up to 35.9% and 

31% higher accuracy and the personal comfort model could outperform PMV 

models with up to 74% higher accuracy. Applying ML-based control schemas 

reduced thermal comfort-related energy consumption in buildings by up to 

58.5% while improving indoor quality by up to 90% and reducing CO2 levels 

by up to 24%. Moreover, using physiological parameters improved the 

prediction accuracy by up to 97%. 

3 (Feng et al., 2022) 2022 2011 to 2021 25 

Methods: Linear methods: LR and linear discriminant analysis (LDA) Non-

linear methods: Quadratic discriminant analysis (QDA), support vector machine 

(SVM), support vector regression (SVR), K-nearest neighbours (KNN), K-

neighbors regression (KNR), and naïve Bayes (NB), Decision trees: 

Classification and regression trees (CART), classification tree (CTree), DT, and 

tree regression (TR)  Ensemble learning methods: Gradient boosting machine 

(GBM), adaptive boosting (AdaBoost), and random forest (RF) Gaussian 

processes: Gaussian process classification (GPC) and Gaussian process 

regression  Neural networks: Neural network (NNET), artificial neural network 

(ANN), and multi-layer perceptron (MLP) 

Result and Gaps: In-field studies give more realistic effects in terms of user 

behaviour. The measurement system’s complexity was consistently reported in 

reviewed studies. A minimally invasive data collection system is needed for 

future studies and realistic applications. Contemporary machine learning 

techniques are already commonly used in the domain, and no obvious evidence 

indicates that one modelling technique outperforms another. More standardized 

individual/specific data with longitudinal information must be established and 

framed for personal thermal comfort modelling. Once sufficient data related to 

personal thermal comfort across different categories of individuals is attained, 

researchers will be able to move from intra-to inter-variability, and analyses of 

similarities among individuals performed via various online learning techniques 

and more beneficial for practical applications such as individual comfort 

monitoring, smart building control, and energy-efficient retrofits. 

4 (Čulić et al., 2021) 2021 2018 to 2021 34 

Methods: [ANN]: Artificial Neural Network; [SVM]: Support Vector Machine; 

Random Forest; Gradient Boosting; Decission Tree; [KNN]: K-Nearest 

Neighbors, Stochastic Gradient Boosting; C 5.0; Bagged Classification and 

regression trees; Rule based Classifier; Classification and regression trees; 

Logistic Regression; Proportional odds Logistic Regression Multinomial 

Logistic Regression; [DL]: Deep Learning; [LDA]: Linear Discriminant 

Analysis; Adaboost; Naive Bayes; [LVQ]: Learning Vector Quantization 

Result and Gaps: Many proposed technological solutions are designed to be 

compatible with heating/cooling management systems in buildings becoming 

the potential path to greener BMS. Future work in this area should be focused 
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on testing and integrating TC models with intelligent systems. Accomplished 

through the development of new personalized models tailored for individual TC 

and adjusting environmental parameters for purposes of both reducing 

consumption and increasing indoor quality. The applicability of the TC 

questionnaire should be investigated more thoroughly. It is indicated that a 

compatibility analysis of the classical questionnaire with new data-driven 

models is needed. Detailed analysis using machine learning and statistical 

modelling is necessary for future research work. Evaluation among models 

should be conducted and standardized for the basis of the accurate comparison 

of various modelling approaches. 

5 (R. de Dear et al., 2020) 2020 1998 to 2019   

Methods: Calculation based on Dataset ASHRAE Standard 55 / RP-884; EN 

15251 (and its revision prEN 16798)/SCATs, Field studies in India, Field studies 

in China 

Result and Gaps: None of the published attempts at explaining the discrepancy 

between predictions of heat balance comfort models and actual observations 

inside adaptive comfort buildings. But there have been incremental contributions 

of new theoretical knowledge to the domain. The central challenge for the future: 

The absence of an evidence-based parameterisation of the concept of comfort 

expectation. 

Broad consistency between the various regulatory documents and standards on 

adaptive comfort. A notable outlier seems to be the Chinese GB/T 50785 

standard developed from a fundamentally different analytical approach. 

Building typology exerts a discernible effect on occupant thermal responses and 

thermal sensitivity, varying adaptive opportunities. Residents in their own 

homes generally are more adaptable and tolerant of a wider range of indoor 

thermal exposures. School students tend to like cooler than adult thermal 

neutralities. 

Boundaries of the comfort zone have become progressively narrower over the 

past several decades. Long-term thermal experiences can raise comfort 

expectations more readily than they can lower them. The adaptive comfort 

concept is central to addressing questions of how to enhance adaptive capacity 

in buildings and how to nudge occupant attitudes and behaviours relating to 

indoor climate. 

The weight of empirical evidence supports an extended-U model of temperature-

performance effects. We found no substantive, credible evidence to support the 

practice of overcooling to optimise the performance of their occupants. The 

cognitive performance plateau is bounded by regions of progressive 

performance deficits at the acceptability limits of the adaptive comfort range. 

6 (Luo et al., 2020) 2020 2016 to 2019 20 

Methods: Gaussian Processing classifier (GPC); K-neighbor classifier (KNC); 

Random Forest (RF) classifier; Support Vector Machine (SVM) classifier; 

Conventional Neural Network (CNN); K-nearest neighbours (KNN); Deep 

Neural networks; Bagging, artificial neural network (ANN), Logistic Regression 

(LoR); Gradient boosting machine (GBM); Decision Tree (DT); Polynomial; 

Naive Bayes (NB); ANOVA; t-Test; Extreme learning machine (ELM); 

Stepwise regression;  Linear Discriminant Analysis (LDA); Gradient Boosting 

Machines (GBM); Gaussian Process Classification (GPC); Classification And 
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Regression Trees (CART); Gaussian Naive Bayes (GNB); Support vector 

regression; Adaboost; Gaussian process regression (GPR) 

Result and Gaps:  Basic ML algorithms like NB and DT can get better TSV 

prediction than the conventional PMV; Tair, RH, CLO, Vair, Age, and MET are 

the top six important inputs; Large datasets like ASHRAE Comfort Database II 

and large data distribution may achieve higher performance than other balancing 

methods; Two different targets, higher TSV prediction accuracy aim or detailed 

occupants' thermal response; Compared machine learning (ML) algorithms in 

predicting thermal sensation (TSV); ML got 60–66% and 52–57% accuracy for 

3-point and 7-point TSV prediction; ML algorithms got 10–20% higher 

prediction accuracy than PMV model; Random Forest got 62% prediction 

accuracy by using three input features; Tuning parameters and selecting input 

features are important for ML models. 
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Chapter 3  Methodologies 

3.1 Research Phase 

The research activities and the research phases can be seen in Figure 18. The left side of 

the figure shows the activities done on each phase on the right side. 

 

Figure 18. The research activities and the research phases. 
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3.2 System Study 

The system design should be relevant to the advancement of the thermal comfort 

study with the support of the latest technology. The proposed system should also 

acknowledge the user aspects. In line with these acknowledgements, this work conducted 

the survey to be able to capture the occupants’ responses and comprehensive literature 

review in the field of thermal comfort. 

There were two surveys in this work, firstly a survey was done during the tenant 

gathering of one of the Northeast of Liverpool dwelling agencies in 2019 in the initial 

phase of this work and the second survey was done by a third party and will be addressed 

in the field study subchapter. 

The first survey had ninety-five respondents with females being dominant because 

the survey was done on weekdays. All respondents were given the option to select some 

features that they consider to be important for their homes in the future. Some respondents 

also gave comments regarding their knowledge of the smart house. 

The concept of sensors is still not common for the respondents; therefore, 

additional questionnaires were conducted for 24 respondents. The questionnaire mentions 

the sensors and the data gathered by each sensor. Two aspects were assessed, the 

comfortability and the privacy issues of each type of sensor. The sensors involved in the 

questionnaires are the environmental sensor (temperature, humidity, and air quality 

sensors), wearable sensors, MOS/CCD Camera, and Infrared/Thermal Cameras. 

The second survey was conducted during a field survey to get the behaviour of 

the occupants that impacted the indoor thermal condition. Example of the occupants' 

behaviour was the use of other heaters/fireplace, their habit to open the windows, external 

and internal doors, occupants' activities like showers and cooking and the most important 

data was the comfort that the occupants feel in their dwellings. 
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3.3 System Physical Modelling 

 This work utilises computer-based simulations to simulate the effect of outdoor 

temperature and humidity on the internal temperature and humidity in the presence of 

occupants within different dwelling typologies. This value was then used to predict the 

indoor condition in the houses with two different construction typologies: the first model 

is the houses built in the 1920s' where the wall and floor insulation was not standard. The 

second house model uses 2010s construction materials where the double-glazed windows 

and the wall insulation materials are implemented.  

 The model defined is a digital twin representation of the room where the parameters 

were derived from. Modelling and simulation nowadays have an important role in 

supporting design and validating system properties. In the manufacturing industry, the 

integration of sensor networks and the digitalization of production systems and machinery 

gave rise to the concept of the digital twin. A physical asset and a sensor network are 

needed for a digital twin, although neither is necessary for simulation during the design 

process. Digital twin is defined as “a comprehensive physical and functional description 

of a component, product or system together with all available operational data.”(Khajavi, 

Motlagh, Jaribion, Werner, & Holmström, 2019). 

3.3.1 Construction Typology 

 As demonstrated in Figure 2, approximately 16% of all homes were built within the 

1920s, where the construction was a non-insulated solid brick (as per Figure 19 (a)). In 

this work, when the '1920s' home is mentioned, it does not simply refer to this period. It 

also refers to any dwelling built to the same building standard of a solid masonry wall. In 

comparison, the 2010s' construction represents the 'newer' and updated construction 
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methodology (see Figure 19 (b)). Like that of the 1920s typology, for this work, any 

building with the same construction is included in this description. These construction 

typologies are based upon 'to scale' Building Research Establishment (BRE) exemplar 

houses built on-site at the Liverpool John Moores University (LJMU) Byrom Street (as 

pictured in Figure 20).  

 

 

 

 

 

 

Figure 19. (a) 1920s Solid masonry wall. (b) The 2010s Outer facing brick, 50mm clear 

cavity, 40mm insulation board, medium density inner. 

 

 

Figure 20. Image of BRE Exemplar Houses on campus at LJMU (where building 

typologies from L to R represent the 1920s, 1970s and 2010s) 

 

3.3.2 Location environmental conditions 

 Using a computer simulation allows the indoor conditions to be simulated for different 

parts of the UK, based upon their differing weather conditions. The locations of the 

(a) (b) 
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simulated dwellings are Liverpool (representing Northwest England), Kent (representing 

Southeast England) and Aberdeen (to represent Northeast Scotland). Besides the 

difference in the characteristics of energy poverty, Aberdeen was selected to represent 

the coldest place in the UK, Kent as the hottest and Liverpool as the location in the middle.  

 The data used for this simulation uses Centre for Environmental Data Analysis 

(CEDA) hourly weather data for 2017(Office, 2019) and is demonstrated for Liverpool, 

Aberdeen and Kent in Figure 21, Figure 22 and Figure 23 (respectively). The model is 

also able to simulate the indoor condition using the future weather forecast (for example, 

in 2030) (Herrera et al., 2017) in order to view the impact of climate change on indoor 

conditions. The future weather data prediction for the UK can be obtained from CEDA 

data sets ((MOHC), 2017; Buratti et al., 2017). 

 The data used for this simulation uses Centre for Environmental Data Analysis 

(CEDA) hourly weather data for 2017(Office, 2019) and is demonstrated for Liverpool, 

Aberdeen and Kent in Figure 21, Figure 22 and Figure 23 (respectively). The model is 

also able to simulate the indoor condition using the future weather forecast (for example, 

in 2030) (Herrera et al., 2017) in order to view the impact of climate change on indoor 

conditions. The future weather data prediction for the UK can be obtained from CEDA 

data sets ((MOHC), 2017; Buratti et al., 2017). 

 Figure 21, Figure 22 and Figure 23 demonstrate that out of the three locations; there is 

a greater temperature range in Kent compared to Aberdeen and Liverpool. Aberdeen had 

the coldest temperature reading among the three locations, but Kent had the lowest mean 

temperature (7.54oC) in 2017 compared with Aberdeen (8.56oC) and Liverpool (8.25oC). 

The mean temperature of all locations was still below 9 °C. When considering RH, 

Aberdeen had the lowest mean RH (80.57%RH), but all areas still had the mean relative 

humidity above 80% (Kent 82.99% RH and Liverpool 82.26% RH).     
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Figure 21. The chart of hourly annual temperature (upper chart) and relative humidity 

(lower chart) for Liverpool in 2017. 

Figure 22. The chart of hourly annual temperature (upper chart) and relative humidity 

(lower chart) for Aberdeen in 2017. 

 

Temperature Value (oC) Time (days) Relative Humidity Value (%) Time (days) 

Maximum 27.800 146 Maximum 100.00 262 

Minimum -4.900 345 Minimum 29.00 124 

Mean 8.247  Mean 82.26  
Std. Dev. 4.904  Std. Dev. 11.15  

 

 

 

Temperature Value (oC) Time (days) Relative Humidity Value (%) Time (days) 

Maximum 24.400 168 Maximum 100.00 18 

Minimum -7.700 340 Minimum 21.00 123 

Mean 8.559   Mean 80.57   

Std. Dev. 4.908   Std. Dev. 13.03   

 

 

 

 

Liverpool 

Aberdeen 
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Figure 23. The chart of hourly annual temperature (upper chart) and relative humidity 

(lower chart) for Kent in 2017. 

 

3.3.3 Model Input Parameters 

 The model uses the approach of a single room (similar to PASSYS test cells (Strachan, 

1993)) with two and four occupants constantly present inside the room. The two 

occupants model parameter was based on the data that the average household size in the 

UK was 2.4 (Statistics, 2021). The four occupants’ model parameter was selected for 

comparison if the occupants' numbers were doubled. This model is deployed using 

MATLAB-Simulink-SIMSCAPE software. Consisting of two related parts simulated 

simultaneously, the model contains both a thermal model and a moisture model, where 

the input parameters can be found in Table 6.  

 

 

 

Temperature Value (oC) Time (days) Relative Humidity Value (%) Time (days) 

Maximum 30.800 161 Maximum 100.00 6 

Minimum -6.800 22 Minimum 22.50 84 

Mean 7.535   Mean 82.99   

Std. Dev. 6.013   Std. Dev. 14.15   

 

 

 

 

Kent 
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Table 6. Model Parameters. 

General 

Input Parameter Value 

Number of Occupants 2 and 4 

Sensible heat per occupant, (W) 100 

Ventilation area, (m2) 0.01 

Flow (m/s) 0.05 and 0.025 

Room Dimensions 

Input Parameter Value 

Room Volume (m3) 31.84 (4.35 x 3.05 x 2.4) 

Window Area (m2) 2.8314 

Door Area (m2) 3.4 

Housing Typology Characteristics 

Typology Description 

Specific 
Heat 

Capacity 
(J/(kg K) 

Thermal 
Conductivity 

(W/mK) 

Wall 
Thickness  

(m) 

Density  
(kg/m3) 

1920s house solid brick wall 800 0.98 0.215 1920 

2010s house internal 
blockwork concrete block 

1000 0.51 0.1 1400 

2010s house insulation 1500 0.022 0.09 30 

2010s house outer facing 
brick 

800 0.98 0.1025 1920 

 

3.4 Framework Development and Test Preparation 

 People will need time to change their thermal state. The amount of metabolic heat 

released by the body in light activities is relatively small compared to the body mass. The 

heat input from metabolism and loss to the environment will be even smaller. A light 

person will respond quickly (feels cold quickly), and a heavy person will feel cold more 

slowly. Convection, radiation, and evaporation will happen to people, including the 

respiration process. People can still be comfortable if the skin temperature changes 

gradually. The skin temperature will be non-uniform. The cold is comforting for 

overheated bodies but unpleasant for already cold bodies. The sensation effect will 

depend on time, clothing and the temperature of the surroundings. A sudden change in 
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weather conditions will require people to act accordingly and avoid the danger of 

heatstroke (Fergus Nicol, 2012).  

 The solution for thermal comfort is not simply due to the complex parameters in terms 

of: 

• Physics; which is the regulation of thermal environment and clothing 

• Physiology; which is the mechanisms of thermoregulation and acclimatisation  

• Psychology; which is the perception of comfort and discomfort, relation to the health, 

age and behavioural aspect of people 

 Based on Kahneman's work on experience vs memory, it can be concluded that people 

will remember better, information which triggers their curiosity, and additional moments 

of episodes, especially the final moments. This was also acknowledged by the previous 

research that memory impacted thermal comfort. From the experience vs perception point 

of view, people are bad at predicting perception and the human body is not a good sensor. 

Based on these facts the intelligent system should have the ability to give 

recommendations based on the current indoor condition. With the experience vs 

adaptation principle, if given enough time, people can adapt gradually to indoor 

conditions. This can become the key to energy saving while still maintaining indoor 

comfort by adjusting the temperature gradually to lower the energy needed for comfort. 

Giving the chance for people to adapt can increase satisfaction in general. 

    Based on these principles and our surveys on an intelligent system, the design of the 

system should be: 

i. Give memorable comfort experiences, especially before people leave the room. 

ii. Giving people the ability to experience directly before they develop their assumed 

perception, and this experience requires continuous sensing and interaction. 
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iii. People are bad at predicting perception over time, and the system should be able to 

give a recommendation based on a certain standard. 

iv. The system can give flexibility in access time, which delivers happier activities that 

can increase satisfaction in general. 

v. People can have enough flexibility for the adaptation process which can lead to 

energy saving. 

vi. The primary driver of the system is to lower the bills (the economic drive).  

vii. The system is trustworthy, and the sensor should not become a privacy breach to the 

user. 

 The design criteria above give us the ideas to develop a system which can give thermal 

comfort to the occupants while still minimising the energy use by implementing: 

i. The adaptive algorithm that can predict and acknowledge user needs.  

ii. Ability to regulate the room based on real time readings from sensors that were 

installed as the integral component of the system and evaluated with the artificial 

intelligence. 

iii. Avoid false prediction by giving the standard references according to the health 

regulation and the ability to alter the setting based on the occupant preferences. 

iv. The system can provide a kind of gamification (K. Karyono, Andoko, & Ellianto, 

2019) to give memorable comfort to the user. This system will give enough time 

for the perception to be experienced and challenge users to lower their energy 

usage profile. 

v. The system can display the prioritisation selection to the user for maximal 

comfort, saving, or between the two. The algorithm will be adjusted according to 

user preference. The system can also use gamification to gain a more bill-friendly 
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system, reducing further over the years as the user has already adapted to the 

system and environment. 

vi. The data output of the sensor should be securely stored and can be accessed by 

the customer based on the rights given. 

vii. The ability of the settings to be manually overridden by the approved user. 

 

3.4.1 Prototype 

 The prototype represents three layers. Figure 24 shows the topology of the prototype 

with three layers. The upper tier is a services tier (cloud-based services). This entity 

consists of the database server and application server. The database server is used to store 

the sensor reading data and the preference data of the occupants. The sensor data will be 

used to calculate the recommendation settings, and the preference data will be used to 

calculate the setting that will be pushed to the local controller.  

 

Figure 24 The topology of the prototype. 
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 The middle tier is the controller located in the house or apartments. This controller has 

the ability to do the control locally if the server connection is faulty. The local controller 

also becomes the data concentrator for all sensors assigned to this local controller. The 

local controller also can relay the user requests. On the contrary, the local controller can 

also conduct action or command sent by the cloud to the actuator. The connection of the 

middle tier to the cloud can be made using Internet Protocol.  

 This prototype makes all connections using a Wi-Fi connection with Message Queuing 

Telemetry Transport (MQTT) protocol to simplify the connection demonstration. 

However, any modification to the communication layer can be easily deployed because 

all components support multiple communication protocols. The format of the MQTT 

messages is declared in Figure 25. The identity (ID) messages in this prototype were 

defined with four characters; the first character represents the originated sender types, 

followed by three characters as the ID number of the sender. The MQTT messages are 

structured like a tree which is differentiated using their topic. The designated topics can 

have multiple sub-topics to further differentiate the message. Using the tree structure of 

the MQTT topic, the message can be handled and translated correctly.  

 The lower tier is the sensors and actuators. The distributed controller (WSN) connects 

these sensors and actuators to the middle tier. The sensors can be a group of sensors to 

monitor indoor thermal conditions, a passive infra-red sensor to detect the presence of 

occupants and a thermal camera to detect occupant’s condition. The actuators for this 

system are the controller connected to a Solid-State Relay (SSR) to control the heater 

automatically based on the local controller or sensor command.  
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The MQTT Topics   

  

Figure 25. The MQTT message format. 

 

3.4.2 Test Preparation and Human model 

 This work focused on the thermal effect of human presence, but the direct people 

presence was difficult in the case of health and safety risks, especially due to the COVID-

19 restrictions. The thermal representation of humans can be simulated using the radial 

heater or light bulbs that emit heat like the human body heat. According to BS 5925:1991  

(BSI, 2000) and ASHRAE standard 55 (R. A. C. E. American Society of Heating, 

Incorporated, 2017), the activity of people generates an 80W to 800W metabolic rate for 

an adult male. This human model focuses only on the body heat and does not compensate 

for the respiratory vapour or activities that generate vapour, such as cooking or showering.  

 For the indoor people simulation, the model will cover two people in sleeping 

conditions or one person in light or medium work, which is about 156 W using a radial 

/room

/sensor

•/sensorID

/actuator

•/actuatorID

/controller

•/controllerID

•/Sensor

•/Actuator

•/ThermalCam

•/User

/user

•/userID

/server

/external

/sensor

/People

/simulatorID

+ Single Level 

# Multi Level 

Assignment Format Notes 

Sensor Sxxx S001-S999 for identifying 

sensors messages 

ThermalCamera Txxx T001-T999 for identifying 

thermal camera messages 

Actuator Axxx A001-A999 for identifying 

actuator messages 

User Uxxx U001-U999 for identifying 

user messages 

Controller Cxxx C001-C999 for identifying 

controller messages 

 

ID Assignment 
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heater (single 60W radial heater and double 40W heaters) and 20 W halogen lamp (which 

is assumed to have 80% energy converted into heat). For the two-person case, one person 

is simulated with two 40W radial heaters, and another is simulated using a 60W radial 

heater and 20W halogen lamp. Table 7 shows the example of the activity list along with 

its associated metabolic rate according to the BS 5925:1991. 

Table 7 The relations between the activity and its associated metabolic rate (adult male). 

BS 5925:1991 

Metabolic 

rate (M) 

ASHRAE standard 

55 

Metabolic rate (M) 

  

Activity (adult male) W Activity W/m^2 Met units 

Seated quietly 100 Seated, quiet 60 1 

Light work 160 to 320 Office, Walking about 100 1.7 

Moderate work 320 to 480 Light Machine work 115 to 140 2.0 to 2.4 

Heavy work 480 to 650 Heavy Machine work 235 4 

Very heavy work 650 to 800 Basketball 290 to 440 5.0 to 7.6 

Note:  Surface Adult male  1.9 m2 

   Adult female 1.6 m2 

   Children 1.2 m2 

     

The human model was developed related to the case study that was discussed in 

subchapter 7.1.2 Testing in the BRE house (1970s house). This human model was the 

solution to comply with the case of health and safety risks, while still being able to 

introduce the impact of the people presence, in the dwellings. This method can be used 

and replicated in the new housing project or the refurbishment project to simulate the 

human presence to give a more realistic assessment where the occupants’ presence is still 

restricted. 

3.5 Field Study of the Proposed System 

Previous research has identified that the field still lacks a more unified and 

systematic modelling framework(Arakawa Martins et al., 2022).  Model evaluation needs 

a clear comparison between studies and approaches. The generalization of the results is 

still debatable due to the small number of participants. Diversity needs to be introduced 
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(more balanced datasets and expanding the application of the personalized models into 

other types of environments). In-field studies give more realistic effects in terms of user 

behaviour (Feng et al., 2022). Future work in this area should be focused on testing and 

integrating TC models with intelligent systems. Detailed analysis using machine learning 

and statistical modelling is necessary for future research work (Čulić et al., 2021). 

Boundaries of the comfort zone have become progressively narrower over the past several 

decades. Long-term thermal experiences can raise comfort expectations more readily than 

they can lower them. The adaptive comfort concept is central to addressing questions of 

how to enhance adaptive capacity in buildings and how to nudge occupant attitudes and 

behaviours relating to indoor climate (R. de Dear et al., 2020). Large datasets like 

ASHRAE Comfort Database II and large data distribution may achieve higher 

performance than other balancing methods (Luo et al., 2020). 

Based on these gaps, the case studies were done on five case studies that represent 

the problems most likely in the United Kingdom. The five cases were the case of humid 

dwelling (Dwelling Prior 1970s), the new dwellings, the refurbished flats, the 

Implementation of the new materials for thermal improvement, and the new modular 

house with advanced heating controls. With these extensive tests the model were expected 

to be mature enough and close the gaps identified by the previous research. 

The field study began with sensors implementation in various installation 

locations according to the room type. Additional sensors were added to justify the 

parameters that need focus, such as the heater air temperature. The sensors collected the 

data within the predefined interval, for example, 15-minute intervals. The main 

parameters for this data collection were the black globe temperature and humidity. This 

interval was adequate to capture indoor temperature fluctuations and humidity changes. 
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The sensors involved in this research were the customer/end-user type of sensors that are 

very common on the Internet of Things (IoT) application. These types of sensors can also 

be associated with low-cost sensors, which have a measurement accuracy of 0.5°C for 

temperature and 2.25% for relative humidity. TC xx, TH xx and S0xx represent the 

sensor's ID used in the field studies. TC was used to measure temperature while TH and 

S0 were for temperature and relative humidity. 

The data was then downloaded and combined with the data from the local weather 

station corresponding to the sensor data. This local weather station could deliver 15-

minute interval data with the main focus on the outdoor temperature and humidity. The 

analysis phases mapped the data to form a chart for each room's temperature and relative 

humidity corresponding with the outdoor temperature, then focused on the minimum and 

maximum outside temperature for each period. 

Based on this gathered data, the temperature and relative humidity data were fed 

to the Artificial Intelligence model to decide whether the occupants were in a thermal 

comfort situation. The psychrometric chart was used to map the data according to the 

temperature and humidity, along with the comfort condition of the occupants. These steps 

were done carefully to capture and simplify the parameters without ignoring the complex 

aspects of the indoor thermal condition. Additional parameters such as occupants' 

behaviour, for example, the habit of opening the window, the frequency of cooking and 

showering, the occupants’ humid and thermal sense, and other indoor conditions, such as 

the state of internal doors, were captured using the questionnaire where applicable. The 

overview of the methods can be seen in Figure 26.    

The case of the prior 1970s dwelling was done in one of the flats in a three-story 

building in Liverpool (ASHRAE Climate Zone 4A). The data was collected from 17 
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February 2022, 22:00 to 02 March 2022, 16:30, at the end of winter. The room heaters in 

this house were turned off during the trial.   

 

Figure 26. The overview of the methods used in this work.  

 

The case of a new dwelling was done in two new semi-detached houses in 

Liverpool. The house was built with the proper insulation. The data was collected from 

19 October 2020, 13:00 until 8 April 2021, 04:15, which was the autumn, winter, and 

spring. The room heaters in this house were turned off during the initial data gathering 

from 23 to 27 October 2020 and then turned on throughout the trial.  

The case of the modular house with the advanced heating controller was done in 

the new modular house in Liverpool. The data was collected during the autumn season 

from 19 October 2021 to 29 November 2021. 

The case of refurbished dwellings was done in five high-rise flats in Liverpool. 

The refurbished building is the high-rise flats, and the flat is on the 14th floor. The 

refurbishment processes were installing outdoor insulations, and the indoor refurbishment 

was done by upgrading the electric heaters into new electric heaters. The data readings 
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were done four times from 20 December 2019 to 26 February 2021 during the pre-

refurbishment phase, pre and during-refurbishment phase, during and post-refurbishment 

phase and post-refurbishment phase. The data logging was done in four periods to cope 

with the field condition. 

The dwelling with additional material for thermal improvement was conducted in 

four bungalow houses in Liverpool and was done from February 2022 to May 2022 during 

the end of winter to spring. The trial was done by installing an additional layer in the 

glazing area to increase the thermal resistance and lower the leakage. The occupants also 

filled in the questionnaire regarding their behaviour, which might impact the trial result 

because the trial was done in a single dwelling with one room installed with the material 

and the other non-refurbished room for control. 

The 1970s house typology assesses the people's presence impact on thermal 

comfort. The trial was based on the ten-week field study in the 1970s' BRE House, 

Liverpool John Moores University, Byrom Street Campus. The trials were divided into 

three groups: the trial with no people present, the trial with people model/simulator 

between 09:30 and 18:00 and the people simulator from 21:30 to 06:00, Monday to 

Friday, to represent the indoor conditions. The people simulator was introduced due to 

the health and safety reason of the trial location. The people simulator was based on 

ASHRAE Standard 55 (ASHRAE, 2017) value to represent two people in the sleeping or 

resting condition or a single person in the light work state. The people's presence time 

was set equally so it can be comparable. The field study was done during the transition 

periods from winter to summer. 

Furthermore, the research on AI still has gaps in AI-based models for residential 

buildings area, limited amounts of data and biases in datasets, limited generalization, and 



Chapter 3  Methodologies 

 

Karyono  78 

 

limited deployment of comfort models (Qavidel Fard et al., 2022). This paper offers a 

solution to overcome these gaps by using the AI model that was previously developed 

based on the multiple ASHRAE Databases and deployed the model in the various field 

studies to show the benefit of using this model in the residential dwellings of various 

typologies. The AI implemented was of type artificial neural network (ANN) which has 

the capability of being deployed in the local controller node suitable for residential 

dwellings’ control due to less memory and computation requirements. This AI method is 

capable to acknowledge adaptive thermal comfort, leading to lower energy use for 

comfort. 
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Chapter 4  Thermal Comfort and Energy Simulation Results and 

Analysis  

  

 SIMSCAPE is a feature of SIMULINK in MATLAB, where the simulation of the 

physical model can be completed simultaneously to represent identical physical 

conditions. This hygrothermal modelling was implemented with two loops of physical 

properties. The first loop is for the water vapour property, and the second is the loop for 

the thermal property demonstrated in Figure 27.  

Even when the model is divided into two loops, the simulation of the water vapour loop 

and the thermal property loop is completed simultaneously. The simultaneous simulation 

means that their parameters are integrated and strongly correlated between each loop. 

Splitting the model into two loops benefits the modularity aspects; the parameters defined 

in each loop can be adequately identified and modelled in different modules. Each loop 

can be isolated and executed to independently identify the effect of altering the simulation 

parameters. This approach can be made on each separated loop and in an integrated 

environment simulation. The intersection of the loop is in the constant volume chamber 

component. This block models the moist air behaviour inside a constant room volume. 

The mass and energy storage parameters are modelled with the possibility of changing 

the simulated input parameters. Pressure and temperature will change based on the 

thermal capacity and pressure of the moist air inside the chamber. The component 

overview of the model can be seen in Figure 28. 
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Figure 27. Thermal and vapour loop in the model. 

  

4.1 Model Explanation 

 The moist air node is available for adding or removing moisture within the air. In this 

model, this feature is utilised to model the occupant's presence. The occupant's presence 

will give additional moisture due to the effect of human respiration. This component 

intersects the water vapour loop and the thermal loop. Besides affecting the water vapour 

loop in terms of increasing the humidity, the occupant's presence will also raise the 

Water vapour loop 

 

Thermal property loop 

 
Room
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temperature of the moist air volume due to the heat dissipated by the human body. Liquid 

water condenses out of the moist air volume when it reaches saturation. The convective 

and conductive heat transfer between the air, the surrounding wall, roof, floor and the 

occupants are simulated in the thermal loop. 

 

 

Figure 28. Overview of the SIMSCAPE MATLAB Model 

 

 The heater model in this simulation is the convective panel electric heater model with 

the closed-loop control. The heater will be turned on if the room temperature falls below 

the set point and turns off if the temperature rises above the temperature set point. 

Measuring the percentage of heater 'on' time between different housing typologies and 

locations will generate an annual quantification of energy usage for typology and 

locational comparisons. The heater part is connected to the thermal property loop in the 
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constant volume chamber component; hence, a change in the heater state (heater is turned 

on or off) will impact the indoor air moisture. A simplified electric heater model is used 

within this research (see Figure 29); the model also utilised the capability of executing 

the Simulink model with batch processes. 

 

 

 

 

 

Figure 29. Simplified electric heater model in the SIMSCAPE simulation. 

 

 The simulation uses three UK locations, Kent, Aberdeen and Liverpool, to represent 

the conditions all over the UK and is also similar to the model validation, which uses the 

measurement data taken from ASHRAE Global Thermal Comfort Database II (Földváry 

Ličina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, & 

Kaam, 2018) for all available UK data. The data selected is the data from all over the UK, 

with naturally ventilated buildings for offices, classrooms, and other types of buildings. 

The data set year is 1994, 1995, 1996, 1998, 1999, 2011 and 2012 throughout the year 

with the data entry of 14,187 measurements from the Midlands, London, Hampshire, 

Oxford, St. Helens, Chester, and Liverpool. The complete MATLAB model and the 

simulation parameters lists can be seen in the Appendix 1.  

 

4.2 Model Assumptions  

 Within the model, the following assumptions have been made for this research:  
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• The heater is a model of the convective panel electric heater. The temperature of 

the panel when switched on is 40 ⁰C. Dimensionally, the panel heater is 0.9 x 0.4 

m2 with a mass of 46.7 kg, the radiator heat capacity is 447 %J/(kg K), and the 

heat transfer coefficient is assumed to be 100 %W/m2K. 

• Occupants are simulated to be present all the time (24 hours) and have the same 

activity level. The amount of moisture produced to use the approximation of 

occupants being at a low activity or resting and as per BS 5925:1991 RH is no 

greater than 70%. Each occupant is assumed to produce a 50 g/h moisture level as 

per BS 5925:1991standard (BSI, 2000) (as the value is 40 g/h for resting and 55 

g/h for heavy activity)  

• The solar heat gain is simplified in this model and not calculated using the weather 

files as temperature and humidity are. 

• No air conditioning is used in this model, and the thermal set point is applied as a 

threshold for the heater to be turned on. 

• Roof and floor constructions are identical to the 1920s and 2010s' house typology. 

The ventilation state is also varied - ventilation with the air velocity rate of 0.025 m/s and 

0.05 m/s. With this ventilation rate, the CO2 level is below 1000 ppm for 2 and 4 

occupants. This model uses the CO2 gain per occupant value of 0.01 g/s, and the CO2 

level in the fresh air uses the assumption of 0.04 %, as stated in BS 5925:1991 (BSI, 

2000). 

 

4.3 Analysis of the Simulation Result 

 Simulations were completed to compare the performance of the housing location and 

construction typologies with 2 and 4 people inside a room over 24 hours, as demonstrated 
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in Figure 30. The ventilation rate is 0.05 m/s for Figure 30 (a) and (c). For Figure 30 (b) 

and (d) the ventilation rate is 0.025 m/s. Regarding CO2 levels, a ventilation rate of 0.05 

for two occupants inside the room will reach about 650 - 700 ppm, whereas, for four 

occupants inside the room, CO2 levels will reach about 900 to 950 ppm, both of which 

are still considered within the healthy region. By comparison, when the ventilation rate is 

halved to 0.025, the CO2 level will rise to 900 - 950 ppm for two occupants, and with four 

occupants, these levels rise to an unhealthy level of 1400 - 1450 ppm. Besides simulating 

the CO2 values, this work will also focus on relative humidity levels and if they can be 

considered healthy. What is demonstrated is that the annual mean indoor humidity is 

among the value range with no negative health effects, based on the simulation as outlined 

in H.M.Government (2013), except in the case of 4 occupants with a ventilation rate of 

0.025. 

 There is only a slight difference in the humidity between 1920s dwellings and the 

2010s' with a ventilation flow of 0.05 (shown in Figure 30 (a)). This result is observed 

particularly for both building typologies in Aberdeen after approximately 15oC, where 

after there is no difference in mean indoor RH. The trend for all three locations is almost 

linear, proportionally with the temperature change. However, for Liverpool and Kent, at 

approximately 15oC, the RH for 2010s homes remains negligibly larger than that of its 

1920s counterpart. This difference is sustained until 21.5oC for Liverpool and 23oC for 

Kent homes. In terms of location, Liverpool and Kent-based homes have a similar RH 

with a difference in RH of 1% from 13-21oC, whereas, above this temperature (21-25oC), 

RH appears to be the same. However, initially, in Aberdeen, RH is only 2% lower than 

in Kent, but at approximately 16oC, this difference increases to 3.5% RH and is sustained 

until the end of the simulation at 25oC. 
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Figure 30. Comparison of mean indoor relative humidity (% RH) for the 1920s and 

2010s housing typologies in Liverpool, Aberdeen, and Kent over the entire year of 2017 

with a.) 2 occupants and flow 0.05m/s, b.) 2 occupants and flow 0.025, c.) 4 occupants 

and flow 0.05m/s and d.) 4 occupants and flow 0.025. 

  

 Similar to the case of 2 occupants (in Figure 30 (a)), the values of annual mean indoor 

humidity in Figure 30 (c) are among the healthy values based on the simulation. Figure 

30 (a)-(d) demonstrate that due to the increase in people within the room, the starting RH 

values are approximately 3% high than those in Figure 30 (a). Figure 30 (c) demonstrated 

a gap (of approximately 1%) in RH between 1920s dwellings and the 2010s' in the 

temperature range 13-18°C. After this temperature, both housing typologies seem to have 

the same mean indoor RH; the only difference is the location of the dwelling, where the 

trends are almost linear, proportionally with the temperature change. With less ventilation 

a.   b.  

c.   d. 
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flow, the mean humidity value difference between 1920s dwellings and 2010s’ are 

distinguishable, especially with lower temperature settings. The efforts to reduce comfort 

temperature settings to conserve energy will be supported by the modern house typology, 

which has lower relative humidity than the old typology. 

 Figure 31 (a), (b) and (c) demonstrate the probability of the relative humidity 

exceeding 70%, and all the results show the value below 25%. Only in Figure 31 (d), for 

a dwelling with four occupants and ventilation flow of 0.025, has the relative humidity 

exceeded 70% value above 25%. Besides the CO2 level, the value of the RH makes IAQ 

conditions unhealthy. The graph displayed in Figure 31 (a) – (d) is not linear because of 

the humidity change. The use of a heater will increase the temperature and decrease 

indoor relative humidity. The 2010s dwelling tends to have higher humidity than the 

1920s dwelling. This condition happens due to the difference in the heater state. In the 

1920s dwelling, the desired temperature must be achieved with the heater turned on, while 

in the 2010s dwelling, the temperature still can be reached with no heater as the 2010s 

dwelling has better insulation to maintain the indoor heat.  

 The chart of the percentage of the heater in the ‘on’ state cycle for the whole year 

(2017) is provided in the Appendix 2. This cycle of heater ON and OFF represents the 

additional heating needed and then switched OFF after the desired temperature setting 

was obtained. This cycle can represent a rough estimation of the heating energy 

comparison between house typologies. The more precise values were done in the 

simulation by using integrator component to also capture the transient heating energy 

values. The result of this process will be provided in Figure 32.  

 The probability of the relative humidity exceeding 70% shown in Figure 31 (a) and 

the percentage of the heater in the ‘on’ state shown in the Appendix 2 (a) is negatively 

correlated. In 1920s dwellings, for Liverpool, Kent, and Aberdeen, the values are -0.9579, 
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-0.9830, and -0.9345. For the 2010s' dwellings for Liverpool, Kent, and Aberdeen, the 

values are -0.9372, -0.9711, and -0.8817. This result shows that the decrease in the use of 

the heater will increase the probability of the relative humidity exceeding 70%, 

particularly in the dwellings in Kent that have the most significant inverse correlation 

values. 

  Figure 31. Comparison of the probability of indoor RH becoming >70% RH 

1920s and 2010s housing typologies in Liverpool, Aberdeen, and Kent over the entire 

year of 2017 with a.) 2 occupants and flow 0.05m/s, b.) 2 occupants and flow 0.025, c.) 

4 occupants and flow 0.05m/s and d.) 4 occupants and flow 0.025. 

 

 In order to minimise the probability of the indoor RH not exceeding 70%, the location 

will not give a significant value if the temperature inside the dwelling is maintained at at 

least 15 - 16⁰C. With this temperature set point value, the number of people inside the 

a.   b.  

c.   d. 
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room will have more of an effect more than the house location. Recommending this 

temperature set point to become the recommended standard temperature setting for 

comfort will consider giving a more uniform impact to the comfort.   

 Figure 31 (c) and Figure 31 (d) show that the 2010s' dwelling typology was beginning 

to demonstrate the superior result compared to the 1920s'. The probability of the RH 

exceeding 70% can be lowered while conserving indoor heating energy. Similar to the 

dwellings with two occupants, the dwelling with four occupants has the tendency that the 

location will not give a significant value to minimise the probability of the indoor relative 

humidity not exceeding 70%. This simplification can be used if the temperature inside 

the dwelling is maintained with the value of at least 16⁰C in the house with four occupants. 

The housing typology will significantly impact thermal comfort when temperatures are 

below 16⁰C. When the temperature set point is above 19⁰C, the dwelling typology 

becomes no longer critical to the comfort, but only has an impact on the energy usage. 

Therefore, recommending a temperature set point around 16⁰C - 19⁰C to become the 

comfortable standard temperature would be desirable. 

Figure 32 I. shows the relation between the heating energy needed and the house’s 

location. The house that is located in the area with lower average temperature will need 

higher heating energy.  

Figure 32 I. also highlights the impact of the number of occupants in the house although 

it was not as high as the ventilation impact. The higher number of occupants (c) and (d) 

needed a lower heating energy compared to the case (a) and (c). The lower the temperature 

set point, the higher the impact of the people’s presence in lowering the heating energy. 
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Figure 32. I. Heating energy comparison between the 1920s and 2010s housing 

typologies in Liverpool, Aberdeen, and Kent with a.) 2 occupants and flow 0.05m/s, b.) 

2 occupants and flow 0.025, c.) 4 occupants and flow 0.05m/s and d.) 4 occupants and 

a.     b.  

c.     d. 

I 

II 

 

 

 a.     b.  

c.     d. 
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flow 0.025. II. Heating energy ratio, Y axis represents the energy ratio 1920s against 

2010s. 

   

 As outlined in  

Figure 32 II (a) and (c), the energy used for the heating in the 1920s' house can be doubled 

compared with the 2010s' house throughout the year. The heating energy was decreased 

with better insulation material in the 2010s dwelling. The use of this material can have a 

higher impact compared to the impact of the different house locations across the UK. 

With lower ventilation value  

Figure 32 II (b) and (d), the saving will be even higher. This value highlights the use of 

ventilation with heat recovery to conserve heating energy.  

Figure 32 II also indicates that recommending a lower temperature set point for the 

modern houses will give even higher benefit in conserving heating energy compared to 

the 1920s’ house. 

 Appendix 2 also shows the heating energy curve for three hottest months and three 

coldest months. The results from three coldest months highlight the benefit of the modern 

house typology in the thermal energy saving. The gap between the heating energy usage 

in the 1920s house and the 2010s house was massive. Lowering the temperature set point 

for the 2010s house will give higher impact compared with the 1920s. The results from 

three hottest months gave an interesting result. The housing typology had less impact with 

the lower temperature set point. The people’s presence also had a greater impact beside 

the rate of ventilation. Like the results from the three coldest months, lowering the 

temperature set point for the 2010s house will give higher impact compared with the 

1920s especially with more people present. 

   Based on the heating cycle simulation result where the 2010s dwelling typology can 

conserve 2% of heating energy and with the assumption of 16,500 kWh - 22,000 kWh on 
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annual heating energy consumption per household per year, the energy-saving per house 

per year will be in the range of 330 - 440 kWh. If it was multiplied by the number of 

'1920s' homes which are approximately 36.6% of the total dwellings (approximately 8.76 

million homes), the total energy conservation across the UK will reach about 2.89 - 3.85 

billion kWh. The carbon reduction per year can reach approximately 635.8 - 847 thousand 

tonnes with 220 gCO2eq/kWh. This result can be higher if the heating energy simulation 

is considered. More than half of the heating energy can be saved with the lower 

temperature set point, and the use of modern construction materials as used in the modern 

housing typology. The carbon reduction per year can reach 21 million tonnes. 

 

4.4 Simulation Validation 

4.4.1 Validation against ASHRAE Global Thermal Comfort Database II 

 The simulation uses three cities within the UK: Kent, Aberdeen, and Liverpool, to 

represent conditions all over the UK. The measurement data taken from ASHRAE Global 

Thermal Comfort Database II (Földváry Ličina, Cheung, Zhang, de Dear, Parkinson, 

Arens, Chun, Schiavon, Luo, Brager, Li, Kaam, et al., 2018) for Liverpool and all 

available UK data were used to validate the model. The data from Liverpool were selected 

to represent one area of the UK with average weather conditions with 197 measurements 

data available in the database. All areas across the UK were selected from the database 

with the data entry of 14,187 measurements from the Midlands, London, Hampshire, 

Oxford, St. Helens, Chester, and Liverpool. These measurements were taken in naturally 

ventilated buildings such as offices and classrooms. The data set years are 1994, 1995, 

1996, 1998, 1999, 2011 and 2012, with the data span throughout the years. 
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 The measurement data in ASHRAE Global Thermal Comfort Database II are used as 

the comparison parameter to the air velocity values in m/s and the RH in percentage (%). 

For the Liverpool region, the measurement data shows that the average temperature is 

21.18 ⁰C with a standard deviation of 1.60 and the RH value of 44.55 % with a standard 

deviation of 5.92. The average value of indoor air velocity is 0.06 m/s with a standard 

deviation of 0.05. Our simulation shows that for the Liverpool area, with an average 

temperature of 21 ⁰C and an indoor air velocity of 0.05 m/s, the RH is 44.52%. This result 

comparison can be seen in Table 8. 

Table 8. Model Validation. 

  Simulation Result ASHRAE Global Thermal Comfort Database II 

Area 

Tem-
pera-
ture 
(℃) 

Rela-
tive 
Humi
dity 
(%) 

Indoor 
Air 
Veloci-
ty 
(m/s) 

Tem-
pera-
ture 
(℃) 

Std. 
Dev. 

Rela-
tive 
Humi
dity 
(%) 

Std. 
Dev. 

Indoor 
Air 
Veloci-
ty 
(m/s) 

Std. 
Dev. 

Num-
ber of 
sam-
ples 

Liverpool 21 44.52 0.05 21.18 1.60 44.55 5.92 0.06 0.05 197 

United 
Kingdom 

22 40.63 0.05 
22.67 1.93 41.87 13.14 0.07 0.06 14187 

23 38.70 0.05 

 

 The global UK areas show that the mean of the RH is 41.87%, with a standard 

deviation of 13.14. This value is measured at the mean temperature of 22.67 ⁰C with a 

standard deviation of 1.93. The mean air velocity value is 0.07 m/s with a standard 

deviation of 0.06. Our simulation shows that for the average temperature between 22 ⁰C 

and 23 ⁰C with an indoor air velocity of 0.05 m/s, the RH is between 38.7% and 40.63%. 

The average RH value deviation is less than 2%, which justifies our simulation result. 

 

4.4.2 Validation against the AI Model  

 The other way to validate the model is by comparing it to the AI model using the 

ASHRAE database RP-884 and ASHRAE Global Thermal Comfort Database II. This 
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model is fed with a temperature value of 22.67 ⁰C and humidity of 41.87%. Since, in the 

model, the air velocity parameter is omitted, the other parameters like the clothing 

insulation, activities and age are varied to capture the variability of the result. The value 

for the clothing insulation parameter is from 0 to 2.89, with an interval of 0.5. The value 

of activities ranges from 0.65 (sleeping) to 6 (very heavy work) with step 1. The age 

parameter is fed with 6, 36, 66 and 96 years. The combinations of parameters resulted in 

144 combinations of data, with the data point in the psychrometric chart shown in Figure 

33. 

   

 

Figure 33. Mapping the validated value in the psychrometric chart. 

 

 The result of the AI model is analysed by observing the comfort percentage result from 

the AI model output. The validation used the assumption that the common clothing 

Insulation at home was 0.5 clo. The activities were assumed as sleeping and moderate 

X 
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work with a value of 0.65 to2.65 met. The occupants’ ages assumptions were between 6 

to 96 years. With these assumptions, the result of the comfort percentage was 100%. It 

means that all occupants were in a comfortable situation. This value justifies the result of 

the simulation. Other values are also interesting to be analysed. In this temperature and 

relative humidity value, the comfort percentage decreases if the clothing insulation value 

is higher than 0.5 or the occupants do heavy work (higher activity value). This highlights 

the recommendation for lowering the comfort temperature setting. The detailed result of 

the validation with the AI model can be seen in Table 9.  

 

Table 9. Validation result with AI Model 

Conditions: Percentage 

All cases: Clothing Insulation: 0-2.5 clo; Activities: 

sleeping to heavy to very heavy work (0.65-5.65 met); 

age: 6-96 years 

65.97% 

All seasons: Clothing Insulation: 0-1.5 clo; Activities: 

sleeping to heavy work (0.65-3.65 met); age: 6-96 years 
95.31% 

Summer Clothing Insulation 0-1 clo; Activities: 

sleeping to moderate to heavy work (0.65-3.65 met); 

age: 6-96 years 

93.75% 

Winter Clothing Insulation 1-2.5 clo; Activities: 

sleeping to heavy to very heavy work (0.65-5.65 met); 

age: 6-96 years 

61.45% 

Common cases: Clothing Insulation: 0.5 clo; Activities: 

sleeping to moderate work (0.65-2.65 met); age: 6-96 

years 

100.00% 
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Chapter 5  System Design  

5.1 Perception of a Smart System 

 Based on the first survey, most participants that commented on the smart house, 

associated the smart house with a smart meter. Participants were interested in 

implementing sensors and were willing to invest more to lower their energy bills. Most 

of them who are aware of the concept of the smart house do not know the full capabilities 

of the smart house. When they know that the smart house will be able to do more, they 

say they want the solution. Based on this result, implementing an intelligent home system 

and spending more to lower the bills will be the driver of the system's acceptance. Only 

6% of the people (5 respondents) reject the idea of using an intelligent system and paying 

more to lower their bills. If the majority want to pay more for the system, the acceptance 

of the system will be even higher if they do not have to purchase the system. A further 

question on their preferences about the system they wanted to have in their future home 

can be seen in Figure 34 (a).  

 

 Figure 34. Survey on the perception of the intelligent system (a) future home 

features that occupants want (b) comfortability issue in sensor use (c) privacy issue in 

sensor use (Y axis represent number of respondents) 

(a) 

(b) 

 

(c) 
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     The solar panel is still the most commonly preferable solution for their future home. 

An additional sensor / smart system is still not popular, and people are still unclear about 

the sensor data, which will be related to their privacy. It is reflected in the result of the 

survey on the sensors employed by the smart home. The respondents who feel that there 

are no privacy issues are just about 2% higher than those who consider that the sensor 

will be intrusive.  

 Since the concept of sensors was not common for the respondents, the further 

questionnaire given to 24 respondents returned interesting results. The results of the 

comfortability aspect can be seen in Figure 34 (b). The questionnaire result shows that 

people are not very comfortable having the MOS/CCD Camera as their smart home 

sensors. The exciting finding is that people are still comfortable even when using the 

wearable sensor at home. This comfort might be due to the widespread use of 

smartwatches and fitness bands. The second aspect, the privacy issue, can be referred to 

in Figure 34 (c). 

 Based on the interview with eight participants from the group of 24, they feel that 

using sensors inside their homes will not breach their privacy as long as the data is well 

maintained. When they are introduced to the use of the IR thermal camera, most of them 

do not object. They feel their privacy will remain because the image cannot directly relate 

to them. They think the image results were funny and ask their children to be 

photographed using this camera. The questionnaire result says a bit different. The 

respondents still consider that privacy issues have become problems using some sensors. 

Even if the data are securely kept, they still do not want to use the CCD/MOS camera 

sensor type (the most untrusted on privacy) followed by the Thermal Camera and 

wearable sensor. There should be more elaboration for the smart home implementations 

regarding user education on the privacy aspects. 
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5.2 People with Special Needs and the Design 

5.2.1 Adaptive Behaviour 

 People naturally have adaptive behaviour to make a more comfortable environment 

condition. This action is known as self-adaptation. There are three types of adaptation. 

The first is a physiological adaptation, which represents the body’s reaction to the change 

in the surroundings. The second is psychological adaptation. This adaptation is derived 

from the state of mind of previous experiences. The third adaptation is related to human 

behaviour (Parsons, 2020 ).  

 

5.2.2 Adaptive System  

 Human comfort, particularly thermal comfort, is very personal. It can vary from person 

to person according to their condition and disability. Developing a personally customised 

system is very expensive. The framework review for personalised control is also 

presented to make the system perform the automatic task (O'Brien & Gunay, 2014). 

Automatic control, which aims to lower energy usage, has also been studied (Gunay, 

O'Brien, Beausoleil-Morrison, & Gilani, 2017; Nagy, Yong, & Schlueter, 2016). These 

systems focused on the implementation of the on-off system. The other parameter 

supporting energy saving, like blinds, can also be controlled automatically.  

 The adaptive system is the solution to develop a system that can cope with personal 

preferences. The system can be part of the Industry 4.0 development for supporting  

employees (Kanisius Karyono, Abdullah, et al., 2022). This system can adapt to personal 

preferences, increase human comfort, and increase productivity. Artificial Intelligence 

(AI) was used to acquire the system’s capability to be able to acknowledge adaptive 

thermal comfort. Neural Network is one of the preferred solutions for the core of the 
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adaptive system. The various learning data from the ASHRAE multiple databases can 

lead to a unique response under specific circumstances. Using this system, the real user 

behaviour, which is unique, can be captured by the system.  

 

5.3 Infrastructure Design 

 The infrastructure design approach uses the WSN to simplify the installation and allow 

system expansion and scaling. The infrastructure design can be seen in Figure 35. The 

lowest layer, or the edge, consists of the sensors and processor based on the ESP-32 

WROOM modules programmed with the Arduino platform. This layer also contains the 

actuator that consists of the Solid-State Relay (SSR) to control the heater or air 

conditioner with the same processor based on the ESP-32 WROOM modules 

programmed with the Arduino platform. The sensors consist of two sensor types. The first 

type consists of a temperature and air quality sensor and a black globe sensor. The second 

type has the same temperature, air quality and black globe sensor component but has an 

additional PIR-based occupant's monitoring sensor and the thermal camera that can be 

used for future developments. 

 The second layer consists of the local control with the Raspberry Pi as the main local 

controller. The Raspberry Pi is running a local control program written in Node-Red. 

Moreover, the communication between these layers is being done using the MQTT 

protocol over a Wi-Fi connection.  

 The use of Raspberry Pi 3 Model B+ for the prototype was due to the product 

availability, but it is not mandatory. Any other brand or type of local controller with 

similar processor performance will be suitable because the algorithm used in the local 

controller is not heavy or require high computational performance. The AI algorithm of 

type Artificial Neural Network (ANN) is used based on this qualification. The local 
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controller for residential has limited memory and computational power to form a low-

cost system that was affordable for residential use.   

 

Figure 35. The Proposed System Diagram. 
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 The highest layer is the server layer. In this prototype, the Application Server and the 

Database server are implemented using a single machine based on the Intel i5 processor. 

The database structure uses the MySQL-based database, and the data structure will be 

addressed in chapter 5.6. The application Server is also using a Node-Red-based program. 

For the user program, the application was developed using MIT App Inventor for cross-

platform deployment possibility, which is the possibility to be deployed into user 

smartphones with different platforms such as Andriod-based smartphones and iOS-based 

smartphones.  

 The sensor hardware module diagram can be seen in Figure 36. The sensors are 

connected to the ESP-32 WROOM controller through the I2C communication protocol. 

I2C is a serial communication protocol whose primary connection includes the Serial 

Data (SDA) and Serial Clock (SCL). The other type of sensor module diagrams and 

actuator diagrams can be seen in Appendix 3. The flow chart of the sensor node can be 

seen in Figure 37, and the program of this sensor node can be seen in Appendix 4. The 

sensor node can enter the sleep mode to reduce the power usage. The sensor will 

automatically wake up according to the program and condition and perform its task. After 

completing the task, the sensor node will go to the sleep state again. This feature will be 

beneficial to conserving sensor node power, especially in this environment monitoring 

application where the data transmitted from the sensor is not very often. In this prototype, 

the period of each data transmission is once every15 minutes. 

 The local controller in the middle layer acts as an intermediary between the 

sensor/actuator layer and the server. The role is vital for the system to anticipate faulty 

communication to the server. In the case of faulty communication, the local controller 

can act as a temporary local server to handle the data and send the corresponding action 

to the actuator based on the algorithm stored in the local controller.  
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Figure 36 Standard sensor Module Diagram. 

  

 The flow chart of the local controller and the Node-RED program can be seen in 

Appendix 5. The web/application server program was also developed in Node-RED. 

Node-RED was originally developed by IBM for integrating hardware devices. This 

program is a flow-based development tool. This tool offers a visual programming 

development environment which provides modular libraries to be integrated into the 

program. The server receives the sensor data from the local controller through the MQTT 
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protocol using Wi-Fi in this prototype. The server can also send the command to control 

the actuator via the same protocol. This protocol's implementation and connection 

methods can be altered according to the supporting infrastructure. The flow chart of the 

server and the Node-RED program can be seen in Appendix 5. 

 

Figure 37 Standard Sensor Flow Chart 
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Cost was among the consideration of components selection and system design. 

The system was intended for residential implementation, so the low-cost approach was 

preferred. Based on Table 10, implementing 2 sensors of Humidity with Black Globe 

Temperature will cost £218.48, while the IoT-based sensors will cost £184.57. This shows 

that the cost of the IoT sensors is still comparable with the COTS offline sensors. This is 

to highlight that this fulfils the low-cost approach for residential dwellings. With mass 

production in the commercialization phase, the unit cost can be lower. 

Table 10. The cost of the IoT system 

Component Type 

Price 

Each 

(£) 

Link (last accessed at 20 July 

2023) 

Server  As a Service     

Access 

Pont 

TP-Link 1 Port Wire-

less AP 802.11 b/g/n 30.00 

https://uk.rs-online.com/web/p/ 

wireless-access-points/2558454 

Local 

Controller  Raspberry-Pi 3 B+ 38.57 

https://uk.rs-online.com/web/p/ 

raspberry-pi/1373331 

Sensor 

Nodes 

ESP 32, SVM 30, 

BME 680 58.00 

https://uk.rs-online.com/web/p/ 

sensor-development-tools/ 

1845086,https://uk.rs-online.com/ 

web/p/environmental-sensor-

ics/1950685, https://uk.rs-online. 

com/web/p/communication-wire 

less-development-tools/1840479 

Actuator 

Nodes 

ESP 32, i-Autoc Solid 

State Relay, 10 A 36.30 

https://uk.rs-online.com/web/p/ 

communication-wireless-develop 

ment-tools/1840479, https://uk.rs-

online.com/web/p/solid-state-

relays/1025544 

PSU Plug-

In AC/DC 

Adapter 

XP Power 5W 5V dc 

Output, 1A 5.27 

https://uk.rs-online.com/web/p/ac-

dc-adapters/1217120 

 Offline Type     

Offline 

Sensor 1 

Lascar EL-USB-2 

Temp & RHumidity  63.24 

https://uk.rs-online.com/web/p/ 

data-loggers/4901064 

Offline 

Sensor 2 - 

BlackGlobe 

Lascar EL-USB-1 

Temperature Data 

Logger 46.00 

https://uk.rs-online.com/web/p/ 

data-loggers/4666115?gb=s 
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5.4 User Interface Design 

 The user interface of this system is designed as to be as simple as possible and has 

only the essential components of the user interface for compatibility issues. The mobile 

application was developed using MIT app inventor, a web-based mobile application 

developer aiming to provide the native application through the web-based development 

environment. From their integrated development environment, the native code for the 

application, for example, Android, will be generated by the development tools. The web 

application aims to provide the native generated code for mobile, for example, Android 

and iOS. This developed application can be used to generate the essential parameters 

needed for thermal comfort analysis in a more precise value. 

The user can set the clothing and calculate the clo value used in the AI system. The 

user also gets the suggestion from the application on what value is the best for winter and 

summer according to the ASHRAE standards 55. A similar feature is also applied to the 

activities. Users can enter their major indoor activities to be calculated, so the AI system 

can be adjusted to meet the user's major activities. This value is among the five most 

essential parameters in thermal comfort: age, clothing, activity/metabolism, temperature 

and humidity. The user interface design layout is shown in Figure 38. 

 
 

5.5 System Flow 

 The system works by the user trigger. The trigger can be in the form of a user request 

from the application on their smartphone or their presence. These values will form rule-

based and case-based reasoning to build core artificial intelligence (AI)(Aljaaf et al., 

2018). The system will react based on the learning result of AI learning. Users can also 

give corrections directly to alter the system setting. This feature will make the system 
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adaptive to user needs. The system flow of the adaptive thermal model can be seen in 

Figure 39. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. The User Interface for Clothing Suggestions and Activity Calculator. 
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Figure 39. The Proposed Adaptive Thermal Model Flow Chart. 

 

Thermal comfort is crucial to support the health and safety of all people groups. The 

young generation and mostly the elderly are susceptible to sickness because of heat- or 

cold-related causes (X. Ye et al., 2012). The wrong thermal arrangement can be fatal for 

some groups of people, especially in the GCC, when there can be sudden cold or hot 

waves. ANN can give the personalisation setting, but the result should be controlled and 

validated. 
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The system, targeted for precision and fault-tolerance and wanting to use ANN 

methods, now uses the novel approach called explainable artificial intelligence (XAI). 

The process can backtrack the learning process, to check whether it has the wrong 

interpretation (Samek W, 2018), (Joel Vaughan, October 2018). This process of tracking 

will require the use of excessive resources. Due to the limited processing power and 

memory, the devices used in the thermal comfort subsystems will have difficulties 

implementing this method. Strengthening the learning process for the neural network 

while still maintaining the processing power and memory usage will be challenging. This 

method is a work in progress for combining the human physiology and human behaviour 

methods (Fanger PMV-PPD model and the human behaviour AI system) to achieve a 

faster and more reliable solution for thermal comfort. Instead of backtracking the whole 

learning process, the PMV-PPD model can be used to check the training parameters and 

processes. If it deviates over certain levels from the standard or the comfort guidelines, 

the PMV-PPD equation can then be referred to validate the learning process involving 

the user or stored parameters. The learning process can be acknowledged by mapping to 

the PMV-PPD comfort map before the controlling result is sent to the controller for 

thermal correction actions. This method will enable the outliers to be validated and 

accommodated, increase security protection, lead to a more comfortable user, and gain 

more trust. This approach has the potential to perform better compared to the XAI 

approach. In the future, it will introduce a safer environment and a lower probability of 

error triggered by the limitations of AI and probably AI hacking. The diagram of the 

approach is presented in Figure 40. 

The concern about the performance and the vulnerability of AI have been addressed, 

not only due to the poor performance and malfunction but also the intentional malicious 

attempt (Hamon et al., 2020). This work uses shallow supervised learning with the data 
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source of learning from the ASHRAE multiple databases. With this prior system learning 

and the use of a large dataset, the possibility of poor performance of the result can be 

lowered, and the learning result has been validated using psychrometric chart mapping. 

The intentional malicious attempt can also be avoided because the model uses pre-trained 

ANN, and the base model has the weight and bias calculated using back propagation 

methods. 
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Figure 40. Proposed Solutions for Empowering AI using Fanger PMV-PPD and 

Behavioural Validation. 

 

5.6 Database Design 

 The system uses the SQL-based database, which is deployed in MySQL. The prototype 

can also use the NoSQL type of the database, but in this stage of development, the SQL-
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based database was preferred. Data processing, searching, and analysis has often been 

done using general purpose software and the SQL-based database was preferred. The data 

The Entity Relationship Diagram of the database is shown in Figure 41. This diagram 

shows the relations between each item in the database that is grouped into fields of 

entities. 

 

Figure 41. Database Entity Relationship Diagram. 
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Chapter 6  Artificial Intelligence (AI) 

6.1 The Development Gap 

 There has been much research to develop physiology and psychology (adaptive) 

approaches for thermal comfort until now but combining the two approaches is not an 

easy job. Due to the advancement in artificial intelligence (AI) technology, combining 

both approaches is now becoming possible. This work aims to elaborate on the human 

physiology and adaptive approaches to harvesting their benefit for better energy 

conservation whilst maintaining human comfort.  

 This work implements shallow supervised learning based on ASHRAE multiple 

thermal comfort databases as the training databases for the artificial neural network. The 

AI-based algorithm will calculate the thermal comfort state of the occupant in real time 

based on the network of sensors and do the thermal adjustment by turning the heater on 

or off.  

 This work also proposes new validation methods to check the learning process in the 

AI system for thermal comfort based on the psychrometric chart. This validation is crucial 

to avoid overfitting problems and minimise the need to use the explainable AI, which is 

not simple to be deployed on the Internet of Things (IoT) based system and still requires 

much research. Auburn’s Nguyen even mentions that the field of explainability is getting 

somewhat stuck (C. Q. Choi, 2021).  

6.2 The ASHRAE Databases and Supervised Learning 

 The AI part uses the most comprehensive thermal comfort data set, ASHRAE RP-884 

and ASHRAE Global Thermal Comfort Database II. These databases are available online 

as open-source databases. The ASHRAE RP-884 consists of 25,616 entries, and 

ASHRAE Global Thermal Comfort Database II includes 81,967 entries (Földváry Ličina, 
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Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, & Kaam, 

2018). This data set consists of objective indoor climatic observations and subjective 

questionnaire-based evaluations. The data were taken from the field experiments with the 

people doing their activities. The data even captured the PMV-PPD values; these values 

differed from the Fanger experiments done in the controlled indoor environment of a 

climate chamber (Földváry Ličina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun, 

Schiavon, Luo, Brager, Li, Kaam, et al., 2018). 

 This data set will benefit the AI system developer rather than getting the value based 

on their own data gathering. Doing their own data collection will require the calibrated 

sensors equipment, the subject's consent and awareness of the thermal sensation and the 

subject questionnaire. The data collection also should be done in the different 

environmental conditions and building types to get a broad combination of training data. 

Controlling all these parameters is challenging in field studies. On the contrary, 

measuring these parameters in the climate chamber will be easier but not represent the 

building types and the actual occupants’ conditions. There is also the approach to using 

the simulated or generated data but validating the data can trigger another hurdle. 

The ASHRAE database comprises different cities and countries, seasons, climate 

zones, building types, cooling, and heating strategy, and personal information about the 

subjects. This personal information includes sex, age, height, and weight. Other 

subjective essential factors are thermal sensation, acceptability, and preference. These 

subjective factors are taken with specific metabolic rate (met) and clothing insulation 

level (clo). The comfort indices such as PMV, PPD and Standard Effective Temperature 

(SET) were calculated uniformly and included in the database. The parameter 

measurements included in this data set are various temperatures, air velocity, relative 

humidity, and monthly average temperatures. Some indoor environmental controls 
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include blinds, fans, operable windows, doors, and heaters (Földváry Ličina, Cheung, 

Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, Kaam, et al., 2018). 

 This data set has developed many approaches to predicting Thermal Sensation (PTS) 

(Ji, Zhu, & Cao, 2020) regarding the location. Another recent model based on this 

database is done to assess the PMV-PPD accuracy against the database (Cheung, 

Schiavon, Parkinson, Li, & Brager, 2019). This work concludes that accuracy varied 

enormously between ventilation, building types and climate. The authors have seen this 

gap to propose better models using the power of AI. 

 ASHRAE Global Thermal Comfort Database II consists of data from Europe (31,392 

entries), Asia (29,064 entries), America (17,359 entries), Africa (2,163 entries), and 

Australia (1,868 entries). It includes field study data from 23 countries. This database 

covered 16 distinct Köppen climate classes. They are hot-summer Mediterranean (23,192 

entries), humid subtropical (15,536 entries), hot semi-arid (8,471 entries), tropical wet 

savanna (6,633 entries), warm-summer Mediterranean (5,980 entries), temperate oceanic 

(4,968 entries), Monsoon-influenced hot-summer humid continental (3,809 entries), 

warm-summer humid continental (2,990 entries), hot desert (2,084 entries), tropical 

monsoon (2,075 entries), monsoon-influenced humid subtropical (1,588 entries), cool-

summer Mediterranean (1,408 entries), subtropical highland (1,406 entries), tropical 

rainforest (963 entries), cold semi-arid (312 entries), and tropical dry savanna (152 

entries) climate zones. Related to the season of the data collection, the observations were 

conducted in summer (30,545 entries), winter (30,440 entries), spring (9,455 entries) and 

autumn (9,177 entries). 

In supervised learning, the role of the training data is crucial. Getting the field data 

during the system initialisation is not practical because the amount and variety of data 

will not be adequate. This approach will not give a comfortable experience for the user. 
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In order to accommodate this, a previous study has been done on developing the 

intelligent system using the previous ASHRAE database. 

Previous studies have shown that the AI approach using the ASHRAE RP-884 has 

limited diversity and unbalanced distribution. This unbalanced distribution results in a 

model which is not reliable in extreme conditions (Zhou et al., 2020). This work uses 

20,954 data entries from 25,616 entries after data cleansing. The other research uses 

ASHRAE Global Thermal Comfort Database II, which consists of a more significant 

amount of data (Luo et al., 2020). The other works use the combination of ASHRAE RP-

884 and ASHRAE Global Thermal Comfort Database II (Z. Wang, Zhang, et al., 2020) 

(Z. Wang, Wang, et al., 2020). However, in the previous research, the data items are 

selected to represent each class or label. This selection is because the more extensive data 

does not guarantee higher accuracy and can cause overfitting issues (Luo et al., 2020). 

Not all data from this data set can be directly elaborated in the training data. This 

limitation is due to the nature of the human psychological factor that the thermal comfort 

is personal or individual (Z. Wang, Zhang, et al., 2020). The ambiguity of the data 

inconsistency can be high. The previous work considers this data illogical and an anomaly 

(Z. Wang, Wang, et al., 2020). From the 107,583 entries, this work only uses 16,795 

based on four thermal metrics. The work by Luo also populates only 10,618 entries out 

of 81,967 (Luo et al., 2020). This work uses the thermal sensation vote (TSV) to label the 

learning target. Eighty per cent of the data are allocated for training and 20% for testing. 

This work also mentions that allocating more data percentages for testing can decrease 

accuracy, indicating the lack of data available for training. 

The work by Luo discovered that even with 66,3% maximum accuracy using the 

Random Forest, the approach already got 10–20% higher prediction accuracy than the 

PMV model. The model also got 60–66% for 3-point TSV accuracy and 52–57% for 7-
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point TSV prediction (Luo et al., 2020). This work also introduced the six most 

influencing variables: temperature, relative humidity, clothing insulation, airflow speed, 

subject age, and activity/metabolism level. The work from Wang also has a similar result. 

The scalability and sample number are limitations, although the accuracy can be increased 

to 87% (Z. Wang, Wang, et al., 2020). The accuracy in predicting thermal acceptability 

is also higher than thermal preference. 

Learning from the previous work based on the ASHRAE Database, this work proposes 

the uses of the database, which are: 

- based on the TSV for the learning target, where three labels for the thermal conditions 

are used (no change, prefer warmer and prefer cooler) 

- uses as much entries data as possible and does not pick pointing data to represent as 

many individual variations or preferences as possible 

- compare the use of the four and five most significant variables, which are temperature, 

relative humidity, clothing insulation, activity/metabolism level, and subject age 

- uses simple filtering to minimise the ambiguity of data by considering the 

psychological aspect of human 

Although the ASHRAE data set is the most comprehensive, using the whole data set for 

training data is not popular due to the psychological factors present in the data, decreasing 

the accuracy of the result. This work fills the data conditioning gap to prepare the data to 

become the training data. This work also uses three-state TSV, simplifying the result to 

control the heating or cooling (no change, warmer and cooler). 

6.3 Data Filtering 

 This work focused on the shallow learning AI for controlling, for example, the electric 

radiant panel to be deployed as part of the Internet of Things (IoT) system for the 

residential house. This work is focused on the three TSV values or the thermal preference 
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(no change, warmer and cooler). The diagram that shows the methodology of this work 

is shown in Figure 42.  

 

Figure 42. Proposed validation methods and proposed methodology for thermal comfort 

AI training 
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 The ASHRAE database was used for the training data source, and the filtering process 

is applied to maintain the data consistency without eliminating the psychological aspect 

variations in the data. The semantic augmentation process is added to the data to balance 

the feature and enrich supervision learning. This work will implement four and five 

parameters from six dominant parameters due to the availability of IoT sensors. 

This work proposes to check the AI learning result using a psychrometric chart. 

Testing the learning process using the testing data will not be sufficient to check the 

training result. Visual result validation with the psychrometric chart using a predefined 

input range to map the thermal comfort zone will result in a higher confidence level in 

the system. Further, with this visual validation, the parameters can be mapped to view the 

characteristic of each parameter regarding the impact on thermal comfort. The human 

psychological/behavioural aspects can be shown on this map.  

Previous works that use the ASHRAE database did not use the complete entries, but 

selected entries based on each class to achieve balanced features. The data used for 

training was only less than 20% of the whole ASHRAE database. This selection makes 

the human psychological aspects not easily captured by the supervised training. On the 

other hand, the risk of overfitting is also implied in using this database. That is why this 

database is the most reliable for thermal comfort. Since it was published, few AI 

developers have been willing to use this data to develop their AI systems. 

 This work proposes simple yet powerful methods to filter the data based on human 

perception consistency. The need for filtering is because the data was based on precise 

measurement, but the human perception data was based on the questionnaire that was 

more prone to error and subjective judgment than the measured data. This filter worked 

based on the comparison of parameters and omitted the data that is considered to be 

inconsistent as follows: 
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1. The filtering is based on the consistency between the thermal acceptability (0 

unaccepted 1 accepted) and thermal preference (warmer, no change and cooler). 

The warmer and cooler should have the thermal acceptability value of 0, no change 

should have the value of 1. 

2. The filtering is based on the consistency between the thermal acceptability (0 

unaccepted 1 accepted) and thermal sensation (-3 to +3). The value between -2 and 

2 should have the thermal acceptability value of 1, and the other should have 0. 

3. The filtering is based on the consistency between the thermal sensation (-3 to +3) 

and thermal preference (warmer, no change and cooler). The thermal sensation 

value of less than -2 should correspond with warmer, and more than 2 should 

associate with cooler. The state of no change should have a value between -2 and 

+2. 

4. The filtering is based on the consistency between the thermal preference (warmer, 

no change and cooler) and thermal comfort (1-very uncomfortable, 6-very 

comfortable). The value 1-very uncomfortable should not have the value of no 

change. The value of 6-very comfortable should not have the value of warmer or 

cooler. 

5. The filtering is based on the consistency between the thermal sensation (-3 to +3) 

and thermal comfort (1-very uncomfortable, 6-very comfortable). The 1- very 

uncomfortable value should not have the value of -2 to +2. The thermal comfort 

value of 6-very comfortable should not have the thermal sensation value below -2 

or more than 2. 

The target labels for the AI are based on the three states of TSV, -1 means that the 

occupants need a warmer indoor environment, 1 means that the occupants need a cooler 

temperature and 0 means that the occupants are satisfied with the indoor temperature. 
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This approach is the most straightforward arrangement for the subject because they are 

still comfortable in the current temperature, need a lower temperature, or need a warmer 

temperature.  

Not many people can define their thermal preferences using seven scale levels. There 

is no crisp border between each scale, and even the same temperature can be mapped into 

the different seven-scale TSV. The border between these three scales is not crisp either. 

However, this map will better understand people’s thermal sensations due to its 

simplicity. 

Previous research shows that there are six dominant parameters, and compared to the 

complete twelve parameters, it only increases by 2.6% in the performance compared to 

elaborating six dominant parameters (Luo et al., 2020). The IoT low-cost sensors can 

detect two of six dominant parameters: temperature and relative humidity. The occupant 

data entries can introduce the clothing insulation, metabolic rate or activities, and age. 

Low-cost sensors do not easily detect air velocity. This work also tried to narrow the 

parameters into five for easier deployment with a residential IoT system. The precise air 

velocity sensor and the sensor placement will not be feasible for the residential IoT 

system. This work will give the overview that even without the air velocity sensor, the 

result of the AI will still be acceptable. 

Furthermore, the system which omits the parameter of age is also explored. This 

exploration is due to the high availability percentage for age unavailability in the 

ASHRAE database. The missing data for the five dominant parameters in the ASHRAE 

database can be seen in Table 11.   

Data filtering aims to use the data entries from the ASHRAE database as much as 

possible by removing the inconsistent data while still capturing the psychological aspects 

of human comfort registered in the database. This filtered data can be used as a base 



Chapter 6  Artificial Intelligence (AI) 

 

Karyono  120 

 

training data so that the AI developer does not have to capture their data which needs 

much effort or will decrease the occupants’ comfort. The user can then override the setting 

of the system with their personal preferences. Their personal preferences can be entered 

in the later stage of the system development.  

Table 11. Missing data for the five dominant parameters in the ASHRAE database  
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ASHRAE 
RP-884 25616 3816 14.90 761 2.97 332 1.30 6899 26.93 2164 8.45 

ASHRAE 
Global 
Thermal 
Comfort 
Db II 81967 3856 4.70 9060 11.05 7588 9.26 57105 69.67 15000 18.30 

TOTAL 107583 7672 7.13 9821 9.13 7920 7.36 64004 59.49 17164 15.95 

 

The number of data entries filtered in each filtering item in the ASHRAE database can 

be seen in Table 12. The ASHRAE RP-884 database has 25,616 entries, and the ASHRAE 

thermal comfort database II (1995 – 2015) has 81,967 entries. After the filtering process, 

the amount of data in ASHRAE RP-884 is 14,970, with filtered entries of 10,646 or 

41.56%. The ASHRAE Thermal Comfort Database II entries are 50,286 after the filtering 

process, with the filtered value of 31,681 entries or 38.65%. In total the ASHRAE 

database after filtering is 65,256 entries or 60.66% (filtered value is 42,327 entries or 

39.34%). This entry has at least three times as much data as the previous work. More 

elaborated data means the system can better capture the occupants’ variations. The risk 

of overfitting can be eliminated with further processing of the data.  

 

 



Chapter 6  Artificial Intelligence (AI) 

 

Karyono  121 

 

The filtering consists of five inconsistency checks. The simple algorithm for filtering 

is as follows: 

 

 

Algorithm 1: Simple Data Filtering for the ASHRAE Database  

 

//% simple filtering based on five inconsistency check 

// entry will be marked as 0 to be filtered / excluded from the database 

// the field with “NA” entries will be skipped  

// TA=THERMAL_ACCEPTABILITY (0 unaccepted, 1 accepted) 

// TP= THERMAL_PREFERENCE (warmer, no change, cooler) 

// TS= THERMAL_SENSATION (-3 .. +3). 

// TC= THERMAL_COMFORT (1-very uncomfortable .. 6-very comfortable) 

Input: ASHRAE database  

for ctr=1 to size (ASHRAE database) do  

      //%ThermalAcceptability vs ThermalPreference 

IF (TA=1 and TP="no change") return 1  

ELSEIF (TA=0 and TP="cooler") return 1  

ELSEIF (TA=0 and TP="warmer") return 1  

ELSEIF (TA="NA" or TP="NA") return "NA"  

ELSE return 0 

     //%ThermalSensation vs ThermalAcceptability 

IF (TA=1 and ABS(TS)>2) return 0 

ELSEIF (TA=0 and ABS(TS)<=1) return 0  

ELSEIF (TA="NA" or TS="NA") return "NA"  

ELSE return 1 

     //%ThermalSensation vs ThermalPreference 

IF (TP="warmer" and TS<-2) return 1 

ELSEIF (TP="cooler" and TS>2) return 1 

ELSEIF (TP="no change" and ABS(TS)<=1) return 1 

ELSEIF (1<TS<2 and (TP="cooler" or TP="no change")) return 1 

ELSEIF (-2<TS<-1 and (TP="warmer" or TP="no change")) return 1  

ELSEIF (TS="NA" or TP="NA") return "NA"  

ELSE return 0 

      //%ThermalComfort vs ThermalPreference 

IF (TC=1 and TP= "no change") return 0 

ELSEIF (TC=6 and (TP="cooler" or TP="warmer" )) return 0 

ELSEIF (TP="NA" or TC="NA") return "NA"  

ELSE return 1 

//%ThermalComfort vs ThermalSensation 

IF (TC=1 and ABS(TS)<=2)  return 0 

ELSEIF (TC=6 and ABS(TS)>2) return 0 

ELSEIF (TC= "NA" or TS="NA") return "NA" 

ELSE return 1 

end for  

Output: Marked ASHRAE database (the data marked with 0 will be filtered/excluded from the 

database) 
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Table 12. The number of data entries filtered in each filtering item in the ASHRAE 

database.  

Dataset 
Name 

Number 
of entry IC1 % IC1 IC2 % IC2 IC3 % IC3 IC4 %IC4 IC5 

%IC
5 

ASHRAE 
RP-884 25616 3051 11.91 1564 6.11 10192 39.79 192 0.75 129 0.50 

ASHRAE 
Global 
Thermal 
Comfort 
Db II 81967 14236 17.37 10393 12.68 27341 33.36 1106 1.35 326 0.40 

TOTAL 107583 17287 16.07 11957 11.11 37533 34.89 1298 1.21 455 0.42 
Filtering items: 
(IC1) Inconsistency 1: Thermal Acceptability vs Thermal Preference  
(IC2) Inconsistency 2: Thermal Sensation vs Thermal Acceptability  
(IC3) Inconsistency 3: Thermal Sensation vs Thermal Preference  
(IC4) Inconsistency 4: Thermal Comfort vs Thermal Preference  
(IC5) Inconsistency 5: Thermal Comfort vs Thermal Sensation 

After filtering, the amount of data in ASHRAE RP-884: 14,970 (filtered value: 10,646 or 41.56%) 

After filtering, the amount of data in ASHRAE Thermal Comfort Database II: was 50,286  

(filtered value: 31,681 or 38.65%) 

The Total data in both data set are 65,256 (filtered value: 42,327 or 39.34%) 

 

The database that has been filtered is mapped and compared with the original 

ASHRAE database. Figure 43 shows the mapping with the temperature as the x-axis and 

relative humidity as the y-axis. The original database map is shown on the left, whereas 

the filtered database is on the right. This figure shows the data mapping based on the three 

TSV class groups, which are “no change”, “warmer”, and “cooler”. The ASHRAE 

database is shown to have major overlaps between classes. This significant overlap is the 

cause of the difficulties in training the AI using this database. It is challenging to have a 

proper classification process with the risk of overfitting.  

The class overlap is reduced with the filtered data, as shown on the right side. This 

method gives the learning process a better chance to generate better training results for 

proper classification. The mapping position between the “warmer” and “cooler” classes 

looks physiologically better than the original database. The other parameters map can be 

seen in Appendix 6. The figure in Appendix 6 shows the database map for clothing 

insulation against the indoor temperature, the occupants’ activity/metabolism against the 
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indoor temperature and the occupants’ age against the indoor temperature. Like the 

relative humidity and temperature map, the classes in these parameters have a better 

condition to be classified after the database filtering process.  

 

Figure 43. The ASHRAE Database Mapping for Relative Humidity vs Indoor 

Temperature Before Filtering and After Filtering  

 

This map also shows a gap in the data availability for the “warmer” and “cooler” 

classes. Not only to make the feature space to be equal. Furthermore, the system needs a 

different range of data to be registered in the database for the “warmer” and “cooler” 

classes. It needs more data outside the comfort temperature zone for a better learning 

process. The answer to this problem is semantic augmentation. 

 

6.4 Data Semantic Augmentation 

Getting the data for thermal comfort training is not easy. It requires the proper 

instruments and consent from the occupants. Most of the entries in the ASHRAE database 

fall under the “no change” label (43,441 entries). Only about 14,966 entries need a 

warmer temperature, and about 27,093 need a cooler indoor temperature. This case is 

Relative humidity (vertical axis) vs Indoor temperature (horizontal axis) 

          Data Set map before filtering (107,583 entries)        Data Set map after filtering (65,256 entries) 
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similar to the image processing and classification problem with highly imbalanced data. 

The training data for supervised methods are usually difficult to collect due to the costly 

human efforts and particular domain expertise. 

A data augmentation strategy is introduced to balance the feature space and enrich 

supervision. The augmentation strategy can normalise the supervision process to improve 

the robustness by embedding such that the features of the same instance under different 

augmentations should be invariant and forcefully separated from the other instance 

features (M. Ye, Shen, Zhang, Yuen, & Chang, 2020). 

The previous work shows that data augmentation can be more powerful in the image 

classification problem if the class identity is preserved, for example, with semantic 

transformations. Each class in the training set can be added with the samples from the 

generator. The procedure is computationally intensive and lengthens the training 

procedure. The training set data can be effectively augmented by searching the semantic 

directions. The random directions that may result in the meaningless transformation can 

be reduced (Y. Wang et al., 2021). 

This work aims to develop data augmentation using the approach of semantic data 

augmentation. The class “no change” remains untouched while the “warmer” and 

“cooler” classes are added with the data in the semantic direction of the value that is not 

covered by the ASHRAE database. The “warmer” class is augmented with the lower 

temperature value under the value of mapped ASHRAE data. On the contrary, the 

“cooler” class is augmented with the data, which is higher than the mapped ASHRAE 

data. This method helps to balance the feature space to enrich the supervision. The benefit 

of this method is that the data obtained from the ASHRAE database is unaffected due to 

the non-overlapped semantic augmentation direction. In this case, the data related to the 
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psychological aspects are still maintained, and the essence of using the ASHRAE 

database is sustained.  

The base for semantic augmentation is the temperature data. This data is chosen 

because the class that needs the augmentations are “warmer” and “cooler”. The data map 

for "warmer", "no change", and "cooler" are shown in Figure 44. 

 

Figure 44. Database map after the filtering process and semantic augmentation: (a) 

warmer class (b) cooler class.  

 

 The class “no change” remains untouched due to the adequate data, and the 

augmentation process for this class might introduce errors to the existing measurement 
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data. Figure 44 shows the map of both classes, the augmentation, and the data map. This 

method also retains the psychological aspects and the accurate measurements in the 

ASHRAE database.  

The augmentation data range was decided based on the notion that the augmentation 

data will not change the original data obtained from the ASHRAE database. The 

“warmer” class is augmented with the lower temperature value under the value of mapped 

ASHRAE data, which is 10 ℃. The "cooler" class is augmented with data above 40 ℃. 

It is shown that the semantic augmentation direction is non-overlapped. The essence of 

the ASHRAE database is sustained. It is shown in  Figure 44 that this range of augmented 

data is also outside the comfort zone. 

The algorithm for generating the semantic augmentation is as follows: 

Algorithm 2: Semantic Augmentation Data 

 

//%”for colder augmentation class” 
Input: data intervals 
row=0; 
for clo=0 to 2.89 step clo_intervals do  
    for met=0.65 to 6.83 step met_intervals do 
        for tem=40 to 63.2 step tem_intervals do 
             for RH=0.4 to 100 step RH_intervals do 
                for age= 6 to 99 step age_intervals do 
                    row=row+1; 
                    AugMat(row,1)=clo; 
                    AugMat(row,2)=met; 
                    AugMat(row,3)=tem; 
                    AugMat(row,4)=RH; 
                    AugMat(row,5)=age; 
                    AugMat(row,6)=”colder”; 
                end for  
           end for  
      end for  
end for  
Output: Augmentation Matrix: AugMat(row,[1:6]) 
//%“for warmer augmentation class”  
// similar with warmer except this line: 
//        for tem=0 to 10 step tem_intervals do 
// 
 //                   AugMat(row,6)=”warmer”; 
// temp can be expanded for more extreme temperature 
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 The neural network model used in this work is shown in Figure 45. The artificial neural 

network model was implemented using MATLAB's artificial neural network generator 

function after the case was analysed using the classification learner function in MATLAB. 

This function supports the selection of classification methods to solve the problems. The 

result of the analysis is provided in Appendix 7.  

 

 

Figure 45. Simple Neural Network Structure for Psychrometric Chart Validation.  

No Change 

warmer 

Cooler 
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The artificial neural network was chosen because the shallow supervised learning 

process can be done in a more powerful machine with multiple ASHRAE databases. Once 

the training has been done in the artificial neural network, this huge amount of training 

data is no longer needed, and the trained network can be deployed in a less powerful 

machine such as a local server or controller.    

The network was trained with the prebuilt function in MATLAB, which was the scaled 

conjugate gradient backpropagation. The training function could train any network as 

long as its weight, net input, and transfer functions have derivative functions. The process 

of updating weight was done with the backpropagation to calculate performance 

derivatives with respect to the weight and bias variables. The backpropagation allows the 

weight to be updated to reduce the error in prediction. The scaled conjugate gradient 

algorithm was based on conjugate directions, but this algorithm does not perform a line 

search at each iteration. 

The AI impact on society has to be addressed so that the AI vulnerability will have 

less impact (Hamon et al., 2020). In terms of robustness, this work uses shallow 

supervised learning. The database source for training was based on multiple ASHRAE 

databases, which resulted from the precise measurement. These learning results update 

the weights and biases in the ANN. The scale of the database items and prior system 

learning will form a solid base for the ANN, minimize the AI's poor processing 

performance, and minimize the long-term impact of AI vulnerability. The result of the 

learning also has been validated using psychrometric chart mapping. This effort will 

minimize the possibility of error and false pattern mapping. 

The AI model selection was based on the limitation of the solution deployment 

for the residential dwellings. The algorithm should be able to run in the local controller 

node with limited memory and computational power. The ANN which consists of the 
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input layer, one hidden layer and an output layer was chosen although having slightly 

lower performances among K-Nearest Neighbors (KNN) and Ensemble Bagged Trees. 

The ANN has the benefit of being less computationally expensive and less memory usage 

with a better interpretability of the model. Table 13 shows the comparison accuracy 

between popular AI methods with the same training data without Principal component 

analysis (PCA). 

Table 13. The accuracy comparison between popular AI methods 

 Classification Methods 

Accuracy (%) 

(without PCA) Classification Methods 

Accuracy (%) 

 (without PCA) 

Case 1 Case 2 
 

Case 1 

Case 

2 

Fine Tree 93.90 93.80 Coarse KNN 77.70 89.30 

Medium Tree 93.70 93.70 Cosine KNN 77.60 89.40 

Coarse Tree 93.60 93.60 Cubic KNN 77.70 89.60 

Linear Discriminant 77.40 89.20 Weighted KNN 78.80 92.50 

Quadratic Discriminant 77.50 89.10 Ensemble Boosted Trees 96.10 96.10 

Gaussian Naïve Bayes 95.50 95.50 Ensemble Bagged Trees 97.00 98.70 

Kernel Naïve Bayes 95.60 95.60 

Ensemble Subspace 

Discriminant 94.40 94.80 

Linear SVM 78.30 89.60 Ensemble Subspace KNN 98.20 64.50 

Quadratic SVM 78.40 72.10 Ensemble RUS Boosted Trees 93.70 93.70 

Cubic SVM 78.20 81.70 Narrow Neural Network 96.00 89.70 

Fine Gaussian SVM 78.50 89.70 Medium Neural Network 96.00 96.00 

Medium Gaussian SVM 78.40 89.60 Wide Neural Network 96.10 96.10 

Coarse Gaussian SVM 78.30 89.60 Bilayered Neural Network 96.00 89.70 

Fine KNN 78.80 92.40 Trilayered Neural Network 78.50 89.70 

Medium KNN 77.70 89.60    

Note: 

Case 1: Training with Augmented & Filtered ASHRAE RP-884 database and ASHRAE 

Global Thermal Comfort Database II 

Case 2: Training with the same dataset as Case1, but without Age parameter 

 

6.5 Psychrometric Based Verification 

Testing and validation for supervision learning are usually done using randomly 

populated data fractions. The typical value for testing and validation can be 10% to 20%.  

A higher percentage can decrease the accuracy (Luo et al., 2020). However, more 

extensive data does not guarantee higher accuracy and can cause overfitting issues. 
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Checking the learning against overfitting issues is not easy. This work proposes using 

psychrometric chart mapping to validate the supervised learning result. This method is 

based on the comfort zone map in the psychrometric chart. The overfitting results will 

lead to the map not showing the correct pattern if the system is fed with the data series. 

The example of the mapping result can be seen in Figure 46. 

The pattern is generated using the validation data generated with the value range of 

relative humidity from 0% to 100% and temperature from 10 °C to 40°C. Other 

parameters like age, clothing insulation and activity can be predefined with median 

values. The result can be mapped with different colours or symbols to represent the 

output. The blue colour in the sample represents the class that needs warmer temperatures. 

The red represents the class that needs a cooler temperature, while the green represents 

the comfort zone (no change). In the case of overfitting, the generated pattern will be very 

different from the comfort zone shown in Figure 11. 

 

Figure 46. Mapping the comfort zone generated by the pre-trained system.  
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This verification process method can also be used to compare the effects of the 

parameter change. One parameter value can be altered while the other parameters are 

constant. The impact of each parameter on the comfort zone can be captured and 

simulated. This method can simplify the representation of the multidimensional 

parameters that impact thermal comfort.     

Many previous AI works only limit the training validation with the available data. 

Usually, data is separated randomly into training, testing, and validation data, and the 

accuracy is purely based on this data. The problem raised is the edge of the comfort zone 

or the zone outside the predefined zone, which might still be comfortable to the occupants. 

This area should be explored to define the system's ability to conserve energy. The 

intelligent system can have the recommender function to lower energy costs by informing 

the occupants about clothing or activities that can keep them comfortable but with less 

energy. The occupants still have the probability of staying comfortable with higher 

clothing insulation during winter to conserve heating energy. On the contrary, the 

occupants will also have the probability to be comfortable in the hot summer by wearing 

lighter clothes, using the fan and consuming fresh beverages to conserve the cooling 

energy. This behaviour is the current gap in the previous work. 

This work accommodates these needs by proposing the validation process using the 

psychrometric chart and test data generator. The test data generator works in a similar 

way to the Algorithm 2 but with the parameter range to be more specific on the comfort 

zone map. The temperature can be between 10°C and 40°C, with a relative humidity value 

between 0% and 100%. The generated data then being fed to the intelligent system, and 

the result is drawn in the psychrometric chart. Each label can be drawn in the chart with 

a different colour to show the "no change" class, "warmer" class, and "cooler" class. The 

previous work also mapped the training result with the psychrometric chart without the 
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test data generation. This method limits the validation to the available data, and the 

comfort zone cannot be adequately mapped. The comfort zone can be appropriately 

mapped using the generated data, with the edges of the thermal comfort zone visually 

presented. 

In order to compare the learning result and the effect of filtering and semantic 

augmentation method, a similar neural network algorithm and model were used in this 

work. For this test, the parameters involved were the combination of indoor temperature, 

relative humidity, clothing insulation, and activity/metabolism. The age parameter is a 

single value, taken randomly to reduce the training data size. The learning data set 

composition for this Neural Network training was 70% training. 15% validation and 15% 

testing data. The data selection for these test groups is based on random selection. To be 

compared, the neural network structures were trained with the original ASHRAE data, 

the filtered data, and the filtered semantic augmented data. 

The first comparison parameter was done using the learning from the plain ASHRAE 

database. The result of training returned an accuracy of 45.6%, and the AI system is then 

fed with the generated test data. The class result is drawn in the psychrometric chart, as 

shown in Figure 47 (a). This result shows an incomplete comfort zone. Only class "no 

change" and "cooler" classes dominate, and the comfort zone is not drawn correctly. The 

class “no change” is represented with green colour, “cooler” with red colour and 

“warmer” with blue colour. The comfort zone range is from 10°C up to 30 °C, which is 

not valid compared with the PMV-PPD results.  
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Figure 47. Psychrometric Mapping for the Comfort Zone Trained with (a) the Original 

ASHRAE Database (b) the Filtered ASHRAE Database (c) the Filtered ASHRAE 

Database with the Data Semantic Augmentation 

(a)  
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Fig. 7. Psychrometric Mapping for the Comfort Zone Trained with (a) the 
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The second comparison parameter used the filtered ASHRAE database for the 

supervised training database. Figure 47 (b) shows the psychrometric map of the generated 

test data for the system, which was trained using this database. The parameters and data 

set grouping method are like the trial shown in Figure 47 (a). The accuracy of the training 

for this dataset was 55.5%. All three classes are visible, but the comfort zone is still not 

drawn correctly. The class "warmer" only covers a small portion of the chart, and the 

comfort zone range spans 10°C up to more than 40 °C, which is not valid compared with 

the PMV-PPD results. This problem shows that the system needs semantic augmentation 

to generate the correct result.  

The third comparison parameter used the semantic augmentation filtered ASHRAE 

database and was deployed with the accuracy of this training data about 98%. The 

parameters and data groupings are similar to the trials for Figure 47 (a) and Figure 47 (b). 

The psychrometric map generated for the semantic augmentation filtered ASHRAE data 

is shown in Figure 47 (c). The comfort zone is better represented in this result. The 

comfort zone ranges from 17.5°C to about 29 °C. The result is better than the previous 

mapping, shown in Figure 47 (a) and Figure 47 (b). This result represents the comfort 

zone presented in Figure 11. 

 Learning from the accuracy of data training, which can be high, as shown in Appendix 

7, the system training result still needs further validation. The validation method can be 

the psychrometric mapping of the comfort zone. Figure 47 highlights the importance of 

validation using a psychrometric chart. 

 

6.6 Parameter Visualisation 

One of the six crucial parameters in thermal comfort is air movement. However, this 

parameter cannot be easily obtained from the IoT sensor system. This work deploys the 
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system with five and four parameters without the age data of the occupant. This case study 

is for simulating in case the occupants' age information is unavailable. The result of both 

systems is compared to show their characteristics. This combination of the original and 

filtered ASHRAE database was then used for the training data for 29 well-known AI 

algorithms for classification. The accuracy of each database and method can be seen in 

Appendix 7. The parameters for each classification method used in the result were defined 

in the table in Appendix 7. The average of the accuracy results is given in Table 14. 

 

   Table 14. The Average Accuracy from 29 Classification Methods 

Database 
Average 
(%) 

DB1 51.87 

Filtered DB1 76.09 

Filtered DB1 Tested with All Data 49.05 

DB1 without age 55.05 

Filtered DB1 without age 80.40 

Filtered DB1 without age Tested with All Data 50.70 

DB2 42.00 

Filtered DB2 70.23 

Filtered DB2 Tested with All Data 47.23 

DB2 without age 50.51 

Filtered DB2 without age 81.57 

Filtered DB2 without age Tested with All Data 49.44 

DB1 and DB2 43.69 

Filtered DB1 and DB2 74.90 

Filtered DB1 and DB2 Tested with All Data 48.75 

ASHRAE DB1 and DB2 without age 50.53 

Filtered DB1 and DB2 without age 81.52 

Filtered DB1 and DB2 without age Tested with All Data 50.87 

Augmented & Filtered DB1 and DB2 86.43 

Augmented & Filtered DB1 and DB2 Tested with All Data 44.28 

Augmented & Filtered DB1 and DB2 without age 90.12 

Augmented & Filtered DB1 and DB2 without age Tested with All Data 48.51 

  

Note: DB1 = ASHRAE RP-884 database  
             DB2 = ASHRAE Global Thermal Comfort Database II  
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 The result shows that the data filtering increases the accuracy of the training results. 

The proposed filtering methods can improve the ASHRAE database for each RP-884 

database, Thermal Comfort Database II and the combination between databases. The 

accuracy increases for all methods of training. The result is still better for the filtered data 

when tested against the original database than the original data. Besides this data filtering, 

data normalisation is already included in the AI process to gain better results. The result 

also shows that reducing the parameter (age parameter) can maintain accuracy. This result 

can be caused by the overfitting or the unbalance of the feature space. The semantic data 

augmentation will give better accuracy results for this problem.  

The parameters are shown before can show the differences between classes “warmer", 

"no change", and "cooler" for the particular value of a parameter such as age to show the 

potential comfort zone for each parameter value. If the parameter is changed accordingly, 

the impact of this parameter change on the thermal comfort zones can be mapped and 

studied. The impact of the parameter change in the thermal comfort zone can be seen in 

Figure 48.  

This work assesses the age parameter impact on the thermal comfort zone. This 

assessment becomes an example of the parameter assessment with this method. The age 

parameter is one parameter that can show the human condition aspect of thermal comfort. 

The thermal comfort is not standard and is based on personal factors. It has been studied 

that the young, elder, disabled or temporary ill people group will have a different comfort 

zone. 

Figure 48 (a) displays the adult's comfort zone representation based on the filtered 

ASHRAE database with the data semantic augmentation. Figure 48 (b) shows the same 

comfort zone for the elderly group. They were based on the filtered ASHRAE database 

with the data semantic augmentation. Based on this chart, the system designer will have 
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insight into designing and testing the AI system since the borders between the comfort 

zone are not crisp but more personal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Psychrometric Mapping for (a) the Comfort Zone Trained with the Filtered 

ASHRAE Database with the Data Semantic Augmentation for adults, (b) for an elderly 

people group, (c) the "warmer" class of the elder people group, (d) the "cooler" class of 

the elderly people group. 

 

A similar result also happened in the same age group. The differences in clothing 

insulation and activity/metabolism can have different thermal conditions. This condition 

is shown in Figure 48 (b), Figure 48 (c) and Figure 48 (d). Figure 48 (b) represents class 

“no change”, Figure 48 (c) represents class “warmer” and Figure 48 (d) represents class 

"cooler". This map shows that the class "no change" intersects with the class "warmer" 

and "cooler". This case means that if one person feels cold and needs a warmer 

environment, another can feel comfortable. When one person feels hot and needs a cooler 

indoor environment, the other can feel comfortable. The more extreme condition is the 

overlapping chart between Figure 48 (c) and Figure 48 (d). It means that one person 

(a)                                                                      (b)                                                                      
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wanted the temperature to be warmer at the same temperature, but the other person wanted 

a cooler temperature. This condition highlights the need for the system to have a manual 

override so that the occupants can alter the system setting.  

The psychrometric chart mapping for ASHRAE multiple database comfort region  

based on the parameter comfortable or uncomfortable data field can be seen in Figure 49. 

Figure 49 shows that the comfort data from the ASHRAE database covers much more 

area outside the PMV-PPD Comfort Zone. The map generated from ASHRAE RP-884 

Database and ASHRAE Global Thermal Comfort II database is wider than Givoni 

Comfort Zone. Since the ASHRAE Database comes from the precise sensor reading and 

extensive data collection, including the personal interview process from the thermal 

sensation, this will become legitimate proof to mention that the possibility of expanding 

the thermal comfort zone is valid.  

The individual mapping of the PMV-PPD and Givoni Comfort Zone against the 

ASHRAE multiple thermal comfort databases is shown in Figure 50. Figure 50 (a) shows 

that from the ASHRAE multiple thermal comfort databases, which consider being in 

comfortable situations, only about 69.91% is acknowledged by the PMV-PPD Comfort 

Zone. Similar to this result, about 89.19% of the comfortable occupants’ data from 

ASHRAE multiple thermal comfort databases are acknowledged in the combination of 

all Givoni Comfort Zone (Figure 50 (b)).  

 The conclusion from these figures is the possibility of obtaining comfort for the 

occupants at higher temperatures in summer or tropical areas and lower temperatures in 

winter. Even with both PMV-PPD and Givoni comfort zone combination (Figure 50 (c)), 

more than 7 per cent of the ASHRAE comfort data have not been covered. This result 

shows that thermal comfort is personal. A group of people have different preferences for 
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the thermal comfort set point, and the thermal comfort zone is not prescriptive but is 

subject to differences due to human adaptive behaviour.     

 

 

 

 

 

Figure 49. The Comfort Area from ASHRAE Database is mapped with the PMV-PPD 

comfort zone and Givoni Comfort Zone (R. A. C. E. American Society of Heating, 

Incorporated, 2017), (Givoni, 1992). 

 

Figure 51 presents the similar comfort zone bit mapped with the result of the AI model 

with a specific age group. The main temperature values are similar between the AI model 

and the ASHRAE database map. The difference lies in the humidity value predicted to be 

in the comfort region. This value is due to the shallow learning process, which does not 

have enough training data in extreme humidity conditions. Introducing semantic 

data1: the PMV-PPD comfort zone for 1.0<met<1.3 and 1.0 Clo, ASHRAE Standard 55  

data2: the PMV-PPD comfort zone for 1.0<met<1.3 and 0.5 Clo, ASHRAE Standard 55  

data3: Givoni comfort zone for still air condition for winter 

data4: Givoni comfort zone for still air condition for summer 

data5: Givoni comfort zone for winter with an assumed air speed of about 2 m/s. 

data6: Givoni comfort zone for summer with an assumed air speed of about 2 m/s. 

Green Dots: the Data items from Multiple ASHRAE Thermal Comfort databases that represent 

occupants' comfort   
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augmentation for extreme relative humidity data will be possible, but since there is only 

a tight area open for semantic augmentation, the validation process for this augmentation 

will be complex. If the uncomforting condition is introduced in augmentation without 

proper judgement, it will affect the overall learning process.   

  

 

Figure 50. Individual map of the comfort area from ASHRAE Database against (a) 

PMV-PPD comfort zone, (b) Givoni Comfort Zone and (c) both comfort zone. 

 

In Figure 51, the AI model uses the parameters of clothing value as 1 clo as 

recommended in ASHRAE for winter, shown in Figure 51 (a) and 0.5 clo as 

recommended in ASHRAE for summer, shown in Figure 51 (b). The other parameters 

are the activity with the value of 1.5 met, which represents the light works, and the 

PMV-PPD comfort 
area (Cyan) = 

69.91% of total 

ASHRAE comfort 
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Givoni comfort 
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89.19% of total 
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people's age which uses the value of 40.5 years as the median value of the people living 

in the UK. With the winter parameters, the acquired comfort percentage is 98.03% from 

all the ASHRAE multiple databases, compared to the PMV-PPD value of 69.91%, the 

Givoni comfort zone value of 89.19% and the combination of both with the value of 92.84 

%. There is an increase of 5.19% in the acknowledgements of the comfort zone. With the 

summer parameters (clothing value of 0.5 clo), the acquired comfort percentage is 98.49% 

from the ASHRAE multiple databases. There is an increase of 5.65% in the 

acknowledgements of the comfort zone compared to the combination between the PMV-

PPD and Givoni. 

 

Figure 51. Maps the Comfort Area (in green colour) from the AI model with parameters 

(a) 1 clo (winter); (b) 0.5 clo (summer); (c) winter and summer; and (d) model with 

multiple ages parameter 

 

(a)      (b) 

 

 

 

 

 

(c)                                                                    (d)  
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If the clothing parameters are combined (summer and winter), the value of comfort 

percentage rises to 98.90%, an increase of 6.06% of the acknowledgement. The comfort 

zone is displayed in Figure 51 (c). The value can still increase, but the other parameters, 

such as age and activity values, will need to be altered. Figure 51 (d) shows the age 

variations effect in comfort map results according to the ASHRAE multiple databases, 

from 6 to 96 years old. The value of comfort percentage rises to 99.46% compared to the 

whole ASHRAE multiple databases, which is an increase of 6.62% of the PMV-PPD and 

Givoni acknowledgement.  

Based on the assumption that there are 27.8 million households in the UK (Statistics, 

2021) and the annual median energy consumption for the UK household is 15,400 

kWh/year (E. I. S. B. Department for Business, 2021) and the assumption that 61% of 

energy is used for space heating ((NEF), 2014), the total energy spent for the annual 

domestic heating energy across the UK is 261.1532 billion kWh/year. With this massive 

amount of value, if the 6.62% wider comfort area acknowledgement is directly associated 

with the same amount of energy saving, it will equal 15.67 billion kWh/year. If the CO2 

emission factor is 0.309 kge / kWh ((BEIS), 2018), this work will contribute to 4,842 

thousand tonnes of CO2 equivalent. If the emission factor used is 50 g CO2 eq/kWh, which 

is the target for 2030 (Technology, 2011), the contribution of this work will be about 

783.5 thousand tonnes of CO2 equivalent per year. With the UK reaching emissions of 

around 6 t CO2e per person in 2020 (E. I. S. Department for Business, 2023), the work is 

equivalent to saving the carbon spending of 131 person's annual CO2 emissions per year. 

This value shows that using an AI model to acknowledge thermal comfort can 

significantly conserve energy and help reduce carbon emissions.  
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6.7 Potential Refinement of the Model 

Obtaining the data set for thermal comfort is not an easy task. This work develops the 

filtering and semantic augmentation for the ASHRAE database, one of the most reliable 

databases for thermal comfort. This work also proves that the database can perform well 

in the thermal comfort zone prediction. This work shows that even though the training for 

the AI process has been done with an excellent training validation percentage, it does not 

guarantee that the system will perform well for the data with extreme value or within the 

comfort zone borders. In line with that finding, this work also proposes validation 

methods based on the test data generation and validation through psychrometric comfort 

zone mapping. This method will help analyse each impact of the parameters for thermal 

comfort based on the psychrometric mapping of the thermal comfort zone. 

Semantic augmentation has proven to be robust in the processing of thermal data. 

There is the possibility that the semantic augmentation can be implemented in other 

parameters without changing the notion of comfort that is stored in the ASHRAE 

database. The humidity parameter can be one of the candidates for future work. There is 

no comfort recommendation for the humidity value for comfort, but the healthy range for 

the relative humidity is not more than 80% and not less than 15%. This gap can lead to 

registering the semantic augmentation for the relative humidity comfort value. This 

system can be developed to control the indoor humidifier or the dehumidifier. 

Another potential development of the system is implementing the recommendation 

and gamification system to lower energy use but maintain comfort. Since thermal comfort 

is the state of mind related to memory and not just physiology, the gamification feature 

and the intelligent system pre-set can help achieve the goal of lower energy use either for 

heating or cooling. The system can influence the user to feel comfortable with the 

gamification and recommendation, but it will need a long adaptation process (Kanisius 
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Karyono et al., 2020). For low temperature, for example, exposure to cold acclimation 

can improve the subjective responses to cold (M. J. Hanssen et al., 2016). Due to this gap, 

the research for the use of the ASHRAE database is essential to give the fundamental 

ability to the intelligent system to deliver comfort. A healthier target can also be set in the 

system, like exposing the user to lower temperatures to decrease body fat (A. A. van der 

Lans et al., 2013).  
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Chapter 7  Testing and Case Studies 

7.1 Testing Steps 

 The purpose of these testing steps was to introduce the data analysis using the AI model 

and analyse the comforting result against the parameters gathered by the sensors. The 

outcomes of the tests are whether the AI model results conformed with the readings from 

the sensors in terms of the thermal comfort region. The tests were done in the artificial 

indoor condition and model house, which can represent an actual dwelling. Both the IoT 

Sensors and commercial off-the-shelf (COTS) sensors were deployed so that both can be 

analysed.  

 Implementing the Artificial Intelligence model will give an overview of the benefit of 

implementing this model in real life. Previous implementations were always done using 

the PMV-PPD model, which is proven not to give enough flexibility due to the 

prescriptive nature of this model. Since this model was derived from the test done in the 

thermal chamber, this model does not acknowledge enough flexibility for the individual 

thermal differences such as sex, age group, and the memory of the person's thermal 

experiences. This AI implementation model can look at the potential energy saving due 

to thermal flexibility. 

 

7.1.1 Testing in the laboratory 

 Some sensor spots are introduced in the laboratory area. The first spot is the workbench 

in the laboratory; the second spot is the computer desk area in the simulation and 

modelling area in the laboratory; and the third spot is the spot that was exposed to sunlight 

and became the lowest temperature spot in the laboratory. These sensors are also 

compared with offline sensors installed in the exact location as the online sensors and the 
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heater temperature inside the laboratory. This work also includes the outside temperature 

and humidity data obtained from the weather station.  

   

7.1.2 Testing in the BRE house (1970s house) 

 Tests are being done in a similar way to the test in the laboratory but with a temperature 

range lower than the laboratory to capture the house's performance during winter in the 

1970s house. The tests were divided into two parts, the empty house condition and with 

occupants' condition. Due to the COVID restrictions, two thermal models of the human 

bodies were developed using radial heaters and halogen bulbs to represent a single person 

with moderate activities or two people with resting (sleeping) conditions. The radial 

heaters employed in model 1 are two 40Watt radial heaters. Model 2 consists of one 60W 

radial heater and a 20W halogen lamp. Figure 52 shows the people models.  

 

 

Figure 52. The human thermal model for testing in the BRE house 
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 The people model power supplies are connected with the programmed timer to 

simulate the human presence at the desired time. The first arrangement was using office 

hours during which the people were present at 09:30 AM and left at 18:00. In total, the 

presence of the people was 8 hours and 30 minutes. This arrangement was necessary to 

ensure that the model was safe enough to be left unattended. The second arrangement had 

the same duration but started at 21:30 to 06:00 AM. These tests were conducted to 

determine human presence's impact on indoor thermal conditions. The insight about this 

is because the current measurement of the comforts was usually done without the presence 

of the occupants. This process can lead to overheating or a slightly higher thermal set 

point. This trial might save a little heating energy, but it can be a considerable amount of 

energy in the long run. The people model represented the heat dissipated from the people's 

presence but didn’t consider the CO2 produced and the water vapour generated from 

people's activities. 

 The sensor network was deployed with the local network, with the sensors located 

inside the room, inside the room close to the window and outside the room (stairs) to 

capture and measure the comfort inside the room and its affecting parameters. For this 

trial, the local controller and the server are also located on the same premises. The data 

from the LJMU Byrom Street Campus weather station was used to capture the outdoor 

condition of the BRE house. With these sensors, the combination of main parameters to 

predict thermal comfort can be obtained. There are many affecting parameters for thermal 

comfort, and it will not be easy to gather all the parameters. In this trial, five major 

parameters were the main focus: humidity, temperature, clothing value, metabolism value 

and age. The sensor set-up inside the room in the 1970s BRE house is provided in  

Figure 53. 
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Sensor unit        and        Sensor with thermal camera: 

 

 

 

 

 

 

 

 
  Actuator unit:                                              Local controller:                           Access Point: 

 

 

 

 

 

Figure 53. The sensors arrangement in the 1970s BRE House room. 

 

7.2 Data Acquired  

7.2.1 Testing in the laboratory 

 The sensors are located on the computer desk and the workbench. The outdoor data 

were obtained from the weather station installed at the Byrom Street campus. The data 

was taken at 15 minutes intervals. The chart from the data obtained during laboratory 

trials is provided in Figure 54, Figure 55, Figure 56, and Figure 57, respectively. The X-

axis shows the date, the primary Y axis represents temperature (in ℃) and the secondary 

Y axis represents RH value (in %).  The other charts from the other sensor inside the 

laboratory are provided in Appendix 8.  
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Figure 54. Outdoor temperature and humidity from the weather station. 

 

 

Figure 55. Temperature and humidity from the computer desk. 
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Figure 56. Temperature and humidity from the workbench. 

 

 

Figure 57. Temperature and humidity from the heater beside the computer desk. 
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7.2.2 Testing in the BRE house 

 The data gathering sessions were divided into three major groups: the ‘no people 

present’, the ‘people afternoon presence’ and the night presence to capture the indoor 

condition related to the people presence and the impact on human thermal comfort. 

Sessions and periods were introduced to each group to capture the impact of different 

outdoor conditions and seasonal transitions from the winter to the summer. The sensors' 

location data and the first installation date and data collection are provided in Table 15. 

The obtained result from the BRE house for the first period is shown in Table 16. The 

chart related to the results in Table 16 is provided in Figure 58 for the temperature chart 

and Figure 59 for the humidity chart. 

Table 15. Sensors location and first deployment date. 

Sensor Location Installation Date 1st Data Processing 

01 Outside room, stairs 25/01/2022 12:00 10/02/2022 12:00 

02 desktop 25/01/2022 12:00 10/02/2022 12:00 

03 window 25/01/2022 12:00 10/02/2022 12:00 

05 desktop 25/01/2022 12:00 10/02/2022 12:00 

TC011 heater (surface) 25/01/2022 12:00 10/02/2022 12:00 

TC024 heater (top left) 25/01/2022 12:00 10/02/2022 12:00 

TC025 heater (top right) 25/01/2022 12:00 10/02/2022 12:00 

TH002 desk 25/01/2022 12:00 10/02/2022 12:00 

TH004 Outside room, stairs 25/01/2022 12:00 10/02/2022 12:00 

 

 

Table 16. Data were obtained from the first period for the sensors in the BRE house. 

 

Temperature(°C) 01 02 03 05 TC011 TC024 TC025 TC02 TC04 TH02 TH04 Outdoor

Minimum 11.98 12.13 11.10 12.34 11.00 10.50 10.50 11.50 12.50 13.00 12.50 2.00

Maximum 16.90 16.90 16.85 14.61 15.00 15.50 15.00 23.00 23.00 17.50 16.00 13.00

Average 14.10 14.53 13.72 13.93 13.22 12.97 12.86 14.15 14.51 15.91 14.39 8.53

StdDev 0.90 1.04 1.27 0.65 1.09 1.08 1.09 1.03 0.87 0.94 0.79 2.33

Humidity(%)

Minimum 47.69 47.40 48.17 44.72 45.00 46.50 64.00

Maximum 60.99 56.98 60.98 57.50 55.00 61.50 94.00

Average 55.43 53.33 56.11 53.51 50.63 55.14 81.64

StdDev 2.92 2.07 2.20 3.21 2.51 3.20 5.90
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Figure 58. The temperature chart for the first-period data of the sensors in the BRE 

house. 

 

 

Figure 59. The humidity chart for the first-period data of the sensors in the BRE house. 

 

The following groups and data periods can be referred to in Appendix 9.  
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7.3 Analysis 

7.3.1 Testing in the laboratory 

 This data result was analysed using the AI model based on the ASHRAE RP-884 and 

ASHRAE Global Thermal Comfort Database II. The result of all sensor 1 data is all in 

the range of comfort conditions. This sensor is placed on the workbench. The 

psychrometric mapping of all data is shown in Figure 60. This result is acquired with the 

assumption that the average clothing insulation is 1 clo. The activity value is set at 1.5, 

which is the average between the seating position and light work. The age parameter is 

set at an average of 30 years. The mapping shows that the indoor conditions are always 

within the range of comfort during the trial. The same parameters are also being used for 

other sensors. 

 

 

Figure 60. The psychrometric mapping of sensor 1 data (workbench). 
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 The data for the computer desk is captured by sensor number 2. Similar to the result 

obtained by sensor number 1. Similar to the sensor number 1 result, all data shows that 

the conditions are in the range of comfort. The psychrometric mapping of the data from 

sensor number 2 is shown in Figure 61. 

 

 

Figure 61. The psychrometric mapping of sensor 2 data (computer desk). 

 

The data for the spot that was exposed to sunlight and located near the glazing was 

captured by sensor number 3. Unlike the previous two sensors, this sensor captures the 

conditions which are not in the range of comfort due to the exposure to the cold 

temperature outdoor. The number of data not in the comfort region is 0.60%. This result 

is also shown in Table 17, which shows the maximum, minimum and average of the 

temperature and relative humidity. The sensor detected a broader range of temperatures. 
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The lower temperature that is not in the range of comfort was detected. The psychrometric 

mapping of the data from sensor number 3 is shown in Figure 62. Two previous maps 

only show the green marked group, which is the comfort situation. In this sensor number 

3 reading, the sensor detected the low-temperature group below the comfort temperature 

range. It was about 15 to about 17 °C. This low reading is due to the sensor being located 

near the glazing, which was exposed to the low outside temperature presented in blue. 

 

Figure 62. The psychrometric mapping of sensor 3 data (near glazing). 

 

 Table 17 also compares the comfort percentages that were interpreted using the PMV-

PPD comfort zone, the Givoni comfort zone, the combination of PMV-PPD and Givoni 

comfort zone, and the developed AI model comfort zone in this work. The result shows 

that PMV-PPD acknowledged the narrowest comfort zone and the AI model has the 

capability to acknowledge a more expansive comfort zone.   
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7.3.2 Testing in the BRE house 

7.3.2.1 First Period 

 The first phase of the test was intended to check and verify the result of the proposed 

sensors infrastructure against the offline commercial off-the-shelf (COTS) sensors. The 

check was needed due to the use of the dedicated Wi-Fi network with a frequency of 2.4 

GHz, with the possibility of missing data. The more reliable quality of service (QoS) level 

can be used but will have a drawback in the power usage during transmission. 

Table 17. The summary of the captured data from each sensor. 

Sensor Number 1 (Workbench) 2 (Computer Desk) 3 (Near Glazing) 

Max. Temp. Value (°C) 29.95 30.83 30.71 

Min. Temp.Value (°C) 18.92 17.14 14.94 

Average Temp. (°C) 23.03 25.16 23.04 

StdDev 1.86 1.96 2.84 

Max. RH. Value (%) 65.93 69.44 65.21 

Min. RH Value (%) 21.85 22.29 22.7 

Average RH (%) 41.93 39.12 42.83 

StdDev 11.12 8.63 8.97 

PMV-PPD Comfort 

Percentage (%) 93.07 88.68 76.12 

Givoni Comfort 

Percentage (%) 99.10 99.36 95.69 

PMV-PPD-Givoni 

Comfort Percentage (%) 99.35 99.50 95.69 

AI Model Comfort 

Percentage (%) 100.00 100.00 99.40 

 

 This phase can represent the regular use of the sensors and capture the differences 

between the data regarding the differences in sensor readings and the missing data due to 

the use of the default QoS level. The test was done from 25 January 2022 at 12:00 until 

10 February 2022 at 11:00 AM (16 days) with the rate of sampling data interval of 15 

minutes and collected data items are 1533.  
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 The result shows that inside the room, the COTS sensor TH02 had an average 

temperature of 15.91⁰C compared to the proposed sensor average, which was 14.53⁰C 

(less than 1 degree C difference). The average relative humidity value was 50.63% for 

the COTS sensor and 53.33% for the proposed sensor 02. Outside the room (stairs), the 

average temperature reading from the COTS sensor TH04 was 14.39⁰C, and the proposed 

sensor was 14.10⁰C. The average relative humidity value was 55.14% for the COTS 

sensor and 55.43% for the proposed sensor. Since the COTS sensors reading also had 

their deviation, it was decided to include both sensor types in all the following phases for 

value comparison.    

 The first phase analysis also includes using the AI model to analyse comfort. Based on 

the sensor reading and fed into the AI model, the comfort inside the room was 36.03% 

and outside the room was 15.08% during the test periods. The other comfort area analysis 

with the PMV-PPD comfort zone and Givoni comfort zone returned 0% comfort. The 

uncomfortable situation was due to the low outdoor temperature (outdoor comfort was 

0%) for all the comfort zone analyses. The AI model could still acknowledge a small 

percentage of comfort in a particular condition. 

 During this data collection, the capability of detecting the human presence (occupation 

sensor) was also activated in sensor 05 and showed that during people's presence, the 

indoor temperature dropped and put the room in an uncomfortable situation. This 

condition was due to the people's arrival habit, who entered the dwelling and went to 

check the trial, which led the sensor to be in contact with the cold outdoor air. The 

psychrometric chart showing the comfort map from sensor 1 (stairs, outside the room), 

sensor 2 (inside the room), sensor 3 (inside the room near glazing) and outdoor conditions 

are presented in Figure 63, Figure 64, Figure 65, Figure 66, and Figure 67 respectively. 
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Figure 63. The comfort map for Sensor1 (stairs, outside the room) with a comfort level 

of 15.08%. 

 

Figure 64. The comfort map for Sensor2 (inside the room) with a comfort level of 

36.03%. 
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Figure 65. The comfort map for Sensor3 (near the glazing, inside the room) with a 

comfort level of 15.33%. 

 

Figure 66. The comfort map for Sensor5 (people visit inside the room) with a comfort 

level of 0%. 
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Figure 67. The comfort map for outdoor with a comfort level of 0%. 

 

 A better understanding of the comfort pattern was also acquired using a representation 

map of the data with hourly percentage comfort. The mapping can show the percentage 

of comfort inside the dwelling hourly throughout the day. The vertical axis (z) is the 

percentage of comfort, while the horizontal axis (x) shows the time (hour of the day). The 

other axis (y) shows the day relative to the trial period. The hourly comfort map from 

sensor 1 (stairs area outside the room) is presented in Figure 68. The other detail can be 

seen in Appendix 9. 

 

7.3.2.2 Second Period 

 The second-period data logging was intended to compare the sensor (S01B and S02B) 

with the black globe sensor (S01A and S02A). The black globe sensor will deliver a more 

stable reading which will be beneficial to be used in the thermal regulation system. In the 
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case of the outside the room temperature reading, the sensor S01B shows an average 

temperature of 15.14⁰C with a minimum temperature of 13.56⁰C and a maximum of 

16.98⁰C. The same reading with the black globe sensor S01A showed the average 

temperature of 13.8⁰C with a minimum temperature of 12.29⁰C and a maximum of 

15.9⁰C. In the comparison, the COTS sensor average temperatures were 14.13⁰C and 

13.95⁰C. The temperature inside the room showed an average of 16.21⁰C with a minimum 

value of 13.69⁰C and the maximum value of 18.57⁰C. The black globe sensor installed 

inside room S02A showed an average temperature value of 13.74⁰C with a minimum 

value of 11.74⁰C and the maximum value of 15.9⁰C. The values shown by the COTS 

sensors were 13.24⁰C and 13.57⁰C. Based on this result, the next phase elaborated on 

temperature and humidity and black globe sensors. The comfort level for each location is 

shown in Appendix 9. Based on the result, the black globe displays more sensible and 

accurate results.    

 

Figure 68. The hourly comfort map for Sensor1 (stairs, outside the room) with a comfort 

level of 15.08%. 

 

 If this comfort level is mapped hourly, the comfort pattern can be used to identify the 

condition that happened. If the outdoor temperature was not too low, it might be possible 
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to get a comfortable condition inside the room. The sensor near the window detected a 

higher temperature than the temperature in the middle of the room but the lower 

temperature in the evening. Two possible reasons could trigger the faster decrease of the 

temperature. Firstly, the sunlight penetration through the glazing caused the temperature 

to rise. This condition causes the sensor near the window to detect the comfort level 

earlier than the sensor in the middle of the room. The second reason was the leakages in 

the glazing due to the lower insulation level of glazing compared to the wall materials. 

 The mapping also showed that the comfort level outside the room was lower due to 

the exposure to the lower outdoor temperature when the outer door was opened. This 

result also highlights the temperature decrease due to the heat loss outside of the room 

due to the internal doors that opened, and there were other windows with a lower 

insulation level compared to the wall materials that made the other rooms' temperature 

lower due to the thermal leakages. The hourly comfort map from sensor 2 (inside the 

room) is presented in Figure 69. The other detail can be seen in Appendix 9. 

 

Figure 69. The hourly comfort map for Sensor2 (inside the room) with a comfort level 

of 3.50%. 
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7.3.2.3 Third Period 

 The third phase was intended to check the influence of the human presence in the 

dwelling against the change in the temperature. Many thermal comfort assessments were 

being done before the occupancy periods in the absence of the occupants. If the occupants 

can be simulated, the temperature set point or control algorithm can be prepared to 

anticipate the human presence. Even if this value seems small and can be ignored, the 

energy reduction due to this fact can become a concern in the long run.  

 Based on the assumption of the average person sizing and the level of activities, the 

human thermal simulator was built with radial heating to represent the human presence. 

The human thermal simulator assumes the minimal thermal value of human metabolism 

that equals people sleeping or resting. If two human thermal simulators are present to 

represent resting, they can also represent one person's presence with a medium activity 

level.   

 The third phase uses two human thermal simulators placed inside the room and can 

increase less than 1 degree C if the human model were placed between 9:30 AM – 6:00 

PM (8.5 hours a day). The outdoor temperature was not the same during the second phase, 

but since it was lower for the third phase, on average, it will be acceptable to claim that 

the human presence can impact the indoor thermal condition. The outdoor average 

temperature for the second phase was 7.96⁰C, and the outdoor average temperature for 

the third phase was 7.23⁰C. There were no other activities done in the house which could 

interfere with the result. The indoor room temperature increased from an average of 

13.57⁰C and 13.74⁰C to 14.28⁰C and 14.37⁰C. The percentage of comfort charts for the 

third phase are provided in Appendix 9. 

 The exciting finding is the increase in the rate of comfort. It can elevate the comfort 

rate to 20.62% from about 4.02% to 3.50%. This reading might have happened due to the 
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border condition that had less comfort and then could be elevated to comfort with the only 

slight increase in the temperature. If these conditions are likely to happen, a significant 

increase in energy performance can be achieved. 

 This result was acknowledged by reviewing the hourly comfort level data. The other 

comfort groups were in the morning to afternoon, whereas in the previous phase, these 

groups had no comfort even when the sensor near the window (that was exposed to 

sunlight) had comfort. There was also the possibility that the thermal increases were 

sustained until the evening after the people left the premises, but this issue still needs 

further proof since, at the same time, the comfort level outside the room also increased. 

The hourly comfort maps for each sensor's location are presented in  

Figure 70.  

      Sensor 2 (room)                   Sensor 1 (stairs)                         Sensor 3 (window) 

 

 

Figure 70. The hourly comfort map for Sensor2 (inside the room), Sensor 1 (stairs) and 

Sensor3 (Window). The vertical axis (z) is the percentage of comfort (in %), while the 

horizontal axis (x) shows the time in 24-hour format (hour of the day). The other axis 

(y) shows the day relative to the trial period. 

 

7.3.2.4 Fourth Period 

 Like the third phase, in the fourth phase, the average outdoor temperature was lower 

than in the third phase (from 7.23⁰C to 6.89⁰C). The average indoor temperature in the 

third phase showed a slight increase in the sensor temperature from 14.28⁰C to 14.67⁰C, 
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but the black globe average temperature showed a slight decrease from 14.37⁰C to 

14.08⁰C. In order to analyse further, the assessment of the sensor reading outside the room 

is necessary. The value of the average sensor temperature outside the room had a slight 

increase from 14.32⁰C to 14.53⁰C. The black globe average temperature from outside the 

room also slightly increased from 14.29⁰C to 14.70⁰C. This increase showed that some 

activities outside the room trigger the temperature increase even as the outside 

temperature decreases. Based on these conditions, the comfort level both inside the room 

and outside the room was increased to 23.85% of the time. The detailed comfort result 

psychrometric map can be seen in Appendix 9. 

 Looking further at the room's hourly comfort map indicated that it was affected by the 

temperature outside the room. However, the comfort map inside the room was also 

affected by the human presence that was identified by the increase in percentage level in 

the morning until the afternoon. The exciting data is also shown by the sensor near the 

window that is not affected by the condition outside the room. This phenomenon might 

be due to the low outdoor temperature that affected the sensor reading more than the 

condition of the room. The detailed map of these comfort zones can be seen in Appendix 

9. 

 The periods were continued so that three periods of data were collected for each class; 

the measurement with no people present, people present in the afternoon and people 

present at night.  

7.3.2.5 Summary of the BRE House Trial 

 The result from three trial groups is tabulated to be able to be appropriately analysed 

and minimise the factors that have been simplified. In order to compare each group and 

minimise the error due to the simplification, the whole data on each group is compared 

with the corresponding data with similar properties. Since the indoor temperature data is 
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affected by the outdoor and the adjacent room (stairs) temperature, the data are grouped 

into entries with the same outdoor temperature data and adjacent room data. With this 

approach, the error due to parameter simplification can be minimised. The analysis of the 

measurement result can be seen in Table 18. 

Table 18. Field Measurement Result Analysis. 

 

Percentage of 
Comfort based on Indoor Stairs Outdoor Indoor Stairs Outdoor 

  No People Day Presence 

PMV-PPD 0.09 0.00 0.00 1.50 0.00 0.00 

Givoni 2.53 3.00 0.00 3.00 3.00 0.00 

PMV-PPD-Givoni 2.53 3.00 0.00 3.00 3.00 0.00 

AI Model 5.07 4.88 0.84 24.77 4.88 0.84 

  No People Night Presence 

PMV-PPD 2.99 0.70 0.00 4.05 0.70 0.00 

Givoni 48.94 65.14 2.29 65.67 65.14 2.29 

PMV-PPD-Givoni 48.94 65.14 2.29 65.67 65.14 2.29 

AI Model 71.83 71.83 11.80 82.04 71.83 11.80 

  Day Presence Night Presence 

PMV-PPD 2.14 0.00 0.00 0.00 0.00 0.00 

Givoni 12.85 5.98 0.00 21.31 5.98 0.00 

PMV-PPD-Givoni 12.85 5.98 0.00 21.31 5.98 0.00 

AI Model 51.97 62.12 1.01 79.93 62.12 1.01 

 

 The average indoor temperature where no people are present is 14.2 °C, whereas the 

indoor temperature where people are present in the afternoon is 14.25 °C. The result 
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showed a slight increase when there were people inside the room. Similarly, when there 

are people at night, it can increase the average temperature value from 17.28 °C to 17.82 

°C. The exciting result was also acquired when the people present were compared with 

afternoon and night presence. The average indoor temperature data for the afternoon 

presence was 16 °C compared to 16.73 °C for the night presence. This result shows more 

borderline indoor temperature conditions at night compared to the afternoon. The people's 

presence will be having more effect on the indoor temperature conditions.  

7.3.2.5.1 Percentage of Comfort 

 Table 18 also presents the percentage of comfort as the output of AI models that predict 

the percentage of comfort for each data item with corresponding temperature and 

humidity. This trial uses the median age of people in the UK, 40.5 years, clothes value of 

1 clo, the recommended clothing value from ASHRAE for winter and activity value of 

1.5 met, which is associated with light work. The percentage of comfort for the 

corresponding indoor condition where no people are present is 5.07 compared to 24.77 

where there are people present in the afternoon. Similarly, when there are people present 

at night, the percentage of comfort can increase from 71.83 to 82.04. If the people are 

present in the afternoon compared with the night, the percentage of comfort will rise from 

51.97 to 79.93. This value shows that the human presence at night impacts the most during 

winter's indoor conditions. 

 Table 18 also shows the comfort percentage defined by the AI model compared to the 

PMV-PPD comfort zone, Givoni Comfort Zone and the combination of both PMV-PPD 

and Givoni. The result shows that the AI model could capture a wider comfort area. The 

difference in the percentage comfort result is due to the acknowledgement of the comfort, 

especially in the border of temperature and RH values mapped in the PMV-PPD and 

Givoni, which were prescriptive and trenchant. These are shown in the last entry of the 
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table, where the percentage of the AI model results far outperform both PMV-PPD and 

Givoni comfort zone acknowledgement. This test shows that in the case of the border 

condition, the comfort can be acknowledged by the AI model and, in return, will conserve 

more energy to obtain indoor comfort.  

7.3.2.5.2 Psychrometric Chart 

The psychrometric chart for the comfort map result of the indoor condition with the 

people present in the afternoon is shown in Figure 71 (a), and the people present at night 

are presented in Figure 71 (b). This chart shows the comfort condition in the middle part 

(green area), dominating the cold area (presented in blue). The cold area in Figure 71 (a) 

shows a broader area than Figure 71 (b) due to the more unsatisfied sensation in this 

condition. On the other hand, the more comprehensive comfortable condition is shown in 

Figure 71 (b), representing a higher percentage of comfort shown for the human presence 

at night.  

 

Figure 71. The Psychrometric chart for the comfort condition (a) with human presence 

in the afternoon (left) and (b) with the human presence at night (right). 

 

(a)                                                                  (b) 
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7.3.2.5.3 Sensor Reading Comparison   

 In the IoT system, there is the possibility that the sensor reading does not reach the 

local controller or the server due to communication errors, especially when the QoS level 

is low. This work also compared the COTS sensors against the IoT sensor. The error 

generated can be from the communication error and sensor value deviation when used in 

the actual project. The comparison chart between the COTS temperature sensors and the 

comparison chart between the temperature and humidity COTS sensors and the IoT 

sensors can be seen in Appendix 9. The comparisons were made in the BRE house to 

simulate the actual sensor usage with 7,361 data readings with 15 minutes intervals. 

    The values of R-Squared for the comparison between the temperature COTS sensors 

were 0.984, 0.974, and 0.990. The value of reliable R-Squared value should be more than 

0.95. In this case, the COTS sensors were considered to be reliable. In comparing the 

black globe COTS temperature sensors and black globe IoT temperature sensors, the 

values were 0.990 for the centre room sensors and 0.986 for the stair sensors. These values 

were also considered reliable due to the values being higher than 0.95. For the humidity 

sensors, the values of the R-Squared COTS humidity sensor compared to IoT sensors 

were 0.974 for the centre room and 0.967 for the stairs. The IoT humidity sensors showed 

reliable results. Since the trials were done in the BRE house that simulated the actual 

condition, these IoT sensors are considered reliable to be deployed in the project. 

7.3.2.5.4 Conclusions for BRE House Trial 

 This work shows that the data processed through the AI system demonstrate the 

following: 

• The result shows a more expansive comfort zone than the standard comfort zone. 

This result shows the adaptive notion of human comfort.  
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• The comfort percentage increased to more than 10% with the human presence in 

the room. This value proves that the human presence should be considered in the 

heating system design, particularly in the low border indoor temperature. 

• Human presence at night results in higher comfort than in the afternoon. This 

result shows the importance of the scheduling included in the heating control 

scheme.   

• The IoT sensors are considered to be reliable when they are compared with the 

COTS sensors.   

 

7.4 Case Studies for the Artificial Intelligence Model 

 The data collected in these case studies were done by a third-party using COTS 

sensors. Since the sensors are identical in output (sub-chapter 7.3.2.5.3), the data can be 

associated as similar to the proposed system output. Hence, the author has processed and 

analysed the data using the proposed model and presented the result in this chapter. Some 

cases might be interesting to include in this work because the case studies can represent 

real-world problems. Five case studies represent the problems most likely in the United 

Kingdom. 

 Where applicable, the questionnaire also had been given to the occupants to compare 

the thermal sensation of the occupants that was compared with the result obtained from 

the AI model. An example of the questionnaire was given in Appendix 11. 
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7.4.1 The Case of Humid Dwelling (Dwelling Prior 1970s) 

7.4.1.1 The Data Acquired  

 This case is interesting because it is a typical case that happened in the dwelling pre-

1970s with no insulation and cavity in the building envelopes. The example of the studied 

dwelling is shown in Figure 72. High humidity is most likely to happen. The data 

summary is presented in Table 19. As shown in the data summary, the humidity is very 

high, and the average relative humidity can exceed outdoor humidity due to the human 

activities inside the dwelling. The temperature chart for this data is shown in Figure 73, 

while the humidity chart is shown in Figure 74. 

 

Figure 72. The picture of the studied dwelling with high relative humidity. 

Table 19 Summary of the data acquired from the case of humid dwelling. 

 Temperature 

(℃) 

TH 06 

Temp 

TC 06 

Temp 

TH 12 

Temp 

TH 03 

Temp 

TC 05 

Temp Outdoor 

Minimum 10.00 11.00 10.50 12.00 11.50 3.00 

Maximum 13.00 14.00 17.00 19.50 19.00 12.00 

Average 11.65 12.33 13.07 13.74 14.27 7.44 

Std. Dev 0.60 0.54 1.26 0.91 1.00 2.05 

 Relative 

Humidity (%) 

TH 06 

Hum 

TH 12 

Hum 

TH 03 

Hum Outdoor 

Minimum 79.00 76.50 62.50 53.00 

Maximum 99.50 100.00 89.00 93.00 

Average 93.91 86.41 80.57 78.66 

Std. Dev 3.89 3.72 3.65 8.29 
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7.4.1.2 AI Model Result 

 The AI Model for comfort shows that the comfort level in the living room was 13.28%, 

in the Bedroom was 0%, comfort in the kitchen was 9.70%, and the outdoor comfort was 

0%. The comfort map from the Living room is shown in Figure 75. The other comfort 

map can be referred to in Appendix 10.  

 

Figure 73 Temperature chart for the data acquired from the case of humid dwelling. 

 

Figure 74. Relative humidity chart for the data acquired from the case of humid 

dwelling. 
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Figure 75. The comfort map from the Living room in the humid dwelling case. 

 

7.4.1.3 Analysis 

 The result of the AI model showed very low indoor comfort rates due to the relatively 

low temperature and the high humidity. The rise of the temperature in the living room 

and the kitchen was due to the cooking activity and the other activities being done by the 

occupants. Even though the outdoor temperature fell below 10⁰C, the indoor temperature 

was higher due to the occupants' presence and activities. However, the indoor relative 

humidity showed a higher value than the outdoor temperature due to the occupants' 

activities that generated moisture, such as respiration, cooking, showering, and washing. 

This humidity value can be caused by poor insulation, ventilation, and heating. 

7.4.1.4 Conclusion 

 This trial proves that the model was able to highlight low indoor comfort due to the 

low temperature and the high relative humidity rate. The living room still had 13.28% 

comfort while the kitchen was 9.7% from all assessment time. In this case, the model will 

trigger the heater to be turned on in the low-temperature condition. The model was also 

able to acknowledge the comfort that was achieved due to the occupants’ presence and 



Chapter 7  Testing and Case Studies 

 

Karyono  174 

 

activities even when the heater was inactive. In this case, when the temperature reaches 

the predicted comfortable zone, the heater can be turned off to conserve the heating 

energy. 

 

7.4.2 The New Dwellings 

7.4.2.1 Sensor Usage and Availability 

The sensors were installed in the new dwelling, consisting of 5 sensor sets on each 

house. Each sensor can detect indoor temperature and humidity. Every house's set of 

sensors can detect the black globe temperature and relative humidity. Due to the missing 

sensors, only two homes had complete sensor reading and availability. The picture of the 

dwellings can be seen in Figure 76. The sensors' placements are described in Table 20. 

 

Figure 76 The picture of the studied new dwelling. 

 

7.4.2.2 Data Acquired for the New Dwellings 

 The sensors captured data from 19 October 2020 from 13:00 until 8 April 2021 at 

04:15 (171 days or 4095 hours). The weather station installed in Liverpool John Moores 

University, Byrom Street Campus is used to obtain the outdoor temperature and humidity 

data. The distance of the weather station is still adequate to obtain similar outdoor 

temperature and humidity to the local premises. 
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Table 20. The placement of the sensors. 

House Number 17 

1st Floor 
AH15 Landing 

AH14 Bedroom 2 

Gnd 

Floor 

AH16 Hall 

AH02 Lounge 

AC02 Lounge 

House Number 19 

1st 

Floor 

AH11 Landing 

AH12 Bedroom 2 

Gnd 

Floor 

AH13 Hall 

AH04 Lounge 

AC04 Lounge 

 

7.4.2.3 Analysis for the New Dwellings 

7.4.2.3.1 Temperature 

 The indoor temperature for house number 17 during the assessed period was always 

in comfort. Only during the initial data gathering (23 to 27 October 2020) were the 

temperatures below the standard comfort temperature.  Apart from the temperatures 

mentioned, the indoor temperature in each room monitored was always within the 

comfort zone. The low temperatures most likely happened due to no heater being turned 

on in the house. The summary of the thermal data can be seen in Table 21, and the chart 

which displays the outdoor and indoor temperature is shown in Figure 77. 

 As mentioned before, the minimum temperature values were reached due to the heater 

being turned off. The measurement shows that the value from the black globe sensor 

installed in the lounge was close to the outside temperature rather than the Lounge 

temperature. This result indicates that the thermocouple or the black globe sensor was 

touching the element of wall or glazing exposed to the external temperature. 
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Table 21. The summary of the thermal data for house number 17. 

Temperature 

(℃) Lounge 

Lounge 

BG Hall 

Bedroom 

2 Landing Outdoor 

Max 25.50 21.00 27.50 28.50 28.50 21.00 

Min 6.00 -0.50 6.00 6.00 6.00 -3.00 

Average 18.77 9.08 22.40 22.43 22.59 7.56 

Std Dev 1.89 1.46 2.63 2.52 2.64 3.67 

 

 

Figure 77. The chart displays the outdoor and indoor temperatures for house number 17. 

The Y-axis shows temperature (℃). 

   

 Assessing the maximum temperature value, the maximum temperature in the hall, 

bedroom 2, and landing might be too high during the peak of the external temperature. 

The heater/thermostat set point for these highlighted rooms is considered adjusted. 

However, the average indoor temperature for all the rooms was within the comfort zone. 

With the outdoor temperature average of 7.56 ⁰C, the indoor temperature can be 

maintained at about 18.77 ⁰C to about 22.59 ⁰C, which is still in the comfort zone. When 
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the heater was turned off, the indoor temperature reached a value of about 6 ⁰C because 

the external temperature also showed a similar value.   

 In the early days of January 2021, the heater load was at the maximum. This load is 

because the outdoor temperature was around 0 ⁰C, but the room temperatures were at their 

peak. It is suggested to adjust the temperature set point or thermostat to save heating 

energy and have a better RH value, which will be explained in the next section. A lower 

room temperature set point is preferred. 

 At the end of March 2021, the outdoor temperature began to rise, with the room's 

temperature relatively stable. In this case, less energy was used for heating the rooms. In 

general, there was a gap between the lounge and other rooms. This gap might have 

happened due to the difference in the temperature set point between the lounge and other 

rooms. It is advised to balance the set point or the heater arrangement so that the 

temperature in the hall, bedroom 2 and landing room can be lowered, which can conserve 

the heating energy while maintaining indoor health and comfort. 

 Like the previous data set, the indoor temperature for house number 19 during the 

assessed period was always in the comfort temperature. Only during the initial data 

gathering (23 to 27 October 2020) were the temperatures below the comfort standard, 

which may be due to the absence of the heater. The Black Globe temperature in this data 

set shows correct values, unlike the previous data set. The chart which displays the 

outdoor and indoor temperature is shown in Figure 78, and the summary of the thermal 

data can be seen in Table 22. 

 The curve displays the average temperature values from the lowest to the highest: the 

lounge, bedroom, hall, and landing. With the outdoor temperature average of 7.56 ⁰C, the 

indoor temperature can be maintained at about 16.75 ⁰C to about 20.94 ⁰C, which is still 

in the comfort zone. Like the previous data set, in the early days of January 2021, the 
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heater load was at the maximum. The outdoor temperature was around 0 ⁰C, but the room 

temperatures were more than 20 ⁰C. The values assessed show that the recommended 

temperature maximum setting during the observation period is less than 20 °C. It will 

result in the saving of heating energy and better RH value, which will be explained in the 

next section. 

Table 22. The summary of the thermal data for house number 19. 

Temperature 

(℃) Lounge 

Lounge 

BG Hall Bedroom  Landing Outdoor 

Max 22.00 22.50 24.50 25.50 24.50 21.00 

Min 6.00 6.50 6.00 6.00 6.00 -3.00 

Average 16.75 17.65 20.07 19.86 20.94 7.56 

Std Dev 1.72 1.72 1.98 2.05 2.15 3.67 

 

 

Figure 78. The chart displays the outdoor and indoor temperatures for house number 19. 

The Y-axis shows temperature (℃). 
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 This data set also showed the same tendency as the previous data set at the end of 

March 2021. The outdoor temperature began to rise, keeping the room's temperature 

relatively stable. In this case, less energy was used for heating the rooms. There was a 

gap between the lounge and other rooms that may happen due to the difference in the 

temperature set point or the usage of the door, which brought lower temperature outdoor 

air to the lounge. 

7.4.2.3.2 Humidity 

 Besides the temperature, relative humidity (RH) also plays a vital role in indoor 

comfort and healthiness. Based on the ASHRAE Fundamentals handbook 2017 (R. 

American Society of Heating et al., 2017), the healthy relative humidity range is 20 to 70 

%. The RH value outside the mentioned range might trigger health problems. 

Furthermore, the RH value is advised to be 30 to 70% for a comfortable indoor 

environment. The summary of the relative humidity data can be seen in Table 23, and the 

humidity chart for House number 17 during the observation period is presented in Figure 

79. 

 

Figure 79. The chart displays the outdoor and indoor relative humidity for house 

number 17. The Y-axis shows relative humidity (%). 
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Table 23. The summary of the relative humidity data for house number 17. 

RH (%) Lounge Hall Bedroom2 Landing Outdoor 

Max 96.00 74.50 71.50 74.00 96.00 

Min 25.00 22.00 25.50 23.50 33.00 

Average 45.15 38.71 40.84 39.72 82.54 

Std Dev 5.43 7.43 6.92 7.39 9.38 

 

 The table shows that the RH minimum value was still in healthy condition. The 

minimal RH value, close to 20%, is still healthy but might be causing discomfort. 

However, this value can be better when the temperature set point is adjusted to slightly 

lower values, as mentioned in the previous section. Assessing the average RH, the values 

are within healthy and comfortable conditions. Further analysis is being done to show 

how frequently the uncomfortable RH condition happened during the observation (4095 

hours). The uncomfortable period is displayed in Table 24. 

Table 24. Uncomfortable relative humidity values from the acquired data. 

Uncomfortable 

RH Lounge Hall Bedroom2 Landing 

RH >70% (hours) 0.75 1.25 0.75 1.25 

RH <30 % (hours) 6.75 491.25 152.75 359.00 

Percentage 0.16 12.00 3.73 8.77 

 

 Table 24 shows that the hall, bedroom2, and landing had 491.25, 152.75 and 359.00 

hours of uncomfortable RH values from the total of 4095 hours. In percentages, they are 

12%, 3.73% and 8.77% of the time that the RH values are not in the comfortable range. 

As mentioned in the temperature subsection, lowering the temperature set point for these 

rooms will lower the possibility of unhealthy RH conditions, as shown in the lounge chart 

and table. Decreasing the temperature gap with the lounge will also reduce the unhealthy 

RH to more than 30% to achieve healthier indoor conditions from the RH side. The indoor 

thermal and humidity condition during the time the heater is turned off is shown in Figure 

80. 
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Figure 80. The indoor temperature (top) and humidity (bottom) condition during the 

heater turned off for house number 17. The Y-axis shows temperature (℃) (top) and 

relative humidity (%) (bottom). 

  

 Due to the low outdoor temperature, without a heater, the indoor temperature was not 

in a comfortable region. The humidity followed the outside humidity value, but the house 
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materials buffer it. The indoor thermal and humidity conditions during the low outdoor 

temperature, during the high outdoor temperature and for house number 19 can be seen 

in Appendix 10. 

 When the heater is operational, the indoor thermal condition can be sustained within 

the comfort region. However, if the heater set point is too high, the humidity will fall to 

the uncomfortable zone (below 30% RH). It is advised to lower the heater set point 

temperature for better humidity value and heating energy saving. With the outdoor 

temperature raised, turning off the heater at some point will be needed or can be done 

automatically. The humidity value will remain stable even with the fluctuation of the 

external humidity value. The result from house number 19 can be seen in Table 25. 

 

Table 25. The summary of the relative humidity data and the uncomfortable relative 

humidity percentage for house number 19 

RH(%) Lounge Hall Bedroom2 Landing Outdoor 

Max 73.50 79.00 74.50 75.00 96.00 

Min 34.00 30.50 33.50 28.50 33.00 

Average 54.13 45.92 48.42 42.69 82.54 

Std Dev 5.98 6.98 6.08 6.92 9.38 

 

Uncomfortable 

RH Lounge Hall Bedroom2 Landing 

RH >70% (hours) 53.5 2.25 2.75 0.25 

RH <30 % (hours) 0.00 0.00 0.00 25.50 

Percentage 1.31 0.05 0.07 0.62 

  

 The table shows that the RH minimum value was still healthy and comfortable. The 

temperature set point for the landing room should be lowered, and the set point 

temperature in the lounge should be raised. A temperature set point less than 20 °C is 

preferable. 
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7.4.2.3.3 AI Analysis for Each Room 

 The artificial intelligence model assumes that the occupants use clothing insulation 

value of 1 clo in the light or medium activity with a met value of 1.5 and the assumption 

of age 40.5 years. In House number 17, the lounge comfort level is 96.18%, hall 97.80%, 

bedroom 97.81% and landing 97.75%. These were achieved during an outdoor comfort 

level of 2.46%. For house number 19, the Lounge comfort level is 87.54%, the hall 

comfort level is 96.37%, the bedroom is 96.31%, and the landing is 96.20%, with the 

same outdoor comfort level (2.46%). The uncomfortable condition indoors happened due 

to the heater that was turned off and the indoor temperature falling below 15°C. 

 

7.4.2.4 Conclusion  

 The indoor condition was in a comfortable state for most of the time. Only when the 

heater was off, the indoor temperature was uncomfortable. The AI analysis was able to 

show that there is the possibility to lower the temperature set point and keep the occupants 

still in comfort. Lowering the heating or thermostat settings, especially in the hall, 

bedroom2, and landing room, to balance with the lounge will affect the more comfortable 

indoor environment and lower the usage of heating energy, which can lower the carbon 

footprint of the house. The case study reflects that if the model is implemented in the 

house, it can control the heater in a more impactful way for energy conservation. 

 

7.4.3 The Refurbished Flats 

  The case study of the refurbished flats was done with five flats being monitored from 

a 16-storey block of flats. There was Flat 89, which is located on the 15th floor, Flat 80 

on the 14th floor, Flat 49 on the 8th floor, and Flat 41 and 38 on the 7th floor. This flat 

data was interesting to be analysed due to the refurbishment involving additional 
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insulation installation and new electric heaters. The data readings were done at least three 

times during pre-, construction and post-construction. The picture of the flats can be seen 

in Figure 81. The range of data captured, and the intervals are listed in the table in 

Appendix 10. During the initial set-up stage, the sensor recorded data every 5 minutes for 

stages 1 and 2. On stage 3, it has been set to 10 minutes because from the observation on 

stages 1 and 2, not many different variants in terms of data set can be observed within the 

5 minutes interval. The 10 minutes intervals allow for a longer duration. The precise date 

and duration can be seen in Appendix 10. 

 

Figure 81 The picture of the studied refurbished flats; before, during, and after 

refurbishment. 

 

 Since the availability of tenants was different, the sensor installations were done at 

different times. The regulation change regarding the pandemic time also left the sensors 

out for a long time. The other challenge was the sensor's position which was moved so 

that it might be prone to invalid data because of direct contact with glazing with sunlight 

exposure like in the bedroom 1 sensor in Flat 80. The deviated sensors' readings were 

excluded from the results chart. Another challenge was the missing sensors. Some sensors 

were missing, with the significant loss in Flat 89 due to the occupant's passing away. The 

flats with the complete stages data were Flat 80, Flat 41, and Flat 38. The state of the 

sensors is presented in the table in Appendix 10. The indoor refurbishment was done by 

upgrading the electric heaters into new ones. In the result charts, this period can be 
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detected by the absence of a heater high-temperature reading. Even with these limitations, 

the baseline data can still be obtained to analyse the refurbishment effects and the 

occupant's behaviour related to the indoor thermal conditions. 

7.4.3.1 Results and Analysis for the Refurbished Flats 

 The results and analysis are presented flat by flat. They will be concluded by 

presenting the tabulated data results since the weather station was not installed in this 

project; the available un-quality-controlled data from CEDA (MetOffice) for Liverpool 

(Crosby) was used to give a hint of the external temperature condition. The data can be 

found at https://data.ceda.ac.uk/badc/ukmo-midas-open/data/uk-daily-weather-

obs/dataset-version-201901/Merseyside/17309_crosby. The Liverpool John Moores 

University weather station data which was obtained from the LJMU BRE Houses weather 

station located in the Byrom Street Campus was also used for the second and third stage. 

The data was in the format of 15 minutes intervals, which are linearly interpolated to 

match the sensor 10 minutes interval. 

7.4.3.1.1 Flat 80 Temperature 

 The data shows that the occupants always turn on the entrance and hall heater and turn 

off the heater inside the bedroom. There was a trace of the bedroom heater turned on 

during the initial periods of data gathering, but that was the only time this heater was 

turned on. The most impactful heater in this Flat was the hall heater. It might be due to 

the position of the heater, which is in the centre of the flat, and the heat can be felt all 

around it. The bedroom doors were predicted to be open most of the time, which explains 

the similarity of the temperature result for the hall and bedrooms temperatures. Based on 

this chart, the occupants always get the indoor temperature relatively stable. The 

temperature chart for Flat 80 in the pre-refurbishment phase, pre and during-
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refurbishment phase, during and post-refurbishment phase and post-refurbishment phase 

are shown in Appendix 10. 

 Before the refurbishment, the indoor temperature was within the comfort temperature, 

but the energy to maintain the comfort temperature was high. This condition can be shown 

by the peak temperature and the number of peaks generated by the entrance and hall 

heater. Figure 82, Figure 83, Figure 84 and Figure 85 show the stable daily temperature 

in a day for all of the stages of the project from the pre-refurbishment until the post-

refurbishment. The entrance heater and hall heater regulate the indoor temperature for the 

whole area of the flat. In the pre-refurbishment phase shown in Figure 82, the number of 

peaks was three, with the hall heater temperature peak reaching 80 ⁰C and the entrance 

heater temperature reaching 50 ⁰C. During the refurbishment process shown in Figure 83 

and Figure 84, the number of peaks decreased to two, and the peak temperature also 

decreased. The hall heater temperature peak, which previously reached 80 ⁰C, was 

reduced to 50 ⁰C, and the entrance heater temperature from 50 ⁰C was reduced to 40 ⁰C. 

All of this happens with an outside temperature of around 10 ⁰C. Similar things happened 

with the post-refurbishment. 

 Figure 85 shows that the number of peaks is reduced to one. The hall heater's peak is 

about 50 ⁰C, and the entrance heater temperature was about 40 ⁰C, with the outside 

temperature around 10 ⁰C. This sensor reading shows the potential heating energy saving 

due to the refurbishment process. The temperature chart for the post-refurbishment phase 

shown in Figure 85 also showed a rise in the thermal performance when the heaters were 

switched off. The indoor temperature decreased slowly, indicating that the refurbishment 

can give the flat better thermal properties than before. Although these sensors cannot 

measure the precise amount of energy, the chart shows that energy saving is achieved 

after refurbishment. 
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Figure 82. Daily temperature chart for Flat 80 in pre-refurbishment phase. Secondary y-

axis is used for Heaters’ temperature. 

 

 

 Figure 83. Daily temperature chart for Flat 80 in pre and during-refurbishment phase. 

Secondary y-axis is used for Heaters’ temperature. 
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Figure 84. Daily temperature chart for Flat 80 during and post-refurbishment phase. 

Secondary y-axis is used for Heaters’ temperature. 

 

 

 Figure 85. Daily temperature chart for Flat 80 in post-refurbishment phase. Secondary 

y-axis is used for Heaters’ temperature. 
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 The Sign of the thermal energy efficiency increase is also shown in Table 26. The hall 

heater's average temperature decreased from 74 ⁰C in the pre-refurbishment to 64 ⁰C, 43 

⁰C and 39 ⁰C in the post-refurbishment. The average temperature of the entrance heater is 

decreased from initially 47 ⁰C down to 45 ⁰C, 38 ⁰C and 35 ⁰C in the post-refurbishment. 

Based on this value, the potential energy saving can reach about 36% on average. The 

value is based on the outdoor temperature value of 6 ⁰C, 13 ⁰C, 5 ⁰C and 10 ⁰C, which in 

this case is assumed to be constant for simplification. Table 26 shows the summary of the 

sensor reading. 

Table 26. The parameters summary for Flat 80 

Summary for 

Flat 80 Pre refurbishment 

Pre&During 

refurbishment 

During&Post 

refurbishment Post refurbishment 

Parameters Mean Std Dev Mean Std Dev Mean 

Std 

Dev Mean Std Dev 

BedRoom1 

Temperature (⁰C)  23.981 0.407 24.538 0.859 19.825 1.886 24.226 3.250 

BedRoom1Heater 

Temperature (⁰C)  23.692 1.983 24.004 0.963 22.029 1.606 24.591 1.609 

BedRoom2 

Temperature (⁰C)  23.067 0.698 24.027 0.927 23.032 1.408 25.225 1.517 

Hall Heater 

Temperature (⁰C)  73.996 5.992 64.167 17.383 43.233 7.833 39.085 9.329 

Above Hall 

Temperature (⁰C)  25.380 0.485 25.083 0.871 25.033 1.114 24.796 5.051 

Entrance Heater 

Temperature (⁰C)  47.466 4.139 45.319 6.140 37.989 2.479 34.594 5.194 

Outdoor  

temperature (⁰C)   *6.459 *1.897 *12.609 *4.224 5.027 2.917 10.927 4.528 

Outdoor Relative 

Humidity (%) *93.36     *1.87 *66.934 *12.809 86.864 5.601 72.386 13.247 

Indoor Relative 

Humidity (%) 40.120 2.328 33.984 3.688 31.507 4.040 34.214 4.196 

         

NOTE: * incomplete data         
 

7.4.3.1.2 Flat 80 Humidity 

 Even with the outdoor relative humidity, which can reach about 90% and cause 

discomfort, the indoor relative humidity value was not exceeding 70% and stayed in the 

healthy range. The indoor relative humidity is relatively stable, with a standard deviation 

value of about four and an average value of about 40% in pre-refurbishment, 33%, 32% 
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and 34% post-refurbishment. The outdoor humidity value is about 80%. In the pre-

refurbishment phase, the outdoor humidity data from the weather station was unavailable, 

and the humidity data were obtained from the daily humidity data from CEDA 

(MetOffice). 

 The humidity chart for Flat 80 in the pre-refurbishment phase, pre and during-

refurbishment phase, during and post-refurbishment phase and post-refurbishment phase 

are shown in Appendix 10, including the example of the daily humidity chart comparison 

between pre-refurbishment and post-refurbishment. The result of the post-refurbishment 

relative humidity value is slightly lower than the pre-refurbishment, which shows that the 

post-refurbishment relative humidity value will most likely not exceed 70%, which is 

considered to be in a healthy range.   

 

7.4.3.1.3 Flat 38 Temperature 

 Similar to the case of Flat 80, the increase in thermal efficiency can be seen through 

the lower peaks in the heater temperature. Unlike in flat 80, where the peaks and peaks 

number are easily recognisable, the pattern was not simple in the case of flat 38. The daily 

temperature chart for the pre-refurbishment phase, during refurbishment and post-

refurbishment can be seen in Figure 86, Figure 87, and Figure 88, respectively. The 

thermal efficiency can be seen more easily in Table 27, which shows that the hall heater 

and the entrance heater have lower temperatures in the post-refurbishment phase while 

maintaining the indoor comfort temperature of around 24 ⁰C.  

7.4.3.1.4 Flat 38 Humidity 

 The relative humidity value from Flat 38 shows a similar tendency to that in Flat 80. 

The outdoor relative humidity value fluctuation would not directly affect the indoor 

relative humidity. After the refurbishment process, it is shown that the internal humidity 
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value has a health advantage: it rarely reached 70% and was within the healthy 

requirement and not too low. The chart showing the relation of the outdoor relative 

humidity against the indoor relative humidity in Flat 38 can be seen in Appendix 10. 

 

 

Figure 86. Daily temperature chart for Flat 38 in pre-refurbishment phase. 

 

 

Figure 87. Daily temperature chart for Flat 38 during-refurbishment phase. 
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Figure 88. Daily temperature chart for Flat 38 in post-refurbishment phase. 

 

Table 27. The parameters summary for Flat 38 

Summary for Flat 38 Pre refurbishment 

During 

refurbishment 

Post 

refurbishment 

Parameters Mean Std Dev Mean 

Std 

Dev Mean 

Std 

Dev 

BedRoom1Temperature (⁰C)  24.625 0.848 19.825 1.886 23.498 1.444 

BedRoom1HeaterTemperature 

(⁰C)  24.405 0.859 22.029 1.606 24.158 1.594 

BedRoom2Temperature (⁰C)  23.981 1.177 23.032 1.408 23.843 1.792 

HallHeaterTemperature (⁰C)  37.260 23.125 38.806 11.783 29.083 7.045 

AboveHallTemperature (⁰C)  25.075 0.611 25.033 1.114 25.676 0.652 

EntranceHeaterTemperature 

(⁰C)  42.776 5.873 42.689 10.132 35.701 5.397 

Outdoor temperature (⁰C)   *12.609 *4.224 5.027 2.917 10.927 4.528 

Outdoor Relative Humidity (%) *66.934 *12.809 86.864 5.601 72.386 13.247 

Indoor Relative Humidity (%) 42.555 5.954 40.794 4.409 36.518 5.603 

NOTE: * incomplete data       
 

7.4.3.1.5 Flat 41 Temperature 

 Although Flat 38 and 41 are located on the same floor (7th floor), the indoor thermal 

value in Flat 38 was not identical to Flat 41. The pattern difference was related to the 

metabolism of the occupants and the occupants' behaviour, for example, the heater setting 
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and the activity that impact indoor thermal conditions like cooking. However, with the 

refurbishing process, the thermal efficiency would increase and can be seen through the 

lower peaks in the heater temperature. The daily temperature chart for the pre-

refurbishment phase, during refurbishment and post-refurbishment can be seen in 

Appendix 10. Table 28 shows the reduction in the hall heater and the entrance heater 

value after the refurbishment phase, with the indoor temperature remaining constant at 

around 24 ⁰C.  

 

Table 28. The parameters summary for Flat 41 

Summary for Flat 41 Pre-refurbishment 

During 

refurbishment 

Post 

refurbishment 

Parameters Mean Std Dev Mean 

Std 

Dev Mean 

Std 

Dev 

BedRoom1Temperature (⁰C)  24.709 0.797 22.780 1.229 24.179 0.977 

BedRoom1HeaterTemperature 

(⁰C)  23.944 0.689 22.541 2.271 24.993 1.165 

BedRoom2Temperature (⁰C)  24.648 0.734 22.849 0.861 24.387 1.237 

HallHeaterTemperature (⁰C)  54.150 9.931 58.214 11.671 48.505 6.746 

AboveHallTemperature (⁰C)  25.259 0.730 25.819 0.872 25.801 0.839 

EntranceHeaterTemperature 

(⁰C)  36.720 8.861 39.728 4.320 30.134 6.527 

Outdoor temperature (⁰C)   *12.609 *4.224 5.027 2.917 10.927 4.528 

Outdoor Relative Humidity (%) *66.934 *12.809 86.864 5.601 72.386 13.247 

Indoor Relative Humidity (%) 32.514 2.854 31.507 4.040 32.475 4.755 

NOTE: * incomplete data       
 

 Comparing the data from Flat 80, 38 and 41 shows that after the refurbishment process, 

the tendency of overheating was not detected. Flat 80, located on the 14th floor, shows a 

higher reduction in the heating peak temperature by 47% and 27%. This reduction was 

higher than Flat 38 and 41, located on the 7th floor. This difference cannot be claimed 

due to the Flat's location but was also related to the occupants’ activities and metabolism. 

It is shown by the Flat 38 and 42 result, which was different even though they are located 

on the same floor. The reduction in Flat 38 heating percentages was 22% and 17%, while 
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in Flat 42 it reached 10% and 18%. The reduction of the heating on average is 24%, and 

the percentage can be seen in Table 29. 

 

Table 29. The heating reduction percentage for flats 80, 38 and 41. 

Flat no Heater 

Pre-

refurbishment 

Post-

refurbishment Reduction 

80 
Hall Heater Temp 73.996 39.085 47.18% 

Entrance Heater Temp 47.466 34.594 27.12% 

38 
Hall Heater Temp 37.260 29.083 21.95% 

Entrance Heater Temp 42.776 35.701 16.54% 

41 
Hall Heater Temp 54.150 48.505 10.42% 

Entrance Heater Temp 36.720 30.134 17.94% 

 Average     23.52% 

 

7.4.3.1.6 The AI Model Result 

 The assumption for the AI model is clothing value 1 clo, light work/activity 1.5 met 

and age 40.5 years. Figure 89 shows the comparison of the comfort conditions before and 

after refurbishment. 

 The AI model was able to acknowledge that after the refurbishment, the condition of 

overheating was most likely to happen. Overheating can occur due to the old habit of the 

occupants that use the pre-refurbishment setting to gain comfort while their dwellings are 

having a better energy performance.  

7.4.3.2 Conclusion 

 The temperature and the number of peaks of the hall heater and entrance heater 

decreased while the indoor temperature remained stable after the refurbishment. This 

reduction was a sign of energy saving due to the refurbishment. However, the amount of 

energy saving cannot be calculated precisely based on this value. Comparing this value 

only, the rough estimation of the energy saving can reach about 24% on average. 
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Flat 38, Hall: 

before: 92.19% in comfort condition               after: 98.97% in comfort condition 

 

 

 

 

 

 

 

Flat 41, Hall  

before: 100% in comfort condition      after: 100% in comfort condition 

 

 

 

 

 

 

Flat 80, Above Hall  

before: 100% in comfort condition          after: 100% in comfort condition 
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Outdoor comfort: 20.96% in comfort condition 

 

 Figure 89. The comparison of the comfort conditions before refurbishment, after 

refurbishment and outdoor conditions. 

 

 The value of relative humidity also decreased after the refurbishment. This fact 

represents that the probability of humidity exceeding 70% (unhealthy limit) is also 

decreased. After refurbishment, indoor health and comfort levels also increased. 

 The use of the model can give a further benefit to energy saving. The model was able 

to detect the tendency of overheating. Elaborating the model in the dwelling heating 

control can result in the conservation of the heating energy. The model will give better 

control so that the temperature set point can be lowered to avoid the overheating problem.  

 

7.4.4 The Implementation of the New Materials for Thermal Improvement  

 This case study compares the use of the latest material to increase the thermal 

performance in dwellings. The trial was done in four dwellings, with one room using the 

improved materials and one left as it was. The occupants filled in the questionnaire 

regarding their behaviour that might impact the trial. The sensor installation summary, 

sensor reading and chart for the temperature and relative humidity and the thermal 

comfort percentage can be assessed in Appendix 10. 
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7.4.4.1 Analysis and Comparison of Comfort Model with Occupants Questionnaire 

House #1 Phase1: 

 Based on the heater temperature data, the average temperature for the heater in the 

bedroom is 22.32°C, while the average heater temperature in the living room (equipped 

with the materials) is slightly lower at 21.95°C. Even with this lower setting, the average 

temperatures detected by other sensors in the living room are slightly higher than the 

condition inside the bedroom (living room: 19.40 °C and bedroom 18.23°C). The peak 

temperature detected for the bedroom heater was 60°C compared to the living room, 

heater which was 49.5°C. The difference indicates that the energy needed to maintain a 

comfortable temperature is less with the new materials. 

 In terms of humidity, there was no indication of the change in the humidity upon the 

installation of the material since the two sensors have different average value readings. 

Based on the Artificial Intelligence (AI) model, the percentage of comfortable time in the 

living room is also higher compared to the bedroom (95.4% compared to 91.2% of the 

time). 

 Compared with the data from the questionnaire, the occupant has an electric fire, but 

it is just for decoration and not to be turned on. The occupant always kept their internal 

door, and the external front door closed most of the time during the test. Similar things 

happened with windows. The occupant only occasionally opens the kitchen window and 

never during winter. This show that the data gathered are valid. However, based on the 

questionnaire, the occupant has not changed behaviour after installing the materials. 

 Even though the sensors did not detect the humidity improvement, the occupant sensed 

less window moisture for the window equipped with the materials. The thermal sensation 

that the occupant felt was comfortably warm, acceptable temperature, and the occupant 

was satisfied with the condition and did not want to alter it (no change condition). The 
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occupant felt the humidity was proper and only felt too humid on the porch. This 

perception was also reflected in our average humidity measurement, below 70%, while 

the average outdoor humidity was 81%. 

House #1 Phase 2: 

 In the second period of data gathering, the average temperature for the heater in the 

bedroom was 20.79°C, while the average heater temperature in the living room (equipped 

with the material) was slightly lower at 19.22°C. The highest temperature detected by the 

heater sensor for the bedroom was 65°C, whereas the living room was 49°C. These 

temperature values were similar to the first phase of data gathering.  

 Analysing more detail for the maximum outside temperature and outside temperature, 

it is also apparent that the material positively impacted heating energy reduction. The 

heater temperature in the room equipped with the material had less value than the existing 

room, with the indoor temperature relatively the same for both rooms. This second phase 

shows a better chart profile than the chart generated from the first. 

 The humidity values for the second phase showed no improvement. Even though our 

sensors did not detect the humidity improvement, the occupant sensed less window 

moisture for the window equipped with the material. The thermal sensation that the 

occupant felt was comfortably warm, an acceptable temperature, and the occupant was 

satisfied with the condition and did not want to alter it (no change condition). The 

occupant felt the humidity was proper and only felt too humid on the porch. The average 

relative humidity value for the second phase was also below 70%. The average outdoor 

humidity value from the second phase was 74.39%.   

 Based on the Artificial Intelligence (AI) model, the percentage of comfortable time for 

the outside weather condition was just 7.82%. The comfort level in the living room with 

material installed inside was 75% compared with the bedroom, 69%. The comfort level 
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was lower in the second phase due to the lower temperature set point. The occupant will 

benefit from the lower energy needed for the heating. More precise energy usage can be 

checked by comparing the energy bills before and after material installation. 

House #3 Phase1: 

The indoor condition in this house is different compared to the previous house. The 

dwelling is a one-bedroom bungalow. Based on the questionnaire, the occupants have an 

electric fire, and the internal doors are always open (the occupants only close the internal 

doors at bedtime). The occupants also use their gas cookers daily. This habit makes the 

living room's average temperature slightly higher than the bedroom equipped with the 

material. The heater temperature in the bedroom also showed a higher average number 

compared to the living room due to these reasons. The habit of opening their windows for 

a few hours during autumn and winter might affect the result. 

The benefit of the installation of the materials, in this case, was only shown when the 

black globe temperature was compared between sensor EH20, which was in the bedroom 

(with the materials) compared sensor EH17, which was in the living room. During the 

lowest outside temperature, sensor EH20 shows that the temperature was slightly warmer 

than detected in sensor EH17. Both sensors showed a similar temperature level during the 

highest outside temperature (about 30°C). This result indicates that the materials help 

buffer the indoor temperature and reduce glazing leakages.     

The bedroom sensor and the relative humidity data showed a lower average value than 

the living room. These average values are in the healthy zone. The questionnaire result 

acknowledged this measurement that the occupants only feel the moisture on the kitchen 

windows and bathroom, mainly in the winter. 

From the AI model result, it can be said that the occupants were always in their 

comfortable situations (94.38%, 99.97% and 100% of the time). This result justified the 
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questionnaire results that the occupants feel warm and comfortable and do not want to 

alter the thermal condition (no change). 

House #3 Phase 2: 

Like the first phase, the benefit of the material installation, was shown when we 

compared the black globe temperature between sensor EH20 in the bedroom installed 

with the material compared to the sensor EH17 located in the living room. Sensor EH 20 

shows that the temperature is slightly warmer than detected in sensor EH17. This value 

indicates that the material helps buffer the indoor temperature and reduce glazing 

leakages.    

The average relative humidity values were always in the healthy zone for the second 

period. The questionnaire result acknowledged this condition that the occupants only feel 

the moisture on the kitchen windows and bathroom, mainly in the winter. This moisture 

was due to the occupants’ activities that generated water vapour. From the AI model 

result, it can be said that the occupants were always comfortable (almost all cases had 

100% comfort of the time). This value justified the questionnaire results that the 

occupants feel warm and comfortable and do not want to alter the thermal condition (no 

change). 

House #4 Phase 1: 

Similar to house 1, the average temperature of the heater in the living room equipped 

with the materials was lower compared to the bedroom (21.91°C compared to 22.72°C), 

resulting in a slightly lower room temperature. The living room's average temperatures 

are 18.48°C and 18.10°C, while the average bedroom temperatures are 19.40°C and 

19.31°C. The occupants seldom open the window, and their internal and external doors 

are always closed. The occupants also do not own a fireplace. 



Chapter 7  Testing and Case Studies 

 

Karyono  201 

 

The effect of the materials installed in the living room can easily be identified during 

the minimum outdoor temperature. The heater sensor detected that to achieve a relatively 

similar indoor temperature, the heater temperature inside the living room (EC16) showed 

a temperature of less than 40°C. The bedroom (EC15) showed a temperature of almost 

60°C. This case showed that the materials help to maintain the indoor temperature during 

winter. 

The sensor reading also shows the temperature reached more than 30°C, even 36°C. 

This reading was acknowledged in the AI model, which had a wider red-coloured area 

representing overheating, although the overall comfort based on the AI model was mainly 

comfortable. This condition reflects in the questionnaire result that the occupants felt 

slightly or comfortably warm but still acceptable (no change). The overheating might be 

reflected by the fact that the occupants need to increase air movements. 

Although the relative humidity in the living room (with the materials) is slightly higher 

than in the bedroom, the average values are still in the healthy range. The occupants also 

state in the questionnaire that the humidity is just right. 

House #4 Phase 2: 

Similar to the first phase, the average temperature of the heater in the living room 

equipped with the material was lower compared to the bedroom. The average temperature 

of the heater in the living room was 20.93°C, and in the bedroom was 21.46°C. This case 

is also an excellent environment to test the impact of the material due to less noise 

impacting the measurement results. The chart with minimum outside temperature showed 

a bold difference in the heater temperature that showed the heating energy conservation. 

Like in the first phase, there was a possibility of overheating in the living room. This 

case was acknowledged in the AI model, which has a wider, red-coloured area in the 

psychrometric chart. This condition reflects that the occupants felt slightly or comfortably 
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warm (mentioned in the questionnaire). The overheating might also be reflected by the 

statement in the questionnaire, which needs to increase air movements. The occupants 

were advised to reduce the temperature set point.   

Although the relative humidity in the living room (with the material) was slightly 

higher than in the bedroom for both phases, the average values are still in the healthy 

range. The occupants' questionnaire results also acknowledged this. 

House #5 Phase 1: 

This house is different from the other houses because the heater was either on or off, 

and no thermostat was installed. The electric fire was also installed in the living room 

with the materials installed. This condition made the bedroom average temperature heater 

higher than the living room heater (22.87°C compared to 17.57°C), which can highlight 

the benefit of using the materials but might be due to the electric fire. This extreme figure 

was shown during the minimum outside temperature periods. Due to this higher heater 

temperature, the average value of the indoor temperature in the living room is slightly 

lower than in the bedroom.  

The result might be affected by the cooking done twice daily and the internal doors 

that are never closed. The low temperature in the room could be due to the effect of the 

window opening. The occupants mention that the windows are usually open in summer 

and autumn and often in winter and spring. This condition explained the questionnaire 

result: they felt cool but still comfortable, and the indoor temperature was acceptable (no 

change). This statement also justifies our AI model that captures the comfort level at 

67.6%, 93.74%, 87.91% and 99.37% during data logging. The average relative humidity 

is also just about 60% which is a healthy level, and the occupants feel the humidity was 

just right. 
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House #5 Phase 2: 

    The second-period bedroom average temperature heater was higher than the living 

room heater (21.46°C compared to 15.71°C). This value was due to the occupants' 

behaviour. Due to this higher heater temperature, the average value of the indoor 

temperature in the living room was slightly lower than in the bedroom. This condition 

makes the house not an ideal case study for the use of the material. The average relative 

humidity for this period was in the healthy level condition below 70%. The Ai analysis 

showed that the comfort percentages were below 89.83%. 

 The AI model assessment results captured a wide area of indoor thermal conditions. It 

reflected that the heating controls were not done properly. Even though most of the time 

occupants were in comfort situations, the use of the AI model can increase the comfort 

level of the occupants. There might be still a possibility in this case to conserve the heating 

energy.   

7.4.4.2 Conclusion  

 Although not all the tests can show clear evidence of the impact of using the materials 

to increase thermal performance, each test shows that installing the materials improved 

the indoor thermal condition, especially during winter. The installation of the materials 

can reduce the heater temperature or energy usage for heating.  

 The use of an AI model can properly fix the heating profile and minimize the 

uncomfortable situation in both “too hot” and “too cool” conditions. The heating energy 

conservation can also be obtained with the use of the model to focus the comfort zone to 

the lower comfort temperature during winter.  

 



Chapter 7  Testing and Case Studies 

 

Karyono  204 

 

7.4.5 The New Modular House with Advanced Heating Controls 

 The analysis is based on the data generated by third-party sensors for indoor and the 

Weather Station located in Byrom Street Campus LJMU for outdoor data. The picture of 

the modular house is presented in Figure 90. The data was obtained from 19 October 2021 

to 29 November 2021. The data is grouped based on the sensor position. Due to the 

sensors' nature that they will send the data when there are changes in the value, the data 

needs to be arranged into 15 minutes intervals using the epoch timestamp from the data. 

The information about the data on each group is shown in Table 30. This data is then 

displayed in the chart with the left axis showing the temperature and the right secondary 

axis showing the relative humidity. The result can be accessed in Appendix 10. 

 

Figure 90 The picture of the studied modular house. 

 

Table 30. Summary for data measurement in the Modular House. 

 

 

Area Outdoor Stairs Backdoor

Master 

Bedroom

Living 

room Kitchen Landing Bedroom

Dining 

room

Temp. Max (°C) 20.00 22.83 18.87 26.69 22.70 26.99 21.35 21.82 21.70

Temp. Min (°C) 0.00 14.29 13.98 19.15 16.53 18.97 17.34 18.77 16.52

Temp. Average (°C) 10.65 19.05 17.08 21.14 19.56 23.31 19.57 20.15 19.32

Std Dev 3.35 1.90 1.36 1.16 1.10 1.64 0.82 0.65 1.31

RH Max (%) 95.00 35.42 33.36 32.61 32.87 32.37 33.58 32.29 31.96

RH Min (%) 51.00 19.54 17.83 17.58 18.50 16.92 15.97 18.50 12.18

RH Average  (%) 81.50 26.68 24.79 25.56 25.47 24.24 24.29 25.74 23.58

Std Dev 8.58 2.82 2.94 2.93 2.43 2.86 2.65 2.73 3.22

% Comfort 10.27 80.07 68.08 100.00 99.90 100.00 100.00 100.00 99.78
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 The data is then processed with the AI Model to show the comfort condition percentage 

over the data for each group of sensors. In the model, the clothing insulation value is 

assumed to be 1 clo, the recommended clothing insulation value in the winter. The activity 

value is assumed to be 1.5 met, representing the activity of sitting and light work. The 

age entry for the model was 30 years. 

 The psychrometric charts were drawn based on the AI model to show the comfort 

condition. The green dot represents the comfort class group. The blue and red coloured 

dot represents the uncomforted class group. The red represented the occupants that needed 

the cool temperature. The blue represented the need for a warm temperature. This result 

can be seen in Appendix 10.   

7.4.5.1 Results for the New Modular House 

 The measurement and comfort analysis shows that the comfort level was 10.27% for 

the outdoor data, while the indoor comfort levels are relatively good. The comfort 

percentage in the backdoor was 68.08%, the main bedroom 100%, the living room 99.9%, 

the stairs 80.07%, the kitchen 100%, the landing 100%, the bedroom 100%, the dining 

room was 99.78% in comfort condition. 

 The backdoor had the lowest comfort due to the exposure to the outdoor condition 

when the door was opened. The stairs also still had acceptable comfort, although the area 

does not have a dedicated heater, and the heating was taken from the convection of the 

air in the room. Although the heating schemes were being altered, due to the excellent 

insulation of the house and the minimal leakages, the heating can be efficient.    

 Based on this analysis, all rooms were in comfortable conditions, with the humidity 

value sometimes below the recommended value. In this case, the room humidifier is 

recommended to decrease the probability of the relative humidity falling under the lower 

healthy limit. The relative humidity value in the dining room was the lowest and should 
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be prioritised for the room humidifier. This low humidity value was also due to no one 

living in the house, so no vapour was generated by the constant respiration, bathing, or 

cooking. The comfort value of the backdoor was the lowest due to the direct exposure to 

the outdoor condition.  

 The AI model still can contribute to this case, especially related to the comfort analysis 

of each area even though it was already having an advanced control system. The model 

was able to give the comfort map for each location to give a better comfort situation for 

the occupants.  

7.4.5.2 Conclusion 

In the case of advanced heating, although the heating system was already able to give 

comfort to most of the area of the house, the model still contributes to better comfort 

mapping for each monitored location in the house, so that the comfort can be evenly 

distributed throughout the monitored area.  
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Chapter 8  Conclusions 

8.1 Summary of findings and conclusion 

Fuel poverty in some areas of the UK has reached 25% and this issue is currently of 

interest to UK policymakers and stakeholders. This problem arises along with the energy 

crisis and Global Climate Change which put thermal comfort research into the focus of 

interest. This work introduced a novel base system model that better reflects the user 

condition for the future indoor thermal control system to be able to solve the mentioned 

gaps. The system model has the compatibility to control the heating panels based on the 

real-time sensor network with the adaptive thermal comfort acknowledgement capability 

in a low-cost system to suit residential needs. 

About 87% of the population spends their time indoors. Human comfort is a state of 

mind expressing satisfactory adaptation to the immediate environment. The comfort zone 

can be widened to accommodate a special group of people and lower the energy use for 

comfort. There has been a great improvement in building standards, techniques, and 

materials since the early twentieth century. This has led to improved energy efficiency 

and as a result housing built in the 1920’s will have very different heating requirements 

from housing built in the period from the 1970’s. to the present day. Using heating 

contributes to approximately 61% of total energy consumption for UK homes, so a better 

heating strategy is needed to lower the energy use for comfort. There is a clear correlation 

between fuel-poverty homes and the building envelope typology.  

A software physical model was developed to better understand thermal comfort, 

resulting in a model that can justify the thermal comfort in the building with the variations 

in building materials and the occupant’s presence. This model focuses on two main 

housing typologies which represent about 12.78 million houses and covers about 53.4% 
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of the total dwellings in the UK. The model analysed three locations: Kent, Liverpool and 

Aberdeen, using each location's hourly data and predicting the percentage of heater usage 

state. This analysis recommends lowering the thermal set point, which is still proven to 

deliver a healthy indoor environment. 

The housing typology will significantly impact thermal comfort when the temperature 

set point is below 16⁰C, a level that generated high humidity. When the temperature set 

point is above 19⁰C, the dwelling typology becomes no longer important to comfort but 

only impacts energy usage. Therefore, recommending a temperature set point around 

16⁰C-19⁰C to become the comfortable standard temperature would be desirable.  

If the heater used state was used to measure the dwelling typology improvement, the 

energy-saving value will be about 2%. With the assumption of 16,500 kWh - 22,000 kWh 

on annual heating energy consumption per household per year, the energy-saving per 

house per year will be in the range of 330 - 440 kWh. If it is multiplied by the number of 

'1920s' homes which are approximately 36.6% of the total dwellings (approximately 8.76 

million homes), the total energy conservation across the UK will reach about 2.89 - 3.85 

billion kWh. The carbon reduction per year can reach approximately 635.8 - 847 thousand 

tonnes with 220 g CO2 eq/kWh. This result can be higher if the heating energy simulation 

is considered. More than half of the heating energy can be saved with the lower 

temperature set point and the use of modern construction materials as used in the modern 

housing typology. The carbon reduction per year can reach 21 million tonnes. 

 In the development of the novel prototype, a new algorithm to recognize the comfort 

zone was introduced.  The revisited thermal comfort development produced the map of 

two groups of researchers based on human physiology and human psychology/behaviour. 

This work addresses those comfortable temperatures that are changeable rather than fixed. 

Comfort can be reached if there are sufficient opportunities for people to adapt. Only with 
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the adaptive approach, all parts of the whole system can become part of the comfort 

solution. 

 This algorithm utilised the benefit of using AI for the main feature to recognize the 

comfort zone. The artificial neural network was chosen because the shallow supervised 

learning process can be done in a more powerful machine with multiple ASHRAE 

databases. Once the training has been done in an artificial neural network, this huge 

training data set is no longer needed, and the trained network can be deployed in a less 

powerful machine such as a local server or controller. The multi-layer feed-forward fully 

connected neural network with 100 nodes/neurons (wide neural network) was used for 

the model.  

 The multiple ASHRAE database consists of ASHRAE RP-884 and ASHRAE Global 

Thermal Comfort Database II for the learning process. The shallow supervised learning 

for the base ANN introduced better portability compared to using XAI. The ASHRAE 

RP-884 consists of 25,616 entries, and ASHRAE Global Thermal Comfort Database II 

includes 81,967 entries. Previous research used part of the data to represent each label to 

have a better training result but will not perform well, especially on the edge of the 

comfort zone. The plain data set will only result in less than 50% of accuracy. To 

overcome the problem, this work used the filtering process and data augmentation process 

for the learning data. 

This work proposes simple yet powerful methods to filter the data based on human 

perception consistency. The need for filtering is because the data was based on precise 

measurement, but the human perception data was based on the questionnaire which was 

more prone to error and subjective judgment than the measured data. This filter worked 

based on the comparison of parameters and omitted the data that was inconsistent. After 

filtering, the ASHRAE database has 65,256 entries or 60.66%. Six parameters are 
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mandatory for thermal comfort. This work also addresses the possibility of considering 

five parameters, including acknowledging human adaptive, which can be deployed in the 

IoT infrastructure.  

 Semantic data augmentation was introduced to overcome the overfitting problem in 

the AI learning process. The class "no change" remains untouched while the "warmer" 

and "cooler" classes are augmented with the new data. In order not to introduce error and 

bias, the semantic direction of the value was applied in the area that is not covered by the 

ASHRAE database. The "warmer" class is augmented with the lower temperature value 

under the value of mapped ASHRAE data. On the contrary, the "cooler" class is 

augmented with the data, which is higher than the mapped ASHRAE data. The benefit of 

this method is that the data obtained from the ASHRAE database is unaffected due to the 

non-overlapped semantic augmentation direction. In this case, the data related to the 

psychological aspects are still maintained, and the essence of using the ASHRAE 

database is sustained. The data then can be used to properly train the ANN model. 

 Checking the learning against overfitting issues is not easy. This work proposes using 

psychrometric chart mapping to validate the supervised learning result. This method is 

based on the comfort zone map in the psychrometric chart. The overfitting results will 

lead to the map not showing the correct pattern if the system is fed with the data series.  

 The algorithm results in wider comfort acknowledgements by acknowledging adaptive 

thermal comfort. With the winter parameters, the acquired comfort percentage is 98.03% 

from all of the ASHRAE multiple databases, compared to the PMV-PPD value of 

69.91%, the Givoni comfort zone value of 89.19% and the combination of both with the 

value of 92.84 %. There is an increase of 5.19% in the acknowledgements of the comfort 

zone. With the summer parameters (clothing value of 0.5 clo), the acquired comfort 

percentage is 98.49% from the ASHRAE multiple databases. There is an increase of 
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5.65% in the acknowledgements of the comfort zone compared to the combination 

between the PMV-PPD and Givoni. If the clothing parameters are combined (summer 

and winter), the value of comfort percentage rises to 98.90%, an increase of 6.06% of the 

acknowledgement. 

 The value of the comfort percentage can be increased to 99.46% for multiple input 

parameters such as multiple age groups, compared to all the ASHRAE multiple databases, 

which is an increase of 6.62% of the PMV-PPD and Givoni acknowledgement. If the CO2 

emission factor used is 0.309 kge / kWh ((BEIS), 2018), this work will contribute to the 

reduction of 4,842 thousand tonnes of CO2 equivalent. If the emission factor used is 50 

gCO2eq/kWh, which is the target for 2030 (Technology, 2011), the contribution of carbon 

reduction from this work will be about 783.5 thousand tonnes of CO2 equivalent. These 

values show that using an AI model to acknowledge thermal comfort can significantly 

conserve energy and help reduce carbon emissions.  

 This model shows that the thermal comfort zone can be widened from the ASHRAE 

comfort Zone and Givoni Comfort zone based on the reliable ASHRAE multiple thermal 

comfort database, which can lower the energy use for thermal comfort. The shallow 

supervised learning is feasible to be included in the real-time controlling model and 

capable of coping with the adaptive approach for thermal comfort and giving the ability 

for the model to compensate for the special occupants' needs.  

 This work uses sensor networks to capture real-time data. The performance of these 

sensors was compared with the COTS sensors. The value of R-Squared for the 

comparison between the black globe COTS temperature sensors and black globe IoT 

temperature sensors was 0.990 for the centre room sensors and 0.986 for the stair sensors. 

For the humidity sensors, the values of the R-Squared COTS humidity sensor compared 

to IoT sensors were 0.974 for the centre of the room and 0.967 for the stairs. The 
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comparisons were made with 7,361 data readings with 15 minutes intervals. These values 

were considered reliable due to the values being higher than 0.95.  

      This work also proposes to address the people's presence in the heating assessment 

to achieve lower energy use since the people will dissipate their body heat. This work 

shows that at least 10% of the comfortable condition can be achieved by involving the 

people's presence. The learning validation based on the comfort zone mapping in the 

psychrometric chart is also proposed to avoid AI learning errors in the AI-based system. 

This validation uses a broad range of temperature and humidity data fed into the AI 

system and maps the comfort zone to validate the learning result.  

  Validating and testing the model using the BRE houses at LJMU shows that the 

AI model can be used to analyse indoor thermal comfort. The case studies of different 

real case situations also strengthen the model use. This work delivers:   

• An overview of the thermal comfort research map and the highlight of its importance 

• An indoor thermal model which can be tuned to capture the behaviour of the indoor 

thermal environment to assist the research in human comfort.  

• The possibility to lower the temperature set point to reduce the energy consumption 

for comfort while still maintaining the healthy indoor environment. 

• The AI-based framework uses filtered and semantically augmented ASHRAE 

multiple databases for shallow supervised learning (ANN).  

• The validation of AI learning results is done using psychrometric chart mapping. 

• The acknowledgement of a more expansive comfort zone based on multiple ASHRAE 

databases, compared to the ASHRAE 55 standards (PMV PPD approach) and Givoni 

comfort zone. 

• Proof that the presence of the occupation has a strong impact on the indoor comfort 

evaluation. 
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• The physiological, psychological, and behavioural approach acknowledgement was 

implemented in the novel base system and shares the benefit of lowering energy use. 

8.2 Limitations 

• Trials are not directly done with an actual human who can introduce errors or biases 

into the result. 

• AI model cannot deliver 100% accuracy but still introduces false positives and 

negatives. 

• The human thermal model only focuses on human presence's thermal impact and does 

not add CO2 and water vapour to the system. 

• The prototype does not implement a complete user application. The prototype only 

shows the base model for the base model of AI implementation for thermal comfort. 

• No real user interaction and gamification with the system was implemented. 

• The research focused on the heating control and not the cooling. 

• The algorithm for controlling the heater currently does not implement the trigger 

mapping zone. With the trigger mapping zone, the heater control can have a different 

action between the trigger near the AI thermal comfort zone's borderline, in the middle 

of the comfort zone, or far out of the comfort zone. 

8.3 Recommendations and Future works 

 Based on the findings from this work, the recommendations are: 

• Revise the thermal comfort zone in the standard to accommodate broader thermal 

preferences and behavioural and psychological aspects of humans, which can lead to 

better comfort, acknowledging the special groups of people (young, elderly, disabled, 

and temporary ill) and or lower the energy use. 
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• Using the thermal comfort map in the psychrometric chart to justify the AI learning 

result and validate and justify the result. 

• Introduce the use of the AI model for indoor comfort evaluation. 

• Consider the occupants' presence under the indoor comfort evaluation. 

The future works: 

 This work can be extended to achieve a better result in the database for AI learning by 

extending the semantic augmentation for precise humidity. This work is not focused on 

giving the augmentation for humidity value but giving the augmentation for the humidity 

value might be possible to increase indoor comfort. The augmentation data should be 

generated correctly to not alter the humidity values based on actual measurements from 

the ASHRAE multiple databases. 

 Implementing the entire system that all rooms are registered in the system, all user and 

user preferences can be registered, and their preferences can be stored and associated 

with their activities and clothing values. 

 Implementing different schemes for controlling the actuator according to user 

preferences. This scheme can prioritise minimising energy use or maximising the 

comfort factor with sensible energy use.  

 The use of gamification integrates the heating energy spending and the heating energy 

cost. The gamification can encourage users to be concerned about their energy spending 

for thermal comfort. The user can compare their daily, monthly, or yearly and be given 

an incentive if they can lower their energy use for comfort. The user achievement can 

also be posted and ranked to constantly endorse the user. 

 The system can have the ability to reduce the temperature setting in the long run. Based 

on the data stored in the system and user preference, the thermal setting can be reduced 

annually, for example, half a degree Celsius in a year; with this temperature reduction, 
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heating energy can be saved without the user realising and affecting their comfort 

perception.  

 The system can be tested with an actual user (human), and the users are given a 

questionnaire for feedback to check the system performance and user satisfaction. The 

user application interface example can be seen in Figure 91. 

 The system can be tested in other parts, such as tropical areas. The actuator will use 

the fan and air conditioner instead of the heater to achieve thermal comfort. 

 Thermal comfort depends not only on the temperature and humidity but is also affected 

by the other human senses, as seen in Figure 91. In this case, the lighting comfort can also 

affect thermal comfort. Further research is needed to study this relation and the strategy 

to increase thermal comfort using lighting comfort, which might have the benefit of less 

energy achieved. 

 The thermal camera has been adapted for detecting the human skin temperature to 

capture the human thermal comfort state. The example of the image captured by the 

thermal camera can be seen in Figure 92. 
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Figure 91 User interface example for the application.   
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Figure 92 The output of the thermal camera with the colour mapping. 

 

Elaborating the thermal camera image of the human skin to predict the human 

comfort and temperature set point. The skin temperature relation with the human body 

temperature is shown in work by Burton (Burton, 1935). It states that skin temperature is 

4° or 5° C lower than the core temperature. The accurate average temperature can be 

obtained by combining the rectal and surface temperatures. The average temperature 

equals 0.65 × rectal temperature plus 0.35 × average surface temperature. The average 

error is reduced from 7½ per cent using rectal temperature alone to 5½ per cent using the 

formula. Rectal measurement is the most reliable way to obtain a core temperature value 

due to the low variation. The normal temperature range is approximately between 36.6 

°C and 38.0 °C(Corporation). Rectal measurement is a reliable method to measure body 

temperature, but it is not practical. Measuring using zero heat flow in infants can also be 

as reliable as the rectal method (Van Der Spek, Van Lingen, & Van Zoeren-Grobben, 

2009). 
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Body temperature should be measured with precautions. The measurement should 

be: 

(1) convenient, harmless, and painless 

(2) not be affected by local blood flow or by environmental changes. 

(3) temperature changes should reflect quantitatively small changes in temperature 

(Fox, Solman, Isaacs, Fry, & MacDonald, 1973) 

The average temperature of the peripheral thermal compartment is 2°–4°C less than the 

core temperature. The difference depends on the severity of the environment and the 

consequent vasomotor responses to substantial changes in the core-to-peripheral tissue 

and internal distribution of body heat. The hypothermic condition usually has a core 

temperature of approximately 34.5°C. Peripheral tissue temperatures vary widely 

depending on the region, environmental characteristics, and thermoregulatory 

vasomotion. The MBT formula is as follows:  

MBT = a · TCore+ (1 − a) · TSkin       (6) 

Where ‘a’ is the coefficient 0.64 derived from the measurement, TCore  is the 

temperature of human body core temperature and TSkin is the temperature of 

human body skin temperature. 

For a neutral and hot environment, ‘a’ can be defined as 0.7, while additional muscular 

work in a hot environment can raise ‘a’ value to reach 0.8. The value of 0.79 can also be 

assigned in an extremely hot environment (Lenhardt & Sessler, 2006). 

An oral measurement (in the cheek or under the tongue) is below the measured 

value of a rectal measurement (up to 1.1 °C). The normal oral temperature range is 

approximately between 35.5 °C and 37.5 °C. Another axillary measurement type (in the 

armpit) is only possible up to a particular body mass and takes a long time. This method 

also results in a lower temperature than a rectal measurement (up to 1.9 °C). The normal 
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axillary temperature values are between 34.7 °C and 37.3 °C. Measuring temperature n 

the ear using an IR thermometer normally will result in a value between 35.5 °C and 

37.7 °C. For IR thermometer with the forehead measurement values are approximately 

between 35.4 °C and 37.4 °C (Corporation). 

 Forehead IR thermometer will not predict axillary temperature reliably, but is 

comfortable, rapid, and non-invasive. Fever is defined as an axillary temperature greater 

than or equal to 37.5°C. For the children aged 2 to 6 years, the forehead measurements 

had a sensitivity of 88.6% and a specificity of 60% in patients with temperatures 

≥36.75°C. The sensitivities of the neck measurement at cut-offs of ≥37.35°C and ≥36.95 

were 95.5% and 78.8% (Ataş Berksoy, Bağ, Yazici, & Çelik, 2018). 

 The effect of the ambient temperature in IR thermometer reading is shown in 

Figure 93 (Suarez, Nozariasbmarz, Vashaee, & Öztürk, 2016), (Webb, 1992). The skin 

temperatures can also be used to determine the overall thermal sensations people 

experience (J.-H. Choi & Loftness, 2012). 

 

 

Figure 93  Skin temperature reading using IR thermometer (Suarez et al., 2016), (Webb, 

1992). 

 

 The thermal camera result for the forehead is in the range of 32 °C to 33 °C. The 

axillary temperature reading is 36°C. The room temperature is 24 °C. The temperature 
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reading difference is 3 to 4 °C. Based on the result and the literature review; the thermal 

camera module should be compensated if it is used to measure the thermal sensation. The 

thermal camera module is factory calibrated for the temperature reading. The detection 

of the thermal sensation will have to be corrected when it is used at a cold or hot 

temperature.   
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