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Abstract 30 

 The optical-electrical properties of CuO-NPs (copper oxide nanoparticles) are 31 

being expanded widely for high-technological uses. In accordance with the idea of an 32 

eco-friendly synthesis process, CuO-NPs were synthesized utilizing a safer method; 33 

stabilized by biopolymer sodium hyaluronate (SH) rather than a hazardous substance. 34 

Using one variable at one time method with constant reaction variables, the synthesis 35 

parameters were optimized and the characteristics of CuO-NPs were controlled. The 36 

resulting particles exhibited restricted distribution, were typically round or oval in form 37 

and particle size of 17±1.3 nm (by TEM and SEM), strongly crystalline (by XRD) and 38 

were noticeably stable. The experimental analysis of FT-IR documented that the redox 39 

reaction between biopolymers and metal cations; coupled by capping effect of thin layer 40 

of SH-macromolecules, are primarily responsible for the formation and stabilization of 41 

CuO-NPs. Also, CuO-NPs exhibited strong bactericidal (ZOI 22-27 nm; antibiofilm 42 

potential 71-85%), anti-diabetic (70-72%), DNA cleavage and antioxidant activity (70-43 

85%). Additionally, SH-stabilized CuO-NPs demonstrated catalytic activity for the 44 

reduction of catalytic dyes, degrading at a rate of over 91-93% in about 10 to 20 min. 45 

The current synthetic technique may be applied consecutively to synthesize catalytically 46 

active CuO-NPs which exhibited remarkable in-vitro biological and biomedical 47 

capabilities, possessing the potential to be exploited as a broad-based agent in a variety 48 

of biomedical and industrial processes, including the treatment of wastewater. 49 

Keywords: Sodium hyaluronate, CuO-NPs, Wastewater treatment, Dye degradation, 50 
Antioxidant, Antibacterial activity 51 

52 
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 53 

1. Introduction 54 

 With numerous applications spanning from engineering to health, 55 

nanotechnology has emerged as one of the most inventive domains of science and 56 

technology [1]. These nanoscale materials have been fabricated using a variety of 57 

techniques, including physical, chemical, and environmentally friendly ways; however, 58 

these techniques have many shortcomings. Due to their biocompatibility, safety, low 59 

toxicity, and cost-effectiveness, green approaches have replaced previous conventional 60 

manufacturing techniques for nanoparticles (NPs) over the past few decades [2,3]. The 61 

term "Green" refers to the usage of plant-based materials, and “Green nanotechnology” 62 

is a subfield of green technology that draws on the ideas of green engineering and green 63 

chemistry [4]. Through the use of fewer resources and renewable variables, it decreases 64 

the consumption of fuel and energy. Furthermore, by conserving water, energy, and 65 

raw materials, as well as by lowering emissions of greenhouse gases and toxic waste; 66 

nano-technological goods, procedures, and uses are anticipated to greatly contribute 67 

to climatic and environmental protection [1]. The key benefits of green nanotechnology 68 

include increased energy efficiency, reduction in waste and emissions of greenhouse 69 

gases, and reduced utilization of non-renewable resources.  Now-a-days, eco-70 

benevolent nanotechnology syntheses entail the production of NPs without the use of 71 

toxic materials that result in harmful byproducts. In other words, the sustainable 72 

technique is a way to synthesize nanoparticles that are eco-friendly and doesn't harm 73 

biodiversity or human health. It is entirely plausible that current conventional 74 

manufacturing processes can produce NPs with exact morphology and size in vast 75 

quantities. These techniques, however, use time-consuming, difficult, toxic, and 76 

expensive manufacturing methods [5]. Green approaches have many advantages over 77 
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traditional physical and chemical methods, including quick, simple manufacturing 78 

protocols, ease of use, economy, and less waste product formation [6]. Green 79 

engineering and chemistry are the foundations upon which green nanotechnology is 80 

built, rather than ascend de novo. Green nanotechnology applications could include the 81 

utilization of nanomaterials in clean production procedures that synthesize 82 

nanoparticles using solar radiations or recycling industrial waste products into 83 

nanomaterials, besides the development of fuel cells, biofuels, and solar cells [1,4]. 84 

There is some "truly" green nanotechnology, such as the full growth of nanoparticles in 85 

plants, but these efforts are unlikely to achieve the scale needed for the manufacture of 86 

nanomaterials on industrial scale. Green nanotechnology requires a thorough process 87 

evaluation in order to get definitive outcomes, much like other industrially produced 88 

goods.  89 

 One of the most practical possibilities among the green approaches available is 90 

the biological reduction of metallic cations to neutral ions; subsequent stabilization 91 

utilizing a natural template. In order to keep the particle exceedingly stable and 92 

catalytically effective by preventing aggregation, this technique normally requires the 93 

addition of a template or supporting agent [7]. The employed biotemplate can be 94 

derived from biological polymers, dendrimers, organic ligands, plants, different 95 

polysaccharides [8,9]. Plant phytochemicals require a supplementary process in the 96 

extraction of required substances pre-application because they contain more active 97 

components than chemical approaches do. It is difficult to separate and purify 98 

manufactured nanoparticles from plant matter [10,11]. In addition, other 99 

environmentally friendly synthesis methods, such the production of nanomaterials with 100 

the assistance of microorganisms, are ineffective and expensive because to the need for 101 

special tools to handle the microbes. According to this theory, naturally occurring 102 
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carbohydrates that are readily available, for example glucose, pectin, starch, chitin, agar, 103 

maltose, arabinose provide a much better starting point in the synthetic process of metal 104 

nanoparticles [12]. Such carbohydrate polymeric substances which have large number 105 

of structurally bound hydroxyl and carboxylic groups can reduce the metallic salts 106 

while also stabilizing the produced nanoparticles. Many scientific literatures have 107 

reported a variety of types of carbohydrates, including alginate, chitosan [13-15], 108 

carrageen [16,17], cellulose [18], and konjac [19,20], in the fabrication of very stable 109 

metal nanoparticles with no aggregation, homogeneous shape and size, high 110 

crystallinity, and good catalytic reduction efficiency [21]. The goal of the present work is 111 

to develop catalytically efficient CuO-NPs based on sustainable chemistry principles by 112 

investigating how SH functions as a stabilizer and reductant of metal precursors. 113 

 Sodium hyaluronate (SH), classified as glycosaminoglycan, is a long-chain dense 114 

biopolymer made of disaccharide monomers of Na-glucuronate-N-acetylglucosamine 115 

[22]. It has a variety of uses, including medications (intra-articular injection, creams, 116 

etc.), food manufacturing (dietary management for maintaining the amount of 117 

carbohydrates), plastic surgery of the skin, and cosmetics for wound healing [21]. In 118 

addition to these applications, given that they include a significant amount of hydroxyl 119 

and carboxyl groups, it can also be utilized to stabilize metallic particles during the 120 

production of nanoparticles. Moreover, SH has been extensively researched for its 121 

functions as a template, stabilizer, and reductant for the synthesis of metallic 122 

nanoparticles. For instance, SH conjugated metallic nanoparticles have been reported in 123 

wide ranging applications like (i) SH-reduced iron oxide nanoparticles for tracking 124 

medication and imaging delivery to cancerous cells [23]; (ii) SH-ZnONPs as anti-tumors 125 

[24] and wound healing relevance [25]; (iii) SH-AgNPs matrices for antibacterial activity 126 

[26]; (iv) chemical reduced SH templated AgNPs in biosensing [27]; (v) AgNPs 127 
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decorated SH fibers in wound dressing and  healing [28]; (vi) cetyl trimethyl 128 

ammonium bromide (CTAB)-SH stabilizer in the fabrication of silver nanowires 129 

[29];(vii) SH capped silver nanoparticles for in-vivo imaging [30]; (viii) Tween 80 130 

coupled SH in the synthesis of nano silver for cellular level targeted drug delivery [31]. 131 

To the best of the authors' knowledge, there has never been an easy-to-read study 132 

explaining wide applicative insights with CuO-NPs that have been reduced and 133 

stabilized using a sustainable synthesis procedure. The few relevant works on SH-134 

assisted metal nanoparticles that have been published should be noted; nonetheless, 135 

their synthesis processes and end products differ greatly from those of our study. For 136 

exemplar, (i) SH-capped nanogold was synthesized by employing the technique of γ -137 

irradiation [32]; (ii) SH assembled gold nanoclusters were fabricated by photodynamic 138 

ablation [33]; (iii) glycosaminoglycans stabilized AgNPs were applied as an efficient 139 

anti-coagulant and anti-inflammatory agents [34]. Therefore, it is evident that SH-140 

assisted CuO-NPs have not been reported for wide scale applications in various 141 

biological fields. 142 

 Due to their large surface area and small size, metallic nanoparticles have a wide 143 

range of uses. Among metal or metal-based nanoparticles, CuO-NPs (copper oxide 144 

nanoparticles), a type of metallic nanoparticle, have been applied in a variety of fields, 145 

such as catalysis, textile, biomedical, and biosensing [35-38]. Additionally, CuO is more 146 

affordable than silver, mixes well with polymers, and has relatively stable physical and 147 

chemical characteristics. For the generation of CuO-NPs, a variety of natural sources, 148 

such as plants, microorganisms, and fungus, are used [39,40]. Vitamins, carbohydrates, 149 

phenolics, and flavonoids are few of the biomolecules and metabolites found in plant 150 

extract. These substances have the ability to reduce and stabilize substances as well as 151 

convert Cu2+ ions into CuO-NPs [41]. Free radical overproduction in the body is a major 152 
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factor in the development of degenerative conditions like cancer, cataracts, 153 

cardiovascular disease, brain dysfunction, and a weaker immune system [42]. 154 

Antioxidants can, however, neutralize these free radicals before they assault bodily cells 155 

and cause disease. Particularly well-known for efficiently scavenging oxygen-156 

containing free radicals are CuO-NPs [43]. Due to their large surface areas and peculiar 157 

crystal surface morphologies, metal and metal-based nanoparticles are of great 158 

significance. Along with their antioxidant properties, CuO-NPs also have antibacterial 159 

properties that are effective against pathogenic bacterial strains [1, 3, 44]. 160 

 Textile manufacturing units are one of the largest sources of wastewater and 161 

effluents since they use enormous volumes of synthetic dye compounds, solvent, and 162 

auxiliaries during various processing steps [45, 46]. Approximately, 5000 tons of dyes 163 

and its auxiliaries are discarded into the aquatic environment each year due to the huge 164 

volumes of effluents' unsuitability for reuse. These effluents are extremely poisonous, 165 

aesthetically detrimental, mutagenic and carcinogenic in nature [47]. Strong colour, 166 

high TDS (total dissolved solids), high chemical oxygen demand (COD), limited 167 

biodegradability and changing pH are some of the characteristics of this effluent [21]. 168 

The textile units frequently modify the dyeing process's colour palette, which results in 169 

considerable modifications to the properties of effluents, particularly in terms of COD, 170 

pH, colour, and turbidity [48]. Additionally, even if the dye-contaminated effluents 171 

undergo small level breakdown, dye molecules are structurally stable creating harmful 172 

poisonous chemicals including benzidine, naphthalene, and other aromatic compounds 173 

[21]. Many governments enact strong regulations to prevent the use of harmful colours 174 

(such azo) and uphold minimum standards for water quality before discharges. Alas, 175 

the realistic usage of such dangerous dye compounds has not been eliminated because 176 

of their accessibility, cost-compatibility, and remarkable dyeability [1]. As remedial 177 



9 
 

steps, the most popular technique for treating industrial wastewater flocculation or 178 

coagulation have been in practice since it efficiently tackles the problems of turbidity, 179 

odour, and colour and is straightforward in application [49]. However, there are 180 

significant disadvantages to this conventional approach for treating textile wastewater, 181 

including high energy and chemical consumption as well as outlay expenditure for the 182 

dosage per tank units. Additionally, it creates sludge, which needs additional treatment 183 

before disposal because it is regarded as a secondary contaminant [50]. As a result, the 184 

treatment of raw textile industry effluents has become urgently in need of an integrated 185 

process. As an alternative, advanced technology known as catalytic oxidation has lately 186 

been used to decompose poisonous and dangerous organic contaminants [51, 52]. 187 

Additionally, it is used in the decomposition of lignin in wood pulp and unwanted 188 

stains on clothing. Recent years have seen a substantial increase in research into metallic 189 

and metallic oxide derived nano catalysts utilized in the catalytic degradation of 190 

pollutants in both scientific and industrial worlds [53]. This is a result of their special 191 

characteristics such as high catalytic effectiveness, high surface area to volume ratio, 192 

efficient active site diffusion, simple scattering of the reactants to the surface of 193 

nanoparticles and simple elimination of contaminants from the solution [1]. 194 

Additionally, recent advances in nano catalysts and nanomaterials were thoroughly 195 

investigated, and their potential applications in water purification, wastewater 196 

remediation, biosafety, toxicity, and other fields [54, 55]. When compared to other 197 

nanomaterials, copper oxide nanoparticles (CuO-NPs) as nano catalysts stand out due 198 

to their unique and promising characteristics, such as a simple manufacturing 199 

technique, effective catalytic activity, nanoscale dimension, and improved optical 200 

behavior [56-58]. Herein, the current study aims to use sodium hyaluronate as a 201 

capping/reducing agent in the biosynthesis of CuO-NP and to scrutinize the potential of 202 
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SH assisted CuO-NPs for myriad biological applications. This is the first investigation 203 

on the synthesis of copper oxide nanoparticles using SH. The CuO-NPs were examined 204 

for their biological potential utilizing a variety of in-vitro assays, spectroscopic and 205 

analytical methods. Additionally, the biosynthesized CuO-NPs were used to investigate 206 

the antioxidant and dye degradative efficiency in order to forecast their potential for 207 

pharmaceutical use and water treatment practices. 208 

2. Materials and methods 209 

2.1 Chemicals 210 

 Sodium hyaluronate (SH; molecular weight, Mw = 300000 g/mol), copper acetate 211 

monohydrate (Mw = 199.65 g/mol), sodium borohydride (NaBH4), nutrient broth (NB), 212 

Mueller–Hinton agar (MHA) and sodium hydroxide (NaOH) was purchased from 213 

Sigma Aldrich. The molecular grade absolute ethanol, model azo dyes [RY145 (reactive 214 

yellow 145) and RR195 (reactive red 195)], were purchased from Hi-Media, India. All 215 

chemicals used in the study were 97-98% in purity and the respective solutions were 216 

prepared using sterile distilled water. 217 

2.2. Synthesis of SH-assisted CuO-NPs 218 

 The aqueous solution of SH was prepared by cautiously mixing powdered SH 219 

into sterile distilled water under continuous swirling by vortex mixer. (Since, SH is 220 

sparingly water soluble, it binds to water molecules instantaneously forming gel). 221 

Therefore, the initial mixture was constantly stirred till no visible lumping. Following, 222 

the prepared SH solution was mixed with metal solution of copper acetate. Various 223 

temperature of temperature-controlled water was applied to the combined solution for 224 

a predetermined amount of time. The process parameters were methodically 225 

investigated one aspect at a time in order to regulate the final characteristics of 226 
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synthesized CuO-NPs and optimize the synthesis conditions. The variables were: 227 

reaction temperature (30, 40, 50, 60, 70°C), reducing/stabilizing agent concentration 228 

(0.05, 0.10, 0.15, 0.20, 0.25%), incubation duration (10, 20, 30, 40, 50 min), and solution 229 

pH (4, 6, 8, 10, 12). The final step was to cool and store the synthesized CuO-NPs at 230 

room temperature for 24 hours till further characterization. This was done in 231 

accordance with the determined optimal conditions, which called for heating a 232 

combination of 0.1 mM copper acetate and 0.15% SH for 40 min at 50°C. 233 

2.3. Characterization and measurement 234 

 The characterization techniques of ultra-violet visible spectrophotometer, XRD 235 

(X-ray diffraction), FT-IR (Fourier transforms infrared spectroscopy), SEM (scanning 236 

electron microscopy), high-resolution TEM (transmission electron microscopy), EDX 237 

(energy disperse X-ray spectroscopy) were used to characterize CuO-NPs synthesized 238 

under ideal conditions. To calculate the efficiency of the catalytic process, the 239 

degradation of the azo dye in the presence of CuO-NPs and sodium borohydride was 240 

studied. The characterization methods and instrument requirements followed the 241 

guidelines mentioned in our earlier report of [1]. 242 

2.4 Anti-diabetic potential of CuO-NPs 243 

2.4.1 α-Amylase inhibition assay 244 

α-amylase inhibition test was determined for analyzing the anti-diabetic 245 

potential of CuO-NPs [59]. In brief, 25 µl of α-amylase enzyme (0.14 U ml-1) +15 µl 246 

phosphate buffer (pH 6.8) were mixed in a sterile 96 well plate. Following, CuO-NPs (10 247 

µl; concentrations 20-100 µg/ml) and starch solution (40 µl) were mixed and incubated 248 

for 30 minutes at 50°C.Post incubation, iodine reagent (90 µl; 5 mM potassium iodide, 5 249 

mM iodine) and 1M HCl (20 µl)were added to the resulting mixture. The reaction 250 
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controls: positive control (acarbose); negative control (solution without test sample) and 251 

blank (solution devoid of CuO-NPs and enzyme) were taken in parallel. The optical 252 

density of reaction solution was measured at 595 nm and the % enzyme inhibition was 253 

evaluated by using following equation (Eq. 1): 254 

------- (Eq. 1) 255 

 256 
where OD (n) stands for a negative reference, OD (b) for a blank, and OD (s) for the test 257 
sample's absorption value. 258 

2.4.2 In vitro α‑glucosidase inhibition assay 259 

The α-glucosidase inhibition potential of CuO-NPs was ascertained by the 260 

protocol of [60] with slight alterations. The reaction mixture: α-glucosidase (7.5 µl; stock 261 

solution (0.5 U/ml) in 20 mmol/l sodium phosphate buffer, pH 6.9) mixed with SH, 262 

CuO-NPs (20-100μg/ml) and acarbose was kept at 37°C for 15 min. Further, p-263 

nitrophenyl-α-glucopyranoside (PNPG; 100μl) was added followed by incubation for 10 264 

min at 37°C. Finally, sodium carbonate (Na2CO3) (100μl; 0.1 M) was mixed to arrest 265 

reaction. The absorbance values were read at 405 nm and acarbose was used as 266 

reference and control (PNPG + α-glucosidase). 267 

   ------- (Eq. 2) 268 

2.4.3 Non-enzymatic a-glycosylation of hemoglobin (HbA1c) 269 

The biosynthesized CuO-NPs were used in a typical HbA1c inhibition test 270 

utilizing the HbA1c technique, with slight modifications [61]. Using 0.01 M phosphate 271 

buffer (pH 7.4) as the reaction medium, the arrangement of glucose (2%), haemoglobin 272 

(0.06%), and sodium azide (0.02%) were thoroughly mixed. At room temperature, 273 

different concentrations of CuO-NPs (20-100 µg/ml) were mixed with the preceding 274 
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response mixture. The completed reaction mixture was incubated at room temperature 275 

for 72 h under dark environment. The levels of HbA1c inhibition were read at 520 nm 276 

and contrasted with those of a common medication like metformin. 277 

2.4.4 Urease inhibition assay 278 

To ascertain urease inhibition activity [62], the reaction mixture (10 µl CuO-NPs, 279 

phosphate buffer (50 µl,3 mM, pH 4.5), 100 mM urea, 25 µl urease) was incubated for 15 280 

minutes at 30°C. Post incubation, 1µl sodium nitroprusside 0.005% (w/v) and 45 µl 281 

phenol reagent (phenol 1% (w/v) was added, following the addition of alkali reagent (70 282 

µl; 0.5% NaOH and 0.1% NaOCl) and incubation at 30°C for 50 minutes. The reaction 283 

controls: positive control (thiourea); and blank (solution without CuO-NPs) were taken 284 

in parallel. The optical density was measured at 630 nm and % inhibition of urease was 285 

evaluated by following equation (Eq. 3): 286 

-------- (Eq. 3) 287 

where OD (b) stands for "blank" and OD (s) for "test sample value." 288 

2.4.5 Lipase inhibition assay 289 

The lipase inhibition assay was ascertained following the slight modified 290 

procedure of [63]. The enzyme lipase (10 mg ml-1) in aqueous state was subjected to 291 

vortex (6,000 rpm; 5 min.) and the resultant supernatant was rescued. The reaction 292 

mixture [Tris buffer (350 µl;100 mM; pH 8.2), 150 µl lipase and CuO-NPs (50 µl)] was 293 

taken and mixed with substrate (olive oil; 450 µl) in order to initiate the reaction and 294 

incubated at 37°Cfor 120 min. Post incubation, the solution was centrifuged (16,000 rpm; 295 

5 min.) and the optical density was read at400 nm by taking 200 µl of the resulting 296 

supernatant. The reaction controls: blank [buffer (400 µl), lipase (150 µl), and substrate 297 
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(450 µl)] and positive control (orlistat) were running parallel. The percent inhibition of 298 

enzyme was evaluated by equation (Eq. 3).  299 

2.5 Antioxidant activities of biosynthesized CuO-NPs 300 

2.5.1 Free radical scavenging assay (FRSA) 301 

The DPPH (2,2-diphenyl 1-picrylhydrazyl) assay was performed for the 302 

assessment of free radical scavenging potential of CuO-NPs [64]. Briefly, 10 µl CuO-303 

NPs+ 190 µL DPPH reagent were mixed and kept for 30 min at 37°C. Ascorbic acid was 304 

act as positive control. The absorbance of reaction solution was recorded at 515 nm and 305 

the following equation (Eq. 4) was used to estimate the scavenging activity: 306 

------- (Eq. 4) 307 

where AE directs absorbance of test sample solution and AD denotes negative control. 308 

2.5.2 Total antioxidant capacity (TAC) 309 

The total antioxidant capacity of CuO-NPs was quantified by using 310 

phosphomolybdenum method [65]. Briefly, 900 µl phosphomolybdenum reagent 311 

[sulphuric acid (0.6 M), ammonium molybdate (4 mM), and sodium phosphate (28 312 

mM)]+ 100 µl CuO-NPs was mixed and kept for 90 min at 95°C. Post incubation, the 313 

absorbance of the reaction mixture (volume 200 µl) was read at 695 nm. The antioxidant 314 

potency was ascertained as the amount of ascorbic acid equals to ascorbic acid per mg 315 

of test sample (mg AAE/mg).The positive reference employed was ascorbic acid. 316 

2.5.3 Total reducing power (TRP) 317 

 The total reducing power of CuO-NPs was investigated by potassium 318 

ferricyanide based assay [65]. Iron, as reducing agent, was used for the quantification of 319 
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total reducing power. The reaction mixture: 40 µl CuO-NPs + phosphate buffer (400 µl, 320 

0.2 mol/l, pH 6.6) + aqueous potassium ferricyanide (1%) was kept at 45°C for 20 min. 321 

Post incubation, aqueous trichloroacetic acid (400 µl; 10%) was added and mixed in the 322 

resulting mixture; centrifuged at 3000 rpm for 10 min. The resultant supernatant 323 

(volume 500 µl) was added with equal volumes of 100 µl aqueous FeCl3 (0.1%) and 324 

sterile distilled water. The absorbance (630 nm) was read and the outcomes were 325 

quantified as mg AAE/mg. The reaction controls: positive control (ascorbic acid) and 326 

blank (DMSO) were run in parallel. 327 

2.5.4 ABTS antioxidant assay 328 

The ABTS assay was investigated by following the protocols of [66]. The reaction 329 

mixture [equal proportions of 7mM ABTS salt and potassium persulphate (2.5 mM)] 330 

was kept under dark conditions for 14-16 h. Prior to the addition of CuO-NPs, the 331 

absorbance (734 nm) was read and adjusted to 0.7. The variable concentrations of CuO-332 

NPs were then added to the reaction mixture and kept for 15 min at room temperature 333 

under dark conditions. The antioxidant effect has been detected in TEAC and the 334 

absorption was measured at 734 nm (trolox C equivalent antioxidant capacity, mM). 335 

2.5.5 FRAP (ferric reducing antioxidant power) assay 336 

 The ferric reducing power was investigated as developed by [67]. 10 µl CuO-NPs 337 

was added to 190 µl FRAP solution [TPTZ (2,4,6-tri(2-pyridyl)-s-triazine; 10 mM); 338 

acetate buffer (300 mM; pH 3.6); FeCl3.6H2O (ferric chloride hexahydrate; 20 mM) in the 339 

ratio 10 : 1 : 1 (v/v/v)] and kept for 15 min. at room temperature. The O.D (630 nm) was 340 

recorded and the reducing antioxidant effect was determined as TEAC.  341 

2.5.6 Nitric oxide scavenging activity 342 
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Nitric oxide (NO2) scavenging capacity was measured by the procedure of [68]. 343 

Briefly, different CuO-NPs concentrations (20–100μg/ml) were mixed with sodium 344 

nitroprusside solution (10 mM) and kept for 2.5 h at 25°C. Following incubation, the 345 

reaction solution (0.25 ml) was mixed with sulfanilic acid and n-1-naphthyl indicator 346 

(0.5%; 0.5 ml) and kept at 25°C for 30 min. The absorbance was read at 540 nm and the % 347 

scavenging activity was evaluated by the following equation (Eq. 5): 348 

 -------- (Eq. 5) 349 

where Abs control and Abs sample stand for the relative absorption of the control and 350 
sample. 351 

2.5.7 Hydrogen peroxide radical scavenging (H2O2) assay 352 

The H2O2 scavenging capacity of CuO-NPs was ascertained by the protocol of 353 

[69]. The reaction solution consisted of hydrogen peroxide (40 mM) in phosphate buffer 354 

(50 mM, pH 7.4) was prepared. The H2O2 concentration was determined at wavelength 355 

230 nm. The resulting combination was mixed with aqueous CuO-NPs (20–100 µg/ml) 356 

and allowed to stand at room temperature for 30 min. The reaction solution was 357 

measured at 230 nm in comparison to a blank solution (phosphate buffer without 358 

hydrogen peroxide), and the equation was used to determine the percentage of 359 

hydrogen peroxide scavenging (Eq. 5). 360 

2.6 Measurement of peroxidase-like activity of CuO-NPs 361 

 The POD (peroxidase) activity was ascertained as described by [70]. Briefly, the 362 

reaction mixture: 140 µl NaAc–HAc buffer (0.2 M, pH 4.0) + 20 µl CuO-NPs were mixed 363 

thoroughly with the subsequent addition of freshly prepared H2O2(6 mM) and freshly 364 

prepared TMB (3 mM, 20 µl). The absorbance (652 nm) was read and the reaction 365 
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combination (with no test sample) was taken as control. The enzymatic activity was 366 

determined by using equation (Eq. 6): 367 

 ------- (Eq. 6) 368 

where A denotes the sample absorption value, C the enzyme content (measured in 369 
millimolars per milligram), E the extinction coefficient, and L the wall length, 370 
correspondingly. 371 

2.7 Detection of reactive oxygen/nitrogen species 372 

The generation of reactive species (ROS and RNS) by CuO-NPs was reported by 373 

using fluorescent dye DHR-123 (dihydrorhodamine-123) [67]. Yeast cells, in existence of 374 

CuO-NPs and control (DMSO), was incubated for overnight under dark at 30°C for 10 375 

min. Post incubation, the cells were cleaned with PBS thrice and re-suspended in 0.4 µM 376 

DHR-123 dissolved in PBS. The fluorescence wavelengths λex = 505 nm, λem = 535 nm 377 

were used to detect the fluorescence by BioRad Versa Fluor Fluorimeter. 378 

2.8. Metal chelating activity 379 

 The metal ion chelating property of SH assisted CuO-NPs were quantified. The 380 

reaction mixture consisting of: FeSO4 (1ml) + CuO-NPs (20-100µg/ ml) + solution of 2,2’-381 

bipyridyl (1ml) and Tris- HCl buffer (pH 7.4) + mixture of ethanol and hydroxyl amine-382 

HCl. The reaction mixture (5ml) was maintained for 10 min at room temperature. The 383 

O.D values was read at 522 nm and the ion chelating activity was measured by Eq.(5) 384 

[71]. 385 

 386 
2.9Assessment of Antibacterial activity of CuO-NPs 387 

2.9.1. Maintenance of pathogenic strains 388 
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 Two bacterial pathogens, namely, Escherichia coli and Staphylococcus aureus were 389 

sub-cultured periodically on MHA and maintained as culture stock in form of 10% 390 

glycerol stocks (-20°C) and slants at (4°C). 391 

2.9.2. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal 392 

Concentration (MBC) of CuO-NPs 393 

 For evaluation of MIC, broth micro-dilution technique was employed [1, 72]. The 394 

variable concentrations of CuO-NPs (20-100µg/ml) were tested; maintained for 24 hat 395 

37°Calong with control tubes. The optical density was measured at 620 nm. For 396 

assessment of MBC, aliquots (20 µl) from MIC tubes assay were seeded, cultured on NA 397 

medium followed by incubated for 24h at 37°C [3, 73]. 398 

2.9.3. Antibacterial activity of CuO-NPs 399 

 The bactericidal effects of CuO-NPs was performed by using agar well diffusion 400 

technique [1, 74, 75] against human pathogens (E. coli and S. aureus).The bacterial 401 

culture (0.1 ml; cell density 2×108 CFU/ml) were lawn spread uniformly on MHA media. 402 

Equal sized wells were made and variable concentrations of CuO-NPs (20, 60, 80, and 403 

100µg/ml) were added to the former and stored at 37°C for 24 h. The antibiotic cefixime 404 

act as positive control and the size of zone of inhibition (ZOI) was calculated by 405 

antimicrobial zone measurement scale (Hi-Media, India). 406 

2.9.4. Anti-biofilm potential of CuO-NPs  407 

 The anti-biofilm efficacy of CuO-NPs was analyzed by employing CV (crystal 408 

violet) assay [1]. Starter cultures (100 µl; cell density ~108 cells/ml) of S. aureus and E. 409 

coli, grown overnight in NB, were seeded into 96-well microtitre plate. A 100 µl culture 410 

medium + variable CuO-NPs concentrations (100 µl; 20–100µg/ml) was dropped to the 411 

respective wells along with a parallel set of untreated culture run as control followed by 412 
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cultivation for 24 h at 37°C. The remaining loosely bound cells were washed thrice with 413 

PBS (phosphate buffer saline) + autoclaved distilled water (1:1). The CV solution (0.25%, 414 

200µl) was added followed by incubation for 30 min at 37°C. The unbound CV was 415 

washed with PBS + autoclaved distilled water. The bound CV-bacterial cells were 416 

dissolved in ethyl alcohol (95%; 250 µl) and the absorbance read at 620 nm using ELISA 417 

reader. 418 

 419 
2.10. DNA cleavage assay 420 

 The CuO-NPs treated vector pBR322 DNA was examined as described by [76]. 421 

Aliquots (50 µl) of SH and CuO-NPs (20, 60, 100 µg/ml) solutions were separately 422 

added to vector DNA (1µl; 0.5 µg/ml)in TE buffer (0.1 mM EDTA, 10 mM Tris–HCl, pH 423 

7.4) followed by incubation at 37°C for 24 h under dark. Consequently, gel 424 

electrophoresis (1% agarose gel) was ran by using 20 µl copper acetate and CuO-NPs–425 

bacterial DNA mixtures each and viewed using UV light trans-illuminator equipped gel 426 

documentation system. 427 

2.11. Mechanism of action of CuO-NPs on treated bacterial cells 428 

2.11.1. Protein leakage assay 429 

 The estimation of cellular protein leakage was ascertained by previously 430 

developed protocol of [77]. The CuO-NPs (MIC concentration) treated bacterial cells 431 

were incubated for fixed time intervals of 3h and 6h and then centrifuged at 6000 rpm 432 

for15 min. For each ensuing sample, the Bradford reagent (800 µl) + supernatant (200 µl) 433 

were mixed; followed by incubation for 10 min at room temperature. The protein BSA 434 

served as standard for the measurement of optical density (λ 595 nm). 435 

2.11.2. Nucleic acid (NA) leakage assay 436 
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 The quantification of NA leakage was ascertained by the protocol of [78]. 437 

Aliquots of CuO-NPs (MIC concentration) treated bacterial cultures were incubated for 438 

fixed time intervals of 3h and 6h followed by filtration by Millex-GS syringe filters 439 

(Millex-GS, Spain) using dimension: diameter 25 mm; pore size 0.2 µm. The values of 440 

absorbance were measured at 260 nm. 441 

2.12. Brine shrimp lethality assay for cytotoxicity test 442 

 The precursive cytotoxicity of CuO-NPs was determined by employing brine 443 

shrimp lethality assay [79]. The medium comprising of artificial seawater (34 g sea salt + 444 

1.0 liter sterile distilled water under incessant stirring) was used for hatching eggs of 445 

Artemia salina (brine shrimp) between 28±2.0°C. After egg hatching, 5 ml brine was 446 

added to the test CuO-NPs concentrations. Post 2 days, hatched shrimps were 447 

transferred to the test CuO-NPs concentrations (15 shrimps/concentration). After 24 h, 448 

the number of surviving shrimps was recorded and the percentage viability was 449 

calculated based on the following method (Eq. 7): 450 

 -------- (Eq. 7) 451 

2.13. Dye degradation and kinetics study 452 

 The degradation of azo-dyes (RR195 and RY145) was calculated using optimized 453 

SH-assisted CuO-NPs as nanocatalysts using NaBH4 [21]. For experiment, dye (10 mg 454 

each) + 1.0 liter sterile distilled water were mixed; accounting stock solutions for two 455 

separate simulated wastewater samples. The CuO-NPs (20 ml) were added and mixed 456 

with 10 ml as-prepared simulated wastewater and 100 ml aqueous NaBH4 solution 457 

(0.1mol/l). The resulting solution was well mixed by manual shaking, and the UV-Vis 458 

absorption spectra were promptly read at room temperature. The catalytic degradation 459 
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was measured by recording time-dependent change in the absorbance. A common 460 

equation (Eq. 8) was used to measure the amount of dye degradation (D%): 461 

 ------- (Eq. 8) 462 

where At denotes absorption at a specific time and A0 denotes starting absorbance. (t). 463 

The rate constant was evaluated by typical kinetic equation (Eq. 9): 464 

 ------- (Eq. 9) 465 

where k corresponds to the kinetic degree constant, t indicates reduction time, A0 was 466 
the measure of initial spectrum , and At was the measure of absorbance of dyes at time 467 
t. 468 

2.14. Statistical analysis 469 

 All investigations were performed in triplicates and the data were interpreted as 470 

mean ± S.D. calculated by using SPSS (Version 7.5.1, USA). The results of inhibition 471 

assays; peroxidase and ROS/RNS activity were evaluated by One-way ANOVA 472 

(analysis of variance) followed by unpaired Bonferroni test. The p value <0.05 indicated 473 

the arithmetical significance of results. 474 

3. Results and Discussion 475 

 The current study employs sodium hyaluronate as stabilizing and reducing 476 

agent in the synthesis of copper oxide nanoparticles. In study, the sodium hyaluronate 477 

was chosen as the base material owing to its attributes of naturally occurring polymer 478 

that gels in the presence of a cross-linker sans the need for organic solvents or extremely 479 

high temperatures. This function conveniently prevents the loss or destruction of labile 480 

medications [80, 81]. Also, the molecules of hyaluronate are biocompatible and 481 

encourage interaction of biological cues with particular cellular receptors [82]. 482 

3.1. Synthesis and optimization of SH- assisted CuO-NPs 483 
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 The formation of SH-CuONPs was preliminary inveterate by the visual color 484 

shifted of the reaction mixture. An aqueous solution of SH is colorless, while the 485 

solution of copper acetate [Cu(OAc)₂] was found to be blue colored. However, the color 486 

of the reaction mixture changed under thermal heating, depending upon the reaction 487 

parameters. The coupled oscillation of free electron conduction, induced by LSPR 488 

representing the production of CuO-NPs, is responsible for the development of vivid 489 

colour [3, 83]. The size and form of the colloid's particle were linked to the variations in 490 

colour as the literature states that colour change from bluish green to grayish black are 491 

suggestive of the formation of colloidal CuO-NPs at the nanoscale [3]. The spectroscopic 492 

analysis of the colloid reaction mixture validated the development of CuO-NPs (Fig. 493 

1a). The absorption peak at 244 nm of copper acetate was recorded primarily due to 494 

LMCT transition (ligand-to-metal-charge-transfer) of AcO- ions and d-d transition of 495 

Cu2+ ions. On the other hand, no absorptive peak was exhibited by SH under observed 496 

wavelength range. However, heating at ambient conditions caused the dissipation of 497 

UV-Visible absorption peak of Cu(OAc)₂ at 244 nm indicating the reduction of Cu2+ into 498 

Cu0 [83]. The generation of CuO-NPs was exhibited by the concurrent peak appearance 499 

at 575 nm and a strong plasmonic peak band between 550 and 590 nm (depending on 500 

size and shape of the particle) [84, 85].The controlled and tailored characteristics of 501 

synthesized CuO-NPs require the determination of ideal concentration of 502 

stabilizing/reducing agents. To understand and quantify the effects of different dosages 503 

of stabilizing/reducing agents, the CuO-NPs were synthesized through the reduction of 504 

Cu2+ to Cu0 by adjusting the SH concentration from 0.05-0.25% (w/v) while keeping 505 

other parameters constant (Fig. 1b). Further, it was observed that no apparent 506 

absorption was found between 550 and 590 nm at 0.05%SH inferring no appreciable 507 

effect on the reduction of Cu2+ ions. However, as the concentration of SH was raised to 508 
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0.10%, a reduction peak at 533 nm began to rise, indicating the beginning of reduction 509 

process. A strong and sharp peak was exhibited by increasing the SH concentration 510 

further to 0.15%. Further, a considerable red shift from 550 to 650 nm was observed, 511 

even though the reaction's maximum absorption intensity was obtained at 0.20% SH, 512 

which may be due to the increase in the size of the nanoparticles [86]. Also, when SH 513 

concentration was increased further to 0.25%, the intensity of the absorption 514 

dramatically decreased, resulting in an additional red shift of 610 nm. Here, rather than 515 

the interactive effects with saturated Cu2+ ions, the increased concentration of SH caused 516 

the contact between functional groups. As a result, nanoparticles changed into clusters 517 

or CuO-hydro-complexes rather than particles [87]. As a result, the optimal 518 

concentration for this reduction process was found to be 0.15% SH.   519 

 A suitable amount of reaction incubation time (t) is necessary to reach the yield 520 

point of reduction under the conditions of complete nucleation and the resulting 521 

stability of CuO-NPs. To regulate the time of equilibrium for particle development and 522 

stability, the spectrophotometric investigation of the reaction kinetics of particle 523 

formation was performed (Fig. 1c). No obvious peaks were recorded during the first 20 524 

minutes of the reaction, thereby indicative of the absence of CuO-NPs synthesis. A faint 525 

and broad peak with little to no absorption intensity was observed at 535 nm after 30 526 

minutes of reaction. Also, there was a notable rise in the intensity of peak absorption 527 

and sharpness and strength of the band after another 10 min of reaction time. Although, 528 

the reaction increased the absorption intensity over a 50-min time period, the band 529 

widened and experienced a considerable red shift to 610 nm, suggesting instability in 530 

the formed nanoparticles. The growth and stabilization of CuO-NPs was fully achieved 531 

within 40 min of the reaction. It is necessary to carry out the synthesis reaction at an 532 

appropriate temperature (T) in order to obtain the specific size/shape of nanoparticles. 533 
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As a result, the temperature range between 30-70°C was used for the temperature-534 

dependent synthesis of CuO-NPs (Fig. 1d). The reaction was conducted between 30 and 535 

70°C and a strong noticeable absorption band was seen at 50°C confirming the formation 536 

of CuO-NPs. The results exhibited a negative association between temperature and 537 

particle size, with further increase at 70°C showing no increase in absorption intensity 538 

or sharpening of absorption band but causing disappearance and widening of 539 

absorption peak [52, 88]. The optimized temperature for the production of SH assisted 540 

CuO-NPs was found to be 50°C. Also, the pH of the reaction also plays an imperative 541 

role in the control of growth and properties of synthesized nanoparticles. The 542 

biosynthesis of SH-CuONPs was undertaken at variable pH (4–12) (Fig. 1e). The pH-543 

dependent wavelength absorptive spectra exhibited no promising visible peaks at both 544 

acidic (pH = 4–6) and basic (pH = 10–12). However, the reduction of Cu2+ ions and 545 

subsequent production of CuO-NPs were indicated by a distinct and strong absorption 546 

peak at near neutral to slight basic pH 8. A broad absorption band and steady 547 

absorption intensity were the consequences of the reaction under both acidic and basic 548 

extremities of the reaction media.  549 

 The nanoparticles mediated biological activities, particularly their antimicrobial 550 

effects, are influenced by a number of factors, including their surface charge, capping 551 

agent, ionic strength, pH, size morphology and shape [89]. The functionality of metal 552 

nanoparticles for different applications is further enhanced by adjusting their size and 553 

shape. During the optimization of synthetic procedures of nanoparticles by biological 554 

pathway, the precise control of these parameters may be crucial. By altering the 555 

medium's pH, it is possible to influence the shape and size of nanoparticles, with an 556 

acid pH resulting in the generation of large NPs. This is because there are more 557 

functional groups available at higher pH ranges than at lower pH ranges, making them 558 
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more accessible for nucleation [90]. Besides pH, the solution concentration also 559 

influences the size and form of biosynthesized nanoparticles. A quick change in the 560 

color of the reaction mixture is the primary indicator that the reaction's time is 561 

important in the reduction of nanoparticles and their size. This time frame can 562 

range from minutes to hours. The shape, size, and yield of nanoparticles are also 563 

influenced by the reaction temperature, which is another crucial factor in the 564 

biosynthesis of nanoparticles [89]. 565 

 Polysaccharides are essential compounds for the creation of multi-facet nano-566 

based materials since they serve as the foundation for fibers, coatings, and stabilizing 567 

agents [91]. They are renewable resources that have undergone extensive research 568 

owing to their biodegradability, biocompatibility, and variety of biological activity [92, 569 

93]. They are organic macromolecules made up of covalently bonded monosaccharide 570 

units connected by polymer chains [94]. Today, a multitude of polysaccharides are 571 

obtained through extraction from natural sources such as microorganisms, algae, plants, 572 

animals [95]. The mechanism of formation of polysaccharides units (here, hyaluronate; 573 

Fig. 2) assisted metal based nanoparticles (here, CuO-NPs) can be explained as follows: 574 

Metal ions are hosted by the units of polysaccharides by non-covalent bonding 575 

(sorption). By changing the order of free energy (heating), the metallic precursor is 576 

subsequently reduced to a zero-valent state, initiating the process of nucleation and 577 

formation of nanocrystal. The metal nanoparticles are stabilized by the rise in 578 

temperature, which also enables control over their growth kinetics and shape. In 579 

contrast to top-down synthesis, when the initial materials are shrunk down through 580 

chemical, thermal, or mechanical processes, this sort of self-assembling (bottom-up) 581 

synthetic process is favored. These processes could cause the nanoparticles to oxidize 582 

unintentionally, changing their surface chemistry and/or physical characteristics. 583 
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Furthermore, sans an external stimulation like a pH shift, the stabilized metal based 584 

nanoparticles do not readily leach out of the integrated metal ion-585 

polysaccharide complex. Since most polysaccharides are sensitive to pH changes, they 586 

are frequently used in polysaccharide-based systems for controlled drug delivery [96, 587 

97].588 



27 
 

 589 



28 
 

Wavelength (nm)

200 300 400 500 600 700 800

A
bs

or
ba

nc
e 

(a
.u

.)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
SH
Copper acetate
CuO-NPs

Wavelength (nm)

450 500 550 600 650

A
bs

or
ba

nc
e 

(a
.u

.)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
0.05%
0.1%
0.15%
0.2%
0.25%

Wavelength (nm)

450 500 550 600 650

A
bs

or
ba

nc
e 

(a
.u

.)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
10 min.
20 min.
30 min.
40 min.
50 min.

Wavelength (nm)

450 500 550 600 650

A
bs

or
ba

nc
e 

(a
.u

.)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

30oC
40oC
50oC
60oC
70oC

Wavelength (nm)

450 500 550 600 650

A
bs

or
ba

nc
e 

(a
.u

.)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

pH 4.0
pH 6.0
pH 8.0
pH 10.0
pH 12.0

Time (months)

A
bs

or
ba

nc
e 

(5
75

 n
m

)

0.0

0.2

0.4

0.6

0.8

1.0

(a)

(e) (f)

(d)(c)

(b)

 Fig.1 (a) UV–Vis spectra of SH, copper acetate and CuO-NPs. Effect of (b) SH concentration, (c) 590 
reaction time, (d) reaction temperature, (e) pH, (f) stability over time 591 
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Fig. 2 Mechanism of hyaluronate assisted CuO-NPs synthesis612 
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 613 

3.2. Characterization of fabricated CuO-NPs 614 

 For the biosynthesis of SH assisted CuO-NPs in the current investigation, a 615 

matrix of sodium hyaluronate was used. After washing, drying, and annealing, a fine 616 

black powder of CuO-NPs was produced, and stored till further processing for 617 

morphological, physiochemical, and biological experimentations. The initial TEM 618 

analysis of the morphology and size of CuO-NPs exhibited successful synthesis of 619 

polydispersed CuO-NPs with a particle size of 17.4±1.3 nm (Fig. 3a and b). The 620 

observation also demonstrated the oval and spherical form of SH-produced CuO-NPs. 621 

The high-resolution TEM was used to capture a section of a single particle, 622 

demonstrating highly crystalline surface of CuO-NPs. Additionally, SEM was used to 623 

observe the solid-state particles (Fig. 3c). It revealed that CuO-NPs was equally 624 

distributed throughout the SH composite with no aggregation, demonstrating the 625 

ensnarement of CuO-NPs in SH molecules conferring stability. Furthermore, the EDX 626 

microanalysis showed the presence of copper component (29.49%) in nano form rather 627 

than copper derived compounds (Fig. 3d). The purity and structural morphology of 628 

CuO-NPs was shown by X-ray diffraction pattern found with diffraction angles ranging 629 

from 10 to 70. Strong peaks at 23.44, 31.18, 34.38, 37.58, 38.80, 43.60, 47.65, 57.24, 60.43, 630 

65.11 and 66.95 corresponding to the miller indices (100), (-111), (002), (-102), (-211), (-631 

112), (012), (-221), (020), (-312) and (021) confirmed with JCPDS file no. 048-1548 [98] 632 

(Fig. 4a). The Debye Scherrer equation exhibited the crystalline monoclinic phase of 633 

CuO-NPs. Similar results were also reported in the studies of [3, 57, 99, 100]. It was 634 

important to note that the crystal size calculated by the XRD using the Scherrer 635 

equation (16.67 nm) was relatively smaller than the particle size discovered in TEM 636 

(17.4±1.3 nm). The size of twinned particles with multiple diffraction domains is lower 637 
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than the diameter measured by XRD analysis, which is a measure of single-crystal 638 

particles and could be the cause of the size discrepancy. The TEM image (Fig. 2b) 639 

substantiated the theory and clearly demonstrated that some particles were >16 nm 640 

with grain twinning and boundary [101]. 641 

 The FTIR chemical analysis was used to understand the interaction between SH 642 

and copper oxide ions (Fig. 4b). The primary peaks of aqueous SH identified were: 3370 643 

cm-1 (-OH stretch), 1412 cm-1 (C-H stretch), and 1082 cm-1 (C–O–C). The CuO-NPs had 644 

comparable spectral morphologies, but their peak positions had a tiny shift to the lower 645 

bands (3579, 3482, and 1120 cm-1, respectively) as a result of conformational changes 646 

that were caused by CuO-NPs in SH chains through dipole-dipole interactions and H-647 

bonding. Also, a prominent SH peak (indicated by a rectangular area) at 1405 cm-1 (C-O-648 

C) was totally absent, while the peak at 1157 cm-1 sharpened as a result of the 649 

vibrational stretch of (NH)C==O. Therefore, it is clear that the interaction between 650 

functional groups of SH, particularly-OH,-NH(C)=O, -COOH groups, and CuO-NPs 651 

enabled reduction of Cu2+ ion. These interactions were suggestive of the SH 652 

macromolecule capping and stabilizing CuO-NPs. 653 
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Fig.2 Electron microscopic analyses of CuONPs. (A) TEM image at 20 nm; (B) TEM image at 2 661 
nm; (C) SEM micrograph at 20000X and (D) EDS spectrum displays the % of C, O and Cu 662 
elements in SH‐CuONPs. 663 
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Fig.3 Physicochemical characterization of CuONPs. (a) X‐ray diffraction (XRD) (b) FTIR analysis684 
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 685 

3.3. Biological activities of CuO-NPs 686 

 Diabetes and its complications are a severe and common source of illness and 687 

mortality all over the world. A metabolic disease known as diabetes melitus (DM) is 688 

characterized by chronic hyperglycemia induced by cellular insensitivity to insulin or 689 

decreased insulin production [102]. Some phyto-based chemicals have been reported as 690 

inhibitors of starch hydrolysis and are considered an appealing contender in the 691 

treatment of diabetes mellitus in addition to anti-diabetic medications used in the 692 

regulation of post-prandial hyperglycaemia. To assess the ability of SH assisted CuO-693 

NPs in the inhibition of enzyme α-amylase; the former was subjected to experimental 694 

assay. The results revealed that biosynthesized CuO-NPs showed a satisfactorily high 695 

amount of α-amylase and α-glucosidase enzyme inhibitions (72±1.2% and 70±2.1%), as 696 

compared to that of SH at 100 µg/ml (Fig. 5a, b). According to our findings, the SH 697 

assisted CuO-NPs exhibited significant enzymatic inhibitory activity which were 698 

similar to the reports of [43, 100, 103]. Also, the graphic representation of HbA1c assay 699 

results (Fig. 5c) inferred a dose-dependent inhibition. It was clearly explained as a 700 

concentration-dependent reduction in the % of inhibition at various concentrations of 701 

biosynthesized CuO-NPs (20-100 µg/ml). The maximum concentration (100 µg/ml) of 702 

CuO-NPs and metformin, exhibited maximum inhibitions of 70±2.1% and 86±1.4%, 703 

respectively, whereas the minimum concentration (20 µg/ml) of CuO-NPs and 704 

metformin exhibited the least inhibitory value. There are a number of causes for α-705 

amylase inhibitory potential of medicinal plants, such as concentration of fibre, fibre 706 

cocooned encapsulation of enzyme and starch, and inhibitors on fibre surface, resulting 707 

in the reliable adsorption of enzyme α-amylase onto the surface of fibre and reduced 708 

starch accessibility to enzyme, resulting in the diminished activity of α-amylase [104]. 709 
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By delaying carbohydrate digestion and lengthening the overall time of carbohydrate 710 

digestion, α-glycosidase inhibitors can aid in lowering post-meal blood sugar levels. 711 

The inhibitors such as miglitol, vogomibose, and acarbose have been utilized as first-712 

line therapies for diabetes type 2 in the clinical context. Unfortunately, these therapies 713 

may have unwanted consequences like bloating, stomach pain, and diarrhea. Therefore, 714 

for the proper management of diabetic diseases, the development of safe and efficient 715 

enzyme inhibitors is necessary [105, 106]. 716 

 A biologically active enzyme called urease breakdown urea into carbon dioxide 717 

and ammonia. Urea is widely distributed in biologically active soil because many 718 

microorganisms metabolize it through the enzymatic action of urease [107]. The SH-719 

assisted CuO-NPs displayed outstanding urease inhibitory potential, as evidenced by 720 

the urease inhibitory assay results, which showed % inhibition of 68±2.1% compared to 721 

thiourea at 100µg/ml (Fig. 5d). During biosynthetic process, the functional groups 722 

attached to CuO-NPs may be responsible for this inhibitory action. Further, the 723 

triglycerides are hydrolyzed into fatty acids and glycerol molecules by a class of 724 

enzymes called lipases. These fat-splitting enzymes can be found in the pancreatic 725 

secretions, stomach juices, and blood [108]. In the present study, SH-assisted CuO-NPs 726 

exhibited high potential for inhibiting enzymatic activity of enzyme lipases. At 100 727 

µg/ml, CuO-NPs demonstrated a percent inhibition of 70±2.3% (Fig. 5e). The biological 728 

molecules conjugated to CuO-NPs during the biosynthesis process may be a plausible 729 

factor contributing in the inhibitory effect. This inhibitory property may be brought on 730 

by the various biological molecular species and functional groups like -OH (hydroxyl) 731 

and C=O (carbonyl) groups [107, 109]. 732 
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 Free radicals are molecules devoid of full electron shell, which speeds up a 733 

chemical process compared to other molecules. Oxygen (O2) is the most significant free 734 

radical in physiological systems. Radiation causes O2 to transfer electrons from other 735 

molecules, causing the destruction of DNA and other molecules [110-112]. Some of 736 

these modifications lead to illness such as cancer, diabetes, heart issues, and muscle 737 

failure. Antioxidants sweep away free radicals like a broom, repairing damaged cells as 738 

demonstrated by the studies of [113, 114]. The antioxidant assays of FRAS, TRP, TAC, 739 

FRAP, and ABTS are used to examine the antioxidant capacity of CuO-NPs. The FRAS 740 

assay was analyzed by using DPPH molecule. The colour of the stable free radical 741 

DPPH is purple with a significant absorption maximum observable at 517 nm. The free 742 

radical in the DPPH is paired off in the presence of an antioxidant, which reduces the 743 

absorbance and colour intensity. The DPPH technique is quick, easy, and affordable to 744 

test the antioxidant properties of compounds and is frequently used to assess their 745 

capacity to function as hydrogen providers and free-radical scavengers. The DPPH test 746 

depends on DPPH, a stabilized free radical, being eliminated. In fact, DPPH is a stable 747 

free-radical molecule that has a dark colour and crystalline structure. It is a widely 748 

recognized antioxidant and radical test in which the DPPH radical initially exhibits a 749 

dark purple tint in solution; however, after reduction and transformation into DPPH-H, 750 

it becomes colorless or light yellow [115].  The CuO-NPs reduces DPPH radicals by the 751 

transference of an electron or proton. In present study, the amount of DPPH-scavenging 752 

activity rose linearly from 20-100 µg/ml of CuO-NPs concentration, exhibiting 70±2.3% 753 

scavenging activity at 100 µg/ml (Fig. 6a). The CuO-NPs exhibited a high TAC value of 754 

85±0.26 µg AAE/mg (Fig. 6b). The TRP value of CuO-NPs is larger than that of 755 

hylauronate solution at 76±0.35 µg AAE/mg (Fig. 6c). Additionally, the synthesized 756 

CuO-NPs had a high ABTS value (400 µM TEAC) and a high FRAP value (423 µM 757 
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TEAC) (Fig. 6d and e). Further, the transition metal ions, particularly Fe2+, can hasten 758 

lipid peroxidation by (i) initiating fenton reaction or (ii) by breaking down lipid 759 

hydroperoxide into alkoxyl and peroxyl radicals triggering a chain reaction. In the 760 

study, the treatment of CuO-NPs resulted in an increase of 33% in the metal chelation 761 

(Fig. 6f). 762 

 The H2O2 scavenging capacity of CuO-NPs was experimentally examined. Since, 763 

the hydroxyl radical may harm a variety of molecules, including proteins, DNA, lipids, 764 

and other highly reactive free radicals, it has been exploited as a highly destructive 765 

species in free radical pathology [116, 117]. The findings of the current investigation 766 

demonstrated that CuO-NPs had a greater potential for scavenging power with increase 767 

in respective NPs concentrations (Fig. 7a). According to reports, CuO-NPs can produce 768 

hydroxyl radicals when H2O2 is present. The capacity of CuO-NPs to scavenge free 769 

radicals may be attributed to the presence of a number of biological constituents with 770 

the ability to donate hydrogen atoms in their -OH groups. Also, the nitric oxide 771 

scavenging activity of CuO-NPs increased with increasing concentrations of CuO-NPs 772 

(Fig. 7b). From the aforementioned findings, it can be inferred that the biomolecules 773 

adsorbed on CuO-NPs with antioxidant capacity may have contributed to the reduction 774 

and stabilization of CuO-NPs during the synthetic process, hence increasing the 775 

antioxidant activity of biosynthesized CuO-NPs. Similar results were also reported by 776 

[1, 104, 118]. The reactive oxygen species can oxidize cell membranes, harm membrane 777 

proteins, and alter DNA, which can lead to the beginning or worsening of a variety of 778 

illnesses. Although, the body has a defense mechanism, ongoing contact with chemicals 779 

and other contaminants can increase the amount of free radicals that the physiological 780 

system of body cannot neutralize leading to irreparable oxidative damage [119-121]. In 781 

order to prevent or treat oxidation-related disorders or free radicals, antioxidants with 782 
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the ability to neutralize free radicals are crucial. A focused strategy to the biochemical 783 

preclusion of malignancies aimed at halt/return cellular system to their pre-cancerous 784 

condition without the use of hazardous doses through foods and medications has to be 785 

developed as a result of broad molecular cell level investigations on cancer cells [120, 786 

122]. 787 

 The peroxidase (POD) activity assay was used to analyze the capacity of SH-788 

assisted CuO-NPs in the degradation of hydrogen peroxide (H2O2). Both plants and 789 

animals contain large amounts of enzyme peroxidases which catalyzes the oxidation of 790 

several phenols and non-phenols derived substances by breaking down H2O2. The 791 

biosynthesized SH-CuO-NPs were found to be proficient biocatalysts exhibiting a 792 

catalytic activity of 0.59 mM/min/mg in comparison to SH solution (0.05 mM/min/mg) 793 

(Fig. 7c). Our findings were consistent with the earlier research, which reported that 794 

CuO-NPs have peroxidase-like catalytic activity by the production of a blue-colored 795 

product post nanoparticles addition to the TMB containing medium as a peroxidase 796 

substrate [44, 100]. So, SH-assisted CuO-NPs are an excellent choice as peroxidase 797 

mimics for a variety of possible applications due to their catalytic properties. The 798 

metabolic process in mitochondria produces ROS and RNS as a byproduct. The DHR 799 

123 probe was used to assess the amount of ROS/RNS. According to the findings shown 800 

in Fig. 7d, the CuO-NPs generated more ROS and RNS in yeast cells than the control. 801 

The CuO-NPs were found to generate up to 3400 ROS/RNS when incubated with yeast 802 

cells, compared with control (610 ROS/RNS). In general, mitochondrial respiration 803 

produces free radicals, with electron transport chain (ETC) serving as the site of ROS 804 

production and oxygen leakage. The relevance of metallic nanoparticles improved the 805 

ability of fenton reaction in the production of free radicals. Additionally, the metallic 806 

ions in nanoparticles can prevent mitochondrial electron transport, increasing the 807 
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formation of ROS. Similar outcomes were noted in earlier studies where the use of 808 

metal derived nanoparticles led to ROS generation [123]. The cellular mechanism was 809 

severely compromised due to the increased levels of ROS/RNS caused by an imbalance 810 

between the free radicals and their scavenging activity. 811 

812 
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 820 

 821 

Fig. 5 Biological activity of CuO-NPs. (a) α-amylase, (b) α-glucosidase, (c) HbA1c,(d) urease and 822 
(e) lipase inhibitory activities. 823 
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Fig. 6 Antioxidant activity of CuO-NPs. (a) DPPH, (b) TAC, (c) TRP, (d) ABTS, (e) FRAP and (f) 824 
metal chelation activities.  825 
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Fig. 7 Antioxidant activities of CuO-NPs. (a) H2O2 radical scavenging activity, (b) NO2 radical 826 
scavenging activity, (c) peroxidase-like catalytic activity, (d) ROS/RNS measurement (NTC=non 827 
treated cells).  828 

Antibiotic resistance is one of the most serious public health problems, which is 829 

caused by inappropriate or excessive use of antibiotics [1, 3, 124, 125]. The urgent need 830 

to develop new antibiotic agents, use active and widespread techniques of infection 831 

control to stop the development of antibiotic resistant strains, and prolong treatment 832 

including hospitalization and recovery all contribute to increased healthcare costs. The 833 

occurrence of fatal and hazardous adverse effects from utilizing antibiotics in treatment, 834 
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such as anaphylactic shock (or hypersensitivity reactions), growth suppression of 835 

hematopoietic stem cells, and liver and kidney failure in some patients, are the 836 

additional issues. Even while only a small number of patients may experience these 837 

consequences, they are nonetheless significant because they can be fatal and harmful. 838 

The use of nanoparticles in medicine and related fields has grown significantly as a 839 

result of the development of nanotechnology science and the discovery of their 840 

antibacterial characteristics [126]. Also, the resistance of many infections to antibiotics is 841 

one of the primary issues facing medical science, the potential antibacterial actions of 842 

biosynthesized nanoparticles are crucial. In current study, the agar well diffusion 843 

technique was used to assess the antibacterial efficacy of green produced SH-assisted 844 

CuO-NPs against both gram +ve and gram-ve pathogenic bacteria (Fig. 8a). The tested 845 

bacterial strains were effectively inhibited by CuO-NPs with the maximal zone of 846 

inhibition reported in E. coli (27 mm) followed by S. aureus (22 mm). No inhibition was 847 

reported in negative control setup. Also, the cellular leakage of biological molecules like 848 

proteins and nucleic acids increased with successive increase in CuO-NPs 849 

concentrations (Fig. 8b and c). The E. coli cells exhibited higher levels of protein leakage 850 

(112 μg/ml) than S. aureus (78 μg/ml) post 6h time treatment. Similar results were also 851 

observed in nucleic acid leakage in which E.coli cells (0.2 OD260) leaked more amounts of 852 

nucleic acids than S. aureus (0.11 OD260) post 6h treatment. Both intracellular and 853 

extracellular interactions may be responsible for the antibacterial activity of CuO-NPs 854 

against human pathogenic organisms [127, 128]. The potential interaction between the 855 

CuO-NPs and the outer bacterial membrane may be due to growth suppression by the 856 

former. CuO-NPs have the potential to compromise bacterial cell viability by impairing 857 

enzyme performance and increasing cell permeability [129, 130]. CuO-NPs may also 858 

integrate within cell membrane owing to their small size compared to the membranal 859 
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pores on bacterial cell surface. Additionally, CuO-NPs produce reactive oxygen species 860 

like hydroxyl and superoxide free radicals, which harm cells by oxidizing double 861 

bonding of phospholipids and disrupting membrane permeability, leading to high 862 

osmotic stress and finally leading to bacterial cell death [131, 132] (Fig. 9). 863 

 An urgent necessity exists to investigate novel approaches to treat infections and 864 

diseases linked to bacterial biofilm as a result of the emergence of MDRB (multi drug 865 

resistant bacteria) based biofilm-associated infections. The contents of bacterial biofilm 866 

based on constitutive components are broadly classified into: hydrophobic 867 

(lipopolysaccharides, lipids, surfactants) and hydrophilic (proteins, nucleic acids, 868 

polysaccharides) [133]. The anti-biofilm action of nanoparticles (NPs) is significantly 869 

influenced by a number of factors, like charge, size distribution, hydrophobicity, surface 870 

chemistry, etc. The NPs interact and penetrate biofilm compartments when positioned 871 

adjacent to the biofilm [134]. In this study, the biofilm inhibitory potential of CuO-NPs 872 

against the cells of E. coli and S. aureus was evaluated. The CuO-NPs concentrations (20-873 

100 µg/ml) inhibited the formation of biofilm compared to control (Fig. 8d). The CuO-874 

NPs concentrations of 20, 60, 80 and 100µg/ml decreased the biofilm formation (in E. coli 875 

cells) by 33.1%, 60.02%, 78.4%, 85.32% and (in S. aureus cells) by 22.3%, 40.12%, 60.34%, 876 

71.2%, respectively. In agreement with our outcomes, Oliver et al. [135] reported 99.9% 877 

biofilm reduction at 5 µg/ml AgNPs while no discernible anti-biofilm effect was 878 

exhibited by citrate-reduced AgNPs. Strains of S. aureus and other biofilm forming 879 

bacteria are the principal microbial species responsible for the nosocomial infections 880 

linked to catheters. It is demonstrated that catheters coated with metallic nanoparticles 881 

significantly inhibit the in-vitro biofilm producing ability of pathogens. Additionally, 882 

the consistent release of metallic ions was helpful for patients with invasive devices. 883 
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The metallic nanoparticles might stop the respiratory enzymes and electron 884 

transporters of the pathogens, leading to bacterial death [1]. 885 

 DNA typically interacts with metal complexes in a variety of ways, and these 886 

interactions have a significant impact on the structure and function of DNA [136]. They 887 

have a strong affinity for DNA and have the ability to cause DNA cleavage [136]. The 888 

bio-efficacy of majority of the anticancer medications is frequently correlated with their 889 

DNA interaction capacity. Such substances can cause apoptosis and inhibit cell 890 

proliferation in cancer cells by destroying their DNA structure [136]. Hence, the ability 891 

of SH-assisted CuO-NPs to cleave DNA was evaluated using agarose gel 892 

electrophoresis. It is an effective method for identifying DNA damage. DNA is broken 893 

at specified sequence areas on the genome during agarose electrophoresis for DNA 894 

typing [137]. The transformation of pBR322 DNA form from supercoiled circular 895 

conformation (Form I) to nicked circular conformation (Form II) and linear 896 

conformation (Form III) serves as a DNA cleavage check. The nuclease activity was 897 

visible in all concentrations of CuO-NPs (Fig. 10). Control experiments using pBR322 898 

plasmid DNA didn’t show any DNA cleavage activity (Lane 1). At 20 µg/ml, the 899 

supercoiled plasmid DNA was transformed into circular shape. However, at greater 900 

concentrations (60 and 100µg/ml), Form I was transformed into more dense Form III. 901 

Based on the results, SH-assisted CuO-NPs served as a powerful chemical nuclease for 902 

the breaking of double strand DNA; demonstrating their potential as a DNA target 903 

agent and an alternative cancer treatment. Similar reports were reported by the studies 904 

of [1, 136-138]. 905 

 906 
 907 
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acid leakage, and (d) antibiofilm activity.  909 
 910 

911 



48 
 

 912 

1.

3.2.

4.

ROS ROS

ETC

5.

 913 
 914 
Fig. 9 Mechanism of antibacterial activity of CuO-NPs.  915 
1. Interaction of CuO-NPs with cellular membrane; leading to decreased transmembrane 916 
electrochemical potential affecting membrane integrity. 917 
2. DNA damage due to interaction with CuO-NPs. 918 
3. Interaction of Cu2+ ions with sulfhydryl groups of proteins. 919 
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Fig. 10 Cleavage patterns with various concentrations of CuO-NPs.(A) 20 µg/ml, (B) 60 µg/ml, 932 
(C) 100 µg/ml, Control= pBR622. 933 

 The brine shrimp (Artemia) is a common model organism used in the 934 

toxicological experiments and is a useful substitute in assessing the effects of marine 935 

toxicity. In present work, the cytotoxicity of CuO-NPs was investigated on brine shrimp 936 

nauplii at different concentrations (20-100 µg/ml) (Fig. 11). The results exhibited that the 937 

viability of nauplii decreased in a concentration-dependent pattern; from 95% (20 938 

µg/ml) to 50% (100 µg/ml) which can be ascribed to the effects exerted by the higher 939 

concentrations of CuO-NPs. The effects of CuO-NPs were found to be statistically 940 

significant (p < 0.001). Similar results were also reported by the studies of [139-140] 941 

 942 

  943 

 944 

 945 

 946 
 947 
 948 
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 949 
 950 
Fig. 11 Cytotoxicity of CuO-NPs against brine shrimp  951 

 The primary organic contaminants in wastewater, azo dyes are thought to be 952 

extremely hazardous, mutagenic, carcinogenic, teratogenic [95, 141-143]. In this study, 953 

dyes RR195 and RY145 were used as a model azo dye compounds to examine the 954 

catalytic effectiveness of SH assisted CuO-NPs as a nanocatalyst in the presence of 955 

NaBH4 well elucidated by time-dependent absorption curves (Fig.12). Firstly, the 956 

absorption peaks of dyes RR195 and RY145 were documented at 530 nm and 430 nm, 957 

respectively. The degradation experiment was conducted after recording their 958 

intensities as a function of time. The addition of CuO-NPs alone noted a small decrease 959 

in the intensities of dyes RR195 and RY145 (data not shown). Also, there was only a 960 

7.94% and 13.22% fall in RR195 and RY145 by 50 minutes under NaBH4 alone in the 961 

breakdown of azo dyes, indicating an incomplete dye breakdown (Fig.12: a1–a2) 962 

attributable to simple surface absorption (Reaction 1), instead of dye breakdown. 963 

However, when NaBH4 coupled CuO-NPs were added to the dye solution, there was a 964 

significant drop in the intensity of the absorption (Fig.12: b1–b2). As the reaction 965 

proceeded, the dye hue disappeared turning the reaction mixture to clear solution, 966 

indicating the breakdown of dyes. The rate of degradation of dyes RR195 and RY145 967 

were found to be 93% and 91%, respectively. However, the appearance of lower band 968 

peak following the reduction process shows that the azo dye decolorization was 969 

achieved by the breakdown of azo structure as opposed to merely physical adsorption, 970 

indicating the conversion of azo dyes into the equivalent amine compounds (Reaction 971 

2). Since the dye concentration at a given time (Ct) was directly proportional to the 972 

absorbance values at that time (At), the reaction followed pseudo-first-order kinetics. 973 

From the linearity of ln(At/A0) vs t plot, the kinetic rate constants (k) of RR195 and 974 
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RY145 was found to be as 0.0941 and 0.0220 min-1, respectively calculated straight for 975 

the straight-line slope (Fig.12: c1–c2). It is important to note that dye RR195 degraded 976 

relatively faster than dye RY145 which may possibly be due to the steric barrier of 977 

additional groups close to -N=N- in the latter molecule. The three steps can be used to 978 

describe the reduction mechanism: (i) Adsorption of azo elements and BH4– by CuO-979 

NPs, (ii) the transfer of electron (e–) from BH4– to dye molecules via CuO-NPs, (iii) the 980 

reaction of Cu2+ with dye molecules and (iv) the conversion of colorful dye (–N=N–) into 981 

monochrome amines (–NH2 + H2N–) compounds. Similar mechanism of dye 982 

degradation was also reported by [16, 17, 144].  983 

R1-N=N-R2→R1-HN=NH-R2 (Reaction 1) 984 

R1–N=N–R2→R1–NH2 + H2N–R2 (Reaction 2) 985 

 As a result, Scheme 1 updates the reaction mechanism with precise 986 

specifications. Here, SH serves as a stabilizer to prevent any aggregation and maintain 987 

the catalytic activity of the biosynthesized nanoparticle. The dye elements are adsorbed 988 

on the exterior of CuO-NPs due to the presence of biopolymer clad nanoparticles, 989 

without affecting their function [145]. Additionally, as the reducing agents such as 990 

NaBH4 were introduced into the reaction system, the nanoparticles instantly absorbed 991 

them, reducing the reductive strength significantly. However, the capping of SH on the 992 

nanoparticle validated the regular electron flow from nucleophilic NaBH4 to dye 993 

oxidation [145]. As a result, the azo dyes were easily absorbed by electrons, causing a 994 

redox reaction that destroyed dye chromophore structure and led to the production of 995 

amine species [146]. Schematically, Scheme 2 illustrates the advantage of biopolymer 996 

with respect to dye degradation using SH-assisted CuO-NPs via electron transfer from 997 

NaBH4 nucleophile. 998 
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Fig. 12 Absorption with (a2–b2) and without (a1–b1) CuO-NPs, and linear relationship of 999 
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Scheme 1

Scheme 2

 1001 
Scheme 1 Using a biocatalyst with a NaBH4 coupling, RR195 and RY145 are effectively 1002 
degraded.  1003 
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Scheme 2 provides an illustration of the process involved in the use of CuO-NPs by NaBH4 1004 
nucleophile to move electrons in favour of biopolymer in dye decomposition.1005 
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 1006 

4. Conclusion 1007 

In conclusion, SH-assisted CuO-NPs were formed, for the first time, in an 1008 

environmentally friendly, one-pot method in which SH macromolecules served as 1009 

stabilizing and reducing agents for CuO-NPs in the SH-matrix. Without employing any 1010 

harmful reagents, the reaction parameters were standardized to maximize the yield of 1011 

CuO-NPs. The CuO-NPs fabricated using the sustainable chemistry approach were 1012 

extremely crystalline, well-capped and well-dispersed CuO-NPs by SH-macromolecules 1013 

and have a spherical/oval shape measuring 17.4±1.3 nm with an elemental composition 1014 

of 29.49%. The FT-IR spectra exhibited the presence of many carboxyl and hydroxyl 1015 

groups which helped in the maintenance of monodispersed state by electrostatic 1016 

repulsion. The biosynthesized CuO-NPs exhibited notable bactericidal (E. coli 1017 

{inhibition zone 27mm; biofilm inhibition 85.32%; S. aureus [inhibition zone 22mm; 1018 

biofilm inhibition 71.2%}) and antioxidant [FRSA (70±2.3%), TAC (85±0.26%), TRP 1019 

(76±0.35%), ABTS (400µm TEAC), FRAP (423 µm TEAC)] activities. The increased 1020 

activities of enzymes like urease (68±2.1%), lipase (70±2.3%), peroxidase (0.59 1021 

mM/min/mg), ROS/RNS 3400 counts of relative probe fluorescence, metal chelation 1022 

(33%) and cell leakage assays of protein (E. coli 112 µg/ml; S. aureus 78 µg/ml) and 1023 

nucleic acids (E. coli OD 0.2; S. aureus OD 0.11) were reported in the presence of CuO-1024 

NPs. Furthermore, the CuO-NPs exhibited enhanced anti-diabetic activity against 1025 

enzymes α-amylase (72±1.2%) and α-glucosidase (70±2.1%). Also, the combination of 1026 

intrinsic time-dependent absorptive spectra and mechanics of pseudo-first-order 1027 

reaction kinetics demonstrated biosynthesized CuO-NPs as efficient nanocatalyts for 1028 

azo dyes decomposition (91-93% rate of degradation) and hold great promise in the 1029 

fields of industrial wastewater treatment. 1030 
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