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CONDITIONS 36 

Abstract:  Aims: The physiologic challenges related to performances in hot conditions calls for 37 

dedicated consideration when planning athlete training, although complete amelioration of the 38 

effects of heat may not be possible.  We aimed to quantify within-subject correlations between 39 

different measures of environmental temperature and performance changes over multiple elite 40 

soccer competitions. Methods: Thirty-seven elite male soccer players (age:26 ± 3.4years, 41 

height:171 ± 2cm, body mass:78 ± 7.1kg) competed in North America over four seasons 42 

(range:3 to 98 matches).  Players wore global positioning system devices during games and 43 

reported differential-RPE immediately post game. Temperatures at kick-off, week average 44 

temperature, the difference between game-day and week average (DiffTemp), and heat index at 45 

kick-off were obtained.  Within-player correlations were calculated using general linear models 46 

to quantify associations between fluctuations in temperature measures and physical and 47 

perceived outputs.  Results: Correlations between total distance and the various temperature 48 

measures were trivial to small (range: -0.08 to 0.13, p=<0.001-0.02). Small negative correlations 49 

were found between all temperature measures except DiffTemp and high-speed running (HSR) 50 

(range: -0.17 to -0.14, p=<0.001).  Most correlations between differential-RPE and temperature 51 

measures were trivial to small and not significant (r=0.06 to 0.18 p=0.03-0.92) although 52 

breathlessness-RPE and heat index showed a small significant association (P=0.018) 53 

Conclusion: Decrements in HSR appear to be associated with increased environmental 54 

temperature however, these associations are small in magnitude.  55 

 56 

KEYWORDS:  Environmental, Football, Temperature, Differential Rate of Perceived Exertion, 57 
Match, Heat Index 58 

 59 

INTRODUCTION 60 

The international soccer calendar is a yearlong process, with many domestic leagues 61 

lasting nine to ten months, and then international competitions played during the remaining 62 

months.  This leads to vastly differing temperature profiles during a competition dependent on 63 

location, month of the year and time of day (Chmura et al., 2017).  Tournaments such as the  FIFA 64 



Men’s World Cup 2022 in Qatar, FIFA Women’s World Cup 2023 in Australia and New Zealand, 65 

FIFA World Cup 2026 in the USA, Canada and Mexico and the upcoming FIFA U20 World Cup 66 

in Indonesia  pose unique challenges from a game-time temperature perspective. The locations 67 

of these tournaments could result in temperature ranges which span 40-50°F (~25*C) from one 68 

city to the next (Company, 2022).  The International Olympic Committee released a consensus 69 

statement calling for increased research into elite athletes and their response and management 70 

of thermal strain during competition (Bergeron et al., 2012).  With such varying degrees of 71 

temperature within a singular competition, preparation, performance management and recovery 72 

become important factors, with a special focus upon thermophysiology required (Periard and 73 

Racinais, 2019).   74 

 75 

Performance in thermally challenging environments is dependent on both the external 76 

environment, and the individual’s ability to maintain homeostasis (Cheung, 2010; Periard and 77 

Racinais, 2019).  Heat has been shown to affect multiple physiological systems, which can 78 

result in decrements to strength, power, speed and potentially sport specific neuromotor skill 79 

performance (Cheung, 2010; Bergeron et al., 2012; Periard and Racinais, 2019; McCubbin et 80 

al., 2020).  Measures have been employed to assess the challenges caused by the 81 

environment.  For example, heat index, wet bulb globe temperature (WBGT) index, and wind 82 

chill are measures which attempt to evaluate risk for thermal issues based on multiple external 83 

factors such as wind speed, humidity, and temperature (Bergeron et al., 2012).  While effective 84 

at forecasting responses, combined metrics such as those previously stated lack the context 85 

necessary to define the physiologic mechanism impacted, making practical guidance infeasible 86 

(Roghanchi and Kocsis, 2018; Thomas and Uminsky, 2022). Decision making in the applied 87 

world may need to occur at the individual metric level, to ensure interventions are applied 88 

specific to the needs of the athletes in challenging situations.  In turn, decisions based upon the 89 

individual metrics may be more complex, as there are more variables to assess, and difficult to 90 

interpret due to multiple measures being considered (Roghanchi and Kocsis, 2018; Thomas and 91 

Uminsky, 2022). 92 



 93 

A key characteristic of performance decrements in thermally challenging environments is 94 

progressing levels of dehydration resulting in reductions in cardiac stroke volume, which in turn 95 

can affect brain and muscle function, core body temperature regulation, and neurologic responses 96 

to stimuli (Bergeron et al., 2012; Periard and Racinais, 2019). While acclimatization to hot 97 

environments has been proven an effective approach in multiple sporting environments (Mohr 98 

and Krustrup, 2013; Sabou et al., 2020; Vanos et al., 2020), this approach may not be practically 99 

applicable outside of preseason in elite soccer environments.  Bergeron et al. (2012) suggests 100 

that although just a few days acclimatization can help, two weeks is needed for extreme 101 

environments.  The difference between following best practices or not in this instance could 102 

double the necessary budget for travel for a team during a season and may only be applicable if 103 

the schedule allows for it.  Though it should be noted that heat can serve as a benefit to some 104 

performance types, like maximal sprinting and throwing for distance (Périard and Racinais, 2014; 105 

Periard and Racinais, 2019). It is well noted that thermally challenging environments, in both the 106 

hot and cold, have specific responses from the neuromuscular, cardiovascular, endocrine 107 

systems and cognitive functions, and can be used as an additional stressor in training, allowing 108 

for supercompensation to  enhance performance (Cheung, 2010; Periard and Racinais, 2019).  109 

Thus, whilst it is presumed that physical performance in soccer may be reduced in thermally 110 

challenging environment the relationship is likely more nuanced and may result in a combination 111 

of subjective and objective load measures serving to guide decision making.  112 

 113 

In elite soccer, where acclimatization may not be an achievable option throughout a season, 114 

understanding the potential effects of competing in thermally challenging environments may be 115 

the most proactive approach to preparation for challenging thermal conditions.  A data informed 116 

decision-making process can aid the discussion with all stakeholders pertaining to preserving 117 

physical outputs and optimizing performance. Additionally, information on performance outputs in 118 

thermally challenging environments may aid practitioners in managing stress throughout the 119 

training process to reduce the acute and additive stress induced by thermally challenging 120 

environments. Thus, we aimed to evaluate the effect of temperature measures on player physical 121 

and subjective outputs within an elite North American soccer competition. 122 

 123 

MATERIALS AND METHODS 124 



Experimental Approach to the Problem 125 

This retrospective observational study was conducted within an elite professional North American 126 

soccer team, training and competing full time, over the course of four seasons (2017 to 2020), 127 

which also included the COVID-19 tournament in a bubble location from July to August 2020 in a 128 

hot environment (McKay et al., 2022).  129 

Participants 130 

Thirty-seven professional football players from a single club (Age: 26 ± 3.4 years, Height: 171 ± 131 

2.7cm, Body mass: 78 ± 7.1 kg) participated in this study and played 75min (95.7 ± 7.5min; 126 132 

games) in at least one first-team match during the study period.  Goalkeepers were excluded from 133 

the study.  Only data from competitive matches were included.  The team’s home stadium is within 134 

the geographic temperate zone, between 23.5°N and 66°N latitude, and located approximately 135 

97km from the Atlantic coast. Participant consent was obtained for all data collection and use in 136 

further research via an informed consent process, and the study was approved as part of a larger 137 

project by *** 138 

 139 

Informed Consent 140 

The athletes in this study have given written consent to the inclusion of material pertaining to 141 

themselves and acknowledge that they cannot be identified via the paper.  Athletes were also 142 

informed that all of their data was anonymized prior to any analysis. 143 

 144 

Outcome measures (dependent variables) 145 

Outcome variables were chosen to provide an understanding of the physical performance outputs 146 

of the players (external load) and the relative psycho-physiological and biomechanical response 147 

to these outputs (internal load) (Impellizzeri, Marcora and Coutts, 2019; McLaren, Coutts and 148 

Impellizzeri, 2020). Global Positioning System (GPS) derived total distance and high-speed 149 

running distance were chosen to provide a broad measure of overall locomotive and high intensity 150 

locomotive performance.  These locomotive measures have been shown responsive to previous 151 

stressors, and aligned with changes in internal load measures for a given workload, allowing for 152 

further assessment of additional stresses caused by the environmental temperature (Gallo et al., 153 

2016; Mohammed Ihsan et al., 2017; Thorpe et al., 2017). To account for differences in playing 154 

minutes between players these values were divided by player duration and analysed as meters 155 



per minute. Ratings of perceived exertion (RPE) were chosen to represent the internal training 156 

load. Session RPE (sRPE) has been shown to be a valid measure of internal training load 157 

sensitive to differences in external load and associated with physiological markers such as Heart 158 

Rate, percentage VO2max, muscle electrical activity, blood lactate and respiration rates (Chen, 159 

Fan and Moe, 2002; Lea et al., 2022). Due to the explorative nature of this paper, and that different 160 

types of thermally challenging environments impact physiological systems specifically (Cheung, 161 

2010; Périard and Racinais, 2014; Periard and Racinais, 2019), we chose to also differentiate the 162 

RPE response into cardio-respiratory (breathlessness exertion), neuromuscular (leg exertion) and 163 

cognitive exertion. Differential RPE (dRPE) has shown sensitivity to different forms of exercise 164 

and intensities (McLaren et al., 2016; McLaren et al., 2017), while also showing variations based 165 

on differing environmental contexts (Young, Cymerman and Pandolf, 1982).  Ultimately, these 166 

measures are potentially useful in team sports and capable of differentiating between sessions 167 

with known physiological differences (Mclaren et al., 2016; McLaren, , et al., 2017; Wright et al., 168 

2020).  169 

 170 

Procedures 171 

Data collection processes for Global Positioning System (GPS) were undertaken in line with 172 

Draper et al. (2021).  In addition to the outcomes measured by Draper et al. (2021), differential 173 

Ratings of Perceived Exertion (dRPE) were measured on the CR-100 scale (Borg and Borg, 2002) 174 

after the match to assess athlete’s subjective perception of the effort over the match.  Players 175 

reported cardiorespiratory (breathlessness) and neuromuscular (leg) exertion (Borg et al., 2010; 176 

Mclaren et al., 2016).  dRPE surveys were completed via personalized messages on player’s 177 

mobile electronic devices and social media communications (Facebook messenger) to simplify 178 

the data collection process for both players and researchers,  limiting the time taken to complete 179 

the survey (Noon et al., 2015; Draper et al., 2021).  Surveys were automatically sent out to players 180 

after games, approximately 2hrs after kickoff.  When completing the survey, the scale (CR-100) 181 

was shown prior to each question, and anchors were stated within each question to give players 182 

reference to the scale again (Draper et al., 2021).  This survey was typically completed within 2 183 

hours of the session or match. 184 

 185 

In this exploratory study, the intent was to study measures which might help practitioners 186 

better explain the impact that temperature, temperature changes or humidity may have on real 187 



performance conditions in elite soccer.  Wet Bulb Globe Thermometer (WGBT) readings are 188 

known as the gold standard for measuring thermal stress in the field (Racinais et al., 2015; Gibson 189 

et al., 2020), though this data is not always readily available or practically viable for use in decision 190 

making on game days.  For the purposes of this research, retroactive data was collected and as 191 

such, WGBT data was not available.  Data relating to environmental conditions were collected 192 

from publicly-available weather data (Weather Underground, 2022). Each day, staff at the club 193 

collected information relating to the weather conditions in their home city, or in the city where the 194 

team’s soccer activity was conducted in the case of “away” match preparation, game times ranged 195 

from 1:00pm to 8:00pm.  This data typically included a time of day, which was selected based on 196 

the reported time of kickoff on the league website or training time based on the team’s monthly 197 

calendar.  The closest time frame for the weather report to the reported team start time was 198 

selected when there was not an exact match. Variables on the weather website included 199 

temperature, dew point, humidity, wind, wind speed, wind gust, pressure, precipitation, and 200 

subjective condition.  For the purposes of the current study, temperature and humidity were 201 

captured in the dataset.  From these, four metrics were derived as potential predictors, kick off 202 

temperature, average weekly temperature, temperature difference, and kick off heat index.  Kick 203 

off temperature is the ambient temperature at the start of the game.  Average weekly temperature, 204 

is the average of reported temperatures for the 7 days prior to game day.  Temperature difference 205 

is the difference between the kick-off temperature and the average weekly temperature.  206 

Temperature difference was setup so that positive values represent Kick Off Temperature being 207 

the higher value and negative values represent Average Weekly Temperature being the higher 208 

value.  Heat Index, which is a value to represent what the temperature “feels like” to the human 209 

body when relative humidity is combined with air temperature, was calculated using the National 210 

Weather Service’s reported equation (Weather.gov, no date), taking into account the ambient 211 

temperature and relative humidity from the game day weather report.   212 

 213 

Statistical Analysis 214 

To quantify within-player correlations between independent temperature-related and dependent / 215 

outcome variables, a general linear modelling approach (GLM) was used (Bland and Altman, 216 

1995, 1996; Bakdash and Marusich, 2017).  Following visual inspection of the dRPE residuals, 217 

we suspected some departure from normality and therefore ran the models after log-218 

transformation of data.  For dRPE values, the external load measure of total distance, and log-219 

transformed results, were added to the model as a covariate to glean more information about the 220 



causal pathway between temperature and dRPE, helping to address the question of whether 221 

within-subject changes in temperature are associated with changes in dRPE, independently from 222 

any influence of changes in external load. The transformed and non-transformed data were 223 

compared as a sensitivity analyses.  Based on the visual inspection of the histograms, the log-224 

transformed model showed a more normal distribution of residuals, and as such, this model was 225 

selected for analysis. The following thresholds were used to interpret the magnitude of the within-226 

subject correlation between variables: <.1 Trivial, .1 to .3 Small, .3 to .5 Moderate, .5 to .7 Large, 227 

.7 to .9 Very Large, and .9 to 1.0 Almost Perfect (Hopkins, 2004).  All results are shown with 95% 228 

confidence intervals.  The statistical analysis software, SPSS (SPSS Inc., Chicago, IL, USA) was 229 

used for the statistical calculations. 230 

RESULTS 231 

Descriptive data for outcome measures are presented in Table 1, descriptive data for predictive 232 

measures are presented in Table 2.  Within-player associations between the four predictive 233 

thermal-related variables and external load are presented as correlation coefficients with 95% 234 

confidence intervals in Figure 1, for RPE measures in figure 3. An example of individual within-235 

player associations between KOtemp and HSR distance is presented in Figure 2. 236 

[Table 1 ABOUT HERE] 237 

[Table 2 AOUT HERE] 238 

 Small negative correlations were observed between HSR and KOtemp  (r= -0.14, -0.208 to 239 

-0.076), HSR and Weektemp  (r= -0.15, -0.210 to -0.077), HSR and KOHeatIndex (r= -0.17, -0.239 to -240 

0.108), TD and KOtemp  (r= -0.12, -0.187 to -0.054) and TD and KOHeatIndex (r= -0.13, -0.198 to -241 

0.66)  (figure 1), with all other correlations reported in Figure 1.  We obtained 882 data points for 242 

the external load variables.  Perceptual ratings (figure 2), which were based on 193 data points 243 

in the analysis, had mostly trivial to small positive correlations, with all DiffTemp outcomes and 244 

dRPE-Tech* KOtemp resulting in non-significant findings (p=0.06 to 0.94).  An example of the 245 

observed between-player heterogeneity in slopes and intercepts is presented in figure 3 for HSR 246 

and KOtemp.  247 

 248 

[FIGURE 1 ABOUT HERE] 249 

[FIGURE 2 ABOUT HERE] 250 



[FIGURE 3 ABOUT HERE] 251 

 252 

DISCUSSION 253 

Competing in thermally challenging environments is commonplace in elite North American soccer.  254 

We aimed to understand the association between temperature measures and physical 255 

performance metrics in competition, where acclimatization may not be achievable.  We observed 256 

small negative associations between HSR and multiple temperature measures, and between total 257 

distance kick of temperature and heat index.  We also observed a small positive correlation 258 

between breathlessness-RPE and heat index but all other associations between temperature 259 

measures and d-RPE were unclear. Thus, a novel finding of this study was that HSR distance 260 

appears to reduce as temperature measures increase and this may be accompanied with an 261 

increase in breathlessness-RPE. However, the magnitude of these associations are small. 262 

The interpretation of changes in in-game physical outputs is a complex practice, though 263 

has important implications for decision-making within the elite soccer environment (Bradley and 264 

Nassis, 2015).  Any trivial to small change in outputs associated with a single predictive measure 265 

are likely due to match running performance being multi-factorial in nature (Bradley and Nassis, 266 

2015).  In previous literature, temperature has been evaluated as a potential contextual variable 267 

which could have an effect on soccer performance (Draper et al., 2022).  The current analysis 268 

found total distance had a small negative correlation with KOtemp and KOHeatIndex, and trivial, 269 

negative correlations with Weektemp, DiffTemp.  This is not completely unexpected as Draper et al. 270 

(2022) reported heterogenous effects for heat on total distance with correlation coefficients 271 

ranging from trivial (-0.14 to moderate (-0.96) in a recent systematic review.  The population sizes, 272 

population makeup and temperature ranges of the experimental groups were likely major 273 

determinants of the calculated correlation coefficients. Based on the slopes of our models for 274 

KOtemp, Weektemp, DiffTemp, KOHeatIndex (β=-0.21, -0.35, -0.17, -0.18, respectively) it could be 275 

expected that with a 10°C increase in temperature, there would be a change in total distance of -276 

185m, -150m, -311m and -160m, respectively, if a player played 90 minutes, but due to the wide 277 

confidence intervals any attempt of using these values for prediction purposes would be 278 

imprecise.  Based on this notion, only the change in total distance at the far extremes of 279 

temperatures would fall outside of the typical error measurement percentage (TEM%) of GPS 280 

units, 1.3% for total distance (Johnston et al., 2014) and thus likely to be more than just 281 

measurement noise (Buchheit, Rabbani and Beigi, 2014; Schneider et al., 2018).   282 



The current study found that KOtemp, Weektemp and KOHeatIndex showed a statistically significant 283 

small negative correlation with HSR, a key predictor of scoring chances in elite soccer (Wallace 284 

and Norton, 2014; Williams et al., 2017; Dalen et al., 2019). The effect of environmental factors 285 

such as temperature on high-speed running in elite soccer players is not clear in the literature 286 

with studies reporting a range of effects from large negative (d= - 0.98) to large positive effects 287 

(d=1.30) (Draper et al., 2020).  Some research indicates that  athletes themselves control outputs 288 

through pacing strategies which may impact the statistical value of such analyses (Carling and 289 

Dupont, 2011; Dellal et al., 2013; Julian, Page and Harper, 2021).  The small but significant 290 

correlations we observed may reflect HSR being better able to detect physiologic and residual 291 

fatigue, as noted previously, though these responses remain individualized (Figure 3) (Hader et 292 

al., 2019).  Here the slopes of the models (β=-0.03, -0.04, -0.01, -0.03 respectively) suggest that 293 

with a 10°C increase in temperature we could expect to see a -30m, -32m, -11, -29m, change in 294 

HSR, if the player played 90 minutes, which is more than the expected measurement noise 295 

(Johnston et al., 2014).  With just a ±10% fluctuation in humidity, and the same temperatures, risk 296 

ranges can shift from “Caution” to “Danger” zones in heat index and WGBT ), representing greater 297 

physiologic impact and greater health risk involved with performing in these environments. Our 298 

data supports the work by governing bodies to enact governance surrounding thermal stress 299 

ranges to find solutions and create rule changes to promote athlete health and safety and maintain 300 

a minimal standard for matches.   301 

 Within the current analysis, it should be unsurprising that external load variables and the 302 

perceptual measures of load result in very similar magnitudes of correlation, mostly trivial to small. 303 

These measures have been found to be mode dependent and are correlated between themselves 304 

(Young, Cymerman and Pandolf, 1982; Mclaren et al., 2016).  dRPE values were found to be 305 

helpful measures to monitor internal load, aid in the prescription of exercise, enhance precision 306 

of measurement, and differentiate between types of load in athletes (Mclaren et al., 2016; 307 

McLaren, et al., 2017; McLaren, et al., 2017; Barrett et al., 2018).  It was expected to observe 308 

RPE measures increase within this study, as heat is shown to impact the physiologic systems, 309 

specifically the cardiovascular and endocrine systems (Brutsaert et al., 2000; McLaren, Smith, et 310 

al., 2017; Wright et al., 2020). Increases in breathlessness RPE were associated with increased 311 

heat index but the association was small and likely not practically important. Analysis of the slopes 312 

suggest a 10°C increase in heat index would be associated with on 2 unit change in 313 

breathlessness RPE, considerably less than the minimally important change of 8 arbitrary units 314 

on the CR-100 scale proposed by Wright et al., (2020). That said, individual slopes varied within 315 

their responses to environmental temperatures so this does not rule out substantial increases in 316 



exertion in individual players. As such, there is a potential benefit of tracking dRPE when heading 317 

into times of persistently challenging temperatures, like those encountered in the southern United 318 

States daily in the months of June, July and August as it may identified smaller physiologic 319 

changes in stress response. 320 

 Conducting research in an applied world is challenging (Bishop, 2008; Coutts, 2016), and 321 

there were some inevitable limitations to this work.  Firstly, we did not control for fixture congestion 322 

within this study as this would compromise the useable data set but could have contributed to 323 

variation in load measures. Matches where players were given red cards, and a team played 324 

down a man and lopsided results (>5 goal difference between teams) were eliminated to reduce 325 

the error inside of the selected matches.  Furthermore, WGBT data was not available for analysis, 326 

though it is acknowledged that this data is the preferred measure in assessing thermal challenge 327 

during matches.  Though, part of the purpose of this study was to identify measures which could 328 

be utilized proactively in managing stressors incurred by athletes and be useful at the applied 329 

level as discussed in workplace safety frequently (Roghanchi and Kocsis, 2018).  Finally, we did 330 

not control for strategies to reduce thermal effects such as hydration strategies or halftime thermal 331 

management.  Players and staff performed their normal activities and performance interventions. 332 

As is the case in a team sport environment compliance with these factors were not consistent 333 

across all the population, and as such were not controlled for. The aim of this study however, was 334 

to quantify the relationship between thermal metrics and physical performance in a “real world” 335 

setting and thus controlling for such factors would not represent normal practice.  336 

Conclusion 337 

 Thermally challenging environments are part of a range of unique challenges while 338 

competing in North American professional soccer.  We observed increases in thermal metrics, 339 

such as heat index, were associated with decreases in high-speed running and increases in 340 

breathlessness-RPE. However, these associations were small in magnitude.   341 

 342 

Practical Applications 343 

High-speed running and breathlessness-RPE seems to be associated with changes in thermal 344 

conditions and could be important metrics to consider in data-based decision making in real 345 

time. Particularly as these associations maybe differ between individuals.  346 

 347 
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 503 

Table 1.  Outcome Measure Descriptive Statistics 504 

Metric Mean ± Standard Deviation Range 

External Load Variables 

Total Distance (m) 9808 ± 1439 7012-17820 

HSR (m) 539 ± 206 0-1465 

Perceptual Metrics 

dRPE-Legs 83.4 ± 12.7 40-100 

dRPE-Lungs 81.8 ± 13.6 40-100 

dRPE-Tech 82.3 ± 14.0 10-100 

dRPE-Session 83.2 ± 13.3 40-100 

Next Day Athlete Reported Outcomes 

Soreness 6.73 ± 1.12 5-10 

Mood 8.46 ± 1.27 7-10 

 505 

  506 



Table 2. Predictive Metric Descriptive Statistics 507 

Metric Mean ± Standard Deviation Range 

KOtemp 20.29 ± 7.46 -0.61 - 35.6 

Weektemp 20.5 ± 7.07 -0.61 - 35.6 

DiffTemp -0.19 ± 2.99 -8.89 - 13.3 

KOHeatIndex 20.3 ± 9.36 0.61 - 41.1 

 508 

  509 



 510 

  511 

Figure 1: Within player correlations between changes in thermal variables and external load 512 

variables, error bars representing 95% confidence intervals. Statistically significant correlations, 513 

where the 95% confidence interval does not overlap zero, are indicated by black diamond 514 

markers.  515 



 516 

Figure 2: Within player correlations between changes in thermal variables and log-transformed 517 

RPE load variables, error bars representing 95% confidence intervals. Statistically significant 518 

correlations, where the 95% confidence interval does not overlap zero, are indicated by black 519 

diamond markers.  520 



 521 

Figure 3:  Individual within-player regression slopes between kick-off temperature and high-522 

speed running distance. 523 
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Figure Captions 526 

 527 

Figure 1: Within player correlations between changes in thermal variables and external load 528 

variables, error bars representing 95% confidence intervals. Statistically significant correlations, 529 

where the 95% confidence interval does not overlap zero, are indicated by black diamond 530 

markers. 531 

Figure 2: Within player correlations between changes in thermal variables and log-transformed 532 

RPE load variables, error bars representing 95% confidence intervals. Statistically significant 533 

correlations, where the 95% confidence interval does not overlap zero, are indicated by black 534 

diamond markers. 535 

Figure 3:  Individual within-player regression slopes between kick-off temperature and high-536 

speed running distance. 537 
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